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Abstract— Motivated by an open problem and a conjecture,
this work studies the problem of single server private information
retrieval with private coded side information (PIR-PCSI) that was
recently introduced by Heidarzadeh et al. The goal of PIR-PCSI
is to allow a user to efficiently retrieve a desired message W,
which is one of K independent messages that are stored at
a server, while utilizing private side information of a linear
combination of a uniformly chosen size-M subset (S C [K]) of
messages. The settings PIR-PCSI-I and PIR-PCSI-II correspond
to the constraints that 6 is generated uniformly from [K]\S, and
8, respectively. In each case, (6, S) must be kept private from the
server. The capacity is defined as the supremum over message
and field sizes, of achievable rates (number of bits of desired
message retrieved per bit of download) and is characterized by
Heidarzadeh et al. for PIR-PCSI-I in general, and for PIR-
PCSI-II for M > (K + 1)/2 as (K — M + 1)~'. For
2 < M < (K 4+ 1)/2 the capacity of PIR-PCSI-II remains
open, and it is conjectured that even in this case the capacity
is (K — M 4 1)~'. We show the capacity of PIR-PCSI-II is
equal to 2/K for 2 < M < XFL) which is strictly larger
than the conjectured value, and does not depend on M within
this parameter regime. Remarkably, half the side-information is
found to be redundant. We also characterize the infimum capacity
(infimum over fields instead of supremum), and the capacity with
private coefficients. The results are generalized to PIR-PCSI-I
(6 € [K]\ S) and PIR-PCSI (0 € [K]) settings.

Index Terms— Capacity, Private Information Retrieval (PIR),
coded side information (CSI), interference alignment.

I. INTRODUCTION

S CLOUD services and distributed data storage become

increasingly prevalent, growing concerns about users’
privacy have sparked much recent interest in the problem
of Private Information Retrieval (PIR). Originally introduced
in [1] and [2], the goal of PIR is to allow a user to efficiently
retrieve a desired message from a server or a set of servers
where multiple messages are stored, without revealing any
information about which message is desired. In the informa-
tion theoretic framework, which requires perfect privacy and
assumes long messages, the capacity of PIR is the maximum
number of bits of desired information that can be retrieved
per bit of download from the server(s) [3]. Capacity charac-
terizations have recently been obtained for various forms of
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PIR, especially for the multi-server setting [3], [4], [5], [6],
(71, [81, [91, [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22].

PIR in the basic single server setting would be most valuable
if it could be made efficient. However, it was already shown
in the earliest works on PIR [1], [2] that in the single server
case there is no better alternative to the trivial solution of
downloading everything, which is prohibitively expensive.
Since the optimal solution turns out to be trivial, single server
PIR generally received less attention from the information
theoretic perspective, until recently. Interest in the capacity
of single-server PIR was revived by the seminal contribution
of Kadhe et al. in [23] which showed that the presence of side
information at the user can significantly improve the efficiency
of PIR, and that capacity characterizations under side infor-
mation are far from trivial. This crucial observation inspired
much work on understanding the role of side-information in
PIR [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
which remains an active topic of research. Among the recent
advances in this area is the study of single-server PIR with
private coded side information (PIR-PCSI) that was initiated
by Heidarzadeh, Kazemi and Sprintson in [33]. Heidarzadeh
et al. obtain sharp capacity characterizations for PIR-PCSI in
many cases, and also note an open problem, along with an
intriguing conjecture that motivates our work in this paper.

In the PIR-PCSI problem, a single server stores K indepen-
dent messages W, .-, W, each represented by L i.i.d.
uniform symbols from a finite field F,. A user wishes to
efficiently retrieve a desired message Wy, while utilizing
private side information (S, A,Y!SA)) that is unknown to
the server, comprised of a linear combination y[S:A]
Zn]\le AnW, ~ of a uniformly chosen size-M subset of
messages, S = {41,%2, - ,inp} C [K], 81 < d2 < -+ < ipp,
with the coefficient vector A = (Ag, - -+, Aps) whose elements
are chosen i.i.d. uniform from qu, i.e., the multiplicative
subgroup of IF,. Depending on whether € is drawn uniformly
from [K]\ & or uniformly from &, there are two settings,
known as PIR-PCSI-I and PIR-PCSI-II, respectively. In each
case, (0, S) must be kept private. Capacity of PIR is typically
defined as the maximum number of bits of desired message
that can be retrieved per bit of download from the server(s),
and includes a supremum over message size L. Since the
side-information formulation specifies a finite field IF, the
capacity of PIR-PCSI can potentially depend on the field.
A field-independent notion of capacity is introduced in [33]
by allowing a supremum over all finite fields. For PIR-PCSI-I,
where 0 ¢ S, Heidarzadeh et al. fully characterize the capacity
as (K — M)~! for 1 < M < K — 1. For PIR-PCSI-II,
the capacity is characterized as (K — M + 1)~ for % <
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M < K. Capacity characterization for the remaining case of
2<M< % is noted as an open problem in [33], and it is
conjectured that the capacity in this case is also (K —M+1)71.

The main motivation of our work is to settle this conjecture
and obtain the capacity characterization for PIR-PCSI-II when
2<M< % Given the importance of better understanding
the role of side information for single-server PIR, additional
motivation comes from the following questions: What is the
infimum capacity (infimum over all finite fields instead of
supremum)? What if the coefficient vector A (whose privacy
is not required in [33]) is also required to be private? Can
the side-information be reduced, e.g., to save storage, without
reducing capacity?

The contributions of this work are summarized in Table I,
along with prior results from [33]. As our main contribution
we show that the capacity of PIR-PCSI-II for 2 < M <
K+l s equal to 2/K, which is strictly higher than the
conjectured value in this parameter regime. The result reveals
two surprising aspects of this parameter regime. First, whereas
previously known capacity characterizations of PIR-PCSI-II
(and PIR-PCSI-I) in [33] are all strictly increasing with M (the
size of the support set of side information), here the capacity
does not depend on M. Second, in this parameter regime (and
also when M = [ (K + 1)/2]+1), half of the side information
turns out to be redundant, i.e., the supremum capacity remains
the same even if the user discards half of the side information.
We also show that if more than half of the side information
is discarded, then the supremum capacity is strictly smaller.
By contrast, in other regimes no redundancy exists in the
side information, i.e., any reduction in side information would
lead to a loss in supremum capacity. The results regarding
the redundancy in the side information when the supremum
capacity is achieved are summarized in Table II in Section III
as the definition of redundancy will be clear then.

The optimal rate 2/K is shown to be achievable for any
finite field F, where ¢ is an even power of a prime. The
achievable scheme requires downloads that are ostensibly
non-linear in F,, but in its essence the scheme is linear,
as can be seen by interpreting IF, as a 2 dimensional vector
space over the base field F > over which the downloads are
indeed linear. Intuitively, the scheme may be understood as
follows. A rate of 2/K means a download of K /2, which is
achieved by downloading half of every message (one of the
two dimensions in the 2 dimensional vector space over I /).
The key idea is interference alignment — for the undesired
messages that appear in the side information, the halves that
are downloaded are perfectly aligned with each other, whereas
for the desired message, the half that is downloaded is not
aligned with the downloaded halves of the undesired messages.
For messages that are not included in the side information, any
random half can be downloaded to preserve privacy.

With a bit of oversimplification for the sake of intuition,
suppose there are K = 4 messages, that can be represented
as 2-dimensional vectors A = [a; ao],B = [by by],C =
[ca ¢o], D =[d; d3], the side information is comprised of
M = 3 messages, say at first A+ B+ C = [a; + b +
c1 as + by + ¢, and the desired message is A. Then the
user could recover A by downloading ai, b2, ce and either
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d; or do, i.e., half of each message for a total download of
K/2 = 2 (normalized by message size). We may also note
that half of the side information is redundant, i.e., the user
only needs as + by + ¢, and can discard the rest. But there
is a problem with this oversimplification — this toy example
seemingly loses privacy because the matching indices reveal
that b aligns with co but not a;. This issue is resolved by
noting that the side information is in fact Ay A+Ao B+A3C =
A’ + B’ + C’. Suppose A1, Az, A3 are random (unknown
to the server) independent linear transformations (matrices)
that independently ‘rotate’ A, B,C vectors into A’, B',C’
vectors, respectively, such that the projections (combining
coefficients) of each along any particular dimension become
independent of each other. In other words, a},bj,c; are
independent projections of A, B,C, and downloading, say
(a},bh, cy, dy) reveals to the server no information about their
relative alignments in the side information. From the server’s
perspective, each downloaded symbol is simply an indepen-
dent random linear combination of the two components of
each message. Intuitively, since the random rotation is needed
to maintain privacy, it is important that A; are matrices, not
scalars (because scalars only scale, they do not rotate vectors).
This is not directly the case in IF, because A; are scalars in
F,. However, viewed as a 2 dimensional vector space over
F Vi the \; indeed act as invertible 2 x 2 matrices that act
on the vectors A, B, C, D, rotating each vector randomly and
independently, thus ensuring privacy.

In order for F 7 to be a valid finite field we need ¢ to
be an even power of a prime. This suffices to characterize
the capacity because the capacity definition in [33] allows
a supremum over all fields. However, the question remains
about whether the rate 2/K is achievable over every finite
field. To understand this better, we explore an alternative
definition of capacity (called infimum capacity in this work)
which considers the infimum (instead of supremum) over all
IF,. We find that the infimum capacity of PIR-PCSI-II is always
equal to M/((M — 1)K). Evidently, for M = 2 the capacity
is field independent because the infimum and supremum over
fields produce the same capacity result. In general however, the
infimum capacity can be strictly smaller, thus confirming field-
dependence. The worst case corresponds to the binary field F.
Intuitively, the reason that the infimum capacity corresponds
to the binary field is that over [F5 the non-zero coefficients
A, must all be equal to one, and thus the coefficients are
essentially known to the server. On the other hand, we also
present an example with ¢ = 3 (and M = 3, K = 4) where
2/K is achievable (and optimal), to show that the achievability
of 2/K for M > 2 is not limited to just field sizes that are even
powers of a prime number. We also show that for PIR-PCSI-
I1, the the infimum capacity with private (8, 8) is the same as
the (supremum or infimum) capacity with private (8,8, A),
i.e., when the coefficients A must also be kept private from
the server.

Next we consider PIR-PCSI-I where 6 is drawn from
[K] \ 8. The supremum capacity of PIR-PCSI-I is fully
characterized in [33]. In this case, we show that there is no
redundancy in the CSI. As in PIR-PCSI-II, we find that the
infimum capacity of PIR-PCSI-I is strictly smaller than the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2023 at 19:10:02 UTC from IEEE Xplore. Restrictions apply.



TABLE I

LU AND JAFAR: ON SINGLE SERVER PRIVATE INFORMATION RETRIEVAL WITH PRIVATE CODED SIDE INFORMATION

CAPACITY RESULTS FOR PIR-PCSI-I, PIR-PCSI-II AND PIR-PCSI

3265

PIR-PCSI1 (1< M < K — 1) PIR-PCSI-II (2 < M < K) PIR-PCSI (1 < M < K)
2 I\+1 1 T —
2 2<M< , Thm. 1 . — M=1
Cresti = 73> 1331 Credn =K e} Gt ={ 7% [ < g, Thm- 10
L R <M<K[ 3] = 2S M<K,
. 1<M< XK
~inf __ K-1° — - 2 vinf  __ M inf _ 1
i {(K IR VRS SR Grésin = - Thm- 3 Crésr = =1
C;{-‘,;fm < CP('SI—II(q) < CSCHS’;"
When M = K,
Cinf < Chest, < oS B _
st < Cresti(q) < Cresiy Cresin(q) = /(K —-1), ¢=2, . Thm. 4 -
L 97 Cinfl < Cresi(q) < Cocdy
When M = K — 1, Cresia(g) = 1, Rmk. 2 When 1‘; =3, K :2 4
3/8
Crestn(q) = {42’ :117&2 Thm. 5
Cﬁ( silllp = Cli’{)sfll
, Thm. 9 Cru(q) = Clnf | Thm. 6 q) = Ciaf Thm. 13
A 7 < Cll;gs‘l‘"“ < min (CP( 2 1‘1 2) PCSI- ll( ) PCSI-IT PCSI( ) ~PCSI*

Notation summary: C stands for capacity, g in the parentheses denotes the problem lies in Fg, the subscript denotes the type of problem (PIR-PCSI-I,
PIR-PCSI-II, or PIR-PCSI). In the superscript, ‘inf’ (resp. ‘sup’) denotes that the infimum (resp. supremum) of the capacity over all valid g is considered.
The term ‘pri’ as a superscript indicates that it is the capacity when coefficients must also be kept private. Thm. (resp. Rmk.) points out the theorem (resp.

remark), where the result appears.

supremum capacity in general, and the binary field Iy yields
the worst case. Unlike PIR-PCSI-II, however, the infimum
capacity of PIR-PCSI-I with private (8,S) does not always
match the infimum capacity with private (6, S, A). For exam-
ple, if M = K — 1, then both the supremum and infimum
capacities of PIR-PCSI-I are equal to 1 for private (8, S), but
if the coefficient vector A must also be kept private then the
infimum capacity is no more than 1/(K — 2). Thus, the loss
in capacity from requiring privacy of coefficients can be quite
significant.

To complete the picture, we finally consider the capacity of
PIR-PCSI where 0 is drawn uniformly from [K]. In PIR-PCSI
the server is not allowed to learn anything about whether or
not @ € S. The supremum capacity of PIR-PCSI is found
to be (K — M + 1)~! for 2 < M < K. Remarkably, this
is not just the smaller of the two capacities of PIR-PCSI-I
and PIR-PCSI-II, so there is an additional cost to be paid for
hiding from the server whether 6 € S or 6 ¢ S. Depending
on the relative values of M and K, in this case we find that the
redundancy in CSI can be as high as 1/2 or as low as 0. The
infimum capacity of PIR-PCSI is smaller than the supremum
capacity, the binary field Fo yields the worst case, and as
in PIR-PCSI-II, the infimum capacity with private (0,S) is
the same as the (supremum or infimum) capacity with private
(0,S,A).

This paper is organized as follows: Section II states PIR-
PCSI, PIR-PCSI-I, PIR-PCSI-II problems in [33]. Section III
states our capacity and redundancy (in the CSI) results for
PIR-PCSI-II, PIR-PCSI-I, PIR-PCSI with fourteen theorems
which are proved in Section IV to Section XVI. Section XVII
concludes this paper and gives possible future directions.

Notation: For a positive integer a, let [a] denote the
set {1,2,---,a}. For two integers a,b where a < b,
[@ : b] denotes the set {a,a + 1,---,b}. For a set S =
{1,492, ,in}, |S| denotes the cardinality of S. I, denotes
the M x M identity matrix, and 0p; denotes the M x M all-
zero matrix. For a matrix A, let A(,:) be the i*" row of A.
For a set A whose elements are integers, let .A(¢) denote the

" element of A in ascending order. Let F, denote the finite
field of order g and F contain all the non-zero elements of F,.
The notation IF“X” represents the set of all a X b matrices W1th
elements in ;. The notation F“Xl may be shortened to Fg.

Let S be the set of all the subsets with cardinality M of [K],
= ( AI;) , and let € be the set of all length M sequences
with elements in F, i.e., |€| = (¢ — 1)*. For an index set
S C [K], define the subscript notation Xg = {X; | s € S}.
All entropies are in g-ary units. For a random variable A, E[A]
is the expectation of A, Pr(A = A) denotes the probability
of A being A.

II. PROBLEM STATEMENT
A. Capacity of PIR-PCSI-I, PIR-PCSI-1I, PIR-PCSI

A single server stores K independent messages
Wi, Wy, Wk € FY, each comprised of
L iid. uniform symbols from F,, ie., Wjy =

(Wr(1),W,(2),--- ,Wi(L))T, and each W (¢), which
denotes the ¢ instance of the k' message, is drawn i.i.d.
uniform from [F,. The number of instances L may be chosen
freely by the coding scheme. We refer to IF, as the base field.
In terms of entropies,

HW,)=HW3y)=-=HWkg)= (1)
H(W k) = Z H(W,)=KL. )
ke[K]

A user wishes to retrieve a message Wy for a privately
generated index 6. The user has a linear combination of M
messages available as coded side information (CSI). M is
globally known. The CSI is comprised of (S,A,Y[S’A]),
defined as follows. The support index set S, drawn uniformly
from &, is a subset of [K], of cardinality M. The vector of
coefficients A = (A1, A2, -+, Aps) is drawn uniformly from
¢, and applied across all L instances, i.e., the same linear
combining coefficients appear in each of the L instances of
the CSI. The linear combination available to the user is

YISA 2 X\ W)+ AWso +- -+ AuWsan, 3)

where we recall the notation that S(m) denotes the m®"

element of S, in ascending order, i.e., S(1) < §(2) < --- <
S(M). We assume that (0, S), A, W k] are independent.

H(O,8,A, W[K]) =H(0,8)+ H(A) + H(W[K]). @)

There are three formulations of the problem depending on
how @ is chosen by the user.
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1) PIR-PCSI-I: 6 is chosen uniformly from [K]\ S.
2) PIR-PCSI-II: 0 is chosen uniformly from S.
3) PIR-PCSI: 0 is chosen uniformly from [K].

When referring to all three formulations, we will refer to
the problem as PIR-PCSI* for brevity. In such statements,
PCST* can be replaced with PCSI-1, PCSI-II, or PCSI to obtain
corresponding statements for each of the three formulations.

The server knows the distributions but not the realizations
of 8,8, A, YSAl 1t is required that (8, S) be kept jointly
private from the server. Note that the privacy of Y ISAl or the
coefficient vector A is not required. While the server initially
knows nothing about the realization of A, a PIR-PCSI*
scheme may reveal some information about the coefficients,
especially if it allows for efficient retrieval without leaking
any information about (0,8). Leaking information about A
has implications for reusability of side-information, an issue
that is explored recently in [34].

In order to retrieve Wy, we assume as in [33] that the
user generates a random query @ that is independent of the
messages. Specifically,

Let Q denote the alphabet of Q.
Because the messages are i.i.d. uniform, and the coefficients

are non-zero, according to the construction of Y[S’A], it fol-
lows that
L=H(Y'SM), (6)

=HYBMN|Q,8 AWk (somy), ¥m € [M].  (7)

The user uploads @ to the server. Mathematically, the
privacy constraint is expressed as,

[(6,8) Privacy] 1 (G,S;Q,W[K]) =0. 8)

The server returns an answer A as a function of @ and the
messages, i.e.,

H(A|Q W) =0. 9)

The answer A takes values in an alphabet set Ag that
depends on the query Q. The download cost, measured in
g-ary symbols is log,|Agq|. Since Aq is a function of Q,
note that different queries may result in different download
costs.

Upon receiving the answer, the user must be able to decode
the desired message Wg.

[Correctness] H(Wy | A,Q,Y[S’A],&A,O) =0. (10)

We are interested in the average download cost, D, across all
queries, which is defined and bounded as follows.

D = Eq|log, [Aq]] an

= Z Pr(Q = Q) log, |Ag| (12)
QeQ

> PrQ=QHA|Q=Q) (13)
QEQ

=H(A|Q). (14)
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In (13) we used the fact that the entropy of a random
variable is no more than the logarithm of the cardinality
of its alphabet, corresponding to the fact that the uniform
distribution maximizes entropy. This bound will be useful for
converse proofs.
The rate achieved by a PIR scheme is defined as,
L
R2 =
D
The capacity is the supremum of achievable rates over all
message sizes L,

15)

Cresi(q) = sup R (16)

L,achievable R
The capacity can depend on the field I, which affects the
nature of side information. Field-independent measures of
capacity may be obtained by taking a supremum (as in [33])
or infimum over all finite fields. These are called supremum
and infimum capacity, respectively.
a7

PCSI*

Cresh = sup CPCSI?‘(Q)v
q

Ot — inf Ches(q).- (18)

Remark 1: Throughout this paper, we will use the notation
F, (and accordingly the symbol ¢) only to represent the
field in which the message symbols, and in particular the
linear combinations that constitute the CSI lie. The encoding
operations may occasionally take place in a different field,
typically a sub-field (e.g., F s if it exists) or an extension
field (e.g., ) of Fy, which will be identified as such.

B. Capacity of PIR-PCSI* With Private Coefficients

Recall that in the formulation of PIR-PCSI* as presented
above, while (6,8) must be kept private, the privacy of
the coefficient vector A is not required. As an important
benchmark, we consider the setting where the privacy of
coefficients must also be preserved. In this setting, the privacy
constraint is modified so that instead of (8) we require the
following.

[(6,8,A) Privacyl] 1(6,8,A;Q,Wx|) =0. (19)

The capacity under this privacy constraint is referred to as the
capacity with private coefficients and is denoted as C.(q),
which is potentially a function of the field size q. The

supremum and infimum (over ¢) of CFi,.(q) are denoted as
i, i,inf . -
Ciea™, Cheat, respectively.

C. Redundancy of CSI

In addition to the capacity of PIR-PCSI*, we also wish
to determine how much (if any) of the side information is
redundant, i.e., can be discarded without any loss in the
supremum capacity.

Forall S € 6,A € €, let fs : FY — Y be arbitrary
functions that take the CSI Y54 ag input and output some

yish ¢ Y. These functions could be used to discard some

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2023 at 19:10:02 UTC from IEEE Xplore. Restrictions apply.



LU AND JAFAR: ON SINGLE SERVER PRIVATE INFORMATION RETRIEVAL WITH PRIVATE CODED SIDE INFORMATION

3267

TABLE II
REDUNDANCY RESULTS FOR PIR-PCSI-I, PIR-PCSI-IT AND PIR-PCSI

PIRPCSII(I< M<K — 1)

PIR-PCSII 2 < M < K)

PIRPCSI 1 < M < K)

peestr = 0, Thm. 7

1/2,
PPCSI-I = { /

1<M<(K+2)/2,
0, (K+2)/2< M<K,

Prcst = %,M =2,
presi < 77,3 < M < KF2, Thm. 11
precsi = 0, otherwise,

Thm. 2

parts of the side-information, and retain other parts, e.g.,
to reduce storage cost.

—[S.A
YN 2 fsa (YIS, (20)
Let us refer to all these functions collectively as F =
(fs.a)ses,ace. Define, Chcsi(¢, F) as the capacity (supre-
mum of achievable rates) if the decoding must be based on
?[S’A] instead of Y[S’A], i.e., the correctness condition is

modified to

HWo|AQY ™ 5 4,0 =0 @1
We say that F uses a-CSI, where
7[3)/\]
= H(Y L 22
o= sdma A/ @)
[S,A]

Whereas storing Y requires L g-ary symbols, note that

. IS, . . .
storing 'Y requires only ol storage, i.e., storage is
reduced by a factor a. Define the a-CSI constrained capacity
as

CPCSI*(Qv 01) = 6?CSI*(Q7 -7:)

sup
F: uses no more than a-CSI

(23)

In other words, Cees(g, @) is the capacity when the user is
allowed to retain no more than a fraction « of the CSI Y154,
The notion of a-CSI constrained capacity is of broader interest
on its own. However, in this work we will explore only the
redundancy of CSI with regard to the supremum capacity.
We say that ‘a-CSI is sufficient’ if

sup Chesi- (¢, ) = CE1P (24)
q

Define a* as the smallest value of « such that o-CSI is
sufficient. The redundancy of PCSI is defined as ppcy. =
1 — a*. Note that the opposite extremes of pyg. = 1 and
presi- = 0 correspond to situations where all of the side infor-
mation is redundant, and where none of the side information
is redundant, respectively.

For later use, it is worthwhile to note that for any scheme

that uses no more than «-CSI, because 7[S’A is a function
of YA it follows from (7) that for all! feasible (Q,S, A),

H (?[5’“ 1(Q.5,A) = (Q,S,A)) —a¥"Y) <aL @3

This is because of the property that if A is independent of
B, then any function of A is also independent of B. In this
case, (7) tells us that YISA s independent of Q, therefore

o is Y[S’A].

'We say (Q, S, A) is feasible if Pr((Q,S,A) = (Q,S,A)) > 0.

III. MAIN RESULTS

Our main results are presented as theorems in this section,
and summarized in Table I and Table II for quick reference.
We start with PIR-PCSI-II (where & € &), which is the
main motivation for this work. Note that the case M = 1 is
trivial, because in that case the user already has the desired
message. Therefore, for PIR-PCSI-II we will always assume
that M > 1.

A. PIR-PCSI-II (Where 0 Is Drawn Uniformly From S)
Theorem 1: The supremum capacity of PIR-PCSI-II is

2 1
catt, =mox (7 =177 ) 26)
— %’ L<M S %’ (27)
- 1 K+1
ko 2 <M=K, [33]

The case (K + 1)/2 < M < K was already settled
by Heidarzadeh et al. [33], and is included in Theorem 1
primarily for the sake of completeness. Our contribution to
Theorem 1 is for the case 1 < M < (K + 1)/2 which was
noted as an open problem in [33] along with a conjecture
that the supremum capacity for this case may also be equal
to 1/(K — M + 1). Theorem 1 settles this open problem
and resolves the conjecture by establishing that the supremum
capacity in this case is 2/K. The proof of Theorem 1 for the
case 2 < M < (K + 1)/2 appears in Section IV.

Note that when 2 < M < (K + 1)/2, the supremum
capacity value 2/K is strictly higher than the conjectured
value 1/(K — M + 1), and does not depend on the support
size M of the coded side information. Achievability of 2/K is
shown in Section IV for any field I, where ¢ is an even power
of a prime, by viewing I, as a 2 dimensional vector space over
F /3. Note that ¢ needs to be an even power of a prime, in order
for F 55 to be a valid finite field. Specifically, we choose
L =1, so each message is comprised of 1 symbol from F,
equivalently 2 symbols from F 5, which can be represented
as a 2 x 1 vector over F 5, while the coefficients A, €
Fy,m € [M] take the role of 2 x 2 matrices in F 5 that rotate
the vectors corresponding to the messages W, involved
in the CSI, thus randomizing their relative alignments.> Half
of the desired message Wy is recovered by downloading
the corresponding halves of undesired messages that align
(interfere) with that half of W (so that the interference can be
subtracted), while the other half of W g is downloaded directly.
The private rotations due to A in the CSI hide the alignments

2 As an alternative, suppose instead we consider each message as comprised
of L = 2 symbols from [y, which also allows us to work with a 2 dimensional
vector space (over IFy). However, since the coefficients are scalars in F,; and
constant across £ € [L], in this 2 dimensional vector space the coefficients
translate to only scaled versions of 2 X 2 identity matrices, which does not
yield the rotations that are essential for privacy.
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from the server. For the messages that are not involved in
the CSI any random half can be downloaded. Since a random
half of every message is downloaded, no information is leaked
about (6,S) and the scheme is private.

Intuitively, since one half of the desired message is directly
downloaded, it stands to reason that the corresponding half
of the CSI may be redundant and could be discarded by the
user, thus saving storage cost. Indeed, this intuition turns out
to be correct, as encapsulated in the next theorem which char-
acterizes precisely how much of the side information in each
parameter regime is redundant, i.e., can be discarded without
any loss in the supremum capacity specified in Theorem 1.

Theorem 2: For the supremum capacity of PIR-PCSI-II, the
redundancy in coded side information is characterized as,

{1/2, 1< M< (K+2)/2,
Prcstn =

0, (K+2)/2<M<K. 8

In particular, ppesy = 1/2 implies that exactly half of the
side information is redundant, and ppcq,; = 0 implies that
there is no redundancy in the side information. The proof
of Theorem 2 appears in Section V. Thus, for all (M, K)
parameters where the supremum capacity is equal to 2/K,
half of the coded side information is redundant. Note that
in the boundary case where M = (K + 2)/2, we have
2/K = 1/(K — M + 1), i.e., this boundary case could be
included in either of the two cases in Theorem 1. Remarkably,
these are the only cases where we have any redundancy in
coded side information. According to Theorem 2, there is no
redundancy when (K +2)/2 < M < K.

As our next result for PIR-PCSI-II, we characterize the
infimum capacity CI%{ in the following theorem.

Theorem 3: The infimum capacity of PIR-PCSI-II,

M
(M -1)K’

The proof of Theorem 3 appears in Section VI. Evidently,
the infimum capacity of PIR-PCSI-II matches its capacity over
the binary field. Intuitively, one might expect that the binary
field would represent the worst case because over Fo, the
coefficients A,,, which must be non-zero, can only take the
value 1. Thus, the coefficients are known to the server. It is
also worth noting that constant A trivially satisfy (0,S,A)
privacy whenever (0, 8) privacy is satisfied.

Note that for M = 2, the infimum capacity of PIR-PCSI-
IT matches the supremum capacity, therefore for any field
F,, we have the exact capacity characterization, Cyeon(q) =
Cinf = Chaby. However, in general the infimum capacity
is strictly smaller. The gap can be significant, for example
when M = K the supremum capacity is 1 while the infimum
capacity is 1/(K — 1). In general the capacity for arbitrary
fields, arbitrary support size M and arbitrary number of
messages K remains open. Intuitively, we expect that the
capacity for most fields should be either equal to or close
to the supremum capacity, whereas fields where the capacity
is closer to the infimum capacity should be relatively rare.
For certain M, K values, however, we are able to characterize
the capacity of PIR-PCSI-II for arbitrary fields. These results
are presented in the next two theorems. Notably, for these

C;?Sfl-ll = CPCSHI(Q = 2) = (29)
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specific M, K, while the binary field Fy yields the infimum
capacity, for all other fields (IF,;, ¢ > 2), the capacity matches
the supremum capacity, i.e., Ciesin(q) = Chresin-

Theorem 4: For PIR-PCSI-II with M = K,

1/(K —1)=Cinf | —9
CPCSI—II(q) = /( sup ) pesky 4 (30)
1= OPCSI»IH q 7é 2.
The proof of Theorem 4 appears in Section VII.
Theorem 5: For PIR-PCSI-II with M = 3, K =4,
3/8 = Cinf , _ 2’
Cresin(q) = / l;cj;n q a1
1/2 = Chest, ¢ 7 2.

Note that M = 3, K = 4 is a boundary case for which
1/(K — M + 1) = 2/K, therefore the supremum capacity
is achievable by both the Modified Specialized GRS Codes
scheme presented in [33] and by the interference alignment
scheme that appears in the proof of Theorem 1. However, the
former requires field size ¢ > K = 4, and the latter requires
q to be an even power of a prime. Aside from ¢ = 2 which
corresponds to the infimum capacity, this leaves only ¢ = 3,
which is neither greater than or equal to 4 nor an even power
of a prime, as the only new result in Theorem 5. The proof
for ¢ = 3 appears in Section VIII.

Building on the observation that the infimum capacity corre-
sponds to the binary field where the coefficients are essentially
constants such that the (6,8, A) privacy is automatically
satisfied, we next explore the capacity of PIR-PCSI-II for the
case of private coefficients. The result appears as the next
theorem.

Theorem 6: The capacity of PIR-PCSI-II, for the setting
with private coefficients, is given by

CIESSI-II(Q) = Cpn,inf = Cran® = Cinf

PCSI-II PCSI-II PCSI-II*

(32)

The proof of Theorem 6 appears in Section IX. Note that
the capacity with private coefficients does not depend on the
field (infimum and supremum are the same). Compared with
the case where the coefficients are not required to be kept
private, i.e., the case where only (0,8) privacy is required,
there is a loss of the supremum capacity, which represents the
cost of also keeping the coefficients private.

B. PIR-PCSI-I (Where 0 Is Drawn Uniformly From [K|\ S)

In this section we consider the setting of PIR-PCSI-I (where
0 € [K]\ S). Note that the case M = K is not valid, because
in that case the desired message is also contained in the support
set. Therefore, for PIR-PCSI-I we will always restrict 1 <
M<K -—1.

The supremum capacity of PIR-PCSI-I is already found
in [33] as Crest = (K —M)~! and is achievable by Specialized
GRS Codes. We start by characterizing the redundancy in
the side information in the following theorem, whose proof
appears in Section X.

Theorem 7: For the supremum capacity of PIR-PCSI-I,
there is no redundancy in coded side information i.e.,
Pecsit = 0.

Next we characterize the infimum capacity of PIR-PCSI-1.
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Theorem 8: The infimum capacity of PIR-PCSI-I,

C;gst.I = CPCSI-I(C] = 2)
1 M o\
= K—
maX(K—l’( K—M) >
7 1<M< X
= M K (33)
(K-#4) » S<M<K-1

The proof of Theorem 8§ appears in Section XI. The infimum
capacity of PIR-PCSI-I also matches its capacity over binary
field. The intuition why Fy represents the worst case, is similar
to the PIR-PCSI-II setting.

Remark 2: Note that for M = K — 1, the infimum capacity
of PIR-PCSI-I matches the supremum capacity, therefore for
any field F,, we have the exact capacity characterization,
Coesu(q) = Cinf = Ol = 1. However, in general the
infimum capacity is strictly smaller and the gap can be
significant. For example, when M = K/2 the supremum
capacity is 2/K while the infimum capacity is 1/(K — 1),
i.e., for large K, the infimum capacity is nearly half of the
supremum capacity.

We next explore the capacity of PIR-PCSI-I for the case of
private coefficients.

Theorem 9: The supremum capacity of PIR-PCSI-I, for the
setting with private coefficients, is given by

Cpri,sup — Cinf

PCSI-I PCSI-1?

(34)

while the infimum capacity of the private coefficients setting

can be bounded as
1

i,i : in 1
7 < Ol < min (Of H) (35)

K-17
The proof of Theorem 9 appears in Section XII. Unlike PIR-
PCSI-II, for PIR-PCSI-I the capacity with private coefficients
may depend on the field, and may be strictly smaller than
the infimum capacity. For example, if M = K — 1, then the
infimum capacity is 1, but the infimum capacity with private
coefficients is no more than 1/(K — 2). Remarkably, infimum
capacity with private coefficients does not correspond to the
binary field Fs, i.e., there exist other fields that yield strictly
lower capacities than [F for PIR-PCSI-I when the coefficients
are fully private.

C. PIR-PCSI (Where 0 Is Drawn Uniformly From [K])

To complete the picture, in this section we characterize the
capacity of PIR-PCSI which was not studied in [33]. Since 8 €
[K], any 1 < M < K is valid. We start with the supremum
capacity.

Theorem 10: The supremum capacity of PIR-PCSI is

. 1 1
C:“II):maX(Kl’KMnLl)

1 _
) = M=1,
- 1
K—M+1>

2< M<K,
The proof of Theorem 10 appears in Section XIII. For M =
1, this problem is dominated by the PIR-PCSI-I setting, and
the capacity is (K — 1)1

(36)
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The redundancy of CSI to achieve the supremum capacity
of PIR-PCSI is bounded in the following theorem.

Theorem 11: The redundancy of the CSI to achieve the
supremum capacity of PIR-PCSI is bounded as

1

Prcst = 57 M =2
1 K+2
pPCSI S M? 3 S M S 2 ’
Prest = 0, otherwise. 37

The proof of Theorem 11 appears in Section XIV. Evidently,
for different values of M the redundancy can be as high as
1/2 and as low as 0.

The infimum capacity of PIR-PCSI is found next.

Theorem 12: The infimum capacity of PIR-PCSI corre-
sponds to ¢ = 2, and,

1

Cg?sfx = Ciesi(lq=2) = ———

T (38)

The proof of Theorem 12 appears in Section XV.

Note that for M = 1, the infimum capacity of PIR-PCSI
matches the supremum capacity, therefore for any field Iy,
we have the exact capacity characterization, Cecqi(q) = CI% =
Cres’. However, in general the infimum capacity is strictly
smaller and the gap can be significant. For example, when
M = K the supremum capacity is 1 while the infimum
capacity is 1/(K — 1).

Finally, the capacity of PIR-PCSI for the case of private
coefficients is characterized.

Theorem 13: The capacity of PIR-PCSI, for the setting with
private coefficients, is given by

Criala) = G, (39)

The proof of Theorem 13 appears in Section XVI. Similar
to PIR-PCSI-II, and unlike PIR-PCSI-I, for PIR-PCSI the
capacity with private coefficients does not depend on the field,
and is always equal to the infimum capacity.

Let us conclude this section with Table III which sum-
marizes the solved and open cases of various PIR-PCSI*
problems considered in this work.

IV. PROOF OF THEOREM 1
A. Converse

The following lemma, which is essentially Lemma 1 of [33],
states that for PIR-PCSI*, for every feasible (Q,S,0), there
must exist at least one coefficient vector that allows successful
decoding.

Lemma 1:

PIR-PCSL: V(Q,S,0) € @ x & x [K], A€ €, s. t.

HW, | A YN Q=0)=0. (40)
PIR-PCSI-I: V(Q,S,0) € O x 6 x ([K]\S), A€, st

HW,y | A YSN Q=0)=0. (41)
PIR-PCSL-IL V(Q,S,0) € Qx 6 x S, JA €€, s. t.
HW, | A YN Q=0)=0. (42)
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TABLE III
A SUMMARY OF SOLVED AND OPEN PROBLEMS FOR PIR-PCSI*
PIR-PCSI-I PIR-PCSI-II PIR-PCSI

Supremum Capacity Solved Solved Solved

Infimum Capacity Solved Solved Solved

Field-dependent Capacity Only solved for M = K — 1 Only solved for M = K and M =3, K =4 Open

Capacity with private coeff. | Open for infimum capacity and arbitrary ¢ Solved Solved
Redundancy in CSI Solved Solved Open for 3 < M < %

Proof: Since the server knows A, @ and can test all pos-
sible realizations of 8, S, A for decodability, if no coefficient
vector exists for a particular (0 = 6,8 = S) then that (6, S)
can be ruled out by the server. This contradicts the privacy
constraint. (]

Let us prove the converse for 2 < M < £+1,

Consider any particular realization @@ € Q of Q. For all
i€ [M—1], consider S; = [i : i+ M — 1] and ¢ = 4, and
let A; be a coefficient vector that satisfies (42) according to
Lemma 1, so that

HW; | A YN, Q=) =0. 43)
Writing YSoAd 45 ¥, for compact notation, we have

HWp-1, Y iv-1 1 A,Q =Q) (44)

< Y HW.,Y:|AQ=Q) (45)
i€[M—1]

= Y HY.|A,Q=0)
i€[M—1]
+ Y HW,|AY,Q=0Q) (46)

i€[M—1]

= Y HY;|AQ=Q) (47)
i€[M—1]

<(M-1)L (48)

where (45) results from chain rule and the property that
conditioning reduces entropy. Step (46) is simply the chain
rule of entropy. (47) is implied by (43), and (48) is true since
Vie [M—1],Y; € F,.

Next we note® that W2n—2) can be obtained from
(W[M,l],Y[M,l]), as follows: W, is obtained by subtract-
ing Wp;_q) terms from Y'; which is a linear combination of
W a5 W41 by subtracting W,y terms from Y, which
is a linear combination of W (2.7 41); - - - ; and finally W, o
by subtracting W p;_1.2p7—3) terms from Y p; 1 which is a
linear combination of W 5s_1.057—2). Thus,

HWpyn-2 | A,Q=0Q) (49)
SHWp-, Yiu-11 4,0 =Q) (50)
-1 vQ € Q. (51)

Averaging over Q, we have
H(W - | A,Q) < (M —1)L. (52)

We can follow the same argument for any 20 — 2 out of the
K messages, thus (52) must be true for any 2M — 2 of K
K+1

32M — 2 < K since we consider the case where 2 < M <

messages. Thus, by submodularity,

K(M-1
H(W[K] | A,Q) < ﬁlz
K
= EL. (53)
Next we have,

HW | A Q)
=HWk,A|Q)-H(A|Q) (54)
=HWi | Q)+ H(A|Wi,Q) - H(A[Q) (55
=HWk | Q) -H(A|Q) (56)
=HW) - HA|Q) (57)
=KL-H(A[Q), (58)

where the first two steps apply the chain rule of entropy, (56)
results from the fact that A is a function of the messages and
query, and (57) follows from the independence of messages
and queries as specified in (5). Thus, we have

D>H(A|Q)
EKL-HWy | AQ) (59)
(523) gL. (60)

Thus, the rate achieved must be bounded as R = L/D < 2/K.
Since this is true for every achievable scheme, Chegn(q) <
2/K for 2 < M < % The remaining case, Cpesin(q) <
(K—=M+1)~" for £H < M < K is already shown in [33].

B. Achievability

We present an interference alignment based scheme that
works for arbitrary 2 < M < K and is capacity achieving
for 2 < M < % The capacity-achieving scheme for the
remaining case is already shown in [33]. The scheme requires
that ¢ should be an even power of a prime number, so that
[ /g is also a finite field. Recall that according to polynomial
representations of finite fields, F; = F g[z]/g(z) for some
degree 2 irreducible polynomial g(z) = x? + ajx + ag €
F sglx], and F, can be repesented as Fy = {ux + v | Vi, v €
F sz} Alternatively, I, can be seen as a 2 dimensional vector
space over I 5. Any element ¢ = pcxr + 7. € F,, where
pes Ve € F /g, has a corresponding 2 X 1 vector representation

2x 1 . . 2X2
V.eF v and a 2 x 2 matrix representation M, € F VS

follows (see p. 65 of [35]).
Mc — l:’yc —HcQo
He

v, = m ,
e Ve — M1

such that for any a, b, c € F,; we have a = bc, if and only if

Vo = MyV.. (62)

} (61)
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Let us start with the following lemma.

Lemma 2: 1f ¢ is chosen uniformly randomly over [F 1, then

each row of M is uniformly distributed over F' <2\ {[0, 0]}.

Proof: Since ag,a; are given constants, the second row,
Mc(2,:) = [fe,Ye — Hhear] is an invertible function of V.
Next, note that ag # 0 because otherwise g(z) = z(x + a1)
would not be irreducible. Therefore, the first row, M.(1,:) =
[Ye, —peao] is also an invertible function of V. Finally, since
c is uniform over IFqX, it follows that V. is uniform over IF{/X;\
{[0, 0]}, and as an invertible function of V. that maps non-zero
vectors to non-zero vectors, so is each row of M.. |

The scheme proposed in this section needs only L = 1,
so let us say L = 1. Recall that the coded side information
Csp YSA 2 \w, 4+ - 4 AyW,,, where S =
{’il,'" ,7:]\4} and 21 < 19 < -+ < 2.

Since L = 1, each message is a symbol in [F,. Thus each
message W, k € [K] has vector representation Vyy, € IF%/X;.
The first and second entry of Vyy,, namely Vi, (1) and
Vw, (2) respectively, are both elements in F 7 and W) =
Vw, (2) + Vi, (1).

Each coefficient A,,,, m € [M] is drawn from F, and can
be represented as My, € Ff/xaz such that My, Vw, € Ff/xal
is the vector representation of A\, W; € F,.

Thus,

Vy = Mx,Viv,, + -+ Ma,, Vi, , € F25<L,

in Va (63)

is the vector representation of YSAl ¢ F,.

Let My, (1,:),Mx,,(2,:) denote the first and second row
of My, respectively, and My, (r,:)Vyw, the dot product of
the 7" row of My, with Vw,, - Then the first and second
entry of Vy are

VY(]-) = M>\1(17 :)VWil t+ot MAM(L )VW
VY(2) = M)\l (27 :)VWil e M)\M (27 )VW

(64)
(65)

v
v
respectively.

To privately retrieve Wy for some 8 € S, the user’s
download A is

A = (LiVw, ) ke[k)» (66)

where L; = My, (1,:) for ¢, € S\ {6}, and L; =
My, (2,:) for i, = 6. For k € [K]\ S, L is uniformly

drawn from ]Fi/x(j2 \ {[0 0]}

Upon recetving A, by subtracting the {My, (1,:
Ww., tines\oy terms from Vy (1), the user is able
to obtain My, (1,:)Vw,, where i; = 6. Together with

M, (2,:)Vw,, which is directly downloaded, the user is able
to recover My, Viy,, i.e., AW, and since A; is a non-zero
value in I, that is known to the user, the user is able to
retrieve the desired message Wo.

Since )\[M] are i.i.d. uniform over IE‘;, it follows from
Lemma 2 that all Ly, k € [K] are i.i.d. uniform over ]leq2 \
{[0 0]}. Thus, the queries are independent of (0, S), and the
privacy constraint is satisfied.

Remark 3: The scheme is also capacity achieving for the
boundary case % <M< % (i.e., 2M = K +2) because
in this case, 2/K = (K — M + 1)~ L.
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Remark 4: The scheme only uses Vy (1) specified in (63),
i.e., V3 (2) is never used so it can be discarded by the user.
Thus, at least half of the side-information is redundant.

Let us consider an example for illustration.

Example 1: Suppose q = 4, L = 1. There are K =
3 messages A, B,C € F,. We have M = 2. Say the CSI
is the linear combination Y = A1 A+ Ay B, with A1, As i.i.d.
uniform in IFZ, and the desired message is A.

We note that Fy = Fo[z]/(2? + 2 + 1) has the 4 elements:
0,1, 2,1+ x, which have matrix representations:

00 10 01 11
Sl R O R R

Note that if c¢ is uniform over F; = {l,z,1 + z}
then the first row of M., i.e., Mc(1,:) is uniform over
{[t 0,[0 1],[1 1]} =F3**\{[0 0]}, and so is the second
row, M.(2,:), as claimed by Lemma 2. Define A = A;+ Aoz,
where A, Ay € Fo, so that V4 = [A; As]T, and use similar
definitions for B, C as well.

Let A = A’ = A} + AlLx. The vector representation
of it can thus be written as V4 = My, Va = [A] Aj]T.
Note that A} = My, (1,:)[A; AT and My, (1,:) is
uniform over {[1 0],[0 1],[1 1]}, thus A} is uniform over
{A1, Ay, A1+ Ay}. Al is uniform over the same set because
M, (1,:) and My, (2, :) have the same distribution. Similarly,
let Ao B = B} + Bj,x, and note that B}, By, are individually
uniform over {B1, By, B1 + Bs}. Then the side information
can be denoted as Y = (A’ + B}) + (A}, + B})x. According
to our scheme, B| = Mjy,(1,:)Vp is downloaded which
enables the user to retrieve A} by subtracting it from the first
dimension of Y. The A}, = M}, (2,:)Va is also downloaded.
A}, A}, together enable the user to get A’ and thus A. Note
that in our scheme, a non-zero random linear combination of
C1,C5 is also downloaded. Thus, the download, made up of
A5, B and a linear combination of C1, Cy is uniform over
{A1, A3, A1 + Az} x {B1, By, B1 + By} x {C1,C>,C1 +
C}. For any other realization of (0,S), a similar argument
applies. Thus, the download is always uniform over the same
set, regardless of the realization of (6,S), which guarantees
privacy.

For example, let us say Ay = 1 4+ x,Ay = =z, then
Vy (1) = A; + As + Bs. The user downloads, say A =
(A1, B2, C1 + C52) which allows A to be retrieved with the
help of the side information Vy-(1). However, from the server’s
perspective, the following possibilities are equally likely, as the
download A = (A4, By, C'1+C5) enables the user to decode
the desired message under all conditions.

Support Set CSI Desired
{A, B} (1+z)A+zB A
{A, B} A+ B B
{B,C} B+ (14+2x)C B (67)
{B,C} B+ 2C c
{A,C} |(1+2)A+(1+2)C A
{A,C} A+azC c

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2023 at 19:10:02 UTC from IEEE Xplore. Restrictions apply.



3272

V. PROOF OF THEOREM 2

We need Lemma 3 and 4 to bound the redundancy ppcgn
from above, (equivalently, lower-bound «*) for 2 < M <
% and % < M < K, respectively.

Lemma 3: For 2 < M < %
Presin < 1/2

Intuitively, the entropy of the download is H(A) = £ L.
On average, at most L/2 symbols of each message are
contained in the download. In order to fully recover the
desired message, the user must have at least another L/2 g-ary
symbols as the side information.

Proof: Recall that the capacity for this case is 2/K, i.e.,
the optimal average download cost is D/L = K/2. Since this
is the infimum across all achievable schemes, there must exist
achievable schemes that achieve D/L < K/2 + ¢ for any
€ > 0. So consider an achievable scheme such that a-CSI is
sufficient and the average download cost D/L < K/2+ ¢ for
some L. Since D/L < K/2 + ¢, we have

, the redundancy

LK/2+eL
>D (68)
> H(A|Q) (69)
>I(A; Wik | Q) (70)
=Y (AW | QW) (1)
ke[K]
= > (H(Wk Q. W_y) — HW, | A,Q,W[km)
ke[K]
(72)
= > <H(Wk)—H(Wk|A,Q,W[k_u>> (73)
ke[K]
> 3 (nwo - Hwe 8.Q) 74
ke[K]
=Y 1(WiA.Q). (75)
ke[K]
> KI(Wie; A, Q) (76)

where (70) follows from the non-negativity of entropy, (71)
follows from the chain rule of mutual information, (73) holds
since all the messages and the query are mutually independent,
(74) results from conditioning reduces entropy and (76) is true
by setting

k"= in I(Wyg; A 77
arg min, (Wi A,Q) (77
From (76) we have,

HWi- | A,Q) (78)

=HWj-) —1(Wi-: A, Q) (719)
—(L/2+€eL/K) (80)

=L/2—¢€L/K. 81)

Thus, there must exist a feasible query () such that

HWi |A,Q=Q)>L/2—cL/K. (82
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Let S = {i1, -+ ,ipm—1,k*} C [K], such that |S| = M. Then
according to Lemma 1 and (25), there must exist A € € such
that

HW, |AYSY Q=) =0, (83)
BN Q= =a¥"M) <aL.  ©4
Combining (82) and (83), we have
1IN W |A,Q=0)>L/2—cL/K. (85
Thus
aL>HYM Q=0
> 1V W 1 8,Q=Q) 2§ —cL/K @6

which implies that & > 1/2 — ¢/K. In order to approach
capacity, we must have ¢ — 0, therefore we need o > 1/2.
Since this is true for any « such that a-CSI is sufficient, it is
also true for o*, and therefore the redundancy is ppesiy < 1/2.
Lemma 4: For % < M < K, the redundancy pecgin < 0.
Proof: Recall that the capacity for this case is (K — M +
1)_1, i.e., the optimal average download cost is D/L = K —
M + 1. Consider an achievable scheme such that «-CSI is
sufficient and the average download cost D/L < K — M +
1+ € for some L. Since D/L < K — M + 1+ ¢, we have
L(K—M+1)4+eL>D > H(A| Q). Thus, there exists a
feasible @ such that

HA|Q=Q)<(K—M+1)L+eL. (87)

Forallie [K — M +1],letS; =[i : i + M — 1]. Also, let
Sk-mt2={1}U[K—-M+2:K].Forall i € [K — M +2],
let A; € € satisfy

i)

HW, | A Y @=q) =0 (88)

Such A;’s must exist according to Lemma 1.
.. —[Si, i X5 .
Writing Y[ ! as Y, for compact notation, we have

HW g _pri2) | A Y [k _n12,Q =Q) =0.
According to (25),
HY;|Q=Q)<aL.

(89)

(90)
so we have
(K-=M+1)L+el+H(Y x_pmi1 | Q=Q)+aL
>HA|Q=Q) +HY x-m111 1 Q=Q)

+H(Yk-m21Q=0Q) On
> H(A Y (k-mi2 | Q@ =Q) 92)
>I(AY (k-2 Wik—m+2) Y [k—mt2) | @ = Q)

(93)

=HWx_pmto: Yk-m12 | Q@ =Q) %4)
>HW k-mi2, Y k-m+1 | Q= Q) (95)
=HWk_m42 | @ =Q)

+ H(Y (k—p41] | Wik—n42,Q = Q) (96)
>(K—-M+2)L

+ H(Y (k—p41) | W1, Q = Q), 97
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where (91) follows from (87) and (90). (93) results from the
non-negativity of entropy. (94) follows from (89). (96) is true
according to the chain rule. Step (97) uses the independence
of messages and queries according to (5), and the fact that
M —1> K — M + 2, because we require M > (K + 2)/2.
We further bound

H(Y (k—p1) | W1, Q = Q)
=HY | Wn_1,Q=0Q)+

+HY k-1 | Win—1, Yik—m @ = Q) (98)
K—M+1
> Z HY i |Wiin-2,Q=Q) 99)
K— M+1 L
= > HY:|Q=0Q) (100)
=1
>H(Y k-m4+1 | Q =Q) (101)

(98) follows from the chain rule. (99) holds because 7[2-,1}
is a function of Wi, o) forall i € [2: K — M +1]. Step
(100) follows from (25). Substituting from (101) into (97), and
subtracting H (Y (x_pr41] | @ = Q) from both sides, we have

(K—M+1)L+eL+al>(K—M+2)L, (102

which gives o > 1 —e. In order to approach capacity, we must
have ¢ — 0, so we need o > 1, and since this is true for any
« such that «-CSI is sufficient, it is also true for a*. Thus,
the redundancy is bounded as ppegy < 0. [l

According to Remark 3 and 4, a = 1/2 is sufficient for
2 < M < % and by the construction of CSI (a linear
combination of messages), o < 1. Theorem 2 is thus proved.

VI. PROOF OF THEOREM 3

We prove Theorem 3 by first showing that Cyeg(g = 2) <
M/((M — 1)K) and then presenting a PIR-PCSI-II scheme
with rate M/((M — 1)K) that works for any F,,.

A. Converse for Cpegu(q = 2)

Note that Lemma 1 is true for arbitrary F,. In F3, we can
only have A = (1,1,---,1) = 1y, i.e., the length M vector
whose elements are all equal to 1. As a direct result of
Lemma 1, for PIR-PCSI-II in [Fs,

HWs | A YSWM Q=0)=0, V(Q,S) e Qx6.
(103)
Thus, V(Q,S) € Q x &,
HWs|AQ=Q)
=HWs, Y5 A Q=0Q) (104)
_ H(y[S,lM] |A,Q=0Q)
+HWs | A, YS!, Q=Q) (105)
<L. (106)

(104) holds because yS:tml g simply the summation of
W s. (106) follows from (103). Averaging over Q, we have
HWs | A,Q) < L,VS € 6. By submodularity,

HWi | AQ) < KL/M. (107)
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The download cost can now be lower bounded as,

(M — 1)KL
e

(108)

D>H(A|Q)>KL-HWi |AQ)) >

M

Thus, we have shown that Chpegy(g = 2) < e

B. A PIR-PCSI-II Scheme for Arbitrary q

In this section, we prove Chiesin(q) > W for all ¢

by proposing a scheme, namely Generic Linear Combination

Based Scheme, that can achieve the rate M*LUK for any F,.

Let us choose L = M1 where M is the size of the support

index set and [ is a positive integer which can be arbitrarily

large. Thus, any message W, k € [K] can be represented as
a length-M column vector Vyy, € Fé\f *1 Let
T ‘

VWS = |:V‘}‘/7‘1 VV’I“/iMi| c F%ZXl

where 8 = {¢1,--- 457} is the support index set. The CSI

Y can be represented as Vy € ]Fé‘f *1 uch that,

(109)

Vy = (Al Aoly Anln] Vs, (110)
M
where Iy, € FM*M is the M x M identity matrix.
The download is specified as,
A= LYV, LM Vv
L Vi, L Vv 1 (111)

where Vk € [K],m € [M —1],L{™ € F1X™ is a length-M

row vector, i.e., for any message vector Vy, € Fé‘f]“, A

contains M — 1 linear combinations of that message vector.
Suppose the vectors L,(Cm) are chosen such that VS =

{j1,-++,jm} € & the following M? x M? square matrix
has full rank.
ALy An I
e ® L(l)
(M 1)
Gs = e1® Ly, LA
-
ey ® Lgf\; 2 J
S ={j1,-,jm} € &. Note that (A1,---,Ap) € € is the

realization of A, e,,,m € [M] is the m*" row of the M x M
identity matrix and “®” is the Kronecker product.

The correctness constraint is satisfied because the
side-information and the downloads allow the user to obtain
GsVw s, which can then be multiplied by the inverse of Gg
to obtain Vv 4, i.e., W s which contains Wg. Specifically the
side-information corresponds to the first M rows of GsVw 5,
the downloads ; )V , ; )VW correspond to
the next M — 1 rows of GSVWS, 'and so on

On the other hand, the privacy constraint is satisfied because
the construction is such that for every feasible S, the user is
able to decode all M messages Ws.
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Finally let us evaluate the rate achieved by this scheme.
Since the user downloads % portion of every message, the
download cost is D = LK(M —1)/M, and the rate achieved
is M/((M — 1)K)). Since this rate is achieved for any F,,
we have the lower bound Cheqy(q) > M/((M — 1)K)).

It remains to show the existence of such L,(Cm), for which
we need the following lemma.

Lemma 5: There exist {L;(Cm)}ke[x],me[Mq] such that for
every S = {j1, -+ ,jm} € 6, the matrix Gg in (112) has
full rank, provided

¢ > (5)M(M —1). (113)

Proof: The proof is in Appendix A. |

With the help of Lemma 5, Theorem 3 is proved. Let us
illustrate the scheme with an example.

Example 2: Consider M = 2, K = 4,L = 2l,q = 2. The
4 messages are A, B, C', D each of which has L. = 2] symbols
in Fy. Let [ > 3.

A can be represented as a 2 x 1 vector Vo =
[Va(l) Va(2)]T where Va(1),Va(2) € Fy. Similarly,
B,C,D can be represented as Vg, Vo, Vp, respec-
tively. Choose o, ---, a4 as any elements of Fy such that
aq,Q9,03,04,1,0 are all distinct. This is feasible if [ >
3 because Fy: has 2! > 8 distinct elements that include 1,0
(the elements of F5). For all possible realizations of (S, 8),
the download A remains the same as follows.

Ay VA(l) +a1VA(2)

- AB VB(1)+Oé2VB(2)
A= Ac Ve(l) +asVe(2) | (19

AD VD(l) + OL4VD(2)

As the download is the same regardless of the realizations of
S and 6, the query is actually a constant which is trivially
independent of S, 6 and thus the privacy is guaranteed.

What remains to be proved is the correctness of this scheme,
i.e., this specific download enables the user to decode the
desired message under all realizations of S, 6.

Let us consider the case where the support set is {A, B},
i.e., the side information is A 4+ B, and the desired message
is A. The side information can be represented as Vy € Fgfl
where

Val(l)
Vo — 1 010 VA(2) . VA(1)+VB(1) (115)
Y710 1 0 1| [vB()|  |Va(2) +VB(2)|"
VB (2)
Vy, together with A 4, Ap, can be written as follows
1 0 1 0] [Va(d)
Vy
101 0 1 Va(2)
?4_1<n0 ol Ve’ (116)
B 0 0 1 ao| |VB(2)

where the invertibility of the matrix is guaranteed by the
condition that aiq, as, ag, g, 1, 0 are distinct. The user is thus
able to recover both A, B by inverting the matrix. Evidently,
the scheme is also correct even if the support set is {A, B}
and the desired message is B.

Suppose the user has A+ C as the side information. Let the
vector representation of the side information in this case be
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Vyr € F;fl. With the same download as specified in (114),

the user has

" 1 0 1 07 [Va(1)
Y/
o1 0 1| |Va@)
ﬁA_l,mo 0| |[Ve®|’ a1n
¢ 0 0 1 ag| |Vel(2)

which again guarantees the decodability of both A, C as the
matrix is invertible. Thus the scheme is also correct when
S ={A,C} and the desired message is A or C.

Similarly, for all other 4 possible realizations of the support
set {A, D}, {B,C}, {B,D}, {C,D}) and any valid real-
ization of @ € S, the same A enables the user to decode both
messages in the support set. Thus, the scheme is also correct.

VII. PROOF OF THEOREM 4

For the case ¢ = 2, it suffices to download any K — 1 mes-
sages out of the K messages to achieve the capacity ﬁ
since the desired message is either directly downloaded or can
be recovered by subtracting the ' — 1 downloaded messages
from the CSIL.

For ¢ # 2, to achieve the capacity 1, it suffices to
download a linear combination of all X messages with non-
zero coefficients. Specifically,

A=Y + AWy, (118)

where Y is the CSI and X’ € [ is a non-zero element in I,
such that Ay + N # 0 (let A¢ denote the coefficient in front
of W in the CSI Y'). Such X\’ always exists for ¢ # 2. From
the server’s perspective, the user is downloading a random
linear combination of K messages so the privacy constraint
is satisfied. The user is able to decode Wg by subtracting Y
from A so the correctness constraint is satisfied.

VIII. PROOF OF THEOREM 5
Let us denote the K = 4 messages as W, = A, W, =
B,W; = C,W, = D for simpler notation. We have
M = 3, the base field is F3 and the length of each message
is L = 1. Our goal is to prove the achievability of rate 1/2,
i.e., download cost D = 2 for L = 1. The user downloads,

A={A=A+nB+n.C,

Ay =2n,B+n.C +n,D}. (119)

From A, the user is able to also compute
L1 :A1+A2 :A+27]CC+?’]dD, (120)
Ly=A1+2A:=A+2n,B+2n,D. (121)

Let Wy denote the desired message. Let us normalize A; =
1 without loss of generality. The 1, 1., 17, values are specified
as follows.

1) When 8 = {1,2,3} and Y = A + Ao B + A\3C, then
14 is randomly chosen from F3 = {1,2} and n,, 7, are
chosen so that the desired message W g can be recovered
from Y and A; as follows.

Wo=A: (nb7nc) = (2A272A3)72A =Y + Ay
Wo=B: (n,n.) = (2A2,A3), 2B =2Y + A,
: (

6 =
Wo=C: (n,,1n.) = (A2,2A3),A3C =2Y + A,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2023 at 19:10:02 UTC from IEEE Xplore. Restrictions apply.



LU AND JAFAR: ON SINGLE SERVER PRIVATE INFORMATION RETRIEVAL WITH PRIVATE CODED SIDE INFORMATION

2) When & = {2,3,4} and Y = B + A2C + A3 D, then
7, is randomly chosen from F* = {1,2} and 7, n, are
chosen so that the desired message Wy can be recovered
from Y and A, as follows.

Weo =B : (n.,n4) = (MA2,mA3), B=2Y + Az/n,

Wo =C: (n.,m4) = (M2, 2m,A3), 22C=Y + Az/n,
Wo =D : (n.,1n5)=(2n,A2,M,A3), 223D =Y + Az /m,
3) When & = {1,3,4} and Y = A + A2C + A3D, then

7y, is randomly chosen from F and n,.,n, are chosen
so that the desired message Wy can be recovered from

Y and L as follows.
Wo=A:(n,my) = (A2,2X3),2A =Y + L,
Weoe=0C": (nc,nd) = (Az,)\3)7)\20 =2Y + L,
We=D: (nc,nd) (2)\2,2A3),>\3D =2Y + L
4) When & = {1,2,4} and Y = A+ XAoB + A3 D, then

7. is randomly chosen from F and n,,n, are chosen
so that the desired message Wy can be recovered from

Y and L- as follows.
Weo=A: (77177774) = (>‘27A3)72A =Y + L,
Wa =B: (’I’]b7'l’]d) = (A2,2A3)7A2B =2Y + L2
Wg =D: (nb7nd) = (2A27A3)7A3D =2Y + L2

Correctness is already shown. For privacy, note that the form of
the query is fixed as in (119) so the user only needs to specify
My, MesMg» and those are iid. uniform over F; = {1,2},
regardless of (S, 6). Thus, the scheme is private, and the rate
achieved is 1/2, which completes the proof of Theorem 5.

IX. PROOF OF THEOREM 6
A. Converse

Here we prove that

Ciin(@) < Cresin(q = 2) = Cid - (122)

The following lemma states that for PIR-PCSI*, for every
feasible @ and (0, S) value, all possible coefficient vectors
must allow successful decoding.

Lemma 6: Under the constraint of (6,8, A) privacy,

PIR-PCSI: V(Q,S,0,A) € @ x & x [K]| x €,
HWy | A YSA Q=0Q)=0. (123)
PIR-PCSI-I: V(Q,S,0,A) € Qx & x ([K]\S) x €,

HW,y | A YSN Q=0)=0. (124)
PIR-PCSI-II: V(Q,S,0,A) € 9 x & x S x €,
HWy | A YSN Q=0)=0. (125)

Proof: Since the server knows A, Q and can test all
possible realizations of 8, S, A for decodability. If there exists
(0, S, A) such that Wy cannot be decoded, then that (6, S, A)
can be ruled out by the server. This contradicts the joint
(6,8, A) privacy constraint. O

As a direct result of (125), for any PIR-PCSI-II scheme that
preserves joint (6, S, A) privacy,

H(WS | AaY[SVA]aQ = Q) = Oa

V(S,A,Q) e G xEx Q. (126)
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Note that (126) is a stronger version of (103) which is
sufficient to bound Cpesi(¢ = 2). Thus, we have CI ,(¢) <
CPCSI—II(q = 2) = C;?sflrn'

B. Achievability

The Generic Linear Combination Based Scheme in
Section VI-B where M — 1 linear combinations of each
messages (represented in the extended field K, where L =
M) are downloaded, also works under (8, S, A) privacy, but
with a slight modification. The only difference between the
modified scheme and the infimum capacity achieving scheme
of PIR-PCSI-II in Section VI-B is that, instead of the matrix
in (112), the following matrix

1 Las Yo Iar]
1)
(M—1)
G ) _ e ® Pa} . (127)
en ® L)
ey ® Lg»iv[[_l) i

must have full rank for every S = {j1, - ,jm} € & and

every realization of (71,72, -+ ,vam) € €. Let us prove that
)

the scheme is correct, jointly private and such L.’ vectors
exist when [ is large enough that,

¢ > (@-DME)M(M - 1). (128)

Proof: For a particular realization of (y1,72, - ,vam)s

e.g., (v1,72, - ,vym) = (1,1,---,1), (127) yields a set of

( AI;) matrices

g(l’l"" 1) {G‘(Sll,L... ,1)’ G‘(512,1,... ,1)? L 7G‘(91(’1I’()
M

corresponding to all possible {ji,jo, - ,jnm} € 6. If all
the (1\}2) matrices in (1151 are invertible, this scheme
preserves the joint privacy of (6,S8) and enables the user to
decode all the M messages in the support set, when all the
coefficients in CSI are 1, according to Appendix A.

Going over all the possible realizations of (y1,--- ,va) €
¢ and {j1,72, - ,im} € &, (127) yields (¢ — 1)M sets of
matrices

’1)}

gl gt1.2) o gla—Lg=1) (129)
each of which contains (ﬁ) matrices, i.e., there are in total
(g — 1M (ﬁ) matrices. If all the (¢ — I)M(ﬁ) matrices are
invertible, then for arbitrary realization of (1,72, - ,vYm),
i.e., arbitrary M coefficients in the CSI, this scheme enables
the user to decode all the M messages in the support set and
preserves the joint (0, 8) privacy. Since this scheme works
for arbitrary coefficients, from the server’s perspective, all the
realizations of M coefficients are equally likely. Thus, the
joint privacy of coefficients A, index 6, and support set S,
is preserved.

To prove the existence of such linear combinations, note

that the determinant of each one of the (g — 1) ( ﬁ) matrices
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yields a degree M (M — 1) multi-variate polynomial as proved
in Appendix A. Thus, the product of the determinants of all
the matrices F' is a multi-variate polynomial of degree (¢ —
)M (B)M (M — 1). Again, as in Appendix A, according to
the Schwartz-Zippel Lemma, when ¢ > (¢ — 1)M (1), there
exists elements in F,: such that the polynomial F' does not
evaluate to 0, i.e., all the (¢ — 1)™ ()M (M — 1) matrices
are invertible.

Let us give an example.

Example 3: Consider M = 2, K = 4, L = 2l,q = 3. The
4 messages are A, B, C, D each of which has L = 2[ symbols
in Fs. Let [ > 2.

A can be represented as a 2 x 1 vector Vn =
[Va(l) Va(2)]T where Va(1),Va(2) € Fs. Similarly,
B,C,D can be represented as Vg, Vg, Vp, respec-
tively. Choose «y,---,a4 as elements of Fs such that
a1, e, a3, 0y, 0,1, 2 are all distinct elements of F5:. Note that
0,1, 2, are the elements of [F3, which are also elements of Fs;
because I3 is a sub-field of Fs:. Furthermore, since F3: has
3! > 9 distinct elements, such «; are guaranteed to exist. For
all possible realizations of (S, 8), the download A remains
the same as follows,

Ay VA(l) +a1VA(2)

_ Ap . VB(1)+O¢2VB(2)
A= Ac|  |Ve(l)+a3Ve(2) |’ (130

Ap VD(l) + Oé4VD(2)

The query is a constant as the A remains unchanged for
any realizations of &, 0, A. Thus, the privacy is guaranteed.
We then prove the correctness, i.e., this specific download
enables the user to decode the desired message under all
realizations of S, 0, A.

Let us consider the case where the support set is {A, B}
and the side information is A + 2B (i.e., A = [1 2]), and the
desired message is A. The side information can be represented
as Vy € Fg,,“ where

Va(1)
" 1020 Vj(?) ~ [Va(l) +2Ve(1)
Y‘[o 10 2} Va(1) {VA(Q)JFQVB(Q)]'
VB(2)

(131)

Vy, together with A 4, Ap, can be written as follows

v 1 0 2 07 [Va())

Y

o1 0 2| |va®

i‘A 1 a0 o ey (13
B 0 0 1 ao| |VB(2)

where the matrix is invertible because o, --- ,ay4,0,1,2 are
distinct by design. The user is thus able to recover both A, B
by inverting the matrix.

Similarly, suppose the side information is instead A + B
(ie., A = [1 1]), the vector representation of the side
information is Vy € Fgfl.
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Vy-, together with A 4, A, can be written as follows

" 1 0 1 07 [Va(1)

Y/
o1 0 1 Va2

2A Tl a0 0] |VB(Q1) (133)
B 0 0 1 as| |VB(2)

Since the matrix is invertible by design, the user is able to
recover both A, B.

Note that the recoverability of both A, B when the support
setis {A,B} and A =[2 1] or A = [2 2] is automatically
proved as [2 1] =2[1 2] and [2 2] =2[1 1] in F3.

Thus when the support set is { A, B}, this scheme is correct
for arbitrary realizations of 8, A.

Similarly, the scheme is also correct for arbitrary realiza-
tions of 8, A when § = {A,C}, {A, D}, {B,C}, {B, D},
{C, D}. Thus, this scheme is correct for arbitrary realizations
of §,0, A.

X. PROOF OF THEOREM 7

Here we bound the redundancy pps; from above (equiva-
lently, lower-bound o*) for 1 < M < K — 1.

Recall that the supremum capacity for PIR-PCSI-I is (K —
M)~!, ie., the optimal average download cost is D/L =
K — M. Consider an achievable scheme such that o-CSI is
sufficient and the average download cost D/L < K — M+ for
some L. Since D/L < K —M +¢, we have L(K —M)+¢eL >
D > H(A | Q). Thus, there exists a feasible @ such that

HA|Q=Q) < (K—M)L+eL. (134)

For all i € [M], let S; = [M + 1]\ {i}. ALso, for all ¢ €
[M+1: K], letS; =[M]. Forall i € [K], let A; € € satisfy

HW, | A, Y™ g =0)=o. (135)

Such A;’s must exist according to (41) in Lemma 1.
. —[Si, A — .
Writing Y[ ) as Y'; for compact notation, we have

HW g | A Y Q=Q) (136)
=HWix | A Y (1), Wi, Q = Q) (137)
=HW k) | A Y (5, W), Q = Q) (138)
=0, (139)

where (137) follows from (135). (138) is correct since
?[M_H:K] are functions of W[M]. (139) follows from (135).
Since we are considering the case where the supremum
capacity is achieved, we have

(K —M)L+eL+ MoalL

>HAIQ=Q) +HY | Q=Q) (140)
>H(A Y| Q=0Q) (141)
>I(AY Wik | Q=Q)

:H(W[K] |Q=Q)=KL. (142)

(140) follows from (134) and (25). Step (142) follows from
(139) and the fact that the query and the messages are mutually
independent according to (5). Thus we have a > 1 — ﬁ
In order to approach capacity, we must have € — 0, so we
need v > 1, and since this is true for any « such that a-CSI
is sufficient, it is also true for a*. Thus, the redundancy is

bounded as ppcsi; < 0.
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XI. PROOF OF THEOREM 8

A. Converse for Cpeg.(q = 2)

Again, (41) is true for arbitrary F,. The only thing different
in 5 is that A must be the vector of all ones. As a direct
result of (41), for PIR-PCSI-I in [Fs,

HW s | A YS!, Q=0)=0,¥(Q,5) € Qx &

(143)
and thus
HWigps | A,Q=Q) (144)
143
‘L I(W[K}\s;Y[S’lM] |A,Q=0Q) (145)
< H(y[S,lMl |A,Q=0Q) (146)
(3)
<L, Y(Q,5) € Qx6. (147)
Averaging over @ gives
H(Wkps | A,Q) < LVS € 6. (148)
Also, for all S € G and @ € Q,
HWi | A,Q=0Q) (149)
+HWips | A, Ws,Q=0Q) (150)
= H(WS | A, Q= Q)
+HWieps | A Ws, Y Q=0Q) 51
=HWs|A,Q=0Q), (152)
where (151) results from the fact that ?[S’lM] =Y es W,

and the last step follows from (143). Averaging over Q,
it follows that

VS e &, (153)

Let us first prove Cpess(¢ = 2) < (K — 1)1 in the regime
where 1 < M < %

HW | A, Q)

=HWpnp | A,Q) (154)
<SHWi_-m | A Q) (155)
<L, (156)

where (154) is true according to (153), (155) follows from
(K — M > M) and (143), and (156) follows from (148).
Thus

HA|Q) > I(A; Wik | Q) (157)
=HWi |Q)—HW ik | A,Q) (158)
> KL — L. (159)

Thus D > H(A | Q) > KL — L and since the rate L/D <
(K — 1)~ for every achievable scheme, we have shown that
Coesii(q =2) < (K —1)"' when K — M > M > 1, ie.,
1< M < K/2

3277

Next let us prove that Cpesi(q = 2) < (K — %)_1 for
the regime £ < M < K — 1. It suffices to prove H(A |
Q)>KL - KAEM. Define,

1 HWMm|AQ)
HE = _ 160
S > - . (160)

m/ M:MC[K],|M|=m
we have
Hi_y > Hyy (161)
HW g | A,

_HWk A Q) (162)

M b
where (161) follows from Han’s inequality [36], and (162)
follows from (153). Note that according to (148),

L
K-M

and therefore,

ML
K-M’

HWi A Q)< (164)

Thus, H(A | Q) > KL — L. which completes the

converse proof for Theorem 8. We next prove achievability.

B. Two PIR-PCSI-1 Schemes for Arbitrary q

1) Achieving Rate ﬁ When 1 < M < % The goal
here is to download K — 1 generic linear combinations so that
along with the one linear combination already available as
side-information, the user has enough information to retrieve
all K messages. Let L be large enough that ¢~ > (Aif[) (K-1).
For all k € [K], message W), € FZ*! can be represented as
a scalar wy, € Fr. Let

T
wir = (w1 ws wg] € FxY, (165)
be the length K column vector whose entries are the messages
represented in Fr. Let ¥ € IFKLX(K_U be a K x (K —
1) matrix whose elements are the variables 1;;. The user

downloads

A =0T e FUED (166)

Suppose the realization of the coefficient vector is A = A. The
linear combination available to the user can be expressed as
yAs) = UI{Sw[K] for some K x 1 vector Uy s that depends
on (A,S). Combined with the download, the user has

[Ua,s, 9] wigy, (167)

so if the K x K matrix Gp s = [Ua,s, ¥] is invertible (full
rank) then the user can decode all K messages. For all § € G,
let fa.s(-) be the multi-variate polynomial of degree K —1 in
variables 1;;, representing the determinant of G s. This is
not the zero polynomial because the K — 1 columns of ¥
can always be chosen to be linearly independent of the vector
Ua,s in a K dimensional vector space. The product of all
such polynomials, fo = [[scg fa,s is itself a multi-variate
non-zero polynomial of degree (K — 1)(;}) in the variables
1;;. By Schwartz-Zippel Lemma, if the 1);; are chosen ran-
domly from F . then the probability that the corresponding
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evaluation of fy is zero, is no more than (K — 1)(5) /q" < 1,
so there exists a choice of 1;; for which all fj s evaluate to
non-zero values, i.e., G s is invertible for every S € &. Thus,
with this choice of ¥, we have a scheme with rate 1/(K —1)
that is correct and private and allows the user to retrieve all
K messages. To verify privacy, note that the user constructs
the query based on the realization of A alone, and does not
need to know (S, ) before it sends the query, so the query
is independent of (S, 0).

Remark 5: Since the scheme allows the user to decode all
messages, the scheme also works if @ is uniformly drawn from
[K], i.e., in the PIR-PCSI setting.

2) Achieving Rate (K—%)fl When K/2 < M < K—1:
Now let us present a scheme with rate (K — 222-)~! which
is optimal for the regime % < M < K — 1. The scheme is
comprised of two steps.

Step 1: The user converts the (M, K') PIR-PCSI-I problem
to (K — M, K) PIR-PCSI-II problem as follows.

The user first downloads

A=) ayWy, (168)
ke[K]
where a;, = A, for i,, € S while for k ¢ S, a;’s are

independently and uniformly drawn from F. The user then
computes

Y =A, - YISA = Z apWi. (169)
ke[K\S
In this step, from the server’s perspective, ai,--- ,ax are

i.i.d. uniform over F;, thus there is no loss of privacy. The
download cost of this step is H(A;) = L.

Step 2: The user has Y’ as coded side information and
applies the fully private PIR-PCSI-II scheme described in
Section IX that protects the privacy of all the coefficients.

The reason to apply the PIR-PCSI-II scheme that maintains
the privacy of coefficients is that in Step I, server knows
ai,---,ar. If in the second step, the Query is not indepen-
dent of a;,7 € [K]\ S, then the server may be able to rule
out some realizations of S. The download cost of this step is
W. Thus, the total download cost of this scheme is

KL — % and the rate is (K— %) 1.

XII. PROOF OF THEOREM 9
A. Proof of Chi® = Oinf

First let us prove the converse. As a direct result of (124)
in Lemma 6, for any PIR-PCSI-I scheme that preserves joint
(0,8, A) privacy,

HWpeps | A YN Q=) =0,

V(S,A,Q) e G xEx Q. (170)

Note that (170) is a stronger version of (143) which is
sufficient to bound Cieg (¢ = 2). Thus, we have C& (¢) <
Coesu(g=2) = ngfl,l, which completes the proof of converse.

For achievability, let us note that Cieyy P > Ciig (g = 2) =
Cresa(q = 2) = C,ig‘sfl_l, because over o, the A vector is
constant (all ones) and therefore trivially private.
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B. Proof of the Bound: Clip® < min(Cinf | 1)

PCSI-IY K —2
Since privacy of A only further constrains PIR-PCSI, it is
trivial that Conf < Cinf  For the remaining bound, Crint <
it suffices to show that C%i (¢ > M) < -1, because

K2
(¢ > M). Note that by C™_ (¢ > M) we mean

1
R
Cresin < Ol
C;SSI-I(Q) for all ¢ > M.

Let

(171)
(172)

Y i =Wso+asWs+ - apy1i Wy,
Y2 :W1+W3+W4+"'WM+D

where ag, g, -+ ,apr41 are M — 1 distinct elements in IFqX.
Let 33, B4, - .. Bar+1 be M —1 distinct elements in ]qu such
that Vm € [3: M + 1], B, +1 =0 in F,.
Note that such a’s and (’s exist since ¢ > M.
Then let

Ym = ﬁmyl +Y,
=Wi+ 8. Wa+ (Bnas+1)W3 +---
+ (B + Wi+ -+ (Banryr + )W,

Ym € [3: M+ 1], (173)
be M — 1 linear combinations of the first M + 1 messages
W rr41)- Note that for any m € [3 : M + 1], the coefficient
for W,, in Y, (i.e., By + 1) is 0 while the coefficient
for any W, i € [M +1],i # m (i.e., Bna; + 1) is non-zero.*
For example,

Ys=W;+33Wy+0W3+ (53044 + 1)W4

+ 4 (Bzanrpr + W, (174)

Thus, for any m € [M + 1], Y, is a linear combination
of M messages W ns 1)\ (m} With non-zero coefficients. For
Sm = [M +1]/{m} and A,, as the vector of coefficients that
appear in Y ,,, we ySmhnl —y

According to (170),

HW i, Win o) | A Y5, Q = Q) =0,

Vm e [M+1],Q € Q. (175)
Thus, for all Q € O,
HWi | AQ=Q)
SHW k. Y | A,Q=Q) (176)

=H(Y (41 | AQ=Q) + HW k) | A, Y [a141], Q=0Q)

77
=H(Y.1,Y;|AQ=Q) (178)
< 2L, (179)

where (178) follows from (175) and the fact that Y 3.7
are functions of Y1, Y 5. Averaging over Q we have
H(W g | A,Q) < 2L. (180)
Therefore, the average download cost is bounded as,
D>H(A|Q)>HW ik |Q)-HWik | A,Q)
(181)
> (K —2)L. (182)

Thus, for q > M, we have 05251-1<q) < Klf :

(V)

4Since Bmowm +1 =0, Bma; + 1 # 0 for i # m.
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C. Proof of Ciis" >

We need to show that CZf (q) > % for all F,. The
scheme is identical to the scheme with rate (K — 1)~!
Section XI-B1 with a slight modification. Instead of fixing a
realization A = A, we will consider all possible realizations
A € €, and consider the product polynomial f = [],ce fa
which is a multi-variate polynomial of degree (K —1)( ﬁ) (g—
1)M in variables 1;;. Following the same argument based on
the Schwartz-Zippel Lemma, we find that there exists a ¥ for
which all G s are invertible matrices, provided that L is large
enough that ¢ > (¢—1) (K —1)(X). Thus, with this choice
of U we have a scheme that is allows the user to retrieve all
K messages. The scheme is also (8,60, A) private because
we note that the user does not need to know the realization of
(8,0, A) before it sends the query, so the query is independent
of (8,0, A).

Remark 6: Since the scheme allows the user to decode all
messages, and the query does not depend on (0,8, A), the
scheme also works if @ is uniformly drawn from [K], i.e.,
in the PIR-PCSI setting.

XIII. PROOF OF THEOREM 10
A. Converse

The converse is divided into two regimes.

Regime 1: 2 < M < K. The proof relies on (40) in
Lemma 1. Consider any particular realization Q € Q of Q.
For all ¢ € [K], consider S = [M],0 = i, and let A; be a
coefficient vector that satisfies (40) according to Lemma 1,
so that

HW,; | A YA Q=) =o0.

Writing y IMLAD g Y ; for compact notation, we have

HWi | A Y (n-1,Q =Q)

(183)

=HWi | A Y-, Win-1,Q = Q) (184)
=HWi | AW, Q=0Q) (185)
=HWprsx) | AW, Yivsk), @ = Q) (186)
=0, (187)

where (184) holds according to (183), and (185) fol-
lows from the fact that W, is decodable by subtracting
W[M—l] terms from Y;. Then, (186) uses the fact that
Y 11k are functions of W y. Finally, (187) follows
from (183).

Averaging over Q,

Then we have
HWi | A Q) (189)
=HWkg, Y| 4AQ) (190)
=HY -1 |AQ) +HWik|AQ, Y ) (191)
< H(Y [(p-1)) (192)
< (M -1)L, (193)
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where (190) follows from the fact that Y5, are linear
combinations of W[M]. Step (192) holds because of (188),
and because conditioning reduces entropy.

Thus D > H(A | Q) > H(W[K]) — H(W[K] | AQ) >
(K — M + 1)L, which implies that Cpy < (K — M +1)~1
for 2 < M < K.

Regime 2: M = 1.

Consider any particular realization ) € Q of Q. Since
M =1, A is irrelevant, e.g., we may assume A = A =
1 without loss of generality. For all j € [2 : K], consider
S ={1},6 = j, and apply (40) according to Lemma 1 so that

HW; | A YU g=0)=0 (194)

= HWpg | A Y Q=0 =0 (195
HWk | AQ=Q) (196)
SHW, W, Y 1A Q=0Q) (197
=HW, YA Q=0) (198)
=HW,|AQ=0Q) (199)
<1, (200)

where (198) holds since (195) holds, and (199) is true
as YI'H1 s simply W . Averaging over Q, H(W g |
A,Q)<L. Thus D>H(A|Q)>HWig)) — HW g |
A, Q) > KL — L, which implies that Cieg(q) < (K — 1)71
for M = 1.

B. Achievability

For 2 < M < K, the achievable scheme will be a com-
bination of Specialized GRS Codes and Modified Specialized
GRS Codes which are schemes in [33] for PIR-PCSI-I and
PIR-PCSI-II setting, respectively.

The rate (K — M)~! is achievable by Specialized GRS
Codes for PIR-PCSI-I setting and the rate (K — M +1)~!
achievable by Modified Specialized GRS Codes for the PIR-
PCSI-II setting. Both schemes work for L = 1, so let us say
L = 1 here. Intuitively, these two achievable schemes have
the same structures as explained below.

For the PIR-PCSI-I setting, the desired message is not
contained in the support set. The download will be K — M
linear equations of K unknowns (KX messages). These K — M
linear equations are independent by design, so they allow the
user to eliminate any K — M —1 unknowns and get an equation
in the remaining K — (K — M — 1) = M + 1 unknowns
(messages). Let these M + 1 unknowns be the M messages in
the support set and the desired message. With careful design,
the equation will be equal to YyISAl 4 X W g for some non-
zero X'. Thus by subtracting CSI from the equation the user
is able to recover Wy.

For the PIR-PCSI-II setting the desired message is contained
in the support set. The download will be K — M + 1 linear
equations in K unknowns (messages). These K — M +1 linear
equations are independent by design, so they allow the user
to eliminate any K — M unknowns and get an equation in
the remaining K — (K — M) = M unknowns (messages). Let
these M unknowns be the M messages in the su]Fport set. With
careful design, the equation will be equal to Y SA LW
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for some A’ # 0. Thus by subtracting CSI from the equation
the user is able to recover Wy.

Consider a scheme where the user applies Specialized GRS
Codes when 0 ¢ S and applies Modified Specialized GRS
Codes when @ € 8. This scheme is obviously correct but
not private because the server can tell if & € S or not
from the download cost since the download cost of the two
schemes are different. However, if the user always downloads
one more redundant equation when applying Specialized GRS
Codes, then there is no difference in the download cost. This
is essentially the idea for the achievable scheme.

Let us first present the Specialized GRS Codes in [33] here
for ease of understanding. There are K distinct evaluation
points in Fg, namely wi,---,wx. A polynomial p(z) is
constructed as

p(z) £ (x — wy) (201)
ke[KN\(su{e})
K-M
=Y pai! (202)
i=1

The query Q is comprised of K — M row vectors, each 1 x K,
namely Q,--- ,Qx_,s such that

Q ['Ulwi !

where for i, € S,m € [M], v;, = ﬁ (A, is the mth
coefficient in the CSI), while for k ¢ S, vy, is randomly drawn
from IFqX. Upon receiving @, the server sends

vrwic'], Vi € [K — M],  (203)

W,

A1 Ql W2
A=| : |=] : , (204)

Ax_ M Qx_u WK
to the user. Let us call [Q] --- Q)" the Specialized
GRS Matrix and [A; -+ Ag_ )T Specialized GRS Codes

of W g for ease of reference. Note that the Specialized GRS

Matrix is uniquely defined by vq, - - - , Vi as w’s are constants.

The user gets W by subtracting Y'SAl from
K-M

> piA; = YN 4 vop(we) We.

i=1

(205)

Our PIR-PCSI scheme is as follows. For any realization
0,S) of (6,8), 1) When 6 € [K]\ S, first apply the
Specialized GRS Codes in [33]. Besides Q1,Q2, - , Qx—nr
as specified in the Specialized GRS Codes of [33], the user
also has

[ K-M

viw! o K- M]

VKW (206)

QK71\4+1

as part of the query. And the answer Agx_jp41 =
23—1 vjw jK MW will be generated for Qx_p/11 and
downloaded by the user as a redundant equation. Note that
the matrix [QT,Q3, -+, Q% _n41])" is the generator matrix
of a (K, K — M + 1) GRS code [37].

2) When 0 € S, the user will directly apply Modified Spe-
cialized GRS Codes where the queries also form a generator
matrix of a (K, K — M + 1) GRS code as specified in [33].
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Such a scheme is private since the queries in both cases
form a generator matrix of a (K, K — M + 1) GRS code, and
the vy, --- , vk in both cases are identically uniform over IE‘qX
for any realization of 6, S.

For the corner case M = 1, it suffices to download K — 1
generic linear combinations of all the K messages such that
from the K — 1 downloaded linear combinations and the CSI,
all the K messages are decodable as noted in Remark 5.

XIV. PROOF OF THEOREM 11

Here we bound the redundancy py from above (equiva-
lently, lower-bound a*) for 1 < M < K. For % <M<K,
the proof for ppes; = 0 is the same as in Section V show that
so it will not be repeated.

Consider an achievable scheme such that «a-CSl is sufficient
and the average download cost, D < L+ €L for some L.

Cﬁé’sri
Note that D > H(A | Q), therefore,
1
H(A | Q) < =sa5 L+ €L 207)
CPCSI

It follows from (207) that there exists a feasible ) € Q
such that

HA|Q=Q)< CsupL +€L. (208)
Forall i € [K],let A; € € satlsfy
HW, | A Y™ =g =0 @0

The argument that such A;’s must exist is identical to the proof

of Lemma 1. Writing Y[W]’Ai’] as Y'; for compact notation,

HW g | A Y ), Q = Q) (210)
=HWp | A Y M, Q=Q)

+HW k) | A Y g, Wi, Q =Q)  (211)
=0+HW | AW, Yk, Q=0Q) (212)
=0. (213)

where (212) follows from (209) and the fact that Y g are
functions of Ws. The last step also follows from (209).
Thus,

e —L+eL+ MaL
>HA|Q=Q)+HY | Q=0Q) (214)
>MA?WHQ:@ (215)
>I(A Y Wik | Q= @ (216)
:HMMWQ—Q— (217)

(214) is true because (208), (25) hold. Step (217) follows from
(209) and the fact that the query and messages are mutually
independent according to (5). Thus, o > (K — C—gp) /M —
¢/M. In order to achieve capacity, we must have ¢ — 0, so we
must have o > (K — Cg—&p)/M forall 1< M < K.

Now note that for M = 1, since Cysr = (K—1)"1, we have
shown that o > 1, which implies pycq = 0 in this case.

For2 < M < E£2 i hess = (K —M+1)~1, we have
shown that o > =1 which implies ppeys < 7 in this case.
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It only remains to show that for M = 2, ppeq = % is achiev-
able, or equivalently, a* = % For this case, let us present
a PIR-PCSI scheme that achieves the rate (K — M/2)~! for
arbitrary 1 < M < K. Note that K — M /2 = K — M +1 when
M = 2, which is the only case where the supremum capacity
is achieved by this scheme. The rate of this scheme is strictly
smaller than Cp for other M # 2.

Let the size of the base field ¢ be an even power of a prime
number such that /g is a prime power and /¢ > K. For
arbitrary realization (0,S) € [K] x & of (6,8), if § € S,
the user can apply the Interference Alignment based PIR-
PCSI-II scheme where half of each message is downloaded.
If € [K]\ S, then user can apply the Specialized GRS Codes
based scheme for the halves of the messages corresponding to
the CSI dimension that is retained (while the other half of the
CSI dimensions is discarded as redundant) and download the
other half dimension of all the messages directly. Note that
in both cases, a half-dimension of each of the K messages
is directly downloaded. The other halves are involved in
the download corresponding to the Specialized GRS Codes
which is not needed for decodability/correctness if 6 € S,
but is still included for privacy, i.e., to hide whether or not
6 € S. The download cost required is K (%) for the direct
downloads of half of every message, plus (K — M )% for the
Specialized GRS Codes based scheme that usually requires
K — M downloads per message symbol, but is applied here to
only half the symbols from each message, for a total download
cost of (K — M /2)L which achieves the supremum capacity of
PIR-PCSI for M = 2. The details of the scheme are presented
next.

For all k € [K], let Viy, € Ff/xﬁl be the length 2 vector
representation of W, € F,. For all m € [M], let M, €

m

]Ff/xa2 be the matrix representation of A, € IF‘qX where A, is
the m!" entry of the coefficient vector A. Let

7[87A]

Y = MAl(]-v:)VWil +...+M)\JM(]‘7:)VW (218)

in?
where 8§ = {41,429, -+ ,ip} is the support index set, be the

processed CSI where H (Y[S’A]) = $H(W}). Note that
Vm € [M],My,, (1,:) is uniform over Ff/? \ {[0 0]}

according to Lemma 2.

The query Q = {Q,,Q,,Qs},

Q, ={L1,Ly,--- ,Li}, (219)
QZ = {Llh /2a ) /K}a (220)
Qs = {vi,vy,--- vk} (221)

where Ly, L}, € Fif; \{[0 0]}. Ly, Lj serve as two linearly
independent projections that ask the server to split W, into
two halves
wk(l) = LkVWk S F\/@,
wi(2) =LV, €F 4.

(222)
(223)

Q5 uniquely defines a Specialized GRS Matrix whose elements
are in F /5.

The user will download the first halves of all the K mes-
sages after projection, i.e., wik(1) and apply the Specialized
GRS Matrix to download a Specialized GRS Codes of the
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second halves of all the K messages after projection, i.e.,

Let us specify Ly, L}, v. Consider any realization (6, S) €
[K] x & of (0,8). Let us say S = {i1,42, - ,4ip}. For the
messages not involved in the CSI, they are randomly projected
to two linearly independent directions, i.e., for any k € [K]\S,
Ly, Lj, are linearly independent and are randomly drawn from
]Fi/X; \ {[0 0]}. Also, for any k € [K]\ S, v is uniformly
distributed in IF\X/&.

For messages involved in the CSI, the construction of
projections and v’s depends on whether 6 is in S or not.

1) When 6 € S, for any m € [M],

_ M)\m (27 :)7i7n = 07
| M, (1,0), i # 6.

L; is then chosen randomly from Fi/xqz \ {[0 0]} such
that it is linearly independent with L; , . Meanwhile, v;,,
is randomly drawn from IF‘\X/E. Under this case, the user
has

(224)

Tm

7[57A]

YO = > wi, (1) +we(2) (225)

im€S\{0}

according to the construction of L; . wy(1) is directly
downloaded and wp(2) can be recovered by subtracting
{w;, (1)}, 20 from Y'®™. The user is then able to
recover W as the two projections are linearly indepen-
dent. Q5 uniquely defines a Specialized GRS Matrix and
applying Q4 to download a Specialized GRS Codes of
wig)(2) is just for privacy.
2) When 6 € [K]\ S, for any m € [M],
1

a m

L; = My, (1,:), (226)

where a,, is randomly drawn from F\X/a. L;, is then
chosen randomly from IF}/X; \ {[0 0]} such that they
are linearly independent with L; . Under this case, the

user has
3 anw, (2) =Y, (227)
me[M]
and sets
v, = 2" m e [M], (228)
p(wi,,)

where p(w; ) is the evaluation of the polynomial spec-
ified in (202) (when (68,8) = (0, S)) at w;,_, which
is a non-zero constant given (0, S). Thus, given (0, S),
v, is still uniform over IFXﬁ. Q5 uniquely defines
a Specialized GRS Matrix. Applying Q4 to download
a Specialized GRS Codes of wk)(2), together with
2 me[M] @mWi,, (2) as the side information, enable the
user to recover wg(2). Since the first halves of all the
projected messages are also downloaded, the user also
has wg(1), thus, is able to decode W.
Note that for arbitrary realization (0, S) of (6, S), no matter
0 € Sornot, Ly, -+ ,Lg, Lj, - LY, vy, -+ ,vg are
independent, and for any k € [K], the matrix whose first row is
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Ly, and second row is L}, is uniform over the set that contains
all the full-rank matrix in F2* f , v}, 1s uniform over IF\X/&. Thus,
the scheme is private.

XV. PROOF OF THEOREM 12

The rate 15 PIR-PCSI-I scheme in Section XI-B is also
the infimum capacity achieving PIR-PCSI scheme as noted in
Remark 5, so we just prove the converse here.

As a result of (40) and the fact that in Fo, we can only have
A =1y, ie., the length-M vector all of whose elements are
equal to 1, we have

H(W i | A, Y, Q = Q) =0,
Y(Q,S8) € Q x 6&.

Writing YIMal 45 ¥ for compact notation, for any @) € Q,
we have

HWi | AQ=Q)

:H(WK],YlA Q=0Q) (230)
(YIA Q=Q)+HWi|AY,Q=Q) (231)
H(Y)= (232)

(229)

(230) is true since Y is a summation of the first M messages,
and (231) follows from (229). Averaging over (@ we have,

HWg | A Q) <L (233)

HW g | A,Q) > KL — L which implies that Cint(q =
2) < (K —1)"L

XVI. PROOF OF THEOREM 13

The rate ﬁ PIR-PCSI-I scheme which preserves
(6,8,A) in Section XII-C is also the capacity achiev-
ing PIR-PCSI scheme with private coefficients as noted in
Remark 6, so we just prove the converse here. Specifically,
we prove that Cg,(q) < Creq(q = 2) = Ci.

According to (123) in Lemma 6, for a fully private PIR-
PCSI scheme,

H(W[K] | A’Y[S,A]’ Q = Q) = Oa

Y(Q,5,A) € Q9 x 6 xC.

Note that (234) is a stronger version of (229) which is
sufficient to bound Cieg; (¢ = 2) = CI2 . Thus, O < Cinf.

PCSI* PCSI ( ) PCSI*

(234)

XVII. CONCLUSION

Side-information is a highly valuable resource for PIR in
general, and for single-server PIR in particular. Building on
the foundation laid by Heidarzadeh et al. [33], this work
presents a more complete picture, as encapsulated in Table I,
revealing new insights that are described in the introduction.
The redundancy of side-information is particularly noteworthy,
because it allows the user to save storage cost, which may be
used to store additional non-redundant side-information, e.g.,
multiple linear combinations instead of just one, as assumed
in this work and in [33]. An interesting direction for future
work is to understand the trade-off between the size of side
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information and the efficiency of single-server PIR, e.g.,
by characterizing the «-CSI constrained capacity of PIR-
PCSI-1, PIR-PCSI-II, PIR-PCSI. Other questions that remain
open include issues that are field-specific. For example, is the
supremum capacity of PIR-PCSI-II for M > 2 achievable for
all fields except Fo? Are there other fields besides [y over
which the capacity is equal to the infimum capacity? Can the
capacity over certain fields take values other than the supre-
mum and infimum capacities? Progress on these issues may
require field-dependent constructions of interference alignment
schemes for achievability, and combinatorial arguments for
converse bounds, both of which may be of broader interest.

APPENDIX
A. Proof of Lemma 5

For all k € [K]|,m € [M — 1], let us say

L™ = [ o xfﬁ\ﬂ, (235)
wherex EIF . Let
T T N
He =107 1 " (236)

Let us denote by S1,Ss, - - -
of . Let §; = [M

S, kv, the (ﬁ,) distinct elements

]. Then G, can be written as

Al Aol Anlng
H; Ov—1yxm Ovr—1)xm
Gs, = |O-1)xm H, O(n—1)x M
Omr—1yxm Or—1)yxm Hy
(237)

which is an M2 x M? matrix. Note that
1 M—1
= f1($§ ia T 7935\/1,1\4 )),

where f;(-) is an M?(M — 1)-variate polynomial with degree

deg(f1) = M(M — 1). To verify that fi(-) is not the zero

polynomial, note that if each H,,,,m € [M] is chosen as the

(M —1) x M matrix obtained by inserting the all-zero column

into the (M — 1) x (M — 1) identity matrix after its first

m — 1 columns, then det(Gs,) = A1 A+ - Ay # 0.
Similarly, Vj € [2: (1)),

det(Gs;) = f;j ((:vgri),'

det(Gs,) (238)

(m)

Ty A{)kESJ,’mE[J\I 1]) (239)

where f;(+) is an M?(M — 1)-variate polynomial with degree
deg(f;) = M(M — 1).

Now, to satisfy the correctness and privacy constraints,
we must choose all L,(cm) to simultaneously have all the
polynomials f;(-) evaluate to non-zero values. Equivalently,
the polynomial f that is the product of all f;(-) should evaluate
to a non-zero value.

= II 6=

I[ det(Gs,)
JE[(M)]

jel(x)1

f#0, (240)
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where f is a KM (M — 1)-variate polynomial with degree
deg(f)= [ des(s;) = (MM -1). @41

jel(3p)]

Now, since it is a product of non-zero polynomials, f is also a
non-zero polynomial. Therefore, by Schwartz-Zippel Lemma,
if the values of the K M (M —1) variables are randomly chosen
from ., then the probability of the polynomial f evaluating
to 0 is bounded as,

pr(f = 0) < de8U) _ G)MM 1)
q q
Therefore, if ¢ > (5)M(M — 1), then Pr(f = 0) < 1,
which implies that there exists a choice of the KM (M — 1)
variables such that f = 0. That choice satisfies the condition
of Lemma 5, thus completing the proof of Lemma 5.

For ease of understanding, consider the following example.

Example 4: Consider M = 3, K = 4 messages:
A, B,C, D, each of which consists M = 3] symbols in Fs.
Message A can be represented as a length M = 3 column
vector with all the 3 entries in Fs, ie., Va € Fgl“.
VB, Ve, Vp are similarly defined.

Let us say A, B, C are in the support set and Y = 2A +
B + C.Y can also be represented by Vy € F3*! where

3l
Vv =2I3Va + 1I3VB + I3V (243)

(242)

For each one of Va,Vg, Ve, Vp, the user will download
M — 1 = 2 linear combinations. For example, the download
corresponding to V4 is,

(1)

L
Ax=|[ly|Va=HiVa, (244)
1

where L{" LY € F1? and A4 € F2'. Similarly, the user
downloads

Ap =HyVp,Ac =H3Ve,Ap = H4Vp (245)
Regarding messages A, B, C, the user has
XY gg 013 0I3 Va
Ag - 02:3 ISIX; Oiii “j—g (246)
Ac 02x3 0Oaxs Hs
G123}
To recover Va,Vp,Ve and thus recover A, B,C),

Gyi23) € ]Fg,X9 must have full rank. Let us explicitly write
down Gy 23} as

2 0 0 1 0 0 1 0 0
o 2 0 0 1 0 0 1 0
o o 2 0o o0 1 0 0 1
) 2N 0 0 0 0 0 0
G e < 0 0 0 0 0 0
0 0 o0 = 2 =) 0o 0 o0
0 0 0 x af) x5, 0 0 0
0 0 0 0 0 0 = ) ¥y
Lo 0 0 0 0 0 ) ) a5
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Now note that det(Gyy 23y) = f1 is an M*(M — 1) = 18-
variate non-zero polynomial of degree 6. The polynomial is
non-zero because e.g., setting the variables shown in red color
as 1 and the rest of the variables to 0, yields the evaluation
f1 = )\1)\2)\3 = 2.

To ensure the joint privacy of (6, S), the matrix

o, I I

H; 0343 0243
G = 247
(1,24} 023 Hy 0243 (247)
02x3 O2x3 Hy
should also be invertible, which enables the user to

recover A, B, D if the CSI is 2A + B + D. Similarly,
G134}, G{2,3,4} should also be invertible. Let

fo = det(Gy12.4}), f3 = det(Gy134}), fa = det(Gya 34})-

Similarly, fs, f3, f4 are 18-variate polynomials of degree 6.
Thus f = fifofsfs is a KM(M — 1) = 24-variate non-
zero polynomial of degree (AI;)M (M — 1) = 24. According
to Schwartz-Zippel Lemma, if the 24 variables are randomly
chosen from Fj,

deg(f) _ 24
When | > 3 we have Pr(f = 0) < 1 which implies that
there exists a choice of the 24 variable such that f # 0 and
G123, G124}, G1,3.4), Gy2,3,4) are all invertible.

(248)
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