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AbstractÐ Motivated by an open problem and a conjecture,
this work studies the problem of single server private information
retrieval with private coded side information (PIR-PCSI) that was
recently introduced by Heidarzadeh et al. The goal of PIR-PCSI
is to allow a user to efficiently retrieve a desired message W θ ,
which is one of K independent messages that are stored at
a server, while utilizing private side information of a linear
combination of a uniformly chosen size-M subset (S ⊂ [K]) of
messages. The settings PIR-PCSI-I and PIR-PCSI-II correspond
to the constraints that θ is generated uniformly from [K]\S, and
S, respectively. In each case, (θ,S) must be kept private from the
server. The capacity is defined as the supremum over message
and field sizes, of achievable rates (number of bits of desired
message retrieved per bit of download) and is characterized by
Heidarzadeh et al. for PIR-PCSI-I in general, and for PIR-
PCSI-II for M > (K + 1)/2 as (K − M + 1)−1. For
2 ≤ M ≤ (K + 1)/2 the capacity of PIR-PCSI-II remains
open, and it is conjectured that even in this case the capacity
is (K − M + 1)−1. We show the capacity of PIR-PCSI-II is

equal to 2/K for 2 ≤ M ≤ K+1

2
, which is strictly larger

than the conjectured value, and does not depend on M within
this parameter regime. Remarkably, half the side-information is
found to be redundant. We also characterize the infimum capacity
(infimum over fields instead of supremum), and the capacity with
private coefficients. The results are generalized to PIR-PCSI-I
(θ ∈ [K] \ S) and PIR-PCSI (θ ∈ [K]) settings.

Index TermsÐ Capacity, Private Information Retrieval (PIR),
coded side information (CSI), interference alignment.

I. INTRODUCTION

A
S CLOUD services and distributed data storage become

increasingly prevalent, growing concerns about users’

privacy have sparked much recent interest in the problem

of Private Information Retrieval (PIR). Originally introduced

in [1] and [2], the goal of PIR is to allow a user to efficiently

retrieve a desired message from a server or a set of servers

where multiple messages are stored, without revealing any

information about which message is desired. In the informa-

tion theoretic framework, which requires perfect privacy and

assumes long messages, the capacity of PIR is the maximum

number of bits of desired information that can be retrieved

per bit of download from the server(s) [3]. Capacity charac-

terizations have recently been obtained for various forms of
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PIR, especially for the multi-server setting [3], [4], [5], [6],

[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],

[19], [20], [21], [22].

PIR in the basic single server setting would be most valuable

if it could be made efficient. However, it was already shown

in the earliest works on PIR [1], [2] that in the single server

case there is no better alternative to the trivial solution of

downloading everything, which is prohibitively expensive.

Since the optimal solution turns out to be trivial, single server

PIR generally received less attention from the information

theoretic perspective, until recently. Interest in the capacity

of single-server PIR was revived by the seminal contribution

of Kadhe et al. in [23] which showed that the presence of side

information at the user can significantly improve the efficiency

of PIR, and that capacity characterizations under side infor-

mation are far from trivial. This crucial observation inspired

much work on understanding the role of side-information in

PIR [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],

which remains an active topic of research. Among the recent

advances in this area is the study of single-server PIR with

private coded side information (PIR-PCSI) that was initiated

by Heidarzadeh, Kazemi and Sprintson in [33]. Heidarzadeh

et al. obtain sharp capacity characterizations for PIR-PCSI in

many cases, and also note an open problem, along with an

intriguing conjecture that motivates our work in this paper.

In the PIR-PCSI problem, a single server stores K indepen-

dent messages W 1, · · · ,W K , each represented by L i.i.d.

uniform symbols from a finite field Fq. A user wishes to

efficiently retrieve a desired message W θ, while utilizing

private side information (S,Λ,Y [S,Λ]) that is unknown to

the server, comprised of a linear combination Y [S,Λ] =
∑M

m=1 λmW im
of a uniformly chosen size-M subset of

messages, S = {i1, i2, · · · , iM} ⊂ [K], i1 < i2 < · · · < iM ,

with the coefficient vector Λ = (λ1, · · · ,λM ) whose elements

are chosen i.i.d. uniform from F
×
q , i.e., the multiplicative

subgroup of Fq. Depending on whether θ is drawn uniformly

from [K] \ S or uniformly from S, there are two settings,

known as PIR-PCSI-I and PIR-PCSI-II, respectively. In each

case, (θ,S) must be kept private. Capacity of PIR is typically

defined as the maximum number of bits of desired message

that can be retrieved per bit of download from the server(s),

and includes a supremum over message size L. Since the

side-information formulation specifies a finite field Fq, the

capacity of PIR-PCSI can potentially depend on the field.

A field-independent notion of capacity is introduced in [33]

by allowing a supremum over all finite fields. For PIR-PCSI-I,

where θ /∈ S, Heidarzadeh et al. fully characterize the capacity

as (K − M)−1 for 1 ≤ M ≤ K − 1. For PIR-PCSI-II,

the capacity is characterized as (K −M + 1)−1 for K+1
2 <
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M ≤ K. Capacity characterization for the remaining case of

2 ≤M ≤ K+1
2 is noted as an open problem in [33], and it is

conjectured that the capacity in this case is also (K−M+1)−1.

The main motivation of our work is to settle this conjecture

and obtain the capacity characterization for PIR-PCSI-II when

2 ≤M ≤ K+1
2 . Given the importance of better understanding

the role of side information for single-server PIR, additional

motivation comes from the following questions: What is the

infimum capacity (infimum over all finite fields instead of

supremum)? What if the coefficient vector Λ (whose privacy

is not required in [33]) is also required to be private? Can

the side-information be reduced, e.g., to save storage, without

reducing capacity?

The contributions of this work are summarized in Table I,

along with prior results from [33]. As our main contribution

we show that the capacity of PIR-PCSI-II for 2 ≤ M ≤
K+1

2 is equal to 2/K, which is strictly higher than the

conjectured value in this parameter regime. The result reveals

two surprising aspects of this parameter regime. First, whereas

previously known capacity characterizations of PIR-PCSI-II

(and PIR-PCSI-I) in [33] are all strictly increasing with M (the

size of the support set of side information), here the capacity

does not depend on M . Second, in this parameter regime (and

also when M = ⌊(K + 1)/2⌋+1), half of the side information

turns out to be redundant, i.e., the supremum capacity remains

the same even if the user discards half of the side information.

We also show that if more than half of the side information

is discarded, then the supremum capacity is strictly smaller.

By contrast, in other regimes no redundancy exists in the

side information, i.e., any reduction in side information would

lead to a loss in supremum capacity. The results regarding

the redundancy in the side information when the supremum

capacity is achieved are summarized in Table II in Section III

as the definition of redundancy will be clear then.

The optimal rate 2/K is shown to be achievable for any

finite field Fq where q is an even power of a prime. The

achievable scheme requires downloads that are ostensibly

non-linear in Fq, but in its essence the scheme is linear,

as can be seen by interpreting Fq as a 2 dimensional vector

space over the base field F√
q, over which the downloads are

indeed linear. Intuitively, the scheme may be understood as

follows. A rate of 2/K means a download of K/2, which is

achieved by downloading half of every message (one of the

two dimensions in the 2 dimensional vector space over F√
q).

The key idea is interference alignment ± for the undesired

messages that appear in the side information, the halves that

are downloaded are perfectly aligned with each other, whereas

for the desired message, the half that is downloaded is not

aligned with the downloaded halves of the undesired messages.

For messages that are not included in the side information, any

random half can be downloaded to preserve privacy.

With a bit of oversimplification for the sake of intuition,

suppose there are K = 4 messages, that can be represented

as 2-dimensional vectors A = [a1 a2],B = [b1 b2],C =
[c2 c2],D = [d1 d2], the side information is comprised of

M = 3 messages, say at first A + B + C = [a1 + b1 +
c1 a2 + b2 + c2], and the desired message is A. Then the

user could recover A by downloading a1, b2, c2 and either

d1 or d2, i.e., half of each message for a total download of

K/2 = 2 (normalized by message size). We may also note

that half of the side information is redundant, i.e., the user

only needs a2 + b2 + c2, and can discard the rest. But there

is a problem with this oversimplification ± this toy example

seemingly loses privacy because the matching indices reveal

that b2 aligns with c2 but not a1. This issue is resolved by

noting that the side information is in fact λ1A+λ2B+λ3C =
A′ + B′ + C ′. Suppose λ1,λ2,λ3 are random (unknown

to the server) independent linear transformations (matrices)

that independently ‘rotate’ A,B,C vectors into A′,B′,C ′

vectors, respectively, such that the projections (combining

coefficients) of each along any particular dimension become

independent of each other. In other words, a′
i, b

′
i, c

′
i are

independent projections of A,B,C, and downloading, say

(a′
1, b

′
2, c

′
2,d

′
2) reveals to the server no information about their

relative alignments in the side information. From the server’s

perspective, each downloaded symbol is simply an indepen-

dent random linear combination of the two components of

each message. Intuitively, since the random rotation is needed

to maintain privacy, it is important that λi are matrices, not

scalars (because scalars only scale, they do not rotate vectors).

This is not directly the case in Fq because λi are scalars in

Fq. However, viewed as a 2 dimensional vector space over

F√
q, the λi indeed act as invertible 2 × 2 matrices that act

on the vectors A,B,C,D, rotating each vector randomly and

independently, thus ensuring privacy.

In order for F√
q to be a valid finite field we need q to

be an even power of a prime. This suffices to characterize

the capacity because the capacity definition in [33] allows

a supremum over all fields. However, the question remains

about whether the rate 2/K is achievable over every finite

field. To understand this better, we explore an alternative

definition of capacity (called infimum capacity in this work)

which considers the infimum (instead of supremum) over all

Fq. We find that the infimum capacity of PIR-PCSI-II is always

equal to M/((M − 1)K). Evidently, for M = 2 the capacity

is field independent because the infimum and supremum over

fields produce the same capacity result. In general however, the

infimum capacity can be strictly smaller, thus confirming field-

dependence. The worst case corresponds to the binary field F2.

Intuitively, the reason that the infimum capacity corresponds

to the binary field is that over F2 the non-zero coefficients

λm must all be equal to one, and thus the coefficients are

essentially known to the server. On the other hand, we also

present an example with q = 3 (and M = 3,K = 4) where

2/K is achievable (and optimal), to show that the achievability

of 2/K for M > 2 is not limited to just field sizes that are even

powers of a prime number. We also show that for PIR-PCSI-

II, the the infimum capacity with private (θ,S) is the same as

the (supremum or infimum) capacity with private (θ,S,Λ),
i.e., when the coefficients Λ must also be kept private from

the server.

Next we consider PIR-PCSI-I where θ is drawn from

[K] \ S. The supremum capacity of PIR-PCSI-I is fully

characterized in [33]. In this case, we show that there is no

redundancy in the CSI. As in PIR-PCSI-II, we find that the

infimum capacity of PIR-PCSI-I is strictly smaller than the
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TABLE I

CAPACITY RESULTS FOR PIR-PCSI-I, PIR-PCSI-II AND PIR-PCSI

supremum capacity in general, and the binary field F2 yields

the worst case. Unlike PIR-PCSI-II, however, the infimum

capacity of PIR-PCSI-I with private (θ,S) does not always

match the infimum capacity with private (θ,S,Λ). For exam-

ple, if M = K − 1, then both the supremum and infimum

capacities of PIR-PCSI-I are equal to 1 for private (θ,S), but

if the coefficient vector Λ must also be kept private then the

infimum capacity is no more than 1/(K − 2). Thus, the loss

in capacity from requiring privacy of coefficients can be quite

significant.

To complete the picture, we finally consider the capacity of

PIR-PCSI where θ is drawn uniformly from [K]. In PIR-PCSI

the server is not allowed to learn anything about whether or

not θ ∈ S. The supremum capacity of PIR-PCSI is found

to be (K − M + 1)−1 for 2 ≤ M ≤ K. Remarkably, this

is not just the smaller of the two capacities of PIR-PCSI-I

and PIR-PCSI-II, so there is an additional cost to be paid for

hiding from the server whether θ ∈ S or θ /∈ S. Depending

on the relative values of M and K, in this case we find that the

redundancy in CSI can be as high as 1/2 or as low as 0. The

infimum capacity of PIR-PCSI is smaller than the supremum

capacity, the binary field F2 yields the worst case, and as

in PIR-PCSI-II, the infimum capacity with private (θ,S) is

the same as the (supremum or infimum) capacity with private

(θ,S,Λ).
This paper is organized as follows: Section II states PIR-

PCSI, PIR-PCSI-I, PIR-PCSI-II problems in [33]. Section III

states our capacity and redundancy (in the CSI) results for

PIR-PCSI-II, PIR-PCSI-I, PIR-PCSI with fourteen theorems

which are proved in Section IV to Section XVI. Section XVII

concludes this paper and gives possible future directions.

Notation: For a positive integer a, let [a] denote the

set {1, 2, · · · , a}. For two integers a, b where a < b,
[a : b] denotes the set {a, a + 1, · · · , b}. For a set S =
{i1, i2, · · · , in}, |S| denotes the cardinality of S. IM denotes

the M ×M identity matrix, and 0M denotes the M ×M all-

zero matrix. For a matrix A, let A(i, :) be the ith row of A.

For a set A whose elements are integers, let A(i) denote the

ith element of A in ascending order. Let Fq denote the finite

field of order q and F
×
q contain all the non-zero elements of Fq.

The notation F
a×b
q represents the set of all a×b matrices with

elements in Fq. The notation F
a×1
q may be shortened to F

a
q .

Let S be the set of all the subsets with cardinality M of [K],
i.e., |S| =

(
K
M

)
, and let C be the set of all length M sequences

with elements in F
×
q , i.e., |C| = (q − 1)M . For an index set

S ⊂ [K], define the subscript notation XS = {Xs | s ∈ S}.

All entropies are in q-ary units. For a random variable A, E[A]
is the expectation of A, Pr(A = A) denotes the probability

of A being A.

II. PROBLEM STATEMENT

A. Capacity of PIR-PCSI-I, PIR-PCSI-II, PIR-PCSI

A single server stores K independent messages

W 1,W 2, · · · ,W K ∈ F
L
q , each comprised of

L i.i.d. uniform symbols from Fq, i.e., W k =
(W k(1),W k(2), · · · ,W k(L))T , and each W k(ℓ), which

denotes the ℓth instance of the kth message, is drawn i.i.d.

uniform from Fq. The number of instances L may be chosen

freely by the coding scheme. We refer to Fq as the base field.

In terms of entropies,

H(W 1) = H(W 2) = · · · = H(W K) = L, (1)

H(W [K]) =
∑

k∈[K]

H(W k) = KL. (2)

A user wishes to retrieve a message W θ for a privately

generated index θ. The user has a linear combination of M
messages available as coded side information (CSI). M is

globally known. The CSI is comprised of (S,Λ,Y [S,Λ]),
defined as follows. The support index set S, drawn uniformly

from S, is a subset of [K], of cardinality M . The vector of

coefficients Λ = (λ1,λ2, · · · ,λM ) is drawn uniformly from

C, and applied across all L instances, i.e., the same linear

combining coefficients appear in each of the L instances of

the CSI. The linear combination available to the user is

Y [S,Λ]
≜ λ1W S(1) + λ2W S(2) + · · · + λMW S(M), (3)

where we recall the notation that S(m) denotes the mth

element of S, in ascending order, i.e., S(1) < S(2) < · · · <
S(M). We assume that (θ,S), Λ, W [K] are independent.

H(θ,S,Λ,W [K]) = H(θ,S) +H(Λ) +H(W [K]). (4)

There are three formulations of the problem depending on

how θ is chosen by the user.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2023 at 19:10:02 UTC from IEEE Xplore.  Restrictions apply. 



3266 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 5, MAY 2023

1) PIR-PCSI-I: θ is chosen uniformly from [K] \ S.

2) PIR-PCSI-II: θ is chosen uniformly from S.

3) PIR-PCSI: θ is chosen uniformly from [K].

When referring to all three formulations, we will refer to

the problem as PIR-PCSI* for brevity. In such statements,

PCSI* can be replaced with PCSI-I, PCSI-II, or PCSI to obtain

corresponding statements for each of the three formulations.

The server knows the distributions but not the realizations

of θ,S,Λ,Y [S,Λ]. It is required that (θ,S) be kept jointly

private from the server. Note that the privacy of Y [S,Λ] or the

coefficient vector Λ is not required. While the server initially

knows nothing about the realization of Λ, a PIR-PCSI*

scheme may reveal some information about the coefficients,

especially if it allows for efficient retrieval without leaking

any information about (θ,S). Leaking information about Λ

has implications for reusability of side-information, an issue

that is explored recently in [34].

In order to retrieve Wθ, we assume as in [33] that the

user generates a random query Q that is independent of the

messages. Specifically,

I(W [K];Q,θ,S,Λ) = 0. (5)

Let Q denote the alphabet of Q.

Because the messages are i.i.d. uniform, and the coefficients

are non-zero, according to the construction of Y [S,Λ], it fol-

lows that

L = H(Y [S,Λ]), (6)

= H(Y [S,Λ] | Q,S,Λ,W [K]\{S(m)}),∀m ∈ [M ]. (7)

The user uploads Q to the server. Mathematically, the

privacy constraint is expressed as,

[(θ,S) Privacy] I
(
θ,S;Q,W [K]

)
= 0. (8)

The server returns an answer ∆ as a function of Q and the

messages, i.e.,

H
(
∆ | Q,W [K]

)
= 0. (9)

The answer ∆ takes values in an alphabet set AQ that

depends on the query Q. The download cost, measured in

q-ary symbols is logq |AQ|. Since AQ is a function of Q,

note that different queries may result in different download

costs.

Upon receiving the answer, the user must be able to decode

the desired message W θ.

[Correctness] H(W θ | ∆,Q,Y [S,Λ],S,Λ,θ) = 0. (10)

We are interested in the average download cost, D, across all

queries, which is defined and bounded as follows.

D ≜ EQ

[
logq |AQ|

]
(11)

=
∑

Q∈Q
Pr(Q = Q) logq |AQ| (12)

≥
∑

Q∈Q
Pr(Q = Q)H(∆ | Q = Q) (13)

= H(∆ | Q). (14)

In (13) we used the fact that the entropy of a random

variable is no more than the logarithm of the cardinality

of its alphabet, corresponding to the fact that the uniform

distribution maximizes entropy. This bound will be useful for

converse proofs.

The rate achieved by a PIR scheme is defined as,

R ≜
L

D
(15)

The capacity is the supremum of achievable rates over all

message sizes L,

CPCSI*(q) = sup
L,achievable R

R. (16)

The capacity can depend on the field Fq which affects the

nature of side information. Field-independent measures of

capacity may be obtained by taking a supremum (as in [33])

or infimum over all finite fields. These are called supremum

and infimum capacity, respectively.

Csup
PCSI*

= sup
q
CPCSI*(q), (17)

C inf
PCSI*

= inf
q
CPCSI*(q). (18)

Remark 1: Throughout this paper, we will use the notation

Fq (and accordingly the symbol q) only to represent the

field in which the message symbols, and in particular the

linear combinations that constitute the CSI lie. The encoding

operations may occasionally take place in a different field,

typically a sub-field (e.g., F√
q if it exists) or an extension

field (e.g., Fql ) of Fq, which will be identified as such.

B. Capacity of PIR-PCSI* With Private Coefficients

Recall that in the formulation of PIR-PCSI* as presented

above, while (θ,S) must be kept private, the privacy of

the coefficient vector Λ is not required. As an important

benchmark, we consider the setting where the privacy of

coefficients must also be preserved. In this setting, the privacy

constraint is modified so that instead of (8) we require the

following.

[(θ,S,Λ) Privacy] I
(
θ,S,Λ;Q,W [K]

)
= 0. (19)

The capacity under this privacy constraint is referred to as the

capacity with private coefficients and is denoted as Cpri

PCSI*
(q),

which is potentially a function of the field size q. The

supremum and infimum (over q) of Cpri

PCSI*
(q) are denoted as

Cpri,sup
PCSI* , Cpri,inf

PCSI* , respectively.

C. Redundancy of CSI

In addition to the capacity of PIR-PCSI*, we also wish

to determine how much (if any) of the side information is

redundant, i.e., can be discarded without any loss in the

supremum capacity.

For all S ∈ S,Λ ∈ C, let fS,Λ : F
L
q → Y be arbitrary

functions that take the CSI Y [S,Λ] as input and output some

Y
[S,Λ] ∈ Y . These functions could be used to discard some
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TABLE II

REDUNDANCY RESULTS FOR PIR-PCSI-I, PIR-PCSI-II AND PIR-PCSI

parts of the side-information, and retain other parts, e.g.,

to reduce storage cost.

Y
[S,Λ]

= fS,Λ(Y [S,Λ]). (20)

Let us refer to all these functions collectively as F =
(fS,Λ)S∈S,Λ∈C. Define, CPCSI*(q,F) as the capacity (supre-

mum of achievable rates) if the decoding must be based on

Y
[S,Λ]

instead of Y [S,Λ], i.e., the correctness condition is

modified to

H(W θ | ∆,Q,Y
[S,Λ]

,S,Λ,θ) = 0. (21)

We say that F uses α-CSI, where

α = max
S∈S,Λ∈C

H(Y
[S,Λ]

)/L (22)

Whereas storing Y [S,Λ] requires L q-ary symbols, note that

storing Y
[S,Λ]

requires only αL storage, i.e., storage is

reduced by a factor α. Define the α-CSI constrained capacity

as

CPCSI*(q, α) = sup
F : uses no more than α-CSI

CPCSI*(q,F) (23)

In other words, CPCSI*(q, α) is the capacity when the user is

allowed to retain no more than a fraction α of the CSI Y [S,Λ].

The notion of α-CSI constrained capacity is of broader interest

on its own. However, in this work we will explore only the

redundancy of CSI with regard to the supremum capacity.

We say that ‘α-CSI is sufficient’ if

sup
q
CPCSI*(q, α) = Csup

PCSI*
(24)

Define α∗ as the smallest value of α such that α-CSI is

sufficient. The redundancy of PCSI is defined as ρPCSI* =
1 − α∗. Note that the opposite extremes of ρPCSI* = 1 and

ρPCSI* = 0 correspond to situations where all of the side infor-

mation is redundant, and where none of the side information

is redundant, respectively.
For later use, it is worthwhile to note that for any scheme

that uses no more than α-CSI, because Y
[S,Λ]

is a function
of Y [S,Λ], it follows from (7) that for all1 feasible (Q,S,Λ),

H

(

Y
[S,Λ]

| (Q,S,Λ) = (Q,S, Λ)

)

= H(Y
[S,Λ]

) ≤ αL. (25)

This is because of the property that if A is independent of

B, then any function of A is also independent of B. In this

case, (7) tells us that Y [S,Λ] is independent of Q, therefore

so is Y
[S,Λ]

.

1We say (Q,S, Λ) is feasible if Pr((Q,S,Λ) = (Q,S, Λ)) > 0.

III. MAIN RESULTS

Our main results are presented as theorems in this section,

and summarized in Table I and Table II for quick reference.

We start with PIR-PCSI-II (where θ ∈ S), which is the

main motivation for this work. Note that the case M = 1 is

trivial, because in that case the user already has the desired

message. Therefore, for PIR-PCSI-II we will always assume

that M > 1.

A. PIR-PCSI-II (Where θ Is Drawn Uniformly From S)

Theorem 1: The supremum capacity of PIR-PCSI-II is

Csup
PCSI-II

= max

(
2

K
,

1

K −M + 1

)

(26)

=

{
2
K
, 1 < M ≤ K+1

2 ,
1

K−M+1 ,
K+1

2 < M ≤ K, [33]
(27)

The case (K + 1)/2 < M ≤ K was already settled

by Heidarzadeh et al. [33], and is included in Theorem 1

primarily for the sake of completeness. Our contribution to

Theorem 1 is for the case 1 < M ≤ (K + 1)/2 which was

noted as an open problem in [33] along with a conjecture

that the supremum capacity for this case may also be equal

to 1/(K − M + 1). Theorem 1 settles this open problem

and resolves the conjecture by establishing that the supremum

capacity in this case is 2/K. The proof of Theorem 1 for the

case 2 ≤M ≤ (K + 1)/2 appears in Section IV.

Note that when 2 ≤ M ≤ (K + 1)/2, the supremum

capacity value 2/K is strictly higher than the conjectured

value 1/(K −M + 1), and does not depend on the support

size M of the coded side information. Achievability of 2/K is

shown in Section IV for any field Fq where q is an even power

of a prime, by viewing Fq as a 2 dimensional vector space over

F√
q. Note that q needs to be an even power of a prime, in order

for F√
q to be a valid finite field. Specifically, we choose

L = 1, so each message is comprised of 1 symbol from Fq,

equivalently 2 symbols from F√
q, which can be represented

as a 2 × 1 vector over F√
q, while the coefficients λm ∈

Fq,m ∈ [M ] take the role of 2×2 matrices in F√
q that rotate

the vectors corresponding to the messages W Sm
involved

in the CSI, thus randomizing their relative alignments.2 Half

of the desired message W θ is recovered by downloading

the corresponding halves of undesired messages that align

(interfere) with that half of W θ (so that the interference can be

subtracted), while the other half of W θ is downloaded directly.

The private rotations due to Λ in the CSI hide the alignments

2As an alternative, suppose instead we consider each message as comprised
of L = 2 symbols from Fq , which also allows us to work with a 2 dimensional
vector space (over Fq). However, since the coefficients are scalars in Fq and
constant across ℓ ∈ [L], in this 2 dimensional vector space the coefficients
translate to only scaled versions of 2 × 2 identity matrices, which does not
yield the rotations that are essential for privacy.
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from the server. For the messages that are not involved in

the CSI any random half can be downloaded. Since a random

half of every message is downloaded, no information is leaked

about (θ,S) and the scheme is private.

Intuitively, since one half of the desired message is directly

downloaded, it stands to reason that the corresponding half

of the CSI may be redundant and could be discarded by the

user, thus saving storage cost. Indeed, this intuition turns out

to be correct, as encapsulated in the next theorem which char-

acterizes precisely how much of the side information in each

parameter regime is redundant, i.e., can be discarded without

any loss in the supremum capacity specified in Theorem 1.

Theorem 2: For the supremum capacity of PIR-PCSI-II, the

redundancy in coded side information is characterized as,

ρPCSI-II =

{

1/2, 1 < M ≤ (K + 2)/2,

0, (K + 2)/2 < M ≤ K.
(28)

In particular, ρPCSI-II = 1/2 implies that exactly half of the

side information is redundant, and ρPCSI-II = 0 implies that

there is no redundancy in the side information. The proof

of Theorem 2 appears in Section V. Thus, for all (M,K)
parameters where the supremum capacity is equal to 2/K,

half of the coded side information is redundant. Note that

in the boundary case where M = (K + 2)/2, we have

2/K = 1/(K − M + 1), i.e., this boundary case could be

included in either of the two cases in Theorem 1. Remarkably,

these are the only cases where we have any redundancy in

coded side information. According to Theorem 2, there is no

redundancy when (K + 2)/2 < M ≤ K.

As our next result for PIR-PCSI-II, we characterize the

infimum capacity C inf
PCSI-II

in the following theorem.

Theorem 3: The infimum capacity of PIR-PCSI-II,

C inf
PCSI-II

= CPCSI-II(q = 2) =
M

(M − 1)K
. (29)

The proof of Theorem 3 appears in Section VI. Evidently,

the infimum capacity of PIR-PCSI-II matches its capacity over

the binary field. Intuitively, one might expect that the binary

field would represent the worst case because over F2, the

coefficients λm, which must be non-zero, can only take the

value 1. Thus, the coefficients are known to the server. It is

also worth noting that constant Λ trivially satisfy (θ,S,Λ)
privacy whenever (θ,S) privacy is satisfied.

Note that for M = 2, the infimum capacity of PIR-PCSI-

II matches the supremum capacity, therefore for any field

Fq, we have the exact capacity characterization, CPCSI-II(q) =
C inf

PCSI-II
= Csup

PCSI-II. However, in general the infimum capacity

is strictly smaller. The gap can be significant, for example

when M = K the supremum capacity is 1 while the infimum

capacity is 1/(K − 1). In general the capacity for arbitrary

fields, arbitrary support size M and arbitrary number of

messages K remains open. Intuitively, we expect that the

capacity for most fields should be either equal to or close

to the supremum capacity, whereas fields where the capacity

is closer to the infimum capacity should be relatively rare.

For certain M,K values, however, we are able to characterize

the capacity of PIR-PCSI-II for arbitrary fields. These results

are presented in the next two theorems. Notably, for these

specific M,K, while the binary field F2 yields the infimum

capacity, for all other fields (Fq, q > 2), the capacity matches

the supremum capacity, i.e., CPCSI-II(q) = Csup
PCSI-II.

Theorem 4: For PIR-PCSI-II with M = K,

CPCSI-II(q) =

{

1/(K − 1) = C inf
PCSI-II

, q = 2,

1 = Csup
PCSI-II, q ̸= 2.

(30)

The proof of Theorem 4 appears in Section VII.

Theorem 5: For PIR-PCSI-II with M = 3,K = 4,

CPCSI-II(q) =

{

3/8 = C inf
PCSI-II

, q = 2,

1/2 = Csup
PCSI-II, q ̸= 2.

(31)

Note that M = 3,K = 4 is a boundary case for which

1/(K − M + 1) = 2/K, therefore the supremum capacity

is achievable by both the Modified Specialized GRS Codes

scheme presented in [33] and by the interference alignment

scheme that appears in the proof of Theorem 1. However, the

former requires field size q ≥ K = 4, and the latter requires

q to be an even power of a prime. Aside from q = 2 which

corresponds to the infimum capacity, this leaves only q = 3,

which is neither greater than or equal to 4 nor an even power

of a prime, as the only new result in Theorem 5. The proof

for q = 3 appears in Section VIII.

Building on the observation that the infimum capacity corre-

sponds to the binary field where the coefficients are essentially

constants such that the (θ,S,Λ) privacy is automatically

satisfied, we next explore the capacity of PIR-PCSI-II for the

case of private coefficients. The result appears as the next

theorem.

Theorem 6: The capacity of PIR-PCSI-II, for the setting

with private coefficients, is given by

Cpri

PCSI-II
(q) = Cpri,inf

PCSI-II
= Cpri,sup

PCSI-II
= C inf

PCSI-II
. (32)

The proof of Theorem 6 appears in Section IX. Note that

the capacity with private coefficients does not depend on the

field (infimum and supremum are the same). Compared with

the case where the coefficients are not required to be kept

private, i.e., the case where only (θ,S) privacy is required,

there is a loss of the supremum capacity, which represents the

cost of also keeping the coefficients private.

B. PIR-PCSI-I (Where θ Is Drawn Uniformly From [K] \ S)

In this section we consider the setting of PIR-PCSI-I (where

θ ∈ [K]\S). Note that the case M = K is not valid, because

in that case the desired message is also contained in the support

set. Therefore, for PIR-PCSI-I we will always restrict 1 ≤
M ≤ K − 1.

The supremum capacity of PIR-PCSI-I is already found

in [33] as Csup
PCSI = (K−M)−1 and is achievable by Specialized

GRS Codes. We start by characterizing the redundancy in

the side information in the following theorem, whose proof

appears in Section X.

Theorem 7: For the supremum capacity of PIR-PCSI-I,

there is no redundancy in coded side information i.e.,

ρPCSI-I = 0.

Next we characterize the infimum capacity of PIR-PCSI-I.
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Theorem 8: The infimum capacity of PIR-PCSI-I,

C inf
PCSI-I

= CPCSI-I(q = 2)

= max

(

1

K − 1
,

(

K − M

K −M

)−1
)

=







1
K−1 , 1 ≤M ≤ K

2 ,(

K − M
K−M

)−1

, K
2 < M ≤ K − 1.

(33)

The proof of Theorem 8 appears in Section XI. The infimum

capacity of PIR-PCSI-I also matches its capacity over binary

field. The intuition why F2 represents the worst case, is similar

to the PIR-PCSI-II setting.

Remark 2: Note that for M = K−1, the infimum capacity

of PIR-PCSI-I matches the supremum capacity, therefore for

any field Fq, we have the exact capacity characterization,

CPCSI-I(q) = C inf
PCSI-I

= Csup
PCSI-I = 1. However, in general the

infimum capacity is strictly smaller and the gap can be

significant. For example, when M = K/2 the supremum

capacity is 2/K while the infimum capacity is 1/(K − 1),
i.e., for large K, the infimum capacity is nearly half of the

supremum capacity.

We next explore the capacity of PIR-PCSI-I for the case of

private coefficients.

Theorem 9: The supremum capacity of PIR-PCSI-I, for the

setting with private coefficients, is given by

Cpri,sup
PCSI-I

= C inf
PCSI-I

, (34)

while the infimum capacity of the private coefficients setting

can be bounded as

1

K − 1
≤ Cpri,inf

PCSI-I
≤ min

(

C inf
PCSI-I

,
1

K − 2

)

. (35)

The proof of Theorem 9 appears in Section XII. Unlike PIR-

PCSI-II, for PIR-PCSI-I the capacity with private coefficients

may depend on the field, and may be strictly smaller than

the infimum capacity. For example, if M = K − 1, then the

infimum capacity is 1, but the infimum capacity with private

coefficients is no more than 1/(K− 2). Remarkably, infimum

capacity with private coefficients does not correspond to the

binary field F2, i.e., there exist other fields that yield strictly

lower capacities than F2 for PIR-PCSI-I when the coefficients

are fully private.

C. PIR-PCSI (Where θ Is Drawn Uniformly From [K])

To complete the picture, in this section we characterize the

capacity of PIR-PCSI which was not studied in [33]. Since θ ∈
[K], any 1 ≤ M ≤ K is valid. We start with the supremum

capacity.

Theorem 10: The supremum capacity of PIR-PCSI is

Csup
PCSI

= max

(
1

K − 1
,

1

K −M + 1

)

=

{
1

K−1 , M = 1,
1

K−M+1 , 2 ≤M ≤ K,
(36)

The proof of Theorem 10 appears in Section XIII. For M =
1, this problem is dominated by the PIR-PCSI-I setting, and

the capacity is (K − 1)−1.

The redundancy of CSI to achieve the supremum capacity

of PIR-PCSI is bounded in the following theorem.

Theorem 11: The redundancy of the CSI to achieve the

supremum capacity of PIR-PCSI is bounded as

ρPCSI =
1

2
, M = 2

ρPCSI ≤
1

M
, 3 ≤M ≤ K + 2

2
,

ρPCSI = 0, otherwise. (37)

The proof of Theorem 11 appears in Section XIV. Evidently,

for different values of M the redundancy can be as high as

1/2 and as low as 0.

The infimum capacity of PIR-PCSI is found next.

Theorem 12: The infimum capacity of PIR-PCSI corre-

sponds to q = 2, and,

C inf
PCSI

= CPCSI(q = 2) =
1

K − 1
. (38)

The proof of Theorem 12 appears in Section XV.

Note that for M = 1, the infimum capacity of PIR-PCSI

matches the supremum capacity, therefore for any field Fq,

we have the exact capacity characterization, CPCSI(q) = C inf
PCSI

=
Csup

PCSI . However, in general the infimum capacity is strictly

smaller and the gap can be significant. For example, when

M = K the supremum capacity is 1 while the infimum

capacity is 1/(K − 1).
Finally, the capacity of PIR-PCSI for the case of private

coefficients is characterized.

Theorem 13: The capacity of PIR-PCSI, for the setting with

private coefficients, is given by

Cpri

PCSI
(q) = C inf

PCSI
. (39)

The proof of Theorem 13 appears in Section XVI. Similar

to PIR-PCSI-II, and unlike PIR-PCSI-I, for PIR-PCSI the

capacity with private coefficients does not depend on the field,

and is always equal to the infimum capacity.

Let us conclude this section with Table III which sum-

marizes the solved and open cases of various PIR-PCSI*

problems considered in this work.

IV. PROOF OF THEOREM 1

A. Converse

The following lemma, which is essentially Lemma 1 of [33],

states that for PIR-PCSI*, for every feasible (Q,S, θ), there

must exist at least one coefficient vector that allows successful

decoding.

Lemma 1:

PIR-PCSI: ∀(Q,S, θ) ∈ Q× S × [K], ∃Λ ∈ C, s. t.

H(W θ | ∆,Y [S,Λ],Q = Q) = 0. (40)

PIR-PCSI-I: ∀(Q,S, θ) ∈ Q× S × ([K] \ S), ∃Λ ∈ C, s. t.

H(W θ | ∆,Y [S,Λ],Q = Q) = 0. (41)

PIR-PCSI-II: ∀(Q,S, θ) ∈ Q× S × S, ∃Λ ∈ C, s. t.

H(W θ | ∆,Y [S,Λ],Q = Q) = 0. (42)
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TABLE III

A SUMMARY OF SOLVED AND OPEN PROBLEMS FOR PIR-PCSI*

Proof: Since the server knows ∆,Q and can test all pos-

sible realizations of θ,S,Λ for decodability, if no coefficient

vector exists for a particular (θ = θ,S = S) then that (θ,S)
can be ruled out by the server. This contradicts the privacy

constraint. □

Let us prove the converse for 2 ≤M ≤ K+1
2 .

Consider any particular realization Q ∈ Q of Q. For all

i ∈ [M − 1], consider Si = [i : i + M − 1] and θ = i, and

let Λi be a coefficient vector that satisfies (42) according to

Lemma 1, so that

H(W i | ∆,Y [Si,Λi],Q = Q) = 0. (43)

Writing Y [Si,Λi] as Y i for compact notation, we have

H(W [M−1],Y [M−1] | ∆,Q = Q) (44)

≤
∑

i∈[M−1]

H(W i,Y i | ∆,Q = Q) (45)

=
∑

i∈[M−1]

H(Y i | ∆,Q = Q)

+
∑

i∈[M−1]

H(W i | ∆,Y i,Q = Q) (46)

=
∑

i∈[M−1]

H(Y i | ∆,Q = Q) (47)

≤ (M − 1)L (48)

where (45) results from chain rule and the property that

conditioning reduces entropy. Step (46) is simply the chain

rule of entropy. (47) is implied by (43), and (48) is true since

∀i ∈ [M − 1],Y i ∈ Fq.

Next we note3 that W [2M−2] can be obtained from

(W [M−1],Y [M−1]), as follows: W M is obtained by subtract-

ing W [M−1] terms from Y 1 which is a linear combination of

W [M ]; W M+1 by subtracting W [2:M ] terms from Y 2 which

is a linear combination of W [2:M+1]; · · · ; and finally W 2M−2

by subtracting W [M−1:2M−3] terms from Y M−1 which is a

linear combination of W [M−1:2M−2]. Thus,

H(W [2M−2] | ∆,Q = Q) (49)

≤ H(W [M−1],Y [M−1] | ∆,Q = Q) (50)

(48)

≤ (M − 1)L, ∀Q ∈ Q. (51)

Averaging over Q, we have

H(W [2M−2] | ∆,Q) ≤ (M − 1)L. (52)

We can follow the same argument for any 2M − 2 out of the

K messages, thus (52) must be true for any 2M − 2 of K

32M − 2 ≤ K since we consider the case where 2 ≤ M ≤ K+1
2

.

messages. Thus, by submodularity,

H(W [K] | ∆,Q) ≤ K(M − 1)

2M − 2
L

=
K

2
L. (53)

Next we have,

H(W [K] | ∆,Q)

= H(W [K],∆ | Q) −H(∆ | Q) (54)

= H(W [K] | Q) +H(∆ | W [K],Q) −H(∆ | Q) (55)

= H(W [K] | Q) −H(∆ | Q) (56)

= H(W [K]) −H(∆ | Q) (57)

= KL−H(∆ | Q), (58)

where the first two steps apply the chain rule of entropy, (56)

results from the fact that ∆ is a function of the messages and

query, and (57) follows from the independence of messages

and queries as specified in (5). Thus, we have

D ≥ H(∆ | Q)

(58)
= KL−H(W [K] | ∆,Q) (59)

(53)

≥ K

2
L. (60)

Thus, the rate achieved must be bounded as R = L/D ≤ 2/K.

Since this is true for every achievable scheme, CPCSI-II(q) ≤
2/K for 2 ≤ M ≤ K+1

2 . The remaining case, CPCSI-II(q) ≤
(K−M +1)−1 for K+1

2 < M ≤ K is already shown in [33].

B. Achievability

We present an interference alignment based scheme that

works for arbitrary 2 ≤ M ≤ K and is capacity achieving

for 2 ≤ M ≤ K+1
2 . The capacity-achieving scheme for the

remaining case is already shown in [33]. The scheme requires

that q should be an even power of a prime number, so that

F√
q is also a finite field. Recall that according to polynomial

representations of finite fields, Fq = F√
q[x]/g(x) for some

degree 2 irreducible polynomial g(x) = x2 + a1x + a0 ∈
F√

q[x], and Fq can be repesented as Fq = {µx+ γ | ∀µ, γ ∈
F√

q}. Alternatively, Fq can be seen as a 2 dimensional vector

space over F√
q. Any element c = µcx + γc ∈ Fq, where

µc, γc ∈ F√
q, has a corresponding 2× 1 vector representation

Vc ∈ F
2×1√

q and a 2 × 2 matrix representation Mc ∈ F
2×2√

q as

follows (see p. 65 of [35]).

Vc =

[
γc

µc

]

, Mc =

[
γc −µca0

µc γc − µca1

]

(61)

such that for any a, b, c ∈ Fq we have a = bc, if and only if

Va = MbVc. (62)
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Let us start with the following lemma.

Lemma 2: If c is chosen uniformly randomly over F
×
q , then

each row of Mc is uniformly distributed over F
1×2√

q \ {[0, 0]}.

Proof: Since a0, a1 are given constants, the second row,

Mc(2, :) = [µc, γc − µca1] is an invertible function of Vc.

Next, note that a0 ̸= 0 because otherwise g(x) = x(x + a1)
would not be irreducible. Therefore, the first row, Mc(1, :) =
[γc,−µca0] is also an invertible function of Vc. Finally, since

c is uniform over F
×
q , it follows that Vc is uniform over F

1×2√
q \

{[0, 0]}, and as an invertible function of Vc that maps non-zero

vectors to non-zero vectors, so is each row of Mc. □

The scheme proposed in this section needs only L = 1,

so let us say L = 1. Recall that the coded side information

(CSI) Y [S,Λ]
≜ λ1W i1 + · · · + λMW iM

where S =
{i1, · · · , iM} and i1 < i2 < · · · < iM .

Since L = 1, each message is a symbol in Fq. Thus each

message W k, k ∈ [K] has vector representation VW k
∈ F

2×1√
q .

The first and second entry of VW k
, namely VW k

(1) and

VW k
(2) respectively, are both elements in F√

q and W k =
VW k

(2)x+ VW k
(1).

Each coefficient λm,m ∈ [M ] is drawn from F
×
q , and can

be represented as Mλm
∈ F

2×2√
q such that Mλm

VW im
∈ F

2×1√
q

is the vector representation of λmW im
∈ Fq.

Thus,

VY = Mλ1
VW i1

+ · · · +MλM
VW iM

∈ F
2×1√

q , (63)

is the vector representation of Y [S,Λ] ∈ Fq.

Let Mλm
(1, :),Mλm

(2, :) denote the first and second row

of Mλm
respectively, and Mλm

(r, :)VW im
the dot product of

the rth row of Mλm
with VW im

. Then the first and second

entry of VY are

VY (1) = Mλ1
(1, :)VW i1

+ · · · +MλM
(1, :)VW iM

, (64)

VY (2) = Mλ1
(2, :)VW i1

+ · · · +MλM
(2, :)VW iM

, (65)

respectively.

To privately retrieve W θ for some θ ∈ S, the user’s

download ∆ is

∆ = (LkVW k
)k∈[K], (66)

where Lim
= Mλm

(1, :) for im ∈ S \ {θ}, and Lim
=

Mλm
(2, :) for im = θ. For k ∈ [K] \ S, Lk is uniformly

drawn from F
1×2√

q \ {[0 0]}.

Upon receiving ∆, by subtracting the {Mλm
(1, :

)VW im
}im∈S\{θ} terms from VY (1), the user is able

to obtain Mλt
(1, :)VW θ

, where it = θ. Together with

Mλt
(2, :)VW θ

, which is directly downloaded, the user is able

to recover Mλt
VW θ

, i.e., λtW θ, and since λt is a non-zero

value in Fq that is known to the user, the user is able to

retrieve the desired message W θ.

Since λ[M ] are i.i.d. uniform over F
×
q , it follows from

Lemma 2 that all Lk, k ∈ [K] are i.i.d. uniform over F
1×2√

q \
{[0 0]}. Thus, the queries are independent of (θ,S), and the

privacy constraint is satisfied.

Remark 3: The scheme is also capacity achieving for the

boundary case K+1
2 < M ≤ K+2

2 (i.e., 2M = K+2) because

in this case, 2/K = (K −M + 1)−1.

Remark 4: The scheme only uses VY (1) specified in (63),

i.e., VY (2) is never used so it can be discarded by the user.

Thus, at least half of the side-information is redundant.

Let us consider an example for illustration.

Example 1: Suppose q = 4, L = 1. There are K =
3 messages A,B,C ∈ F4. We have M = 2. Say the CSI

is the linear combination Y = λ1A+λ2B, with λ1,λ2 i.i.d.

uniform in F
×
4 , and the desired message is A.

We note that F4 = F2[x]/(x
2 + x+ 1) has the 4 elements:

0, 1, x, 1 + x, which have matrix representations:

M0 =

[

0 0
0 0

]

, M1 =

[

1 0
0 1

]

, Mx =

[

0 1
1 1

]

, M1+x =

[

1 1
1 0

]

.

Note that if c is uniform over F
×
4 = {1, x, 1 + x}

then the first row of Mc, i.e., Mc(1, :) is uniform over

{[1 0], [0 1], [1 1]} = F
1×2
2 \ {[0 0]}, and so is the second

row, Mc(2, :), as claimed by Lemma 2. Define A = A1+A2x,

where A1,A2 ∈ F2, so that VA = [A1 A2]
T , and use similar

definitions for B,C as well.

Let λ1A = A′ = A′
1 + A′

2x. The vector representation

of it can thus be written as VA′ = Mλ1
VA = [A′

1 A′
2]

T.

Note that A′
1 = Mλ1

(1, :)[A1 A2]
T and Mλ1

(1, :) is

uniform over {[1 0], [0 1], [1 1]}, thus A′
1 is uniform over

{A1,A2,A1 +A2}. A′
2 is uniform over the same set because

Mλ1
(1, :) and Mλ1

(2, :) have the same distribution. Similarly,

let λ2B = B′
1 + B′

2x, and note that B′
1,B

′
2 are individually

uniform over {B1,B2,B1 +B2}. Then the side information

can be denoted as Y = (A′
1 +B′

1)+(A′
2 +B′

2)x. According

to our scheme, B′
1 = Mλ2

(1, :)VB is downloaded which

enables the user to retrieve A′
1 by subtracting it from the first

dimension of Y . The A′
2 = Mλ1

(2, :)VA is also downloaded.

A′
1,A

′
2 together enable the user to get A′ and thus A. Note

that in our scheme, a non-zero random linear combination of

C1,C2 is also downloaded. Thus, the download, made up of

A′
2,B

′
1 and a linear combination of C1,C2 is uniform over

{A1,A2,A1 +A2}×{B1,B2,B1 +B2}×{C1,C2,C1 +
C2}. For any other realization of (θ,S), a similar argument

applies. Thus, the download is always uniform over the same

set, regardless of the realization of (θ,S), which guarantees

privacy.

For example, let us say λ1 = 1 + x,λ2 = x, then

VY (1) = A1 + A2 + B2. The user downloads, say ∆ =
(A1,B2,C1 + C2) which allows A to be retrieved with the

help of the side information VY (1). However, from the server’s

perspective, the following possibilities are equally likely, as the

download ∆ = (A1,B2,C1+C2) enables the user to decode

the desired message under all conditions.

Support Set CSI Desired

{A,B} (1 + x)A + xB A

{A,B} A + B B

{B,C} B + (1 + x)C B

{B,C} xB + xC C

{A,C} (1 + x)A + (1 + x)C A

{A,C} A + xC C

(67)
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V. PROOF OF THEOREM 2

We need Lemma 3 and 4 to bound the redundancy ρPCSI-II

from above, (equivalently, lower-bound α∗) for 2 ≤ M ≤
K+2

2 and K+2
2 < M ≤ K, respectively.

Lemma 3: For 2 ≤ M ≤ K+2
2 , the redundancy

ρPCSI-II ≤ 1/2.

Intuitively, the entropy of the download is H(∆) = K
2 L.

On average, at most L/2 symbols of each message are

contained in the download. In order to fully recover the

desired message, the user must have at least another L/2 q-ary

symbols as the side information.

Proof: Recall that the capacity for this case is 2/K, i.e.,

the optimal average download cost is D/L = K/2. Since this

is the infimum across all achievable schemes, there must exist

achievable schemes that achieve D/L ≤ K/2 + ϵ for any

ϵ > 0. So consider an achievable scheme such that α-CSI is

sufficient and the average download cost D/L ≤ K/2 + ϵ for

some L. Since D/L ≤ K/2 + ϵ, we have

LK/2 + ϵL

≥ D (68)

≥ H(∆ | Q) (69)

≥ I(∆;W [K] | Q) (70)

=
∑

k∈[K]

I(∆;W k | Q,W [k−1]) (71)

=
∑

k∈[K]

(

H(W k | Q,W [k−1]) −H(W k | ∆,Q,W [k−1])

)

(72)

=
∑

k∈[K]

(

H(W k) −H(W k | ∆,Q,W [k−1])

)

(73)

≥
∑

k∈[K]

(

H(W k) −H(W k | ∆,Q)

)

(74)

=
∑

k∈[K]

I(W k;∆,Q), (75)

≥ KI(W k∗ ;∆,Q) (76)

where (70) follows from the non-negativity of entropy, (71)

follows from the chain rule of mutual information, (73) holds

since all the messages and the query are mutually independent,

(74) results from conditioning reduces entropy and (76) is true

by setting

k∗ = arg min
k∈[K]

I(W k;∆,Q) (77)

From (76) we have,

H(W k∗ | ∆,Q) (78)

= H(W k∗) − I(W k∗ ;∆,Q) (79)

≥ L− (L/2 + ϵL/K) (80)

= L/2 − ϵL/K. (81)

Thus, there must exist a feasible query Q such that

H(W k∗ | ∆,Q = Q) ≥ L/2 − ϵL/K. (82)

Let S = {i1, · · · , iM−1, k
∗} ⊂ [K], such that |S| = M . Then

according to Lemma 1 and (25), there must exist Λ ∈ C such

that

H(W k∗ | ∆,Y
[S,Λ]

,Q = Q) = 0, (83)

H(Y
[S,Λ] | Q = Q) = H(Y

[S,Λ]
) ≤ αL. (84)

Combining (82) and (83), we have

I(Y
[S,Λ]

;W k∗ | ∆,Q = Q) ≥ L/2 − ϵL/K. (85)

Thus

αL ≥ H(Y
[S,Λ] | Q = Q)

≥ I(Y
[S,Λ]

;W k∗ | ∆,Q = Q) ≥ L

2
− ϵL/K (86)

which implies that α ≥ 1/2 − ϵ/K. In order to approach

capacity, we must have ϵ → 0, therefore we need α ≥ 1/2.

Since this is true for any α such that α-CSI is sufficient, it is

also true for α∗, and therefore the redundancy is ρPCSI-II ≤ 1/2.

Lemma 4: For K+2
2 < M ≤ K, the redundancy ρPCSI-II ≤ 0.

Proof: Recall that the capacity for this case is (K −M +
1)−1, i.e., the optimal average download cost is D/L = K −
M + 1. Consider an achievable scheme such that α-CSI is

sufficient and the average download cost D/L ≤ K −M +
1 + ϵ for some L. Since D/L ≤ K −M + 1 + ϵ, we have

L(K −M + 1) + ϵL ≥ D ≥ H(∆ | Q). Thus, there exists a

feasible Q such that

H(∆ | Q = Q) ≤ (K −M + 1)L+ ϵL. (87)

For all i ∈ [K −M + 1], let Si = [i : i +M − 1]. Also, let

SK−M+2 = {1}∪ [K−M +2 : K]. For all i ∈ [K−M +2],
let Λi ∈ C satisfy

H(W i | ∆,Y
[Si,Λi]

,Q = Q) = 0. (88)

Such Λi’s must exist according to Lemma 1.

Writing Y
[Si,Λi]

as Y i for compact notation, we have

H(W [K−M+2] | ∆,Y [K−M+2],Q = Q) = 0. (89)

According to (25),

H(Y i | Q = Q) ≤ αL. (90)

so we have

(K −M + 1)L+ ϵL+H(Y [K−M+1] | Q = Q) + αL

≥ H(∆ | Q = Q) +H(Y [K−M+1] | Q = Q)

+H(Y K−M+2 | Q = Q) (91)

≥ H(∆,Y [K−M+2] | Q = Q) (92)

≥ I(∆,Y [K−M+2];W [K−M+2],Y [K−M+2] | Q = Q)

(93)

= H(W [K−M+2],Y [K−M+2] | Q = Q) (94)

≥ H(W [K−M+2],Y [K−M+1] | Q = Q) (95)

= H(W [K−M+2] | Q = Q)

+H(Y [K−M+1] | W [K−M+2],Q = Q) (96)

≥ (K −M + 2)L

+H(Y [K−M+1] | W [M−1],Q = Q), (97)
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where (91) follows from (87) and (90). (93) results from the

non-negativity of entropy. (94) follows from (89). (96) is true

according to the chain rule. Step (97) uses the independence

of messages and queries according to (5), and the fact that

M − 1 ≥ K −M + 2, because we require M > (K + 2)/2.

We further bound

H(Y [K−M+1] | W [M−1],Q = Q)

= H(Y 1 | W [M−1],Q = Q) + · · ·
+H(Y K−M+1 | W [M−1],Y [K−M ],Q = Q) (98)

≥
K−M+1∑

i=1

H(Y i | W [i+M−2],Q = Q) (99)

=
K−M+1∑

i=1

H(Y i | Q = Q) (100)

≥ H(Y [K−M+1] | Q = Q) (101)

(98) follows from the chain rule. (99) holds because Y [i−1]

is a function of W [i+M−2] for all i ∈ [2 : K −M + 1]. Step

(100) follows from (25). Substituting from (101) into (97), and

subtracting H(Y [K−M+1] | Q = Q) from both sides, we have

(K −M + 1)L+ ϵL+ αL ≥ (K −M + 2)L, (102)

which gives α ≥ 1−ϵ. In order to approach capacity, we must

have ϵ→ 0, so we need α ≥ 1, and since this is true for any

α such that α-CSI is sufficient, it is also true for α∗. Thus,

the redundancy is bounded as ρPCSI-II ≤ 0. □

According to Remark 3 and 4, α = 1/2 is sufficient for

2 ≤ M ≤ K+2
2 and by the construction of CSI (a linear

combination of messages), α ≤ 1. Theorem 2 is thus proved.

VI. PROOF OF THEOREM 3

We prove Theorem 3 by first showing that CPCSI-II(q = 2) ≤
M/((M − 1)K) and then presenting a PIR-PCSI-II scheme

with rate M/((M − 1)K) that works for any Fq.

A. Converse for CPCSI-II(q = 2)

Note that Lemma 1 is true for arbitrary Fq. In F2, we can

only have Λ = (1, 1, · · · , 1) = 1M , i.e., the length M vector

whose elements are all equal to 1. As a direct result of

Lemma 1, for PIR-PCSI-II in F2,

H(W S | ∆,Y [S,1M ],Q = Q) = 0, ∀(Q,S) ∈ Q× S.
(103)

Thus, ∀(Q,S) ∈ Q× S,

H(W S | ∆,Q = Q)

= H(W S ,Y
[S,1M ] | ∆,Q = Q) (104)

= H(Y [S,1M ] | ∆,Q = Q)

+H(W S | ∆,Y [S,1M ],Q = Q) (105)

≤ L. (106)

(104) holds because Y [S,1M ] is simply the summation of

W S . (106) follows from (103). Averaging over Q, we have

H(W S | ∆,Q) ≤ L,∀S ∈ S. By submodularity,

H(W [K] | ∆,Q) ≤ KL/M. (107)

The download cost can now be lower bounded as,

D≥H(∆ | Q) ≥ KL−H(W [K] | ∆,Q)) ≥ (M − 1)KL

M
.

(108)

Thus, we have shown that CPCSI-II(q = 2) ≤ M
(M−1)K .

B. A PIR-PCSI-II Scheme for Arbitrary q

In this section, we prove CPCSI-II(q) ≥ M
(M−1)K for all q

by proposing a scheme, namely Generic Linear Combination

Based Scheme, that can achieve the rate M
(M−1)K for any Fq.

Let us choose L = Ml where M is the size of the support

index set and l is a positive integer which can be arbitrarily

large. Thus, any message W k, k ∈ [K] can be represented as

a length-M column vector VW k
∈ F

M×1
ql . Let

VW S
=
[

V T
W i1

· · · V T
W iM

]T

∈ F
M2×1
ql (109)

where S = {i1, · · · , iM} is the support index set. The CSI

Y can be represented as VY ∈ F
M×1
ql such that,

VY =
[
λ1IM λ2IM · · · λMIM

]

︸ ︷︷ ︸

M

VW S
, (110)

where IM ∈ F
M×M
ql is the M ×M identity matrix.

The download is specified as,

∆ = {L(1)
1 VW 1

, · · · ,L(M−1)
1 VW 1

,

· · · ,L(1)
K VW K

, · · · ,L(M−1)
K VW K

}, (111)

where ∀k ∈ [K],m ∈ [M − 1],L
(m)
k ∈ F

1×M
ql is a length-M

row vector, i.e., for any message vector VW k
∈ F

M×1
ql , ∆

contains M − 1 linear combinations of that message vector.

Suppose the vectors L
(m)
k are chosen such that ∀S =

{j1, · · · , jM} ∈ S the following M2 × M2 square matrix

has full rank.

GS =
















λ1IM · · · λMIM

e1 ⊗ L
(1)
j1

· · ·
e1 ⊗ L

(M−1)
j1

· · ·
eM ⊗ L

(1)
jM

· · ·
eM ⊗ L

(M−1)
jM
















, (112)

S = {j1, · · · , jM} ∈ S. Note that (λ1, · · · , λM ) ∈ C is the

realization of Λ, em,m ∈ [M ] is the mth row of the M ×M
identity matrix and ª⊗º is the Kronecker product.

The correctness constraint is satisfied because the

side-information and the downloads allow the user to obtain

GSVW S
, which can then be multiplied by the inverse of GS

to obtain VW S
, i.e., W S which contains W θ. Specifically the

side-information corresponds to the first M rows of GSVW S
,

the downloads L
(1)
j1
VW j1

, · · · ,L(M−1)
j1

VW j1
correspond to

the next M − 1 rows of GSVW S
, and so on.

On the other hand, the privacy constraint is satisfied because

the construction is such that for every feasible S, the user is

able to decode all M messages W S .
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Finally let us evaluate the rate achieved by this scheme.

Since the user downloads M−1
M

portion of every message, the

download cost is D = LK(M − 1)/M , and the rate achieved

is M/((M − 1)K)). Since this rate is achieved for any Fq,

we have the lower bound CPCSI-II(q) ≥M/((M − 1)K)).

It remains to show the existence of such L
(m)
k , for which

we need the following lemma.

Lemma 5: There exist {L(m)
k }k∈[K],m∈[M−1] such that for

every S = {j1, · · · , jM} ∈ S, the matrix GS in (112) has

full rank, provided

ql >
(

K
M

)
M(M − 1). (113)

Proof: The proof is in Appendix A. □

With the help of Lemma 5, Theorem 3 is proved. Let us

illustrate the scheme with an example.

Example 2: Consider M = 2,K = 4, L = 2l, q = 2. The

4 messages are A,B,C,D each of which has L = 2l symbols

in F2. Let l ≥ 3.

A can be represented as a 2 × 1 vector VA =
[VA(1) VA(2)]T where VA(1), VA(2) ∈ F2l . Similarly,

B,C,D can be represented as VB , VC , VD, respec-

tively. Choose α1, · · · , α4 as any elements of F2l such that

α1, α2, α3, α4, 1, 0 are all distinct. This is feasible if l ≥
3 because F2l has 2l ≥ 8 distinct elements that include 1, 0
(the elements of F2). For all possible realizations of (S,θ),
the download ∆ remains the same as follows.

∆ =







∆A

∆B

∆C

∆D







=







VA(1) + α1VA(2)
VB(1) + α2VB(2)
VC(1) + α3VC(2)
VD(1) + α4VD(2)






, (114)

As the download is the same regardless of the realizations of

S and θ, the query is actually a constant which is trivially

independent of S,θ and thus the privacy is guaranteed.

What remains to be proved is the correctness of this scheme,

i.e., this specific download enables the user to decode the

desired message under all realizations of S,θ.

Let us consider the case where the support set is {A,B},

i.e., the side information is A + B, and the desired message

is A. The side information can be represented as VY ∈ F
2×1
2l

where

VY =

[
1 0 1 0
0 1 0 1

]







VA(1)
VA(2)
VB(1)
VB(2)







=

[
VA(1) + VB(1)
VA(2) + VB(2)

]

. (115)

VY , together with ∆A,∆B , can be written as follows





VY

∆A

∆B



 =







1 0 1 0
0 1 0 1
1 α1 0 0
0 0 1 α2













VA(1)
VA(2)
VB(1)
VB(2)






, (116)

where the invertibility of the matrix is guaranteed by the

condition that α1, α2, α3, α4, 1, 0 are distinct. The user is thus

able to recover both A,B by inverting the matrix. Evidently,

the scheme is also correct even if the support set is {A,B}
and the desired message is B.

Suppose the user has A+C as the side information. Let the

vector representation of the side information in this case be

VY ′ ∈ F
2×1
2l . With the same download as specified in (114),

the user has





VY ′

∆A

∆C



 =







1 0 1 0
0 1 0 1
1 α1 0 0
0 0 1 α3













VA(1)
VA(2)
VC(1)
VC(2)






, (117)

which again guarantees the decodability of both A,C as the

matrix is invertible. Thus the scheme is also correct when

S = {A,C} and the desired message is A or C.

Similarly, for all other 4 possible realizations of the support

set ({A,D}, {B,C}, {B,D}, {C,D}) and any valid real-

ization of θ ∈ S, the same ∆ enables the user to decode both

messages in the support set. Thus, the scheme is also correct.

VII. PROOF OF THEOREM 4

For the case q = 2, it suffices to download any K − 1 mes-

sages out of the K messages to achieve the capacity 1
K−1 ,

since the desired message is either directly downloaded or can

be recovered by subtracting the K − 1 downloaded messages

from the CSI.

For q ̸= 2, to achieve the capacity 1, it suffices to

download a linear combination of all K messages with non-

zero coefficients. Specifically,

∆ = Y + λ′W θ, (118)

where Y is the CSI and λ′ ∈ F
×
q is a non-zero element in Fq

such that λt + λ′ ̸= 0 (let λt denote the coefficient in front

of W θ in the CSI Y ). Such λ′ always exists for q ̸= 2. From

the server’s perspective, the user is downloading a random

linear combination of K messages so the privacy constraint

is satisfied. The user is able to decode W θ by subtracting Y

from ∆ so the correctness constraint is satisfied.

VIII. PROOF OF THEOREM 5

Let us denote the K = 4 messages as W 1 = A,W 2 =
B,W 3 = C,W 4 = D for simpler notation. We have

M = 3, the base field is F3 and the length of each message

is L = 1. Our goal is to prove the achievability of rate 1/2,

i.e., download cost D = 2 for L = 1. The user downloads,

∆ = {∆1 = A + ηbB + ηcC,

∆2 = 2ηbB + ηcC + ηdD}. (119)

From ∆, the user is able to also compute

L1 = ∆1 + ∆2 = A + 2ηcC + ηdD, (120)

L2 = ∆1 + 2∆2 = A + 2ηbB + 2ηdD. (121)

Let W θ denote the desired message. Let us normalize λ1 =
1 without loss of generality. The ηb,ηc,ηd values are specified

as follows.

1) When S = {1, 2, 3} and Y = A + λ2B + λ3C, then
ηd is randomly chosen from F

×
3 = {1, 2} and ηb,ηc are

chosen so that the desired message W θ can be recovered
from Y and ∆1 as follows.

W θ = A : (ηb,ηc) = (2λ2, 2λ3), 2A = Y + ∆1

W θ = B : (ηb,ηc) = (2λ2,λ3),λ2B = 2Y + ∆1

W θ = C : (ηb,ηc) = (λ2, 2λ3),λ3C = 2Y + ∆1
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2) When S = {2, 3, 4} and Y = B + λ2C + λ3D, then
ηb is randomly chosen from F

×
q = {1, 2} and ηc,ηd are

chosen so that the desired message W θ can be recovered
from Y and ∆2 as follows.

W θ = B : (ηc,ηd) = (ηbλ2,ηbλ3),B = 2Y + ∆2/ηb

W θ = C : (ηc,ηd)=(ηbλ2, 2ηbλ3), 2λ2C=Y + ∆2/ηb

W θ = D : (ηc,ηd)=(2ηbλ2,ηbλ3), 2λ3D=Y + ∆2/ηb

3) When S = {1, 3, 4} and Y = A + λ2C + λ3D, then
ηb is randomly chosen from F

×
q and ηc,ηd are chosen

so that the desired message W θ can be recovered from
Y and L1 as follows.

W θ = A : (ηc,ηd) = (λ2, 2λ3), 2A = Y + L1

W θ = C : (ηc,ηd) = (λ2,λ3),λ2C = 2Y + L1

W θ = D : (ηc,ηd) = (2λ2, 2λ3),λ3D = 2Y + L1

4) When S = {1, 2, 4} and Y = A + λ2B + λ3D, then
ηc is randomly chosen from F

×
q and ηb,ηd are chosen

so that the desired message W θ can be recovered from
Y and L2 as follows.

W θ = A : (ηb,ηd) = (λ2,λ3), 2A = Y + L2

W θ = B : (ηb,ηd) = (λ2, 2λ3),λ2B = 2Y + L2

W θ = D : (ηb,ηd) = (2λ2,λ3),λ3D = 2Y + L2

Correctness is already shown. For privacy, note that the form of

the query is fixed as in (119) so the user only needs to specify

ηb,ηc,ηd, and those are i.i.d. uniform over F
×
3 = {1, 2},

regardless of (S,θ). Thus, the scheme is private, and the rate

achieved is 1/2, which completes the proof of Theorem 5.

IX. PROOF OF THEOREM 6

A. Converse

Here we prove that

Cpri

PCSI-II
(q) ≤ CPCSI-II(q = 2) = C inf

PCSI-II
. (122)

The following lemma states that for PIR-PCSI*, for every

feasible Q and (θ,S) value, all possible coefficient vectors

must allow successful decoding.

Lemma 6: Under the constraint of (θ,S, Λ) privacy,

PIR-PCSI: ∀(Q,S, θ,Λ) ∈ Q× S × [K] × C,

H(W θ | ∆,Y [S,Λ],Q = Q) = 0. (123)

PIR-PCSI-I: ∀(Q,S, θ,Λ) ∈ Q× S × ([K] \ S) × C,

H(W θ | ∆,Y [S,Λ],Q = Q) = 0. (124)

PIR-PCSI-II: ∀(Q,S, θ,Λ) ∈ Q× S × S × C,

H(W θ | ∆,Y [S,Λ],Q = Q) = 0. (125)

Proof: Since the server knows ∆,Q and can test all

possible realizations of θ,S,Λ for decodability. If there exists

(θ,S,Λ) such that W θ cannot be decoded, then that (θ,S,Λ)
can be ruled out by the server. This contradicts the joint

(θ,S, Λ) privacy constraint. □

As a direct result of (125), for any PIR-PCSI-II scheme that

preserves joint (θ,S,Λ) privacy,

H(W S | ∆,Y [S,Λ],Q = Q) = 0,

∀(S,Λ, Q) ∈ S × C ×Q. (126)

Note that (126) is a stronger version of (103) which is

sufficient to bound CPCSI-II(q = 2). Thus, we have Cpri

PCSI-II
(q) ≤

CPCSI-II(q = 2) = C inf
PCSI-II

.

B. Achievability

The Generic Linear Combination Based Scheme in

Section VI-B where M − 1 linear combinations of each

messages (represented in the extended field Fql where L =
Ml) are downloaded, also works under (θ,S,Λ) privacy, but

with a slight modification. The only difference between the

modified scheme and the infimum capacity achieving scheme

of PIR-PCSI-II in Section VI-B is that, instead of the matrix

in (112), the following matrix

G
(γ1,γ2,··· ,γM )
S =
















γ1IM · · · γMIM

e1 ⊗ L
(1)
j1

· · ·
e1 ⊗ L

(M−1)
j1

· · ·
eM ⊗ L

(1)
jM

· · ·
eM ⊗ L

(M−1)
jM
















, (127)

must have full rank for every S = {j1, · · · , jM} ∈ S and

every realization of (γ1, γ2, · · · , γM ) ∈ C. Let us prove that

the scheme is correct, jointly private and such L
(·)
· vectors

exist when l is large enough that,

ql > (q − 1)M
(

K
M

)
M(M − 1). (128)

Proof: For a particular realization of (γ1, γ2, · · · , γM ),
e.g., (γ1, γ2, · · · , γM ) = (1, 1, · · · , 1), (127) yields a set of
(

K
M

)
matrices

G(1,1,··· ,1) = {G(1,1,··· ,1)
S1

,G
(1,1,··· ,1)
S2

, · · · ,G(1,1,··· ,1)
S(K

M

) }

corresponding to all possible {j1, j2, · · · , jM} ∈ S. If all

the
(

K
M

)
matrices in G(1,1,··· ,1) are invertible, this scheme

preserves the joint privacy of (θ,S) and enables the user to

decode all the M messages in the support set, when all the

coefficients in CSI are 1, according to Appendix A.

Going over all the possible realizations of (γ1, · · · , γM ) ∈
C and {j1, j2, · · · , jM} ∈ S, (127) yields (q − 1)M sets of

matrices

G(1,··· ,1),G(1,··· ,1,2), · · · ,G(q−1,··· ,q−1), (129)

each of which contains
(

K
M

)
matrices, i.e., there are in total

(q − 1)M
(

K
M

)
matrices. If all the (q − 1)M

(
K
M

)
matrices are

invertible, then for arbitrary realization of (γ1, γ2, · · · , γM ),
i.e., arbitrary M coefficients in the CSI, this scheme enables

the user to decode all the M messages in the support set and

preserves the joint (θ,S) privacy. Since this scheme works

for arbitrary coefficients, from the server’s perspective, all the

realizations of M coefficients are equally likely. Thus, the

joint privacy of coefficients Λ, index θ, and support set S,

is preserved.

To prove the existence of such linear combinations, note

that the determinant of each one of the (q−1)M
(

K
M

)
matrices
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yields a degree M(M−1) multi-variate polynomial as proved

in Appendix A. Thus, the product of the determinants of all

the matrices F is a multi-variate polynomial of degree (q −
1)M

(
K
M

)
M(M − 1). Again, as in Appendix A, according to

the Schwartz-Zippel Lemma, when ql > (q − 1)M
(

K
M

)
, there

exists elements in Fql such that the polynomial F does not

evaluate to 0, i.e., all the (q − 1)M
(

K
M

)
M(M − 1) matrices

are invertible.

Let us give an example.

Example 3: Consider M = 2,K = 4, L = 2l, q = 3. The

4 messages are A,B,C,D each of which has L = 2l symbols

in F3. Let l ≥ 2.

A can be represented as a 2 × 1 vector VA =
[VA(1) VA(2)]T where VA(1), VA(2) ∈ F3l . Similarly,

B,C,D can be represented as VB , VC , VD, respec-

tively. Choose α1, · · · , α4 as elements of F3l such that

α1, α2, α3, α4, 0, 1, 2 are all distinct elements of F3l . Note that

0, 1, 2, are the elements of F3, which are also elements of F3l

because F3 is a sub-field of F3l . Furthermore, since F3l has

3l ≥ 9 distinct elements, such αi are guaranteed to exist. For

all possible realizations of (S,θ), the download ∆ remains

the same as follows,

∆ =







∆A

∆B

∆C

∆D







=







VA(1) + α1VA(2)
VB(1) + α2VB(2)
VC(1) + α3VC(2)
VD(1) + α4VD(2)






, (130)

The query is a constant as the ∆ remains unchanged for

any realizations of S,θ,Λ. Thus, the privacy is guaranteed.

We then prove the correctness, i.e., this specific download

enables the user to decode the desired message under all

realizations of S,θ,Λ.

Let us consider the case where the support set is {A,B}
and the side information is A+2B (i.e., Λ = [1 2]), and the

desired message is A. The side information can be represented

as VY ∈ F
2×1
3l where

VY =

[
1 0 2 0
0 1 0 2

]







VA(1)
VA(2)
VB(1)
VB(2)







=

[
VA(1) + 2VB(1)
VA(2) + 2VB(2)

]

.

(131)

VY , together with ∆A,∆B , can be written as follows





VY

∆A

∆B



 =







1 0 2 0
0 1 0 2
1 α1 0 0
0 0 1 α2













VA(1)
VA(2)
VB(1)
VB(2)






, (132)

where the matrix is invertible because α1, · · · , α4, 0, 1, 2 are

distinct by design. The user is thus able to recover both A,B
by inverting the matrix.

Similarly, suppose the side information is instead A + B

(i.e., Λ = [1 1]), the vector representation of the side

information is VY ′ ∈ F
2×1
3l .

V ′
Y , together with ∆A,∆B , can be written as follows





VY ′

∆A

∆B



 =







1 0 1 0
0 1 0 1
1 α1 0 0
0 0 1 α2













VA(1)
VA(2)
VB(1)
VB(2)






. (133)

Since the matrix is invertible by design, the user is able to

recover both A,B.

Note that the recoverability of both A,B when the support

set is {A,B} and Λ = [2 1] or Λ = [2 2] is automatically

proved as [2 1] = 2[1 2] and [2 2] = 2[1 1] in F3.

Thus when the support set is {A,B}, this scheme is correct

for arbitrary realizations of θ,Λ.

Similarly, the scheme is also correct for arbitrary realiza-

tions of θ,Λ when S = {A,C}, {A,D}, {B,C}, {B,D},

{C,D}. Thus, this scheme is correct for arbitrary realizations

of S,θ,Λ.

X. PROOF OF THEOREM 7

Here we bound the redundancy ρPCSI-I from above (equiva-

lently, lower-bound α∗) for 1 ≤M ≤ K − 1.

Recall that the supremum capacity for PIR-PCSI-I is (K −
M)−1, i.e., the optimal average download cost is D/L =
K −M . Consider an achievable scheme such that α-CSI is

sufficient and the average download cost D/L ≤ K−M+ϵ for

some L. Since D/L ≤ K−M+ϵ, we have L(K−M)+ϵL ≥
D ≥ H(∆ | Q). Thus, there exists a feasible Q such that

H(∆ | Q = Q) ≤ (K −M)L+ ϵL. (134)

For all i ∈ [M ], let Si = [M + 1] \ {i}. ALso, for all i ∈
[M + 1 : K], let Si = [M ]. For all i ∈ [K], let Λi ∈ C satisfy

H(W i | ∆,Y
[Si,Λi]

,Q = Q) = 0. (135)

Such Λi’s must exist according to (41) in Lemma 1.

Writing Y
[Si,Λi]

as Y i for compact notation, we have

H(W [K] | ∆,Y [M ],Q = Q) (136)

= H(W [K] | ∆,Y [M ],W [M ],Q = Q) (137)

= H(W [M+1:K] | ∆,Y [K],W [M ],Q = Q) (138)

= 0, (139)

where (137) follows from (135). (138) is correct since

Y [M+1:K] are functions of W [M ]. (139) follows from (135).

Since we are considering the case where the supremum

capacity is achieved, we have

(K −M)L+ ϵL+MαL

≥ H(∆ | Q = Q) +H(Y [M ] | Q = Q) (140)

≥ H(∆,Y [M ] | Q = Q) (141)

≥ I(∆,Y [M ];W [K] | Q = Q)

= H(W [K] | Q = Q) = KL. (142)

(140) follows from (134) and (25). Step (142) follows from

(139) and the fact that the query and the messages are mutually

independent according to (5). Thus we have α ≥ 1 − ϵ
M

.

In order to approach capacity, we must have ϵ → 0, so we

need α ≥ 1, and since this is true for any α such that α-CSI

is sufficient, it is also true for α∗. Thus, the redundancy is

bounded as ρPCSI-I ≤ 0.
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XI. PROOF OF THEOREM 8

A. Converse for CPCSI-I(q = 2)

Again, (41) is true for arbitrary Fq. The only thing different

in F2 is that Λ must be the vector of all ones. As a direct

result of (41), for PIR-PCSI-I in F2,

H(W [K]\S | ∆,Y [S,1M ],Q = Q) = 0,∀(Q,S) ∈ Q× S

(143)

and thus

H(W [K]\S | ∆,Q = Q) (144)

(143)
= I(W [K]\S ;Y [S,1M ] | ∆,Q = Q) (145)

≤ H(Y [S,1M ] | ∆,Q = Q) (146)

(3)

≤ L, ∀(Q,S) ∈ Q× S. (147)

Averaging over Q gives

H(W [K]\S | ∆,Q) ≤ L,∀S ∈ S. (148)

Also, for all S ∈ S and Q ∈ Q,

H(W [K] | ∆,Q = Q) (149)

= H(W S | ∆,Q = Q)

+H(W [K]\S | ∆,W S ,Q = Q) (150)

= H(W S | ∆,Q = Q)

+H(W [K]\S | ∆,W S ,Y
[S,1M ],Q = Q) (151)

= H(W S | ∆,Q = Q), (152)

where (151) results from the fact that Y
[S,1M ]

=
∑

s∈S W s,

and the last step follows from (143). Averaging over Q,

it follows that

H(W [K] | ∆,Q) = H(W S | ∆,Q), ∀S ∈ S. (153)

Let us first prove CPCSI-I(q = 2) ≤ (K − 1)−1 in the regime

where 1 ≤M ≤ K
2 .

H(W [K] | ∆,Q)

= H(W [M ] | ∆,Q) (154)

≤ H(W [K−M ] | ∆,Q) (155)

≤ L, (156)

where (154) is true according to (153), (155) follows from

(K − M ≥ M) and (143), and (156) follows from (148).

Thus

H(∆ | Q) ≥ I(∆;W [K] | Q) (157)

= H(W [K] | Q) −H(W [K] | ∆,Q) (158)

≥ KL− L. (159)

Thus D ≥ H(∆ | Q) ≥ KL − L and since the rate L/D ≤
(K − 1)−1 for every achievable scheme, we have shown that

CPCSI-I(q = 2) ≤ (K − 1)−1 when K −M ≥ M ≥ 1, i.e.,

1 ≤M ≤ K/2.

Next let us prove that CPCSI-I(q = 2) ≤
(
K − M

K−M

)−1
for

the regime K
2 < M ≤ K − 1. It suffices to prove H(∆ |

Q) ≥ KL− ML
K−M

. Define,

HK
m =

1
(
K
m

)

∑

M:M⊂[K],|M|=m

H(WM | ∆,Q)

m
, (160)

we have

HK
K−M ≥ HK

M (161)

=
H(W [K] | ∆,Q)

M
, (162)

where (161) follows from Han’s inequality [36], and (162)

follows from (153). Note that according to (148),

L

K −M
≥ HK

K−M , (163)

and therefore,

H(W [K] | ∆,Q) ≤ ML

K −M
. (164)

Thus, H(∆ | Q) ≥ KL − ML
K−M

, which completes the

converse proof for Theorem 8. We next prove achievability.

B. Two PIR-PCSI-I Schemes for Arbitrary q

1) Achieving Rate 1
K−1 When 1 ≤ M ≤ K

2 : The goal

here is to download K−1 generic linear combinations so that

along with the one linear combination already available as

side-information, the user has enough information to retrieve

all K messages. Let L be large enough that qL >
(

K
M

)
(K−1).

For all k ∈ [K], message W k ∈ F
L×1
q can be represented as

a scalar wk ∈ FqL . Let

w[K] =
[
w1 w2 · · · wK

]T ∈ F
K×1
qL , (165)

be the length K column vector whose entries are the messages

represented in FqL . Let Ψ ∈ F
K×(K−1)

qL be a K × (K −
1) matrix whose elements are the variables ψij . The user

downloads

∆ = ΨT w[K] ∈ F
(K−1)×1

qL . (166)

Suppose the realization of the coefficient vector is Λ = Λ. The

linear combination available to the user can be expressed as

Y [Λ,S] = UT
Λ,Sw[K] for some K×1 vector UΛ,S that depends

on (Λ,S). Combined with the download, the user has

[UΛ,S ,Ψ]T w[K], (167)

so if the K ×K matrix GΛ,S = [UΛ,S ,Ψ] is invertible (full

rank) then the user can decode all K messages. For all S ∈ S,

let fΛ,S(·) be the multi-variate polynomial of degree K−1 in

variables ψij , representing the determinant of GΛ,S . This is

not the zero polynomial because the K − 1 columns of Ψ
can always be chosen to be linearly independent of the vector

UΛ,S in a K dimensional vector space. The product of all

such polynomials, fΛ =
∏

S∈S
fΛ,S is itself a multi-variate

non-zero polynomial of degree (K − 1)
(

K
M

)
in the variables

ψij . By Schwartz-Zippel Lemma, if the ψij are chosen ran-

domly from FqL then the probability that the corresponding
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evaluation of fΛ is zero, is no more than (K−1)
(

K
M

)
/qL < 1,

so there exists a choice of ψij for which all fΛ,S evaluate to

non-zero values, i.e., GΛ,S is invertible for every S ∈ S. Thus,

with this choice of Ψ, we have a scheme with rate 1/(K− 1)
that is correct and private and allows the user to retrieve all

K messages. To verify privacy, note that the user constructs

the query based on the realization of Λ alone, and does not

need to know (S,θ) before it sends the query, so the query

is independent of (S,θ).
Remark 5: Since the scheme allows the user to decode all

messages, the scheme also works if θ is uniformly drawn from

[K], i.e., in the PIR-PCSI setting.

2) Achieving Rate (K− M
K−M

)−1 When K/2 < M ≤ K−1:

Now let us present a scheme with rate (K − M
K−M

)−1 which

is optimal for the regime K
2 < M ≤ K − 1. The scheme is

comprised of two steps.

Step 1: The user converts the (M,K) PIR-PCSI-I problem

to (K −M,K) PIR-PCSI-II problem as follows.

The user first downloads

∆1 =
∑

k∈[K]

akW k, (168)

where aim
= λm for im ∈ S while for k /∈ S, ak’s are

independently and uniformly drawn from F
×
q . The user then

computes

Y ′ = ∆1 − Y [S,Λ] =
∑

k∈[K]\S

akW k. (169)

In this step, from the server’s perspective, a1, · · · ,aK are

i.i.d. uniform over F
×
q , thus there is no loss of privacy. The

download cost of this step is H(∆1) = L.

Step 2: The user has Y ′ as coded side information and

applies the fully private PIR-PCSI-II scheme described in

Section IX that protects the privacy of all the coefficients.

The reason to apply the PIR-PCSI-II scheme that maintains

the privacy of coefficients is that in Step 1, server knows

a1, · · · ,aK . If in the second step, the Query is not indepen-

dent of ai, i ∈ [K] \ S, then the server may be able to rule

out some realizations of S. The download cost of this step is
K(K−M−1)L

K−M
. Thus, the total download cost of this scheme is

KL− ML
K−M

and the rate is
(
K − M

K−M

)−1
.

XII. PROOF OF THEOREM 9

A. Proof of Cpri,sup
PCSI-I = C inf

PCSI-I

First let us prove the converse. As a direct result of (124)

in Lemma 6, for any PIR-PCSI-I scheme that preserves joint

(θ,S,Λ) privacy,

H(W [K]\S | ∆,Y [S,Λ],Q = Q) = 0,

∀(S,Λ, Q) ∈ S × C ×Q. (170)

Note that (170) is a stronger version of (143) which is

sufficient to bound CPCSI-I(q = 2). Thus, we have Cpri

PCSI-I
(q) ≤

CPCSI-I(q = 2) = C inf
PCSI-I

, which completes the proof of converse.

For achievability, let us note that Cpri,sup
PCSI-I ≥ Cpri

PCSI-I
(q = 2) =

CPCSI-I(q = 2) = C inf
PCSI-I

, because over F2, the Λ vector is

constant (all ones) and therefore trivially private.

B. Proof of the Bound: Cpri,inf
PCSI-I ≤ min(C inf

PCSI-I
, 1

K−2 )

Since privacy of Λ only further constrains PIR-PCSI, it is

trivial that Cpri,inf
PCSI-I ≤ C inf

PCSI-I
. For the remaining bound, Cpri,inf

PCSI-I ≤
1

K−2 , it suffices to show that Cpri

PCSI-I
(q ≥M) ≤ 1

K−2 , because

Cpri,inf
PCSI-I ≤ Cpri

PCSI-I
(q ≥M). Note that by Cpri

PCSI-I
(q ≥M) we mean

Cpri

PCSI-I
(q) for all q ≥M .

Let

Y 1 = W 2 + α3W 3 + · · ·αM+1W M+1, (171)

Y 2 = W 1 + W 3 + W 4 + · · ·W M+1, (172)

where α3, α4, · · · , αM+1 are M − 1 distinct elements in F
×
q .

Let β3, β4, . . . βM+1 be M−1 distinct elements in F
×
q such

that ∀m ∈ [3 : M + 1], βmαm + 1 = 0 in Fq.

Note that such α’s and β’s exist since q ≥M .

Then let

Y m = βmY 1 + Y 2

= W 1 + βmW 2 + (βmα3 + 1)W 3 + · · ·
+ (βmαi + 1)W i + · · · + (βmαM+1 + 1)W M+1,

∀m ∈ [3 : M + 1], (173)

be M − 1 linear combinations of the first M + 1 messages

W [M+1]. Note that for any m ∈ [3 : M + 1], the coefficient

for W m in Y m (i.e., βmαm + 1) is 0 while the coefficient

for any W i, i ∈ [M +1], i ̸= m (i.e., βmαi +1) is non-zero.4

For example,

Y 3 = W 1 + β3W 2 + 0W 3 + (β3α4 + 1)W 4

+ · · · + (β3αM+1 + 1)W M+1. (174)

Thus, for any m ∈ [M + 1], Y m is a linear combination

of M messages W [M+1]\{m} with non-zero coefficients. For

Sm = [M +1]/{m} and Λm as the vector of coefficients that

appear in Y m, we Y [Sm,Λm] = Y m.

According to (170),

H(W m,W [M+2:K] | ∆,Y m,Q = Q) = 0,

∀m ∈ [M + 1], Q ∈ Q. (175)

Thus, for all Q ∈ Q,

H(W [K] | ∆,Q = Q)

≤ H(W [K],Y [M+1] | ∆,Q = Q) (176)

=H(Y [M+1] | ∆,Q=Q) +H(W [K] | ∆,Y [M+1],Q=Q)

(177)

= H(Y 1,Y 2 | ∆,Q = Q) (178)

≤ 2L, (179)

where (178) follows from (175) and the fact that Y [3:M+1]

are functions of Y 1,Y 2. Averaging over Q we have

H(W [K] | ∆,Q) ≤ 2L. (180)

Therefore, the average download cost is bounded as,

D ≥ H(∆ | Q) ≥ H(W [K] | Q) −H(W [K] | ∆,Q)

(181)

≥ (K − 2)L. (182)

Thus, for q ≥M , we have Cpri

PCSI-I
(q) ≤ 1

K−2 .

4Since βmαm + 1 = 0, βmαi + 1 ̸= 0 for i ̸= m.
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C. Proof of Cpri,inf
PCSI-I ≥ 1

K−1

We need to show that Cpri

PCSI-I
(q) ≥ 1

K−1 for all Fq. The

scheme is identical to the scheme with rate (K − 1)−1 in

Section XI-B1 with a slight modification. Instead of fixing a

realization Λ = Λ, we will consider all possible realizations

Λ ∈ C, and consider the product polynomial f =
∏

Λ∈C
fΛ

which is a multi-variate polynomial of degree (K−1)
(

K
M

)
(q−

1)M in variables ψij . Following the same argument based on

the Schwartz-Zippel Lemma, we find that there exists a Ψ for

which all GΛ,S are invertible matrices, provided that L is large

enough that qL > (q−1)M (K−1)
(

K
M

)
. Thus, with this choice

of Ψ we have a scheme that is allows the user to retrieve all

K messages. The scheme is also (S,θ,Λ) private because

we note that the user does not need to know the realization of

(S,θ,Λ) before it sends the query, so the query is independent

of (S,θ,Λ).
Remark 6: Since the scheme allows the user to decode all

messages, and the query does not depend on (θ,S,Λ), the

scheme also works if θ is uniformly drawn from [K], i.e.,

in the PIR-PCSI setting.

XIII. PROOF OF THEOREM 10

A. Converse

The converse is divided into two regimes.

Regime 1: 2 ≤ M ≤ K. The proof relies on (40) in

Lemma 1. Consider any particular realization Q ∈ Q of Q.

For all i ∈ [K], consider S = [M ], θ = i, and let Λi be a

coefficient vector that satisfies (40) according to Lemma 1,

so that

H(W i | ∆,Y [[M ],Λi],Q = Q) = 0. (183)

Writing Y [[M ],Λi] as Y i for compact notation, we have

H(W [K] | ∆,Y [M−1],Q = Q)

= H(W [K] | ∆,Y [M−1],W [M−1],Q = Q) (184)

= H(W [K] | ∆,W [M ],Q = Q) (185)

= H(W [M+1:K] | ∆,W [M ],Y [M+1:K],Q = Q) (186)

= 0, (187)

where (184) holds according to (183), and (185) fol-

lows from the fact that W M is decodable by subtracting

W [M−1] terms from Y 1. Then, (186) uses the fact that

Y [M+1:K] are functions of W [M ]. Finally, (187) follows

from (183).

Averaging over Q,

H(W [K] | ∆,Y [M−1],Q) = 0. (188)

Then we have

H(W [K] | ∆,Q) (189)

= H(W [K],Y [M−1] | ∆,Q) (190)

= H(Y [M−1] | ∆,Q) +H(W [K] | ∆,Q,Y [M−1]) (191)

≤ H(Y [M−1]) (192)

≤ (M − 1)L, (193)

where (190) follows from the fact that Y [M−1] are linear

combinations of W [M ]. Step (192) holds because of (188),

and because conditioning reduces entropy.

Thus D ≥ H(∆ | Q) ≥ H(W [K]) −H(W [K] | ∆,Q) ≥
(K −M + 1)L, which implies that Csup

PCSI ≤ (K −M + 1)−1

for 2 ≤M ≤ K.

Regime 2: M = 1.

Consider any particular realization Q ∈ Q of Q. Since

M = 1, Λ is irrelevant, e.g., we may assume Λ = Λ =
1 without loss of generality. For all j ∈ [2 : K], consider

S = {1}, θ = j, and apply (40) according to Lemma 1 so that

H(W j | ∆,Y [{1},1],Q = Q) = 0 (194)

=⇒ H(W [2:K] | ∆,Y [{1},1],Q = Q) = 0 (195)

H(W [K] | ∆,Q = Q) (196)

≤ H(W 1,W [2:K],Y
[{1}] | ∆,Q = Q) (197)

= H(W 1,Y
[{1},1] | ∆,Q = Q) (198)

= H(W 1 | ∆,Q = Q) (199)

≤ L, (200)

where (198) holds since (195) holds, and (199) is true

as Y [{1},1] is simply W 1. Averaging over Q, H(W [K] |
∆,Q) ≤ L. Thus D ≥ H(∆ | Q) ≥ H(W [K]) −H(W [K] |
∆,Q) ≥ KL − L, which implies that CPCSI(q) ≤ (K − 1)−1

for M = 1.

B. Achievability

For 2 ≤ M ≤ K, the achievable scheme will be a com-

bination of Specialized GRS Codes and Modified Specialized

GRS Codes which are schemes in [33] for PIR-PCSI-I and

PIR-PCSI-II setting, respectively.

The rate (K − M)−1 is achievable by Specialized GRS

Codes for PIR-PCSI-I setting and the rate (K −M + 1)−1 is

achievable by Modified Specialized GRS Codes for the PIR-

PCSI-II setting. Both schemes work for L = 1, so let us say

L = 1 here. Intuitively, these two achievable schemes have

the same structures as explained below.

For the PIR-PCSI-I setting, the desired message is not

contained in the support set. The download will be K −M
linear equations of K unknowns (K messages). These K−M
linear equations are independent by design, so they allow the

user to eliminate any K−M−1 unknowns and get an equation

in the remaining K − (K − M − 1) = M + 1 unknowns

(messages). Let these M+1 unknowns be the M messages in

the support set and the desired message. With careful design,

the equation will be equal to Y [S,Λ] + λ′W θ for some non-

zero λ′. Thus by subtracting CSI from the equation the user

is able to recover W θ.

For the PIR-PCSI-II setting the desired message is contained

in the support set. The download will be K −M + 1 linear

equations in K unknowns (messages). These K−M+1 linear

equations are independent by design, so they allow the user

to eliminate any K − M unknowns and get an equation in

the remaining K− (K−M) = M unknowns (messages). Let

these M unknowns be the M messages in the support set. With

careful design, the equation will be equal to Y [S,Λ] + λ′W θ
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for some λ′ ̸= 0. Thus by subtracting CSI from the equation

the user is able to recover W θ.

Consider a scheme where the user applies Specialized GRS

Codes when θ /∈ S and applies Modified Specialized GRS

Codes when θ ∈ S. This scheme is obviously correct but

not private because the server can tell if θ ∈ S or not

from the download cost since the download cost of the two

schemes are different. However, if the user always downloads

one more redundant equation when applying Specialized GRS

Codes, then there is no difference in the download cost. This

is essentially the idea for the achievable scheme.

Let us first present the Specialized GRS Codes in [33] here

for ease of understanding. There are K distinct evaluation

points in Fq, namely ω1, · · · , ωK . A polynomial p(x) is

constructed as

p(x) ≜
∏

k∈[K]\(S∪{θ})
(x− ωk) (201)

=

K−M∑

i=1

pix
i−1. (202)

The query Q is comprised of K−M row vectors, each 1×K,

namely Q1, · · · ,QK−M such that

Qi = [v1ω
i−1
1 · · · vKω

i−1
K ],∀i ∈ [K −M ], (203)

where for im ∈ S,m ∈ [M ], vim
= λm

p(ωim ) (λm is the mth

coefficient in the CSI), while for k /∈ S, vk is randomly drawn

from F
×
q . Upon receiving Q, the server sends

∆ =






∆1

...

∆K−M




 =






Q1
...

QK−M













W 1

W 2

...

W K








(204)

to the user. Let us call [QT
1 · · · QT

K−M ]T the Specialized

GRS Matrix and [∆1 · · · ∆K−M ]T Specialized GRS Codes

of W [K] for ease of reference. Note that the Specialized GRS

Matrix is uniquely defined by v1, · · · ,vK as ω’s are constants.

The user gets W θ by subtracting Y [S,Λ] from

K−M∑

i=1

pi∆i = Y [S,Λ] + vθp(ωθ)W θ. (205)

Our PIR-PCSI scheme is as follows. For any realization

(θ,S) of (θ,S), 1) When θ ∈ [K] \ S, first apply the

Specialized GRS Codes in [33]. Besides Q1, Q2, · · · , QK−M

as specified in the Specialized GRS Codes of [33], the user

also has

QK−M+1 = [v1ω
K−M
1 , · · · , vKω

K−M
K ] (206)

as part of the query. And the answer ∆K−M+1 =
∑K

j=1 vjω
K−M
j W j will be generated for QK−M+1 and

downloaded by the user as a redundant equation. Note that

the matrix [QT
1 , Q

T
2 , · · · , QT

K−M+1]
T is the generator matrix

of a (K,K −M + 1) GRS code [37].

2) When θ ∈ S, the user will directly apply Modified Spe-

cialized GRS Codes where the queries also form a generator

matrix of a (K,K −M + 1) GRS code as specified in [33].

Such a scheme is private since the queries in both cases

form a generator matrix of a (K,K−M +1) GRS code, and

the v1, · · · , vK in both cases are identically uniform over F
×
q

for any realization of θ,S.

For the corner case M = 1, it suffices to download K − 1
generic linear combinations of all the K messages such that

from the K− 1 downloaded linear combinations and the CSI,

all the K messages are decodable as noted in Remark 5.

XIV. PROOF OF THEOREM 11

Here we bound the redundancy ρPCSI from above (equiva-

lently, lower-bound α∗) for 1 ≤M ≤ K. For K+2
2 < M ≤ K,

the proof for ρPCSI = 0 is the same as in Section V show that

so it will not be repeated.

Consider an achievable scheme such that α-CSI is sufficient

and the average download cost, D ≤ 1
C

sup

PCSI

L+ ϵL for some L.

Note that D ≥ H(∆ | Q), therefore,

H(∆ | Q) ≤ 1

Csup
PCSI

L+ ϵL (207)

It follows from (207) that there exists a feasible Q ∈ Q
such that

H(∆ | Q = Q) ≤ 1

Csup
PCSI

L+ ϵL. (208)

For all i ∈ [K], let Λi ∈ C satisfy

H(W i | ∆,Y
[[M ],Λi]

,Q = Q) = 0. (209)

The argument that such Λi’s must exist is identical to the proof

of Lemma 1. Writing Y
[[M ],Λi]

as Y i for compact notation,

H(W [K] | ∆,Y [M ],Q = Q) (210)

= H(W [M ] | ∆,Y M ,Q = Q)

+H(W [M+1:K] | ∆,Y [M ],W [M ],Q = Q) (211)

= 0 +H(W [K] | ∆,W [M ],Y [K],Q = Q) (212)

= 0. (213)

where (212) follows from (209) and the fact that Y [K] are

functions of W [M ]. The last step also follows from (209).

Thus,

1

Csup
PCSI

L+ ϵL+MαL

≥ H(∆ | Q = Q) +H(Y [M ] | Q = Q) (214)

≥ H(∆,Y [M ] | Q = Q) (215)

≥ I(∆,Y [M ];W [K] | Q = Q) (216)

= H(W [K] | Q = Q) = KL. (217)

(214) is true because (208), (25) hold. Step (217) follows from

(209) and the fact that the query and messages are mutually

independent according to (5). Thus, α ≥ (K − 1
C

sup

PCSI

)/M −
ϵ/M . In order to achieve capacity, we must have ϵ→ 0, so we

must have α ≥ (K − 1
C

sup

PCSI

)/M , for all 1 ≤M ≤ K.

Now note that for M = 1, since Csup
PCSI = (K−1)−1, we have

shown that α ≥ 1, which implies ρPCSI = 0 in this case.

For 2 ≤M ≤ K+2
2 , since Csup

PCSI = (K−M+1)−1, we have

shown that α ≥ M−1
M

, which implies ρPCSI ≤ 1
M

in this case.
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It only remains to show that for M = 2, ρPCSI = 1
2 is achiev-

able, or equivalently, α∗ = 1
2 . For this case, let us present

a PIR-PCSI scheme that achieves the rate (K −M/2)−1 for

arbitrary 1 ≤M ≤ K. Note that K−M/2 = K−M+1 when

M = 2, which is the only case where the supremum capacity

is achieved by this scheme. The rate of this scheme is strictly

smaller than Csup
PCSI for other M ̸= 2.

Let the size of the base field q be an even power of a prime

number such that
√
q is a prime power and

√
q ≥ K. For

arbitrary realization (θ,S) ∈ [K] × S of (θ,S), if θ ∈ S,

the user can apply the Interference Alignment based PIR-

PCSI-II scheme where half of each message is downloaded.

If θ ∈ [K]\S, then user can apply the Specialized GRS Codes

based scheme for the halves of the messages corresponding to

the CSI dimension that is retained (while the other half of the

CSI dimensions is discarded as redundant) and download the

other half dimension of all the messages directly. Note that

in both cases, a half-dimension of each of the K messages

is directly downloaded. The other halves are involved in

the download corresponding to the Specialized GRS Codes

which is not needed for decodability/correctness if θ ∈ S,

but is still included for privacy, i.e., to hide whether or not

θ ∈ S. The download cost required is K
(

L
2

)
for the direct

downloads of half of every message, plus (K −M)L
2 for the

Specialized GRS Codes based scheme that usually requires

K−M downloads per message symbol, but is applied here to

only half the symbols from each message, for a total download

cost of (K−M/2)L which achieves the supremum capacity of

PIR-PCSI for M = 2. The details of the scheme are presented

next.

For all k ∈ [K], let VW k
∈ F

2×1√
q be the length 2 vector

representation of W k ∈ Fq. For all m ∈ [M ], let Mλm
∈

F
2×2√

q be the matrix representation of λm ∈ F
×
q where λm is

the mth entry of the coefficient vector Λ. Let

Y
[S,Λ]

= Mλ1
(1, :)VW i1

+ · · · +MλM
(1, :)VW iM

, (218)

where S = {i1, i2, · · · , iM} is the support index set, be the

processed CSI where H(Y
[S,Λ]

) = 1
2H(W k). Note that

∀m ∈ [M ],Mλm
(1, :) is uniform over F

1×2√
q \ {[0 0]}

according to Lemma 2.

The query Q = {Q1,Q2,Q3},

Q1 = {L1,L2, · · · ,LK}, (219)

Q2 = {L′
1,L

′
2, · · · ,L′

K}, (220)

Q3 = {v1,v2, · · · ,vK}. (221)

where Lk,L
′
k ∈ F

1×2√
q \ {[0 0]}. Lk,L

′
k serve as two linearly

independent projections that ask the server to split W k into

two halves

wk(1) = LkVW k
∈ F√

q, (222)

wk(2) = L′
kVW k

∈ F√
q. (223)

Q3 uniquely defines a Specialized GRS Matrix whose elements

are in F√
q.

The user will download the first halves of all the K mes-

sages after projection, i.e., w[K](1) and apply the Specialized

GRS Matrix to download a Specialized GRS Codes of the

second halves of all the K messages after projection, i.e.,

w[K](2).
Let us specify Lk,L

′
k,vk. Consider any realization (θ,S) ∈

[K] × S of (θ,S). Let us say S = {i1, i2, · · · , iM}. For the

messages not involved in the CSI, they are randomly projected

to two linearly independent directions, i.e., for any k ∈ [K]\S,

Lk,L
′
k are linearly independent and are randomly drawn from

F
1×2√

q \ {[0 0]}. Also, for any k ∈ [K] \ S, vk is uniformly

distributed in F
×√

q.

For messages involved in the CSI, the construction of

projections and v’s depends on whether θ is in S or not.

1) When θ ∈ S, for any m ∈ [M ],

Lim
=

{

Mλm
(2, :), im = θ,

Mλm
(1, :), im ̸= θ.

(224)

L′
im

is then chosen randomly from F
1×2√

q \ {[0 0]} such

that it is linearly independent with Lim
. Meanwhile, vim

is randomly drawn from F
×√

q. Under this case, the user

has

Y
[S,Λ]

=
∑

im∈S\{θ}
wim

(1) + wθ(2) (225)

according to the construction of Lim
. wθ(1) is directly

downloaded and wθ(2) can be recovered by subtracting

{wim
(1)}im ̸=θ from Y

[S,Λ]
. The user is then able to

recover W θ as the two projections are linearly indepen-

dent. Q3 uniquely defines a Specialized GRS Matrix and

applying Q3 to download a Specialized GRS Codes of

w[K](2) is just for privacy.

2) When θ ∈ [K] \ S, for any m ∈ [M ],

L′
im

=
1

am

Mλm
(1, :), (226)

where am is randomly drawn from F
×√

q. Lim
is then

chosen randomly from F
1×2√

q \ {[0 0]} such that they

are linearly independent with L′
im

. Under this case, the

user has
∑

m∈[M ]

amwim
(2) = Y

[S,Λ]
, (227)

and sets

vim
=

am

p(ωim
)
,∀m ∈ [M ], (228)

where p(ωim
) is the evaluation of the polynomial spec-

ified in (202) (when (θ,S) = (θ, S)) at ωim
, which

is a non-zero constant given (θ,S). Thus, given (θ,S),
vim

is still uniform over F
×√

q. Q3 uniquely defines

a Specialized GRS Matrix. Applying Q3 to download

a Specialized GRS Codes of w[K](2), together with
∑

m∈[M ] amwim
(2) as the side information, enable the

user to recover wθ(2). Since the first halves of all the

projected messages are also downloaded, the user also

has wθ(1), thus, is able to decode W θ.

Note that for arbitrary realization (θ,S) of (θ,S), no matter

θ ∈ S or not, L1, · · · ,LK , L′
1, · · · ,L′

K , v1, · · · ,vK are

independent, and for any k ∈ [K], the matrix whose first row is
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Lk and second row is L′
k is uniform over the set that contains

all the full-rank matrix in F
2×2√

q , vk is uniform over F
×√

q. Thus,

the scheme is private.

XV. PROOF OF THEOREM 12

The rate 1
K−1 PIR-PCSI-I scheme in Section XI-B is also

the infimum capacity achieving PIR-PCSI scheme as noted in

Remark 5, so we just prove the converse here.

As a result of (40) and the fact that in F2, we can only have

Λ = 1M , i.e., the length-M vector all of whose elements are

equal to 1, we have

H(W [K] | ∆,Y [S,1M ],Q = Q) = 0,

∀(Q,S) ∈ Q× S. (229)

Writing Y [[M ],1M ] as Y for compact notation, for any Q ∈ Q,

we have

H(W [K] | ∆,Q = Q)

= H(W [K],Y | ∆,Q = Q) (230)

= H(Y | ∆,Q = Q) +H(W [K] | ∆,Y ,Q = Q) (231)

≤ H(Y ) = L. (232)

(230) is true since Y is a summation of the first M messages,

and (231) follows from (229). Averaging over Q we have,

H(W [K] | ∆,Q) ≤ L. (233)

Thus, D ≥ H(∆ | Q) ≥ I(∆;W [K] | Q) = H(W [K]) −
H(W [K] | ∆,Q) ≥ KL − L which implies that C inf

PCSI
(q =

2) ≤ (K − 1)−1.

XVI. PROOF OF THEOREM 13

The rate 1
K−1 PIR-PCSI-I scheme which preserves

(θ,S,Λ) in Section XII-C is also the capacity achiev-

ing PIR-PCSI scheme with private coefficients as noted in

Remark 6, so we just prove the converse here. Specifically,

we prove that Cpri

PCSI
(q) ≤ CPCSI(q = 2) = C inf

PCSI
.

According to (123) in Lemma 6, for a fully private PIR-

PCSI scheme,

H(W [K] | ∆,Y [S,Λ],Q = Q) = 0,

∀(Q,S,Λ) ∈ Q× S × C. (234)

Note that (234) is a stronger version of (229) which is

sufficient to bound CPCSI(q = 2) = C inf
PCSI

. Thus, Cpri

PCSI
(q) ≤ C inf

PCSI
.

XVII. CONCLUSION

Side-information is a highly valuable resource for PIR in

general, and for single-server PIR in particular. Building on

the foundation laid by Heidarzadeh et al. [33], this work

presents a more complete picture, as encapsulated in Table I,

revealing new insights that are described in the introduction.

The redundancy of side-information is particularly noteworthy,

because it allows the user to save storage cost, which may be

used to store additional non-redundant side-information, e.g.,

multiple linear combinations instead of just one, as assumed

in this work and in [33]. An interesting direction for future

work is to understand the trade-off between the size of side

information and the efficiency of single-server PIR, e.g.,

by characterizing the α-CSI constrained capacity of PIR-

PCSI-I, PIR-PCSI-II, PIR-PCSI. Other questions that remain

open include issues that are field-specific. For example, is the

supremum capacity of PIR-PCSI-II for M > 2 achievable for

all fields except F2? Are there other fields besides F2 over

which the capacity is equal to the infimum capacity? Can the

capacity over certain fields take values other than the supre-

mum and infimum capacities? Progress on these issues may

require field-dependent constructions of interference alignment

schemes for achievability, and combinatorial arguments for

converse bounds, both of which may be of broader interest.

APPENDIX

A. Proof of Lemma 5

For all k ∈ [K],m ∈ [M − 1], let us say

L
(m)
k =

[

x
(m)
k,1 x

(m)
k,2 · · · x

(m)
k,M

]

, (235)

where x
(·)
·,· ∈ Fql . Let

Hk =
[

L
(1)
k

T
L

(2)
k

T
· · · L

(M−1)
k

T
]T

. (236)

Let us denote by S1,S2, · · · S(K
M

), the
(

K
M

)
distinct elements

of S. Let S1 = [M ]. Then GS1
can be written as

GS1
=










λ1IM λ2IM · · · λMIM

H1 0(M−1)×M · · · 0(M−1)×M

0(M−1)×M H2 · · · 0(M−1)×M

...
. . .

0(M−1)×M 0(M−1)×M · · · HM










(237)

which is an M2 ×M2 matrix. Note that

det(GS1
) = f1(x

(1)
1,1, · · · , x

(M−1)
M,M ), (238)

where f1(·) is an M2(M −1)-variate polynomial with degree

deg(f1) = M(M − 1). To verify that f1(·) is not the zero

polynomial, note that if each Hm,m ∈ [M ] is chosen as the

(M−1)×M matrix obtained by inserting the all-zero column

into the (M − 1) × (M − 1) identity matrix after its first

m− 1 columns, then det(GS1
) = λ1λ2 · · ·λM ̸= 0.

Similarly, ∀j ∈ [2 :
(

K
M

)
],

det(GSj
) = fj

((
x

(m)
k,1 , · · ·x

(m)
k,M

)

k∈Sj ,m∈[M−1]

)

, (239)

where fj(·) is an M2(M − 1)-variate polynomial with degree

deg(fj) = M(M − 1).
Now, to satisfy the correctness and privacy constraints,

we must choose all L
(m)
k to simultaneously have all the

polynomials fj(·) evaluate to non-zero values. Equivalently,

the polynomial f that is the product of all fj(·) should evaluate

to a non-zero value.
∏

j∈[
(

K
M

)
]

det(GSj
) =

∏

j∈[
(

K
M

)
]

fj = f ̸= 0, (240)
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where f is a KM(M − 1)-variate polynomial with degree

deg(f) =
∏

j∈[
(

K
M

)
]

deg(fj) =
(

K
M

)
M(M − 1). (241)

Now, since it is a product of non-zero polynomials, f is also a

non-zero polynomial. Therefore, by Schwartz-Zippel Lemma,

if the values of the KM(M−1) variables are randomly chosen

from Fql , then the probability of the polynomial f evaluating

to 0 is bounded as,

Pr(f = 0) ≤ deg(f)

ql
=

(
K
M

)
M(M − 1)

ql
. (242)

Therefore, if ql >
(

K
M

)
M(M − 1), then Pr(f = 0) < 1,

which implies that there exists a choice of the KM(M − 1)
variables such that f ̸= 0. That choice satisfies the condition

of Lemma 5, thus completing the proof of Lemma 5.

For ease of understanding, consider the following example.

Example 4: Consider M = 3, K = 4 messages:

A,B,C,D, each of which consists Ml = 3l symbols in F3.

Message A can be represented as a length M = 3 column

vector with all the 3 entries in F3l , i.e., VA ∈ F
3×1
3l .

VB, VC , VD are similarly defined.

Let us say A,B,C are in the support set and Y = 2A +
B + C. Y can also be represented by VY ∈ F

3×1
3l where

VY = 2I3VA + I3VB + I3VC . (243)

For each one of VA, VB, VC , VD , the user will download

M − 1 = 2 linear combinations. For example, the download

corresponding to VA is,

∆A =

[

L
(1)
1

L
(2)
1

]

VA = H1VA, (244)

where L
(1)
1 ,L

(2)
1 ∈ F

1×3
3l , and ∆A ∈ F

2×1
3l . Similarly, the user

downloads

∆B = H2VB,∆C = H3VC ,∆D = H4VD (245)

Regarding messages A,B,C, the user has






VY

∆A

∆B

∆C







=







2I3 I3 I3

H1 02×3 02×3

02×3 H2 02×3

02×3 02×3 H3







︸ ︷︷ ︸

G{1,2,3}





VA

VB

VC



 (246)

To recover VA, VB, VC and thus recover A,B,C,

G{1,2,3} ∈ F
9×9
3l must have full rank. Let us explicitly write

down G{1,2,3} as


















2 0 0 1 0 0 1 0 0
0 2 0 0 1 0 0 1 0
0 0 2 0 0 1 0 0 1

x
(1)
1,1 x

(1)
1,2 x

(1)
1,3 0 0 0 0 0 0

x
(2)
1,1 x

(2)
1,2 x

(2)
1,3 0 0 0 0 0 0

0 0 0 x
(1)
2,1 x

(1)
2,2 x

(1)
2,3 0 0 0

0 0 0 x
(2)
2,1 x

(2)
2,2 x

(2)
2,3 0 0 0

0 0 0 0 0 0 x
(1)
3,1 x

(1)
3,2 x

(1)
3,3

0 0 0 0 0 0 x
(2)
3,1 x

(2)
3,2 x

(2)
3,3



















.

Now note that det(G{1,2,3}) = f1 is an M2(M − 1) = 18-

variate non-zero polynomial of degree 6. The polynomial is

non-zero because e.g., setting the variables shown in red color

as 1 and the rest of the variables to 0, yields the evaluation

f1 = λ1λ2λ3 = 2.

To ensure the joint privacy of (θ,S), the matrix

G{1,2,4} =







2I3 I3 I3

H1 02×3 02×3

02×3 H2 02×3

02×3 02×3 H4







(247)

should also be invertible, which enables the user to

recover A,B,D if the CSI is 2A + B + D. Similarly,

G{1,3,4},G{2,3,4} should also be invertible. Let

f2 = det(G{1,2,4}), f3 = det(G{1,3,4}), f4 = det(G{2,3,4}).

Similarly, f2, f3, f4 are 18-variate polynomials of degree 6.

Thus f = f1f2f3f4 is a KM(M − 1) = 24-variate non-

zero polynomial of degree
(

K
M

)
M(M − 1) = 24. According

to Schwartz-Zippel Lemma, if the 24 variables are randomly

chosen from F3l ,

Pr(f = 0) ≤ deg(f)

3l
=

24

3l
. (248)

When l ≥ 3 we have Pr(f = 0) < 1 which implies that

there exists a choice of the 24 variable such that f ̸= 0 and

G{1,2,3},G{1,2,4},G{1,3,4},G{2,3,4} are all invertible.
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