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Particle dynamics and multi-agent systems provide

accurate dynamical models for studying and

forecasting the behaviour of complex interacting

systems. They often take the form of a high-

dimensional system of differential equations

parameterized by an interaction kernel that models

the underlying attractive or repulsive forces between

agents. We consider the problem of constructing a

data-based approximation of the interacting forces

directly from noisy observations of the paths of the

agents in time. The learned interaction kernels are

then used to predict the agents’ behaviour over a

longer time interval. The approximation developed

in this work uses a randomized feature algorithm

and a sparse randomized feature approach. Sparsity-

promoting regression provides a mechanism for

pruning the randomly generated features which was

observed to be beneficial when one has limited data,

in particular, leading to less overfitting than other

approaches. In addition, imposing sparsity reduces

the kernel evaluation cost which significantly lowers

the simulation cost for forecasting the multi-agent

systems. Our method is applied to various examples,

including first-order systems with homogeneous

and heterogeneous interactions, second-order

homogeneous systems, and a new sheep swarming

system.

2023 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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1. Introduction
Agent-based dynamics typically employ systems of ordinary differential equations (ODEs) to

model a wide range of complex behaviours such as particle dynamics, multi-body celestial

mechanics, flocking dynamics, species interactions, opinion dynamics and many other physical

or biological systems. Fundamentally, agent-based dynamical systems model the collective

behaviour between multiple objects of interest by using a kernel that represents their interactions

and thus provide equations that govern their motion. They are able to reproduce a variety of

collective phenomena with a minimal set of parameters which make them especially accessible for

modellers [1–5]. Such models of collective behaviour are numerically slow to solve and difficult to

analyse which often leads to issues in trying to extract parameters, i.e. the kernels. This difficulty

is typically circumvented by passing to continuum limits in order to aid computations [6] and

understand facets of the dynamics of the discrete system such as emergent patterning [7–9] or

properties of the asymptotic dynamics [10–16]. These interaction kernels provide information

on the behaviour between agents as well as the agents’ self-driven forces. However, in practice,

these kernels may not be fully known and thus one needs to be able to approximate them from

observation of the agents’ states. In this work, we develop a sparse random feature model (RFM)

that uses a randomized Gaussian basis to approximate the interaction kernels from the data and

use it to forecast future states and behaviour.

Learning dynamical systems from data is an important modelling problem in which one

approximates the underlying equations of motion governing the evolution of some unknown

system [17,18]. This is essentially a model selection and parameter estimation problem, where

the equations of interest are those that define a differential equation. One of the main challenges

is to construct methods that do not overfit on the data, can handle noise and outliers, and can

approximate a wide enough class of dynamics. While there are many works in the last decade on

this topic, we highlight some of the related work along the direction of interpretable models,

i.e. those that provide not only an approximation but a meaningful system of equations. For

a detailed overview of the approximation and inference of physical equations from data see

[19] and the citations within. The SINDy algorithm [20] is a popular method for extracting

governing equations from data using a sparsity-promoting method. The key idea is to learn

a sparse representation for the dynamical system using a dictionary of candidate functions

(e.g. polynomials or trigonometric functions) applied to the data. This approach has lead to

many related algorithms and applications, see [21–34] and the reference within. The sparse

optimization framework for learning governing equations was proposed in [35] along with an

approach to discovering partial differential equations using a dictionary of derivatives. The sparse

optimization and compressive sensing approach for learning governing equations include �1

based approaches for high-dimensional ODE [36–38] and noisy robust �0 approaches using the

weak form [39]. Another approach is the operator inference technique [40] which can be used

to approximate high-dimensional dynamics by learning the ODEs that govern the coefficients of

the dynamics projected onto a linear subspace of small dimension. This results in a model for

the governing equation in the reduced space that does not require computing terms in the full

dimension. While the methods of [20,35,40,41] can be applied to a wide range of problems, they

are not optimal for the problems considered here.

A non-parametric approach for learning multi-agent systems was developed in [42] based

on the assumption that the interaction kernel g : R+ → R is a function of the pairwise distances

between agents. Their method builds a piecewise polynomial approximation of the interaction

kernel by partitioning the set of possible distances (i.e. the input space for g) and (locally)

estimating the kernel using the least-squares method (see §2). The training problem is similar

in setup to other learning approaches for dynamical systems [20,35,40,43] which use trajectory-

based regression; however, since the ODE takes a special form, the training problem becomes

a one-dimensional regression problem and thus piecewise estimators do not incur the curse-

of-dimensionality. The theoretical results in [42] focused on the first-order homogeneous case

(one type of agent), but recent works generalize and extend the theory and numerical model
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to heterogeneous systems (i.e. different types of agents and different interaction kernels) [44],

stochastic systems [45] and second-order systems [46]. In [47], the accuracy and consistency of

the approach from [42] was numerically verified on a range of synthetic examples, including

predicting emergent behaviours at large timescales. A theoretical analysis of the identifiability of

interaction systems was presented in [48] which relies on a coercivity condition that is related to

the conditions in [42,44,45].

In this work, we will construct an RFM for learning the interaction kernel and thus the

governing system for multi-agent dynamics. RFMs are a class of non-parametric methods used

in machine learning [49–51] which are related to kernel approximations and shallow neural

networks. The standard RFM is a shallow two-layer fully connected neural network whose

(sole) hidden layer is randomized and then fixed [49–51] while its output layer is trained with

some optimization routine. From the perspective of dictionary learning, an RFM uses a set

of candidate functions that are parameterized by a random weight vector as opposed to the

standard polynomial or trigonometric basis whose constructions use a fixed set of functions.

Theoretical results on RFM establish various error estimates, including uniform error estimates

[50], generalization bounds related to an L∞ like space [51], and generalization bounds for

reproducing kernel Hilbert spaces [52–55]. A detailed comparison between the approaches,

training problems and results can be found in [56].

2. Learning multi-agent systems
Consider the n-agent interacting system, define the n time-dependent state variables {xi(t)}n

i=1,

xi(t) ∈ R
d for all 1 ≤ i ≤ n, whose dynamics are governed by the following system of ODEs:

d

dt
xi(t) =

1

n

n
∑

i′=1

g(||ri′,i(t)||2) ri′,i(t)

and ri′,i(t) = xi′ (t) − xi(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2.1)

where the interaction kernel is g : R+ → R. The velocity of each agent xi(t) defined by (2.1)

depends on the g-weighted average of distances to all other agents. Note that the velocity only

depends on the relative distances between agents and not on their overall locations in space or

time. We will assume that g is continuously differentiable and has either compact support or

has sufficient decay, which guarantees the well-posedness of (2.1). In addition, we assume that

g is a positive definite function, which leads to a specific representation (see §2(a)) that is used

to derive the proposed model although these assumption will be relaxed for applications. For

simplicity, denote x(t) := (x1(t), . . . , xn(t)) and r:,i(t) = (x1(t) − xi(t), . . . , xn(t) − xi(t)). Equation (2.1)

can be derived from the gradient flow of the potential energy U(x(t)) =
∑

i�=i′ G(ri′,i(t)), where

g(r) := G′(r)/r. Such gradient flow systems have proven effective as a minimal framework to

model a variety of chemical and living systems such as for micelle formation [57] or aggregation

and swarming of living things, even without the addition of stochastic noise. The pairwise

interaction kernel can be derived from physical constraints for the potential energy in non-living

systems, but this type of first principles approach becomes unreasonable to derive the governing

equations for biological systems.

This section details our method. First, to train (2.1) from data, we develop a random feature

approach for representing the unknown interacting kernel g. Then, the learning problem is written

as a linear system in order to identify the coefficients of the model. This is done using either the

least-squares approach or a sparse learning problem.

(a) New random features

Motivated by the characterization of radial positive definite functions on R
d from [58] and the

earlier work on spherical RFMs [59], we propose approximating the interacting kernel g in (2.1)

using a random radial feature space defined by Gaussians centred at zero.
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Theorem 2.1 ([58]). A continuous function g : R+ → R is radial and positive definite on R
d for all d if

and only if it is of the form g(r) =
∫∞

0 e−r2ω2
dν(ω) where ν is a finite non-negative Borel measure on R+.

We consider a weighted integral representation, namely, we assume that g(r) =
∫∞

0 α(ω)e−r2ω2

dν(ω), then (2.1) becomes

d

dt
xi(t) =

1

n

n
∑

i′=1

g(||ri′,i(t)||2) ri′,i(t)

=
1

n

(

n
∑

i′=1

∫∞

0
α(ω) e−||ri′ ,i(t)||22 ω2

dν(ω)

)

ri′,i(t)

=
∫∞

0

(

α(ω)

n

n
∑

i′=1

e−||ri′ ,i(t)||22 ω2
ri′,i(t)

)

dν(ω)

=
∫∞

0
φ(r1,i(t), . . . , rn,i(t), ω) dν(ω)

=: F(r1,i(t), . . . , rn,i(t)), (2.2)

for all i ∈ [n] := {1, . . . , n}. In (2.2), the integrand φ is parameterized by the scalar ω ∈ R+ with

respect to the measure ν. To approximate (2.2), we build a set of N random features by sampling

ω from a user defined probability measure θ , i.e. ωk ∼ θ (ω) for k ∈ [N]. The function F does not

explicitly depend on the agents’ locations or time and instead is a function of the radial distances.

Thus for simplicity consider F(r1, . . . , rn), i.e. a function of n inputs, then the random feature

approximation for this problem becomes

FN(r1, . . . , rn) =
1

N

N
∑

k=1

ck φk(r1, . . . , rn), (2.3)

where c = (c1, . . . , cN) are the coefficients of the expansion of FN with respect to the proposed

radial feature space
{

φk

∣

∣

∣

∣

φk(r1, . . . , rn) =
α(ωk)

n

n
∑

i=1

e−||ri||22 ω2
k ri

}

. (2.4)

The collection of φk forms the dictionary used in the learning algorithm. The weight α(ω) is chosen

to normalize the basis functions φk, i.e. we set

α(ω) =
(∫∞

0

1

n

n
∑

i=1

e−||r||22 ω2
rj dr1, . . . , drn

)−1

=
2nωn+1

π (n−1)/2
. (2.5)

The motivation for rescaling the terms is to avoid the ill-conditioning which occurs for larger

ωk, that is, the Gaussians become nearly zero which leads to poor generalization. We observed

that rescaling by an increasing function of ω, e.g. ωp for p ≥ 1 was sufficient to obtain meaningful

results; however, for theoretical consistency, we use the normalization factor (2.5). Although the

random feature representation for the interaction kernel g is similar to [59], the approximation to

F differs since we are considering a vectorized system of n-agents and a different functional form.

In figure 1, we compare the formulation (2.3) with random Fourier features (RFF) [49–51].

The global and oscillatory nature of RFF does not match the typical behaviour of the interaction

kernels, i.e. the specific growth and decay properties either near the origin or in far-field. This

leads to a smooth but oscillatory approximation of the kernel that causes a large accumulation of

errors when forecasting the states using the learned dynamical system. In the zoomed-in plot (for

region r ∈ [40, 60]), we see that the RFF produces a non-monotone and ‘noisy’ fit. In this example,

we see that our approach outperforms the RFF by matching the structural assumptions.
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Figure 1. Illustrative example. Radial features versus Fourier features: the plot includes the true interaction kernel (g(r)=
(1 + r2)−(1/4), the black curve) and the learned interaction kernels using the radial features defined by (2.3) (the red curve) and

the random Fourier features (blue curve). The purple area displays the empirical distribution of the radial distances estimated

on the trajectories denoted byρ(r). See §4 for parameters and details.

(b) Least-squares learning problem

The training problem is to approximate F in (2.2) by FN from (2.3) given a set of discrete trajectory

paths. That is, given J observation timestamps {tj}j∈[J] with tj ∈ [0, T] and tj < tj+1 for all j ∈ [J]

and a total of L initial conditions (IC) x�(0) = (x�
1(0), . . . , x�

n(0)), we observe L trajectories indexed

by � ∈ [L] and stored as X� = [x�
i (tj)]j∈[J],i∈[n] ∈ R

dnJ . The entire training set is the concatenation of

the L trajectories X = [X�]�∈[L] ∈ R
ntot , where ntot = dnJL, i.e. the product of the dimension of each

agent, the number of agents, the number of timestamps and the total number of trajectories. The

IC x�(0) are drawn independently from a prescribed probability measure µ0 on R
dn. The velocity

can be estimated by a finite difference method and concatenated to form the velocity dataset

V = [V�
i,j]�∈[L] ∈ R

ntot , where V� is an approximation to d
dt x�

i (tj). We used the central difference

formula in all examples unless otherwise stated.

To train the system, we want to minimize the risk with respect to the unknown non-negative

Borel measure ν

L(ν) :=
1

nLT

∑

i∈[n],�∈[L]

∫T

0

∥

∥

∥

∥

d

dt
x�

i (t) − F(r�
:,i(t); ν)

∥

∥

∥

∥

2

2

dt,

which measures the error between the velocity and the RHS of the ODE (2.2), where F(· ; ν) is used

to denote the dependence of F on ν. This is referred to as a trajectory-based regression problem. The

empirical risk is given by

LN(c) :=
1

nJL

∑

i∈[n],j∈[J],�∈[L]

|V�
i,j − FN(r�

:,i(tj); c)|2, (2.6)

which measures the error between the estimated (or observed) velocity and the RFM FN(· ; c) from

(2.3) (which depends on the vector c). The sum in (2.6) is evaluated on a finite set of timestamps. To

simplify the expression for FN , let A ∈ R
ntot×N be the random radial feature matrix whose elements
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Figure 2. Comparing constraints: the plots compare the true interaction kernels (left g(r)= (1 + r2)−1/4 and right (4.2) the

black curves) and the learned interaction kernels using the radial featureswith thenon-negative constraints (the red curves) and

with the non-negative constraints (the blue curves). The purple region plots the empirical distribution of the radial distances

estimated on the trajectories. The first graph shows that (within the region of observed radial distances), the two kernels obtain

similar accuracy when the true kernel satisfies the constraints. The second graph shows that if the true kernel does not satisfy

the constraints, then the unconstrained approach is preferred. See §4 for parameters and details.

are defined by a
ĩ,k

= φk(r�
:,i(tj)) (see (2.4)) where ĩ represents the triple (i, j, �) after reindexing to a

single index. Then (2.6) can be written as

LN(c) =
1

nJL
||V − Ac||22, (2.7)

using vector notation. We can obtain the trained coefficient vector by minimizing the empirical

loss directly, i.e.

c = arg min
c′∈RN

||V − Ac′||22, (2.8)

i.e. the ordinary least-squares problem.

Note that, for a positive definite function, the coefficients c should be constrained to be

non-negative based on theorem 2.1. However, by relaxing the assumptions, we find that the

approximation is still valid in practice without the additional computational cost incurred by

adding a constraint. In figure 2, we compare the approximation of two interaction kernels (the

true kernels are the black curves) using the unconstrained optimization formulation (in red) and

the non-negative constrained optimization formulation (in blue). The (empirical) density function

of radial distances is represented by the purple region in all figures. The first plot in figure 2 shows

that for a radial and positive definite kernel g, the non-negative constrained problem produces a

smoother approximation that agrees better with the true kernel for small r > 0. However, the

regions where gN does not agree with g have low sampling density and are thus less likely events

in the dynamics. The second plot in figure 2 provides an example where the true interaction kernel

g does not satisfy the assumptions of theorem 2.1. In this case, the kernel g(r) → −∞ as r → 0+,

thus for visualization we do not include the large (negative) values. The non-negative constrained

solution is trivial since positive coefficients add more deviation for 0 < r < 1 than the potential fit

gained for the region r > 1. Based on this example, we argue that for positive definite and radial

kernels the discrepancies between the two formulations are not statistically significant, while for

non-positive definite kernels the non-negative constraint can lead to large errors. Thus without

prior knowledge about the system, we use the unconstrained formulation.

The training problem (2.7) measures the ‘stationary’ error, since it compares the data and

model using the observed velocity at each point in time. Another way to state this is that the

features, i.e. the columns of A, are applied to the data directly and do not depend on the learned

solution generated by the trained system. To evaluate the effectiveness of the trained model, we
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want to measure the error of the model (i.e. the equations of motion) and the error that is incurred

over the path generated by the trained ODE system

d

dt
x̃i(t) = FN(r̃1,i(t), . . . , r̃n,i(t); c)

and r̃i′,i(t) = x̃i′ (t) − x̃i(t).

⎫

⎪

⎬

⎪

⎭

(2.9)

To define the generalization error of the model, consider the probability measure ρ on R+
that defines the distribution of pairwise distances between agents. This gives us the needed

distribution for the values of r that define the input distribution to the true interaction kernel

g and the trained interaction kernel defined by

gN(r) =
2n

π (n−1)/2 N

N
∑

k=1

ck ωn+1
k e−||r||22 ω2

k . (2.10)

Formally, for any interval U ⊆ R+, ρ(U) is the probability that the pairwise distance between two

agents is in U, for all IC sampled from µ0 and for t ∈ [0, T], i.e.

ρ(r) =
1

(n
2

)

T

∫T

0
Ex(0)∼µ0

⎡

⎣

∑

1≤i′<i≤n

δri′ ,i(t)(r)

⎤

⎦ dt. (2.11)

We define the L2(ρ) kernel generalization error as ||G′ − G′
N||L2(ρ) where G′(r) = g(r)r and G′

N(r) =
gN(r)r. In practice, the expectation and supremum cannot be computed directly, so instead one

can consider the empirical probability density by replacing the integrals and expectations via

averages. Lastly, the path-wise generalization error can be defined as

E(c) = Ex(0)∼µ0

⎡

⎣ sup
t∈[0,T̃],i∈[N]

||xi(t) − x̃i(t)||2

⎤

⎦ , (2.12)

where x̃ is the simulated path using (2.9) and thus depends implicitly on c. When final forecast

time T̃ = T, E measures how close the simulated path is to the training data, noting that this is

not the training error used in (2.7) since the training problem minimizes the stationary risk and

not the discrepancy between the data and the simulated trajectory. For all experiments, we use

T̃ > T to evaluate the performance of the model in the extrapolation regime, i.e. how well does

the model predict future states using a test dataset. The error (2.12) is approximated numerically

by averaging over a finite set of randomly sampled paths and maximized over a finite set of

timestamps.

The errors depend on the ability of the training problem to approximate the interaction kernel

g. For functions in the appropriate reproducing kernel Hilbert spaces, it was shown that under

some technical assumptions, a random feature approximation obtained from minimizing the

empirical risk with a ridge regression penalty (i.e. adding the term λ||c||22 to (2.7)) produces

generalization errors that scale like O(m−1/2) when the number of random features scales like N =
O(m1/2 log m) where m is the total number of data samples [52]. For the ordinary least-squares

case, [54,60] analysed the behaviour of the approximation and its associated risk as a function

of the dimension of the data, the size of the training set, and the number of random features. In

the overparameterized setting, i.e. when there are many more features than data samples, [54]

concluded that the ordinary least-squares model may produce the optimal approximation among

all kernel methods. In [60,61], the random feature matrix was shown to be well-conditioned in the

sense that its singular values were bounded away from zero with high probability. In addition,

the risk associated with underparameterized random feature methods scale like O(N−1 + m−1/2).

Although the assumptions in [52,54,60] do not directly hold in our setting, their results do indicate

the expected behaviour of using an RFM for learning interacting dynamics in the regime where

the number of agents or the number of random initial conditions is sufficiently large (thus

matching the random sampling needed in the theory for random feature methods). We leave a

detailed theoretical examination of this problem for future work.
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Figure 3. Motivation for sparsity: the plot shows the relative generalization errors for the kernel and learned trajectories as a

function of the coefficient sparsity level s for the Lennard–Jones system. The errors plateau for s≥ 80 indicating that adding

more features does not necessarily improve the error in this example.

(c) Sparse learning problem

The theory for RFMs suggests that N must be sufficiently large to obtain high-accuracy models.

However, the cost of simulating the path using (2.9) requires at least one query of the RFM for each

time step and thus scales linearly in N. Therefore, for computational efficiency one does not want

N to be too large but for accuracy large N is needed. This motivates us to use a sparse random

feature regression problem, in particular, we replace (2.8) with the �0 constrained least-squares

problem

c = arg min
c′∈R

N ,||c′||0≤s
||V − Ac′||22, (2.13)

where ||c||0 is the number of non-zero entries of c. To solve (2.13), we use a greedy approach called

the hard thresholding pursuit (HTP) algorithm [62]

Sh+1 = {indices of s largest ( in magnitude) entries of ch + A∗(V − Ach)}

and ch+1 = arg min{||V − Ac||22, supp(c) ⊆ Sh+1}

⎫

⎬

⎭

(2.14)

which generates a sequence ch index by h ∈ [0, H]. The two-step approach iteratively sparsifies

and then re-fits the coefficients with respect to the random radial feature matrix A applied to the

training dataset.

The motivation for using sparsity is that it enables us to find the most dominant modes

from a large feature space. Theoretically, we expect that the sparse coefficients c concentrate

near the largest values of ν(ω) when taking into account the random sampling density θ (ω).

To verify the sparsity assumption, we measure the (relative) generalization errors produced by

the random radial basis approximation obtained from the HTP algorithm (2.14) with various

sparsity levels s in the range [1, 150]; see figure 3. Both relative errors generally decay as s

increases and we see that they plateau for s ≥ 80, thus no accuracy gains are made by increasing

the number of terms used in the approximation. When s is close to 40, the errors are within an

order of magnitude of the optimal error. Thus, it would be advantageous to choose a sparsity

level s smaller than the dimension of the full feature space in order to lower the simulation cost

of (2.9).

There have been several recent random feature methods that either use an �1 or an �0 penalty

to obtain sparse representations. In [63], the sparse random feature expansion was proposed

which used an �1 basis pursuit denoising formulation in order to obtain sparse coefficients

with statistical guarantees, see also [60]. The results in [63] match the risk bounds of the �2

formulation, i.e. an error of O(N−1 + m−1/2), when the sparsity level is set to s = N and the number

of measurements m =O(N log(N)). When the coefficient vector is compressible, i.e. they can be well-

represented by a sparse vector, then s < N gives similar results with a lower model complexity
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than in the �2 case and with fewer samples m =O(s log(N)). In [64], a step-wise LASSO approach

was used to iteratively increase the number of random features by adding a sparse subset from

multiple random samples. In [65], an iterative magnitude pruning approach was used to extract

sparse representations for RFM. Our proposed model is related to the hard-ridge RFM [66] where

it was shown that for certain feature functions φk with Gaussian data and weights, the iterative

method converges to a solution with a given error bound, see also [67].

Although both the �2 and the sparse RFMs come with various theoretical properties, those

results do not hold directly here. In the setting of learning multi-agent interaction kernels, the

data samples are typically less ideal than in the theoretical setting, namely, trajectories are highly

correlated and so they are not independent and identically distributed random variables. In

fact, the randomness in the data is obtained from the sampling of various initial conditions.

Additionally, the trajectories may contain noise and outliers which leads to non-standard biasing

in the velocity estimates in the training problem. Empirically, we observe that the two approaches

behave in a similar fashion, and that the sparsity-promoting approach often avoids overfitting on

the data.

3. Numerical method
The datasets are created by approximating the solutions to the systems of ODE (see §4) in MATLAB

using the ODE15s solver with relative tolerance 10−5 and absolute tolerance 10−6 to handle the

stiffness of the system. The train and test datasets have the same size collection of L independent

trajectories computed over the time interval [0, T]. The L initial conditions are independently

sampled from the user-prescribed probability measure µ0, i.e. x�(0) ∼ µ0 for � ∈ [L] which is

specified in each example. The observations are the state variables (i.e. we have measurements of

x(t) and we do not have direct measurements of the velocity (d/dt)x(t) with multiplicative uniform

noise of magnitude σnoise at J equidistant timestamps in the interval [0, T]). An approximation of

the unknown distribution ρ(r) (defined in (2.11)) is obtained by using a large number L′ (L′ � L)

of independent trajectories and averaging these trials to estimate ρ(r) empirically. This is used

for visualizing the distribution of the data and assessing the error of the learned kernel. The

dictionary of φk’s used in the training problem is defined in each section.

(a) Loss function for first-order homogeneous systems

Given n agents {xi(t)}n
i=1, xi(t) ∈ R

d for all i ∈ [n], the first-order homogeneous system is governed

by the following system of ODEs:

d

dt
xi(t) =

1

n

n
∑

i′=1

g(||ri′,i(t)||2) ri′,i(t) =: F(r1,i(t), . . . , rn,i(t))

and ri′,i(t) = xi′ (t) − xi(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

where g is the interaction kernel. Consider the radial feature space defined in (2.4). We seek to

approximate F using a linear combination of elements from the above radial feature space

FN(r1, . . . , rn) =
1

N

N
∑

k=1

ck φk(r1, . . . , rn).

Denote the (approximated) velocity dataset by V = [V�
i,j]�∈[L] = [(d/dt)x�

i (tj)] ∈ R
ntot and the radial

feature matrix for space {φk|k ∈ [N]} by A = [a
ĩ,k

] = [φk(r�
:,i(tj))] ∈ R

ntot×N where ĩ represents the
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triple (i, j, �) after reindexing to a single index, the loss function is

LN(c) =
1

nJL

∑

i∈[n],j∈[J],�∈[L]

|V�
i,j − FN(r�

:,i(tj); c)|2

=
1

nJL
||V − Ac||22.

(b) Loss function for first-order heterogeneous systems

In a first-order heterogeneous system, each of the n agents {xi(t)}n
i=1 has a type label ki ∈ {1, 2}. We

use n1 and n2 to denote the number of agents of type 1 and 2. The system is governed by the

following system of ODEs:

d

dt
xi(t) =

n
∑

i′=1

1

nki′
gkiki′ (||ri′,i(t)||2) ri′,i(t) =: Fheterog.(r:,i(t))

and ri′,i(t) = xi′ (t) − xi(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

where gkiki′ is the interaction kernel governing how agents of type ki′ influence agents of type ki.

Consider the following radial feature space:

{

φ
heterog.
k

∣

∣

∣

∣

φ
heterog.
k (r1, . . . , rn) =

n
∑

i=1

β(ωk)

nki

e−||ri||22 ω2
k ri

}

.

We seek to approximate Fheterog. using a linear combination of elements from the above radial

feature space

F
heterog.
N (r1, . . . , rn) =

1

N

N
∑

k=1

ck φ
heterog.
k (r1, . . . , rn),

where β(ωk) =
√

π/2ωk is a normalization factor. Denote the (approximated) velocity dataset by

V = [V�
i,j]�∈[L] = [(d/dt)x�

i (tj)] ∈ R
ntot and the radial feature matrix for space {φheterog.

k |k ∈ [N]} by

A = [a
ĩ,k

] = [φ
heterog.
k (r�

:,i(tj))] ∈ R
ntot×N , the loss function is

L
heterog.
N (c) =

1

nJL

∑

i∈[n],j∈[J],�∈[L]

|V�
i,j − F

heterog.
N (r�

:,i(tj); c)|2

=
1

nJL
||V − Ac||22.

(c) Loss function for second-order homogeneous systems

Given n agents {xi(t)}n
i=1, xi(t) ∈ R

d for all i ∈ [n], the second-order homogeneous system is

governed by the following system of ODEs:

d2

dt2
xi(t) =

1

n

n
∑

i′=1

g(||ri′,i(t)||2)
d

dt
ri′,i(t) =: Fsec.(r:,i(t),

d

dt
r:,i(t))

and ri′,i(t) = xi′ (t) − xi(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

where g is the interaction kernel. Consider the following radial feature space:

{

φsec.
k

∣

∣

∣

∣

φsec.
k (r1, . . . , rn) =

β(ωk)

n

n
∑

i=1

e−||ri||22 ω2
k

d

dt
ri

}

.
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We seek to approximate Fsec. using a linear combination of elements from the above radial feature

space

Fsec.
N

(

r:,
d

dt
r:,i(t)

)

=
1

N

N
∑

k=1

ck φsec.
k

(

r:,
d

dt
r:,i(t)

)

.

Denote the (approximated) acceleration dataset by V = [V�
i,j]�∈[L] = [(d2/dt2)x�

i (tj)] ∈ R
ntot and the

radial feature matrix for space {φsec.
k |k ∈ [N]} by A = [a

ĩ,k
] = [φsec.

k (r�
:,i(tj),

d
dt r�

:,i(tj))] ∈ R
ntot×N , the

loss function is

Lsec.
N (c) =

1

nJL

∑

i∈[n],j∈[J],�∈[L]

∣

∣

∣

∣

V�
i,j − Fsec.

N

(

r�
:,i(tj),

d

dt
r�

:,i(tj); c

)∣

∣

∣

∣

2

=
1

nJL
||V − Ac||22.

(d) Remarks

Given training set X� = [x�(tj)]j∈[J],i∈[n] ∈ R
dnJ for � ∈ [L], we first obtain the velocity dataset V =

[V�
i,j]�∈[L] = [(d/dt)x�

i (tj)] ∈ R
tot using the central difference scheme

d

dt
x�

i (tj) ≈
x�

i (tj+1) − x�
i (tj−1)

tj+1 − tj−1
,

and we do not assume that the samples are evenly spaced in time. After having the state and

(approximated) velocity information as training data, we randomly sample ωk from N (0, σ 2)

(where σ 2 is user-defined) to form the radial feature space for learning
{

φk

∣

∣

∣

∣

φk(r1, . . . , rn) =
α(ωk)

n

n
∑

i=1

e−||ri||22 ω2
k ri

}

.

We then assemble them into a random radial feature matrix A ∈ R
ntot×N whose elements are

defined by a
ĩ,k

= φk(r�
:,i(tj)). The empirical loss LN(c) = (1/nJL)||V − Ac||22 is minimized using either

least squares or HTP with sparsity s to obtain coefficients c, and we form the approximations

gN ≈ g and FN ≈ F via

gN(r) =
2n

π
n−1

2 N

N
∑

k=1

ck ωn+1
k e−||r||22 ω2

k

and

FN(r1, . . . , rn) =
1

N

N
∑

k=1

ck φk(r1, . . . , rn).

These approximations allow us to compute kernel and path-wise generalization errors.

(e) Hyperparameters

In each of the examples, the following hyperparameters are specified in the associated table: the

initial conditions’ probability distributions µ0, the number of training trajectories L, the number of

trajectories used to approximate the empirical data distribution L′, the number of timestamps (i.e.

the observation times) J, the training time range T, the generalization time range T̃, the uniform

multiplicative noise parameter σnoise, the number of agents n, the number of features N, the

probability distribution for the random features θ and the sparsity s. For the random features,

the probability distribution is set to the normal distribution N (0, σ 2), and the tunable learning

parameters are N, s and σ which were determined through a coarse grid search. All codes are

available at https://zenodo.org/record/7992652.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

1
 O

ct
o
b
er

 2
0

2
3
 



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

479:20220835
..........................................................

4. Experimental results
For visualization purposes, we choose d = 2 for our examples. In all tests, we use the random

radial expansion where the trained coefficients are obtained using the least-squares method (RRE)

or using the sparse approximation (SRRE). The main indication of success is based on the path-

wise error, which is reported for each experiment. Note that the data are acquired over a time

interval T which is smaller than the total time T̃ used in the prediction. All of the experiments

include uniform multiplicative noise on the state variables with scaling parameter σnoise. In all

tests, the algorithm does not know what the true interaction kernels are and thus must learn them

from observations of the dynamics. We test the two approaches on known interacting kernels so

that we can provide empirical error bounds.

The Lennard–Jones system is a first-order homogeneous interacting system that models

intermolecular dynamics. The governing equations are given by the following system of ODEs

[68–70]:

d

dt
xi(t) =

1

n

n
∑

i′=1

g(||ri′,i(t)||2) ri′,i(t)

and ri′,i(t) = xi′ (t) − xi(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.1)

where g(r) = G′(r)/r and G(r) is the Lennard–Jones potential given by

G(r) = 4ε

[

(σ

r

)12
−

(σ

r

)6
]

, (4.2)

where ε = 10 is the depth of the potential well (dispersion energy) and σ = 1 is the distance

at which the potential between particles is 0. The r−12 term accounts for repulsion at short

ranges and the r−6 term accounts for attraction at long ranges. The trajectories form a specific

configuration of states, which can limit the available information when training on observations of

the configuration (see figure 5 where each curve is the path of one agent in time). This is observed

numerically in figure 4, where the empirical density of radial distances ρ(r) (the purple region)

concentrates around r = 1 with very few measurements outside of r ∈ [(1/2), 5]. Even though the

data distribution does not provide a rich sampling of r, the RRE (blue curve on the left) and

SRRE (blue curve on the right) provide close approximations within the entire interval of interest.

Both the RRE and SRRE approximations produce similar relative kernel errors of 8.64 × 10−4

and 3.00 × 10−4, respectively. Using the learned kernels from figure 4, in figure 5, the simulated

paths are compared to the true paths starting from new initial data. The total prediction time is

50× longer than the interval in which we observe the training trajectories. The path-wise errors

using random ICs are 2.22 × 10−2 ± 6.48 × 10−2 (RRE) and 8.20 × 10−3 ± 2.44 × 10−2 (SRRE). The

learned paths require at least one query of the learned kernels for each time step, thus the SRRE

approach leads to significant improvements in run time cost for forecasting and predictions. For

this experiment, the error is slightly lower in the SRRE case with a 6.67× speed up in queries at

each step. Table 1 contains the hyperparameters used for this experiment.

The Cucker–Smale system is a second-order homogeneous system. The dynamics are

governed by the following systems of ODEs [71,72]:

d2

dt2
xi(t) =

1

n

n
∑

i′=1

g(||ri′,i(t)||2)
d

dt
ri′,i(t)

and ri′,i(t) = xi′ (t) − xi(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.3)

where g(r) = (1 + r2)−(1/4) is an alignment-based interaction kernel. Table 2 contains the

hyperparameters used for the system. In this setting, the RRE obtains a smaller relative kernel

error than the SRRE, that is 1.30 × 10−3 and 1.74 × 10−1, respectively, since the SRRE kernel

produces a small oscillation within the support set of the distribution of observed radial distance.

This is likely due to an instability formed from the second-order model which can be resolved

by increasing the sparsity. However, the learned and true trajectories shown in figure 6 indicate
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Figure 4. Lennard–Jones system: plots of the true interaction kernel (the black curves) and the learned interaction kernels (the

blue curves). The first graph uses the RRE model and the second uses the SRRE model.
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Figure 5. Lennard–Jones system: comparison of the true paths (first and third) and the learned paths (second is RRE and fourth

is SRRE) on the test data using the trained interacting kernels. Each curve is the path of one agent in time (denoted by the

colourbar).

Table 1. Hyperparameters used in the Lennard–Jones system example.

n µ0 L L′ J T T̃ σnoise

7 N (0, I2n) 100 2000 150 0.01 0.5 0.001

N θ s

1000 N (0, 35) 150
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

that the overall model agrees with the true governing system, see also figure 7. In fact, path-

wise errors using random ICs are close to each other: 6.39 × 10−1 ± 5.40 × 10−2 (RRE) and

6.36 × 10−1 ± 5.58 × 10−2 (SRRE).

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

1
 O

ct
o
b
er

 2
0

2
3
 



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

479:20220835
..........................................................

100

50

0

0 50 100 150

100

50

0

0 50 100 150

100

50

0

0 50 100 150

100

50

0

0 50 100 150

true

0.5

t = 0
learned

0.5

t = 0

true

0.5

t = 0 learned

0.5

t = 0

Figure 6. Cucker–Smale system: comparison of the true paths (first and third) and the learned paths (second is RRE and fourth

is SRRE) on the test data using the trained interacting kernels. Each curve is the path of one agent in time (denoted by the

colourbar).

Table 2. Hyperparameters used in the Cucker–Smale system example.

n L L′ J T T̃ σnoise

10 50 2000 200 0.25 0.5 0.01

µ0 = µ0,velocity N θ s

unif. on [0, 100]2 1000 N (0, 1) 500
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Single predator-swarming prey interactions is an example of a first-order heterogeneous

particle system with four interaction kernels. Each agent xi has a type label ki ∈ {1, 2}. We use n1

and n2 to denote the number of agents of type 1 (prey) and 2 (predator), and gkiki′ is the interaction

kernel governing how agents of type ki′ influence agents of type ki. The dynamics are governed

by the following system:

d

dt
xi(t) =

n
∑

i′=1

1

nki′
gkiki′ (||ri′,i(t)||2) ri′,i(t)

and ri′,i(t) = xi′ (t) − xi(t),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.4)

where the four interaction kernels (prey–prey, prey–predator, predator–prey, predator–predator)

are given by

g11(r) = 1 − r−2, g12(r) = −2r−2

g21(r) = 3.5r−3, g22(r) = 0,

and all terms will be learned. One of the potential difficulties with this example is that the path-

wise error depends on learning each of the kernels to within the same accuracy. In addition,
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blue curves). The first graph uses the RRE model and the second uses the SRRE model.
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time (denoted by the colourbar). The warm tone is the predator and the cool tone is used for the prey. The dots represent the

transition point between the length of time used in the training set and the additional time in the test.

the density of radial distances between the predator–prey (and by symmetry the prey–predator)

concentrates at r = 1.5 with a rapid decay outside of the peak. This example tests the methods’

ability to obtain accurate models with a limited sampling distribution.

Both the RRE and SRRE produce similar relative kernel errors for all kernels, with their path-

wise errors using random ICs being comparable: 3.70 × 10−2 ± 2.49 × 10−1 for RRE and 8.19 ×
10−3 ± 4.63 × 10−2 for SRRE. The true and learned trajectories are plotted in figure 8, where the

dots represent the transition point between the length of time used in the training set and the

additional time ‘extrapolated’ by the learned dynamical system. The data in figure 8 are a new set
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Table 3. Hyperparameters used in the single predator-swarming prey system example.

n1 n2 L L′ J T T̃ σnoise

9 1 50 2000 200 5 10 0.001

µ
1
0 µ

2
0

unif. on ring [0.5, 1.5] unif. on disc at 0.1

N θ s
[

500 500

500 50

]

N (0, 30) 400

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of conditions that are not from the training set. Table 3 contains the hyperparameters used for the

experiment in figure 9.

Sheep-food interacting system: Inspired by art which captures large flocks of sheep swarming

various grain patterns [73], we propose a sheep-food interacting model and try to discover the

interactions based on observations. Our approach to model the sheep is based off of the prey

dynamics in [1]. Similarly, the sheep take on the role of predator in their interaction with the

stationary food source. The sheep both want to cluster together for safety, but also are drawn to

seek out the food at the cost of the group cohesion. We manually set the dynamics to be governed

by a first-order heterogeneous system: (4.4) where

g11(r) = −
1.2

r4/4 + 0.05
+ 0.02, g12(r) = 65 e−(r/0.45),

g21(r) = 0, g22(r) = 0,

where type 1 is the food and type 2 are the sheep. The food is the stationary ‘prey’ and are

arranged in a ‘heart’ shape and are plotted as targets in figures 10 and 11. The sheep (the predator

swarm) are initialized randomly below the food, near y = −10. The challenge is to correctly learn

the dynamics from the earlier time interactions in order to correctly forecast the entire path the

sheep take around the heart configuration. Note that although the training set only includes the

interaction in the blue region, up to T = 100, the forecasted paths capture the full geometry. The

errors for the kernels and paths are displayed in table 4. The RRE approximation produces smaller

errors but the overall kernels are similar, see figure 11. The parameters are shown in table 5.

Comparison: Figure 1 provides a comparison of our approach and the standard RFF [49–51],

showing that our randomized feature construction produces a more accurate approximation to

the interacting kernels (table 5).

We compare our algorithm on the Lennard–Jones example with the approximation produced

by the piecewise polynomial model from [42]. The set-up is as described in the previous Lennard–

Jones example. The model from [42] using L = 1000 initial conditions for the training set produces

a relative kernel error of 2.26 × 10−2 and a path-wise generalization error of 7.31 × 10−2. The

SRRE using L = 100 initial conditions for the training set produces a relative kernel error of 3.00 ×
10−4 and a path-wise generalization error of 8.20 × 10−3. This highlights two advantages of our

approach. The RRE and SRRE methods need an order of magnitude fewer samples since they use

a global smooth candidate set rather than a local basis. Secondly, the generalization error is lower

due to the regularizing nature of the method, i.e. only retaining the dominate random features.

5. Discussion
We developed an RFM and learning algorithm for approximating interacting multi-agent

systems. The method is constructed using an integral-based model of the interacting velocity

field which is approximated by an RFM directly on observations of state variables. The

resulting functions, i.e. the sums-of-Gaussians, led to a new radial randomized feature space
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Figure 9. Single predator-swarming prey interactions: plots of the true interaction kernels (the black curves) and the learned

interaction kernels (the blue curves). The first four graphs use the RRE model and the last four graphs use the SRRE model.

which is theoretically justified and was shown to produce a more consistent and stable result

than other RFMs. We employ a randomized feature space rather than a pre-defined set of

candidate functions, so that the algorithm would not require prior knowledge on the system

or its interaction kernels. This is motivated by the applications, since manually modelling and

training complex multi-agent systems is often computationally infeasible. When some terms or

interactions are known by the user, they can be added to the model by incorporating them into the

dynamical systems formulation. This can be seen by the different setups used for the loss function

when considering homogeneous versus heterogeneous cases or first-order versus second-order

systems.

We used a sparse random feature training algorithm based on the HTP algorithm. We note

that when the sparsity parameter is set to the feature space size, i.e. s = N, the training reverts to

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

1
 O

ct
o
b
er

 2
0

2
3
 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

479:20220835
..........................................................

0

–0.1

–0.2

0.1

0

–0.1

0.1

0

–0.1

0.6

0.4

0.2

0

g11

g
N,11

ρ11 (r)

g21

g
N,21

ρ21 (r)

g22

g
N,22

ρ22 (r)

g12

g
N,12

ρ12 (r)

g11

g
N,11

ρ11 (r)

g21

g
N,21

ρ21 (r)

g22

g
N,22

ρ22 (r)

g12

g
N,12

ρ12 (r)

2 4 6 8 10 10 155

2 4 6 810 155

2 4 6 810
r r

r r

155

2 4 6 8 10 10 155

�102
�102

�101
�101

�10–1

2

1

0

0

–0.1

–0.2

�102
�10–1

2

1

0

2

1

0

�10–1

1.0

0.5

0

�10–1
�10–1

1.0

0.5

0

0.1

0

–0.1

0.1

0

–0.1

0.6

0.4

0.2

0

�102

�101
�101

2

1

0

�10–1

1.0

0.5

0

�10–1
�10–1

1.0

0.5

0

Figure 10. Sheep-food system: plots of the true interaction kernels (the black curves) and the learned interaction kernels (the

blue curves). The first four graphs use the RRE model and the last four graphs use the SRRE model.

the least-squares problem and is applicable for some of the problems examined in this work. In

particular, when one has a sufficiently rich dataset, least-squares-based RFMs produce accurate

solutions. On the other hand, it is likely that there is only a limited set of observations of the

system. In that case, there are several benefits to incorporating sparsity in the training of RFM,

i.e. extracting an RFM that only uses a small number of randomized features. First, sparsity

lowers the cost of forecasting for high-dimensional multi-agent system, since the cost scales with

s rather than N. Since the trained systems are used to forecast the multi-agent dynamical system,

a large number of repeated queries are needed, which would limit the use of standard RFM and

overparameterized neural networks. Sparse regression also leads to less overfitting when one has

a scarce or limited training set. Although SRRE may lead to models which are less interpretable

than fixed candidate dictionaries such as [20,35,40], the SRRE approach does provide some insight
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Figure 11. Sheep-food interacting system: comparison of the true paths (first and third) and the learned paths (second is RRE

and fourth is SRRE) on the test data using the trained interacting kernels.

Table 4. Kernel and generalization errors of sheep-food interacting system example.

RRE SRRE

relative Kernel error

[

9.35 × 10−3 5.93 × 10−3

0 0

] [

2.26 × 10−2 1.43 × 10−2

0 0

]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

path-wise error: training 6.21 × 10−1 ± 6.89 × 10−1 1.69 ± 9.23 × 10−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

path-wise error: testing 8.32 × 10−1 ± 9.53 × 10−1 1.72 ± 9.49 × 10−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Hyperparameters used in the sheep-food interacting system example.

n1 n2 L L′ J T T̃ σnoise

20 40 50 1000 600 100 400 0.001

µ
1
0 µ

2
0

unif. on [−9,−10] × [−5, 5] heart of ‘radius’ 5 at 0

N θ s
[

500 500

50 50

]

N (0, 10) 600

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

into the structure of the interaction kernel and can be used to guide analysis of the underlying

system.

Our approach obtained accurate predictions for popular first-order system with homogeneous

and heterogeneous interactions, second-order systems, and a new sheep-food interacting system

from noisy measurements. A comparison with a similar approach showed that the SRRE
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produced lower path-wise generalization error and lower kernel error while also needing an

order of magnitude fewer training points. As with most approximation techniques for training

dynamical systems, one limitation of the SRRE is with high levels of noise and outliers. One

way to alleviate this is to preprocess the data, possibly using a neural network model, to

approximate the underlying training paths before extracting its collective behaviour. However,

the choice of preprocessing algorithms may bias the trained dynamics. Another limitation is

its inability to train highly accurate predictive models when the underlying interacting system

incorporates additional terms outside of the assumptions. A future direction may be to train only

the interacting kernel component of the system and develop a closure approach for obtaining the

remaining aspects of the dynamics.
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