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1. Introduction

1.1.  In [27], the authors formulated the 1Hall algebras, denoted by 7—~[(kQ, 7) in this
paper, of iquiver algebras A" associated to acyclic iquivers (Q, 7) over a finite field k = I,
in the framework of semi-derived Ringel-Hall algebras of 1-Gorenstein algebras [24,23].
This new form of Hall algebras was motivated by the constructions of Bridgeland’s Hall
algebra of complexes [7] and Gorsky’s semi-derived Hall algebras [12,13] (which were in
turn built on [34,30,14]; for a survey see [35]). The ¢Hall algebras of iquiver algebras
were conjectured to provide a realization of the universal :quantum groups arising from
quasi-split quantum symmetric pairs of Kac-Moody type, and for finite type this was
established in [27].

Bridgeland’s Hall algebra construction in [7] produces the Drinfeld double U of a
quantum group U, and our :Hall algebra construction produces a universal 1quantum
group U*. The main difference between the rquantum groups U* (namely, the quantum
symmetric pair coideal subalgebra of U) & la G. Letzter [20] and the universal :quantum
groups U* (a coideal subalgebra of INJ) in [27] is that U* depends on various parameters
while U admit various central elements. A central reduction of U* recovers U".

We view 1quantum groups as a vast generalization of Drinfeld-Jimbo quantum groups,
and aim at extending various fundamental constructions from quantum groups to tquan-
tum groups [4] (see also [5,11]). Bridgeland’s Hall algebra realization of a quantum group
[7] has been reformulated in [27] as «Hall algebra for wquivers of diagonal type, just as a
quantum group can be viewed as an tquantum group of diagonal type.

A Serre presentation of quasi-split «quantum groups U* of Kac-Moody type is more
complicated than a Serre presentation (which is the definition) of a quantum group, and
it was recently completed in full generality in our work joint with X. Chen [8]. Our work
was built on partial results in [19,3] in Kac-Moody setting; a complete presentation of
U in finite type was already given earlier by Letzter [21]. A crucial relation, known as
the 2Serre relation, in the final presentation for U?, involves the :divided powers which
originated from the theory of canonical basis for quantum symmetric pairs [4,6]. The
rdivided powers come in 2 forms, depending on a parity.

1.2.  In this paper, we first extend the definition of :Hall algebra from acyclic quiv-
ers as treated in [27] to general iquivers (allowing oriented cycles), (@, 7). Since the
wquiver algebra A* associated to a non-acyclic tquiver is infinite-dimensional (and still
1-Gorenstein), the technique of Bridgeland’s Hall algebras or Gorsky’s semi-derived Hall
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algebras does not seem to apply. However, the foundation (such as singularity categories
and Hall basis) for the semi-derived Ringel-Hall algebra of 1-Gorenstein algebras in [23]
(see also [24]) can be extended to this infinite-dimensional setting. To keep the exposi-
tion at a reasonable length, we have chosen to focus on formulating the +Hall algebra
ﬁ(kQ, 7) and its main properties (instead of treating general 1-Gorenstein algebras; see
Remark 3.8). Some of these new technical developments can be applied to shed new
light to the Hall algebra realization of Drinfeld-Jimbo quantum groups via non-acyclic
quivers.

Motivated by the connection to the iquantum groups f)’l, we formulate the notion
of virtually acyclic :quivers; see Definition 4.4. The virtually acyclic tquivers include all
acyclic tquivers, but also allow the generalized Kronecker iquivers @ (4.17) as new rank
one 1subquivers. By the requirement of tquivers that the nontrivial involution 7 preserves
the generalized Kronecker quiver (), the number of arrows in @ is necessarily even. This
translates into that the generalized Cartan matrix C' = (c;;); je1 associated to @ satisfies
that ¢; -, € —2N whenever ¢ # 7i. (In the setting of [27], the acyclic condition on tquivers
imposes that ¢; ;; = 0 whenever i # 7i.)

The wdivided powers in the setting of U* are formulated in (4.10)—(4.11), by suitably
modifying earlier versions in U” in various generalities (cf. [4,6,8,22]). These divided
powers are then used to provide a presentation of U* with generators Bi,lzi (i el
subject to relations (4.12)—(4.16) in Theorem 4.2, a variant of the presentation for U* in
[8].

With the above constructions in place, we are ready to formulate the main result of
this paper, which generalizes [27, Theorem 7.7] for ADE type and, in case of acyclic
wquivers, settles [27, Conjecture 7.9] completely. Set v = ,/q.

Main Theorem (Theorem 9.6). Let (Q,T) be a virtually acyclic iquiver. Then there exists
a Q(v)-algebra monomorphism 1 : U}, _ — H(kQ, T), which sends

-1 ~
Bj’—)qu[Sj], Z'ijHT, kiH_q_l[Ki}a ZfTZ:Z€H7

Bj = L]_[Sj]a Zf]g—fﬂﬂ f];;HV Ea [Kl]’ ifriFiel

1.3.  There are 2 relations for U* which are quite involved at this level of generality,
namely the BK relation (4.15) (which goes back to [3]) and the 2Serre relation (4.16). The
main new technical difficulty in showing that {/? in the Main Theorem is a homomorphism
is to verify the BK relation (4.15) and especially the Serre relation (4.16) in the +Hall
algebra H(kQ,7). (In contrast, in the ADE setting of [27], the relation (4.15) is easy
thanks to ¢ # 7¢ and hence ¢; »; = 0, while the :Serre relation (4.16) for ¢;; = —1 is all
one needs to verify.)
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The proof of the relation (4.15) in the «Hall algebra ﬁ(kQ, ) requires some interesting
Hall algebra computation in Section 5. In particular, we are able to see clearly how the
two summands in (4.15) arise from the viewpoint of Hall algebra.

The verification of the iSerre relation (4.16) in the ¢Hall algebra setting is highly
nontrivial and occupies Sections 6 through 8. The strategy here bears some formal sim-
ilarities with that used in establishing the 2Serre relation for U’; see [8]. The expansion
formulas [6] for the :divided powers in terms of PBW basis of U are used [8] to reduce
the verification of the 2Serre relation in U® to some new v-binomial identity, which was
then established after some serious work.

In the current :Hall algebra setting, we first establish closed formulas for the :divided
powers in terms of an Hall basis; see Propositions 6.4—6.5. These formulas are of inde-
pendent interest and have other applications; for example, they play a basic role in [28]
where we generalize the reflection functors on :Hall algebras from Dynkin zquivers [26]
to virtually cyclic equivers; this establishes a conjecture in [9] on the relative braid group
action on U, The existence of such closed formulas (as well as those in [6]) is in our view
a manifestation of the basic nature of «divided powers. (In contrast, closed formulas for
monomials [9;]*™ or BY, for i = 7i and n € N, in terms of Hall basis or PBW basis are
unknown.)

Next we convert the summation in the iSerre relation (which are defined via «divided
powers) into a linear combination of the «Hall basis, and a new quantum binomial identity
arises this way. We eventually reduce the proof of this identity (see Proposition 8.1)
further to the following identities (8.6)—(8.7): for p,d > 1,

v(f“) 2(k—1)m

pv k(p—k+1) - vj 1) ——=—7 = 0.
e R O D S T

h=0 Kimr—d

(The first v-binomial formula here is non-standard, and as we learned from G. Andrews,
it is a variant of a known identity of Rogers-Szegd polynomials, cf. [1, Exercise 5, pp.49].)

Both U* and ﬁ(kQ,T) admit natural filtered algebra structures, whose associated
graded are half a quantum group U~ and Ringel-Hall algebra 7—~L(kQ) over a quantum
torus, respectively. Once we know that @Z is a homomorphism, the injectivity of 1; can
be established by applying some filtered algebra argument and reducing to the main
theorem of Ringel and Green on Hall algebra realization of U™.

1.4. Note that a general quiver (possibly with loops) leads to a Borcherds-Cartan
matrix, Borcherds Lie algebra and its corresponding quantum group. The theory of :Hall
algebras developed in Sections 2-3 and a conjectural extension of Theorem 9.6 for general
wquivers call for a development of a theory of quantum symmetric pairs and quantum
groups associated to Borcherds-Cartan matrices, which should be of independent interest.

1.5.  The paper is organized as follows. In Section 2, following and generalizing [27],
we formulate the iquiver algebras, their projective modules and singularity categories in
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the generality of arbitrary tquivers. This requires us to overcome various technical issues.
The <Hall algebras of :quiver algebras associated to general :quivers and their :Hall bases
are established in Section 3.

In Section 4, we review and set up notations for quantum groups and quantum groups.
A Serre presentation for U* is formulated. The verification of the BK relation (4.15) in
the «Hall algebra is taken up in Section 5.

In Section 6, we formulate and establish the Hall basis expansion formulas for the
1divided powers. These formulas are applied in Section 7 to reduce the verification of the
1Serre relation (4.16) in the ¢Hall algebra to a new v-binomial identity; the proof of this
identity is given in Section 8.

Finally, in Section 9 we verify the remaining defining relations for U in the :Hall
algebra setting. We complete the proof of the main Theorem 9.6, providing a Hall algebra
realization of the quasi-split :quantum groups of Kac-Moody type.

Acknowledgments. We thank Changjian Fu and Yang Han for helpful discussions on
quiver algebras. ML thanks Liangang Peng for his continuing encouragement and helpful
discussions on Hall algebras. ML thanks for University of Virginia for hospitality and
support. We thank East China Normal University for hospitality and support which
helps to facilitate this collaboration. ML is partially supported by the National Natural
Science Foundation of China (No. 12171333). WW is partially supported by the NSF
grant DMS-1702254 and DMS-2001351.

2. 2Quiver algebras and homological properties

In this section, we review and generalize the 1quiver algebras A" and their homological
properties from acyclic iquivers to general iquivers allowing oriented cycles. Following
[27, §3], we shall prove that A” is 1-Gorenstein algebra, describe its singularity category
D,y(mod™(A")) and characterize the finite-dimensional nilpotent modules of finite pro-
jective dimensions. However, since the iquiver algebra A* may be infinite-dimensional,
various results for mod™(A*) and D, (mod™®(A?)), known for A* finite-dimensional, have
to be reestablished for mod™(A*) and D, (mod™!(A*)) (see Lemma 2.4 and Lemma 2.6).

2.1. Notations

Let k be a field. For a quiver algebra A = kQ/I (not necessarily finite-dimensional),
we always identify left A-modules with representations of @ satisfying relations in 1. A
representation V' = (V;, V() )icq,,acq, of A is called nilpotent if for each oriented cycle
Q-+ ap at a vertex 4, the k-linear map V(o) - V(ay) : V; — V; is nilpotent. We
denote

> mod'8(A) - category of finitely generated (left) A-modules

> proj(A) — category of finitely generated projective A-modules

> mod™(A) — category of finite-dimensional nilpotent A-modules
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> K®(proj(A)) — bounded homotopy category of proj(A)

> D?(mod®(A)) — bounded derived category of mod®(A), with shift functor X
> D?(mod™!(A4)) - bounded derived category for mod™"(A)

> proj.dim 4 M — projective dimension of an A-module M

> inj.dim 4 M — injective dimension of M

2.2. The rquiver algebras

Let Q = (Qo, Q1) be a general quiver (where oriented cycles are allowed). Throughout
the paper, we shall identify Qo = 1. An involution of Q is defined to be an automorphism
7 of the quiver Q such that 72 = Id. In particular, we allow the trivial involution
Id : @ — Q. An involution 7 of @) induces an involution of the path algebra k@, again
denoted by 7. A quiver together with an involution 7, (Q, ), will be called an 2quiver.

Let R; denote the truncated polynomial algebra k[e]/(¢2). Let Ry denote the radical

£
square zero of the path algebra of 1 —= 1’ , i.e., ¢'e = 0 = g¢’. Define a k-algebra

’
g

A =kQ ®k Rs. (21)
Associated to the quiver Q, the double framed quiver Q¥ is the quiver such that

« the vertex set of Q* consists of 2 copies of the vertex set Qo, {i,i' |i € Qo};
o the arrow set of Q* is

{ari—jd i =5 | (ai—j)e@QitUfei—i i’ —ilie€Qo}

Note Qf admits a natural involution, denoted by swap. The involution 7 of a quiver Q
induces an involution 7% of Q% which is basically the composition of swap and 7 (on the
two copies of subquivers @ and Q' of Q%), cf. [27, §2.1].

The algebra A can be described in terms of the quiver Q* with relations [27, §2.2].
More precisely, we have A = kQ* / I, where I* is the admissible ideal of kQ* generated
by

o g;el, ghe; for each i € Qo;
o gja/ —ag}, gja — d'e; for each (a i — j) € Q1.

By [27, Lemma 2.4], 7% on Q* preserves I* and hence induces an involution 7% on the
algebra A. The wquiver algebra of (Q,7) is defined to be the T-fixed point subalgebra of
A:

AN ={zecA|THz) ==z} (2.2)
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Let Q be a new quiver obtained from @ by adding a loop &; at the vertex i € Qg if
71 = i, and adding an arrow €; : ¢ — 7i for each i € Qq if 7i # 7. The algebra A* can
be described in terms of the quiver Q with relations, cf. [27, Proposition 2.6]; that is,
A' 2 kQ/I, where I is generated by

e g;544 for each 7 € Qq;
o g, — 7(a)e; for each arrow o : j — 4 in Q.

The algebras A and A* are finitely generated and hence are Neotherian. Note also that
A" is finite dimensional if and only if @ is acyclic. We call (Q,7) an acyclic 1quiver if Q
is acyclic.

Note that A* is an N-graded algebra, A* = A} @ A}, where Af = k@, with the grading
| -| given by |g;| = 1,|a] =0, fori € I and o in Q C Q. It follows that kQ is naturally a
subalgebra and also a quotient algebra of A*, cf. [27, Corollary 2.12].

2.8. A" as a 1-Gorenstein algebra

Similar to [27, Remark 2.11], we obtain a pushdown functor
T, : mod™ (A) — mod™(A*). (2.3)

In particular, m, is an exact functor, which preserves projective modules and injective
modules. However, m, may not be dense in general. 7, admits a left and also right adjoint
functor, i.e., the pullup functor 7* : mod™(A*) — mod™(A).

Viewing k(@ as a subalgebra of A*, we have restriction functors

res : mod'®(A') — mod®®(kQ), res : mod™!(A") — mod™!(kQ);
viewing k(@ as a quotient algebra of A*, we obtain pullback functors
¢ : mod'®(kQ) — mod8(AY), ¢ : mod™(kQ) — mod™!(AY). (2.4)

In this way, we can and shall view mod®(kQ) (respectively, mod™(k@Q)) as subcategory
of mod®™(A*) (respectively, mod™(A?)).

Let CZ/Q(modfg(kQ)) be the category of Z/2-graded complexes over mod'®(kQ). We
shall identify mod™(A) = CZ/Q(modfg(kQ)) below. For i € (o, we denote by P; the
indecomposable projective k@Q-module (kQ)e;.

Lemma 2.1 (/27, Proposition 3.11]). A A"-module X = (X;, X (@), X (£:))icQo.acq, S
isomorphic to an indecomposable projective A*-module A'e; if and only if

{the kQ-module (X;, X(a))icq, is equal to P; & Py;

and X (g;) is a linear isomorphism,
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for some j € Qo; see (2.4). In particular, we have a short ezxact sequence in mod™ (A"):
0— Prj — (A')e; — P — 0.

Similarly, one can describe the injective A*-modules.
Following [15,10], a Noetherian algebra A is called d-Gorenstein if inj.dim 4 A < d and
inj.dimA 4 < d.

Proposition 2.2. For a general iquiver (Q,7), A and A* are 1-Gorenstein algebras.

Proof. The proof in [27, Proposition 3.5(1)] works verbatim for a general :quiver. 0O
2.4. Modules of finite projective dimensions

Let (Q,7) be an iquiver. Recall that A* = kQ/I with (Q,I) as defined in §2.2.
Following [27, (2.7)], for each i € Qo, define a k-algebra
k[e;]/(2) if i =i,

Hi = . €i . . . . 25
k(i === 71i )/(ei€riserici) il Ti #1. (2.5)

Ti

Note that H; = H,; for any i € @Qp. Choose one representative for each 7-orbit on
I = Qy, and let

I, = {the chosen representatives of 7-orbits in I}. (2.6)

Define a subalgebra of A*:

H = & H.. (2.7)

icl,

Note that H is a radical square zero self-injective algebra. Denote by
resg : mod™ (A*) — mod™" (H) (2.8)

the natural restriction functor. As H is a quotient algebra of A*, every H-module can
also be viewed as a A'-module.

Recall the algebra H; for i € I, from (2.5). For i € Q¢ = I, define the indecomposable
module over H; (if ¢ € ;) or over H; (if ¢ ¢ L)

k[ei]/(€7), if 7i = i
k — k on the quiver i —— 7¢ , if 7i #£i.

0 Eri
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Then K;, for i € Qg, can be viewed as a A*-module and will be called a generalized simple
A*-module.

For any k-algebra A, denote by P<%(A) the subcategory of modnﬂ(A) formed by
modules of projective dimension < d for any d € N. Similarly, P<°°(A) denotes the
subcategory of mod“ﬂ(A) formed by modules of finite projective dimensions.

Lemma 2.3. We have the following.

(a) proj.dimp-(K;) <1 and inj.dim,.(K;) <1 for any i € Q.

(b) For any M € mod™ (A, if proj.dimy.M < oo, then resg(M) is projective as
H-module.

(We shall see from Corollary 2.13 below that the converse in (b) here also holds.)
Proof. (a). The proof is the same as for [27, Lemma 3.7].

(b). It follows from Lemma 2.1 that resg(A’e;) is projective for any ¢ € I. By con-
sidering the projective resolution of M and applying the exact functor resyg the result

follows. O

As we cannot find a suitable reference for the following result below, we include a
proof here.

Lemma 2.4. For any M € modnﬂ(Al), there exist short exact sequences

0— M — HY — XM 0, (2.10)

0 — Xy —Hy — M —0, (2.11)
with HM | Hyp € PSH(AY).

Proof. Let S; be the simple A*-module corresponding to the vertex i € QQg. We prove it
by induction on the dimension of M.
First, if M = S, then we have a short exact sequence

0— 8 — Ky — S — 0.
For any nonzero M, we have a short exact sequence for some i € I:
0—N—M—S5, —0.
By induction, there exists a short exact sequence
0—N-—HY — XV —0

with HY € P<1(A*). We have the following commutative pushout diagram
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Y — s xN

|

n

I, ]
| b

Since A' is 1-Gorenstein, we have inj.dim,. HY < 1 by [10, Theorem 9.1.10]. Then
there exists a commutative diagram of short exact sequences:

(2.12)
B
x 2. pgm S,
o
S K- Sri

by noting that Ext3. (S, HN) = 0. We have HM € P<!(A?) by using the short exact
sequence in the second column of (2.12), and go 0 g1 : M — H™ is injective. Hence the
desired short exact sequence (2.10) follows.

Dually, one can prove the existence of the second short exact sequence (2.11). O

2.5. Singularity categories

2.5.1. The singularity category of mod™®(A) is defined to be the Verdier localization
Dy (mod®®(A)) := D’(mod®(A))/K"(proj(A)).

As D(mod™(A)) is a thick subcategory of DP(mod™(A)), we define the singularity
category Dy,(mod™(A)) of mod™!(A) to be the subcategory of Dgy(mod™(A)) formed
by all objects in D?(mod™!(A)). Then D,,(mod™(A)) is a triangulated category.

Note that A* is a 1-Gorenstein algebra. Denote by

Gproj(A*) := {X € mod®(A?) | Ext}.(X,A") = 0} (2.13)

the category of finitely generated Gorenstein projective modules. Buchweitz-Happel’s
Theorem shows that Gproj(A') is a Frobenius category with projective modules as
projective-injective objects, and its stable category Gproj(A*) is triangulated equivalent
to Dy, (mod™(A)):

® : Gproj(A') = D,,(mod™(A%)). (2.14)
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Lemma 2.5. For any projective A*'-module V' and for any N > 0, there exists a short
exact sequence

0—Vv Lv—su-—o
such that U € PSY(AY), and f is induced by paths of length > N.

Proof. We can assume V is indecomposable. Then V' = 7, (W) for some indecomposable

projective A-module W. By [27, Lemma 3.10], without loss of generality, we assume
1

W to be of the form P —— P for some indecomposable projective k@Q-module P.
0

Let @ be the submodule of P generated by paths of length > N, then @ is projective.

1
We have P/Q is finite-dimensional nilpotent k@-module. Let V! = Q —= @ and
0

1
U= P/Q —= P/Q . By applying =, the desired short exact sequence follows. O
0
The following lemma is well known for modfg(A’), and we need to prove it for
mod™!(A?).

Lemma 2.6. For any X,Y € mod™!(A*), we have X =Y in Dy,(mod™(A*)) if and only
if there exist two short exact sequences

0—U — 72— X —0, 0—U;, —272—Y —0
with Uy, Uy € P<®(A"), Z € mod™(A").

Proof. The “if part” follows by definition.
For the “only if part”, since A is 1-Gorenstein, by [10, Theorem 11.5.1], we have two
short exact sequences

0—Px 5 Gx X —0, 0—P Gy 27 —0

with Py, Py € proj(A*), and Gx,Gy € Gproj(A*). Since X 2 Y in D,,(mod™!(A*)), we
have Gx = Gy in Gproj(A'). Without loss of generality, we can assume that Gx = G =
Gy.

Consider g2 o fi : Px — Y. Since Y is nilpotent, there exists N > 0 such that
g2 © fi(p) = 0, for any path p of length > N. By Lemma 2.5, there exists a nilpotent
finite dimensional module U; € P<>°(A") and a projective resolution

0—PpPy—U —0

with h; induced by paths of length > N. Then we have the following pushout diagram:
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Pp——p
I

Py oG-l x
|
U, — =7 X.

Clearly, Z € modnﬂ(Az), and the third row gives us the first short exact sequence in the
lemma.

By assumption, gsfih; = 0. So g2 factors through hs, i.e., there exists h : 7 — Y
such that go = hhg. Note that h is epic. So we have the following commutative diagram
of short exact sequences:

[ V)

PPy — U
I
p g . g
]
Y —— v

The exact sequence in the third column shows that Us € mod“ﬂ(Al); and together with
the short exact sequence in the first row, we have Uy € P<1(A?). Then the third column
gives us the second short exact sequence in the lemma. O

Inspired by the definition of Dy,(mod™!(A")), we denote by Gproj"!(A?) the subcat-
egory of Gproj(A?) formed by G such that there exists a short exact sequence

0—U—G—X—0 (2.15)

where U is of finite projective dimension and X € modnﬂ(AZ). In particular, we have
proj(A') € Gproj(A*).

Lemma 2.7 (cf. [15, Lemma 4.3]). The natural functor
U : mod™"(A") — D,,(mod™ (A"))
is dense.

Proof. Let C’(mod™!(A*)) be the category of bounded complexes. Let C~?(P=<L(A*)) be
the category of complexes bounded above with bounded cohomology over P<!(A*). Using
Lemma 2.4, similar to [16, Lemma 4.1] (see also [24, Proposition 5.6]), one can prove that
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for any bounded complex X*® € C*(mod™!(A*)), there exists P* € C~*(mod™}(P<1(A%)))
and an epimorphism P® — X*® which is a quasi-isomorphism.

Let D—°(P<1(A*)) be the derived category of C7*(P<!(A*)). Then we have
Db(mod™(A*)) ~ D—(P<1(A")), and we shall identify them. The remaining part of
the proof is the same as in [15, Lemma 4.3] by using Lemma 2.4, and will be omitted
here. O

Lemma 2.8 (¢f. Buchweitz-Happel’s Theorem). Gprojnﬂ(Al) is a Frobenius category with
projective modules as its projective-injective objects, and its stable category Gprojnil(A’)
is triangulated equivalent to Dyg(mod™ (AY)).

Proof. It is obvious that Gproj™!(A*) is an extension-closed subcategory.

For any G € Gproj™(A*), by definition, there exists a short exact sequence 0 —
U — G — X — 0 where U is of finite projective dimension, and X € mod™"(A*).
By Lemma 2.4, there exists a short exact sequence 0 - X — Y — X’ — 0 such
that ¥ € P<1(A*), and X’ € mod™(A*). Then there exists a short exact sequence
0—>U — G — X' — 0 where U’ is of finite projective dimension, and G’ € Gproj(A?).
Then G’ € Gprojnil(AZ) by definition. Since A* is 1-Gorenstein, we have inj.dim,.U < 1.
So we have the following left commutative diagram with all rows and columns short
exact; doing pullback, we also obtain the following right commutative diagram:

U——U U —=1U'
G——P ——= X' G——P——=G
X —Y —— X G —P —= X'

Combining the above two commutative diagram, we have the following commutative
diagram with rows and columns short exact:

UHU//HU/
G—P ——=G
X—Y ——= X

So U” is of finite projective dimension by the first row, and then P is projective by using
the second row and column. It follows that Gproj™!(A*) has enough injective objects.
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Dually, one can prove that it has enough projective objects. Therefore, Gprojnﬂ(Al) is a
Frobenius category with projective modules as its projective-injective objects.

The triangulated equivalence ® defined in (2.14) induces a triangulated embedding,
also denoted by @,

@ : Gproj™(AY) — Dy, (mod™!(A%)),
G X,

where G, X fit into (2.15). By Lemma 2.7, we have ® : Gproj™i! — Dsg(modnﬂ(Al)) is
dense, and then it is a triangulated equivalence. O

2.5.2. Let T be an algebraic triangulated category with ¥ as its shift functor. We
call T € T a partial tilting object if Hom+(T,¥'T) = 0 for any i # 0. In this case, we
have a triangulated embedding K°(proj(End(T)°P)) — T; see [17].

Recall that A* is positively graded by dege; = 1, degae = 0 for any i € Qq, o € Q1. Note
that Ay = kQ. Let mod®Z (A") be the category of finitely generated graded A*-modules.
One can define Dsg(modfg’Z(Al)), Dsg(mod“ﬂ’Z(AZ)), GprojZ(AY) and Gproj™Z(AY)
similarly; see, e.g., [27, §3.5]. Buchweitz-Happel’s Theorem also holds for this Z-graded
version.

Lemma 2.9. The T = A}y is a partial tilting object in Dsg(modfg’Z(Al)), and its (oppo-
site) endomorphism algebra is isomorphic to kQ. In particular, we have the following
triangulated embedding

D*(mod®(kQ)) — D,y(mod®Z(AY)).

Proof. This result generalises [27, Proposition 3.14] to arbitrary iquiver algebra, where
the proof uses [29, Proposition 3.4] on finite-dimensional algebras. However, it is given
in [32, Theorem 5.15] the corresponding result of [29, Proposition 3.4] for infinite-
dimensional algebras. With the help of [32, Theorem 5.15], the proof is the same as
for [27, Proposition 3.14], hence omitted here. O

The triangulated embedding in Lemma 2.9, denoted by G, is given by the composition
of functors:

TRL,—

G : DY (mod™ (kQ)) —=2— D’(mod®%(A*)) = D, (mod®%(AY)).  (2.16)

On the other hand, T is isomorphic to k@ as a A’-k@-bimodule, so (I ®kg —) =~ ¢, where
¢ is defined in (2.4). So G is equivalent to the composition

bL
D*(v)

DP(mod'®(kQ)) DP(mod®%(A")) 5 D,,(mod®%(AY)),
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where D®(1) is the derived functor of ¢ since ¢ is exact. Moreover, the restriction of G to
Db(mod™ (kQ)) gives a triangulated embedding

D (mod™(kQ)) 2 D¥(mod™ 2 (A%)) T Dy, (mod™Z(AY)).

Let 7 be the triangulated auto-equivalence of D?(mod™!(kQ)) induced by 7. Similar
to [27, Theorem 3.18], we have

(1)oG~GoXoT. (2.17)
Lemma 2.10. The restriction of G to D’(mod™(kQ)) gives a triangulated equivalence
D*(mod™ (kQ)) =5 D,y (mod™MZ(AY)).

Proof. Since D’(mod™Z(A*)) is the smallest triangulated subcategory of
DP(mod®Z(A")) containing mod™ % (A"), by definition, it suffices to check that all
graded nilpotent A*-modules are in G(D’(mod™(kQ))). Similar to [29, Lemma 3.2],
we only need to check that S(i) € G(D*(mod™ (kQ))) for any simple A*-module S and
i € Z. First, we have G(S) = S, where S is viewed as k@Q-module naturally. From (2.17),
S(i) = G(S)(i) = G((X 0 7)!S), and then S(i) € G(D*(mod™(kQ))) for any simple
A*-module Sand i€ Z. O

Theorem 2.11. Let (Q,7) be an wquiver. Then D’(mod™ (kQ))/% o 7 is a triangulated
orbit category a la Keller [18], and we have the following triangulated equivalence

Dy(mod™(A")) =+ D*(mod™!(kQ))/% o 7.

Proof. The proof is the same as for [27, Lemma 3.17, Theorem 3.18] by using now
Lemma 2.10 and (2.17). O

Corollary 2.12 (cf. [27, Corollary 3.21]). For any M € D,(mod™(A*)), there exists a
unique (up to isomorphisms) module N € mod™ (kQ) C mod™(A*) such that M = N
in Dyg(mod™ (AY)).

Proof. The proof is the same as for [27, Corollary 3.21]. O
Corollary 2.13. For any M € mod™(A*) the following are equivalent.

(i) proj.dimM < oo;
(ii) inj.dimM < oo;
(iii) proj.dimM < 1;
) inj.dimM < 1;
) resp (M) is projective as an H-module.

(iv

(v
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Proof. Proposition 2.2 states that A is 1-Gorenstein, and then the equivalence of (i)—(iv)
follows by [10, Theorem 9.1.10].

(i)=(v) follows from Lemma 2.3, so it remains to prove (v)=-(i).

Assume resg (M) is projective as H-module. By Corollary 2.12; there exists N €
mod™!(kQ) such that M = N in Dy, (mod™!(A")). Together with Lemma 2.6, we have

0—U —2Z2—M—0, 0—U,—2—N—70

in modnﬂ(Al) with Uy, Uy € P<®(AY).

By applying resg to the first short exact sequence, since resg(U;) is projective, so is
resg(Z). Then resy (V) is projective by applying resyg to the second one, which implies
that N = 0. So proj.dim,.M < oco. O

Remark 2.14. Bozec [2] studied semi-nilpotent representations of quivers (possibly with
loops) and developed connections to crystals. It will be interesting to see if semi-nilpotent
representations play a role in the setting of :quivers in the generality of Section 1.4.

3. The 2Hall algebras

In this section, we take the field k = F,, a finite field of ¢ elements. We formulate the
1Hall algebra H(kQ, 7) as a twisted semi-derived Hall algebra for the iquiver algebra A*
and study its properties.

3.1. Euler forms

For K, M € mod™!(A*), if K € P<'(A*), we define the Euler forms

“+oo
(K, M) =" (~1)'dimExt'(K, M) = dim;Hom(K, M) — dim;Ext" (K, M),  (3.1)
=0

and

+o00
(M,K) = Z(—l)idimkExti(M, K) = dimyHom(M, K) — dimyExt! (M, K). (3.2
i=0

As in [23, (A.1)-(A.2)], these forms descend to bilinear Euler forms on the Grothendieck
groups Ko(P<'(A")) and Ko(mod™(A")):
(1) + Ko(P=(A") x Ko(mod™(A") — Z, (3.3)
()« Ko(mod™!(A")) x Ko(P<'(A")) — Z. (3.4)

Denote by (-,-)o the Euler form of k@Q). Denote by S; the simple kQ-module (respec-
tively, A>module) corresponding to vertex i € Qg (respectively, i € Q).
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Lemma 3.1. For K, K’ € P<'(A"), M € mod™(A"), i,7 € I, we have

<K7M>:<IESH(K)7M>’ <M3K> = <M,I‘GSH(K)>7 (35)
(Ki, 95) = (Si, Sj)e, (95, Ks) = (S}, Sri)a, (3.6)
(K,K") :%(res(K),res(K’))Q. (3.7)

Proof. The proof of (3.6)—(3.7) is the same as for [27, Lemma 4.3].

It remains to prove (3.5). Since Ko(mod™(A%)) = (S; | i € I) = ZI, without loss of
generality, we assume M = S; for some i € I. For any K = (K;, K(a), K(&;))
mod™!(A?), define a A*-module

1€Q0,xEQ1 €

P(K) = (K, K(a), _K(Ei»ier,aEQl’

which lies in mod™ (A*). This defines an involution ¢ of mod™!(A?).
For any K € P<1(AY), we have ¢(K),m.7m*(K) € P<L(A*) by Corollary 2.13. Note
that m,7*(K);, = K; ® K; for i € [. We have the following short exact sequence

0 — & U o () 2 (k) — 0,

where f; = (Idg,,ldg,)! and g; = (Idk,, —1dk, ).
Clearly ¢ preserves the Euler form (3.3)—(3.4). Since ¢(S;) = S; for any i € I, it
follows that

(K, S;) = (0(K), Si), (i, K) = (5i,¢(K)). (3.8)

By the proof of [24, Proposition 2.3], we have 77 (K) € Ko(P<Y(A)) = (K, Ky | i € T).
Since T, preserves the exactness, we have m,m%(K) € (K; | i € I) € Ko(PSY(AY)). So
h

one can show that (3.5) with K replaced by m.7m*(K) holds. Then (3.5) follows from this,
using (3.8) and the fact that resg(K) = resg(¢(K)). O

8.2. Semi-derived Hall algebras for iquiver algebras

We shall follow [23] with some suitable modification to define semi-derived Hall algebra
of A* for an arbitrary wquiver (Q, 7). Let

v =4

Let #(A*) be the Ringel-Hall algebra of mod™!(A*) over Q(v), that is, the Q(v)-vector
space whose basis is formed by the isoclasses [M] of objects M € mod™!(A?), with the
multiplication defined by (see [7])
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|Ext' (M, N)g|
M]o|[N] = ————1L].
[L]€Iso(mod®!(A))

Here Ext' (M, N); C Ext*(M, N) is the subset parameterizing extensions whose middle
term is isomorphic to L.
Define J to be the linear subspace of H(A*) spanned by

{[K] - [K'] | res (K) = resu(K'), K, K" € P<'(A")}| (3.9)
{[L] — [K ® M] | 3 exact sequence 0 — K — L — M — 0, K € PSY(AY)}.

Let I be the two-sided ideal of H(A*) generated by J.
Consider the following subset of H(A*)/I:

Spei={a[K]|a € Q*, K € PS(A")}. (3.10)

For any wquiver (Q, 7), mod™ (A*) satisfies [23, §A.2, (E.a)(E.d)], where (E.d) holds due
to Lemma 2.4. Thus, we can define the semi-derived Ringel-Hall algebra of A* as

SDH(AY) = (H(A") /D[Sy,

The quantum torus 7 (A*) is defined to be (H(P<1(A"))/I,.)[Sy.'], where I,. is the
ideal generated by

{[K] - [K'] | resm(K) = vesm(K'), K, K" € P=H(A")}.
Then
T(AY) = (K] | i € T). (3.11)
For any a = %1 a;5; € Ko(mod"(kQ)) = ZI, define

Ko = ¢~ XV [X] 6 [Y]™! € SDH(AY),

where X = @ KPandY = @ K?(_ai). In this way, we have T(A*) = Q{K,, |
i€l:a;>0 i€l:a;<0
a € Z1}.

Lemma 3.2. {K, | « € ZI} forms a basis of T (A").

Proof. Consider the group Ko(P<'(AY) = Ko(P<Y(AY)/(K — K' | resg(K) =
resg (K”)). Clearly we have

Ko(P<HAY) = {K, | a € ZI}. (3.12)



M. Lu, W. Wang / Advances in Mathematics 430 (2023) 109215 19

For any 0 — K — K' — K" — 0 in P<(A"), we have resg(K') = resg(K ® K"). So
T(AY) is the group algebra of Ko(P<(A*)) over Q(v) with its multiplication twisted
by ¢~{). By Corollary 2.13, there is a morphism Ko(P<'(A*)) — Ko(proj(H)) =
ZI induced by K +— resg(K), which is surjective. Together with (3.12), we have
Ko(P=<Y(AY) = Ko(proj(H)) = ZI, which is a free abelian group. So {K, | a € ZI} is
a basis of T(A"). O

The following Hall multiplication endows SDH(A") a T (A")-bimodule structure:
[M]o[K] =g~ MM e K], [K]o[M] =g "MK e M] (3.13)

for any K € PSY(A"), M € mod™(A").

With the help of (3.5), similar to [23, §A.3], we can define a T (A”)-bimodule M(A*) :=
T(AY) @yp<iany/r.. (HA)/T) @ypzianyn.. T(AY) via the action given by (3.13).
The proof of [23, Lemmas A.11-A.12] proceeds in the same way with the help of (2.10).
Therefore, SDH(A") is isomorphic to M(A*) as T(A*)-bimodules by [23, Proposition
A13].

3.3. An 1Hall basis

In this subsection, we shall construct a Hall basis for SDH(A') via a new approach;
comparing with [23, Lemma A.17]. For [23, Lemma A.17] (in the setting of a finite-
dimensional 1-Gorenstein algebra), we argue that SDH(A*) is isomorphic to the semi-
derived Hall algebra SDH(Gproj(A*)) of Gproj(A*) defined in [13], and then a basis
of SDH(Gproj(A*)) gives rise to a Hall basis of SDH(A"). For arbitrary (non-acyclic)
wquiver, Gorenstein projective A*-modules may be infinite-dimensional, and then its semi-
derived Hall algebra is not well defined.

For [X] € Iso(mod"!(kQ)) C Iso(mod™(A*)), by Corollary 2.12, we define
H(A")x] to be the subspace of H(A*) spanned by {[M] € Iso(mod™!(A")) | M =
X in D,,(mod™!(A*))}. One can decompose H(A?) into a direct sum

H(AY) = P H(A)(x).

[X]€Iso(mod™! (kQ))

Then H(A*) is an Iso(mod™ (kQ))-graded vector space.

For a short exact sequence 0 — K — L — M — 0 in mod™!(A*) with K of finite
projective dimension, we have L = M = K ® M in Dy, (mod™ (A%)). It follows from (3.9)
that H(A*)/J, and then M(A*), are Iso(mod™ (kQ))-graded vector spaces, that is,

M(AY) = & M(AY) x]-

[X]€Iso(mod™!(kQ))

Lemma 3.3. We have M(A')x) = [X] o T(A") for any [X] € Iso(mod"!(kQ)) C
Iso(mod™(A%)).



20 M. Lu, W. Wang / Advances in Mathematics 430 (2023) 109215

Proof. For any M € mod™ (A?) such that M = X in D,,(mod™"(A")), by Lemma 2.6
we have the following short exact sequences

0—U —272—X—0, 0—U; —~2Z—M-—70

with Uy, Uy € P<Y(AY). Then [X] = ¢~ U0 [Z]o[U1] 7Y, and [M] = ¢~ M:U2) [ Z] o [Us] !
in M(A"). Therefore,

(M) =1V 2] o [0
=g~ MU X o [U)] o [Us] 7 € [X] 0 T(AY):
The lemma is proved. O

It is well known that Ko(mod™ (kQ)) = Ko(mod™!(A*)) = ZI are free abelian groups
with a basis {S; | ¢ € I}. For any M = (M;, M (), M(&;))icl,acq, in mod™ (A?), we
denote

Im(M(e)) = Y dimi(Im(;))S; € Ko(mod™ (kQ)). (3.14)
i€l

Lemma 3.4. For any short ezact sequence 0 — K — L — M — 0 in mod™(A") with K
of finite projective dimension, we have Im(L(¢)) = Im(K (¢)) + Im(M (¢)).

Proof. Tt suffices to show that dimxIm(L(e;)) = dimgIm(K(g;)) + dimgIm (M (g;)) for

any i € L. It is equivalent to consider it in mod(H;). For i # 74, it follows from [24,

Lemma 3.12] by using Corollary 2.13. A similar proof for ¢ = 7¢ will be omitted here. O
Consider the following set

G = {(a,[X]) | @ € Ko(mod™ (kQ)), [X] € Iso(mod"" (kQ))}. (3.15)

Then H(A") is a G-graded vector space, that is,

Hay = @ ( P Q)[M]). (3.16)
(o[ X])EG Tm(M(e))=a
M=X in Ds,(mod™il(A®))

Lemma 3.5. M(A*) is a G-graded vector space with grading induced by (3.16).

Proof. The proof is the same as for [24, Lemma 3.13] with the help of Lemma 3.4, and
hence omitted here. O

Theorem 3.6 (1Hall basis). Let (Q,T) be an wquiver. Then

{[X]oKq | [X] € Iso(mod""(kQ)) C Iso(mod™ (A")),a € ZI} (3.17)
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is a basis of SDH(A").

Proof. Our proof here is inspired by that of [13, Theorem 3.7].
By Lemma 3.3, we have the following surjective morphism

T(A) — M(A')x) = [X]oT(AY), [K] — [X] o [K].

Let K" (H) be the split Grothendieck group of mod(H). Then we have the following
composition of natural maps

C:T(AY) — M(AY)x) — M(AY) =5 Q(v)[K3P (1)

where £ maps M to resg(M). Note that & is well defined. Indeed, applying resyg to a
short exact sequence 0 - K — L — M — 0 makes it split in mod(H) since resy (K) is
injective by Corollary 2.13.

We claim that ¢ is injective. Indeed, any M € mod(H) can be decomposed in a
unique way (up to a permutation of factors) into a direct sum of indecomposables:
M =@, (SP™ @ KP™), for some m;,n; € N. Then the linear map

¢ QUG (H)] — T(AY),  [M] — [EDKP™]

i€l

is well defined. Note that 7 (A") = ([K;] | ¢ € I). Then ¢’ o ¢ = Id. So ( is injective.
It follows that the map

T(A') — M(A")x) = [X]oT(A"), [K]+w— [X]o[K] (3.18)

is an isomorphism.
Assume that

> axalX] oKy =0
a€eZl,[X]€elso(mod™ (kQ))

in M(A"), where ax o € Q(v). It follows from (3.16) that > ax [X]oKy = 0 for any
acZl

[X] € Iso(mod™!(kQ)) in M(A"). Together with (3.18), we have Y, .75 ax,oKq = 0 in
T(A"), and then ax o = 0 by Lemma 3.2. So (3.17) is a basis of M(A").
The lemma follows since SDH(A") is isomorphic to M(A*) as T (A")-bimodules. O

Remark 3.7. Using the ideal I in [23] to define SDH(A"), we expect that SDH(A?) is a
(left) free T(A*)-module with a basis given by {[X] | X € mod"(kQ) C mod™!(A")}.
However, it is not clear if T(A*) defined there is generated by {K; | i € I}.
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Remark 3.8. For an infinite-dimensional finitely generated 1-Gorenstein algebra A, we
can still define the semi-derived Ringel-Hall algebra SDH/(A) using the ideal I in [23].
However, we have chosen to focus on SDH(A") and making it more explicit in this
section.

Via the restriction functor res : mod™'(A") — mod™!(kQ), we define the twisted
semi-derived Ringel-Hall algebra to be the Q(v)-algebra on the same vector space as
SDH(A") with twisted multiplication given by

[M] * [N] = vies@Dres(NDa [ pf] o [N]. (3.19)

We shall denote this algebra (SDH(A), %) by H(kQ,7), and call it the Hall algebra
associated to the rquiver (Q,T), (or an tHall algebra, for short). The twisted quantum
torus 7~'(Az) is defined to be the subalgebra of 7—~[(kQ,7) generated by K, a € ZI. By
Lemma 3.2, 7~'(Az) is a Laurent polynomial algebra generated by [K;], for ¢ € I; and
K] * [Kg] = [Katp] for any o, 8 € ZI.

3.4. 1Hall algebras for isubquivers

Let (Q,T) be an iquiver and A* be its iquiver algebra. Let 'Q be a full subquiver of
Q preserved by 7. Hence we obtain an zsubquiver ('Q,7) of (Q,7), and denote by 'A*
the equiver algebra of ('Q, 7). Clearly, 'A* is a quotient algebra (also a subalgebra) of A®.
Then we can view mod™('A*) as a full subcategory of mod™(A%).

Lemma 3.9. /27, Lemma 4.12] Retain the notation as above. Then ﬁ(k’Q,T) is natu-
rally a subalgebra of H(kQ,T), with the inclusion morphism induced by mod™ ('A*) C
mod™!(A?).

3.5. An 1Hall multiplication formula

Let € be an exact category. For any short exact sequence 0 — A ENY- R C —0in &,
we denote by W the corresponding element in Exté (C, A). Below, we present a fairly
general multiplication formula in the :Hall algebra H(kQ,7) with 7 = Id. In concrete
situations (see Proposition 7.3 for example), the items appearing in RHS (3.20) below
are computable, and this makes Proposition 3.10 useful and applicable.

Proposition 3.10. Let (Q,7) be an wquiver with 7 = Id. For any A, B € mod™(kQ) C
mod™(A"), we have

_ |Ext! (N, L) ]
4] B] = ) B g b ma BN Dl g o0
[L],[M],[N]€lso(mod ! (kQ)) [Hom(N, L)

|{s € Hom(A4, B) | Kers = N, Cokers = L}| - [M] * [K ; 5]
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in ﬁ(kQﬂ').

Proof. A 1-periodic complex over modnﬂ(kQ) is a pair M* = (M,d) such that
M € mod™(kQ) and d : M — M is a morphism of kQ-modules with d?> = 0. Let
C1(mod™! (kQ)) be the category of 1-periodic complexes over mod™ (k@). It is well known
that Cy (mod™!(kQ)) ~ mod™!(A*), and we identify them in the following.

By definition,

1
(4,B) | EXEC, (modn (k@) (4 B)ce|
[Home, (moani (kq)) (4, B)|

[A] % [B] = > v [C*]. (3.21)

[C*]€Is0(Cy (mod™i(kQ)))
For any C* = (C, d) € C;(mod™!(kQ)) such that |Extél(m0dnn(kQ))(A, B)cs| # 0, denote
by M = H(C*) the homology group of C*, i.e., Kerd/Imd. Then we have [C*] = [M &
Kima] = [M] * [K;—]; see, e.g., [25, Lemma 2.10]. Note that
— A+B-M
2

Imd = € Ko(mod™(kQ)).

Denote by Sy := {[¢] € Ext}.(A, B)es | H(C®) = M}. Then we have

Y Spa |
Al % [B] = viame__ISeal_op e ey 399
[A] + [B] et ) |Hom (A, B)| [M] [ fwf] (3.22)

Let C* = (C,d) € C;(mod™(kQ)) such that [Ext},(A, B)cs| # 0. Then we have the
following short exact sequence

0—B-10% 40

such that df = 0 = gd. Denote by U = Kerd and V = Imd. Then we have the following
short exact sequences

0—U2c ™y 50, 0—VE2Uu2m—o.

By definition, d = lopi1d;. Then there exist the following two commutative diagrams,
which are both push-outs and pull-backs

B sy 25N v .2-B - L (3.23)
Y \ Y
Bl 2.4 |/ § S
ldl S1 ho t1
\% Y Y
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Conversely, denote by
Gz, Ny := {s € Hom(A, B) | Kers = N, Cokers = L}.

For any s € Gz (n), denote by V' = Ims. Then there exist s; : A — V and s2: V — B
such that s = s9s1. In fact, s1, s2 are unique up to a group action of Aut(V'). Then we
have two short exact sequences

0—N-2A25V 50, 0—V3B251 0. (3.24)
For any s € G[L],[N]7 denote by

Se,) = {[n] € Ext' (A, B)c | Extyq (N, s3) 0 Exty (t2, B)([n]) € Ext' (N, L)}
(3.25)

From above, we define a map

= S[M] — |_| Ss,[M

s€GLy N

(fa g) = ( 79)5251 € SS2SI=[M]
by using diagrams (3.23).
Claim (x). Z is a bijection.
First, we prove that Z is surjective. For any (f, g), € S, a and s € Gz, (n], We have

a short exact sequence 0 — B EN c% A O Define C* = (C,d) where d = fsg. Then
there exists a short exact sequence 0 — B = Lot % A0 C1(mod™!(kQ)). One can
check Z((f,9)) = (f, g), by definition.

Next, we prove that = is injective. Consider two short exact sequences 0 — B i>
(C,d) % A — 0and 0 — B 1, ', d) 9 oA 0. Assume that (f,g),(f',9') € S
with 2((f,9)) € Ss,m and Z(f’,¢’) € Se/.m- In place of the notations in the diagrams
(3.23) associated to (f, g), we shall use the corresponding prime notations for all objects

and maps in the counterpart diagrams associated to (f/,¢’). If Z((f,9)) = Z((f’, ")),
then s = s’. Without loss of generality, we assume that s; = s} and s, = s/, in the
diagrams (3.23). Since (f,g) = (f',¢') in Extll(Q(A,B)7 there exists an isomorphism
B:C — C'" such that 8f = f' and ¢’8 = g. Note that d = fsg and d' = f'sg’. We have
Bd=pfsg=f'sgB=dpB.Sop: (C,d)— (C',d') is an isomorphism in C; (mod™" (kQ)),
and then there is a commutative diagram of short exact sequences in Cl(modnﬂ(kQ))

OHBH *>A*>O

OHB% C”d’ —>A%O
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Therefore, (f,g) = (f’,9’) € Siamy. The injectivity of = and hence the Claim () is proved.
By Claim (x), we have [S;y| = ZSEG[L],[N] ISs,[ar]]- For any s € Gz v, keep the
notations as in (3.24). Then we have two long exact sequences
0 — Homyq(V, B) — Homykq(A, B) — Homyg (N, B) — Extyo(V, B)
— Exty (4, B) =5 Exty (N, B) — 0;
(3.26)
0 — Homyq(N, V) — Homyq(N, B) — Homyq(N, L) — Extyo (N, V)
— Exty (N, B) =2 Extyo (N, L) — 0,
(3.27)

where ¢ = Extll(Q(tz,B) and @o = Extll(Q(N, 53). We have a map @2 0 @1 : Sy a —
ExtllcQ (N, L)p- By using (3.23), one can easily see that o2 o o1 is surjective, and

(p2 0 1) (Extyg (N, L)) = S -

Then it follows from (3.26)—(3.27) that

1S, =l1 " (92" (Exctieq (N, L) u)) |
=5 (Extiq (N, L)ar)| - [Kerg|
 [Extiq(V, B)| - [Homg(4, B)|
[Homuq(V, B)| - [Homyg(N, B)
[ Extiq(V, V)| - [Homwg (I, B))|
[Homyq (N, V)| - [Homyq (N, L)]
 |Extiq(V, B)| - [Homug(4, B)|
[Homkq (V, B)| - [Homkq (N, B)|
|[Extieo (N, L) |
|[Homyq (N, L)|
|Extio (N, L) |
|Homyq (N, L)|

=[5 (Exty (N, L) ar)|

=|Exty (N, L) |

:q_(Ny)—(V,B) . |Hoka (A; B)'

—=¢ N BB Homyg (A, B)|

Here the last equality follows by V=A-N=B-1.
Note that |S, (7| depends only on [L], [N] for any s € Gz, n]. So we have

Sl = > [Seml (3.28)
s€G L)

|[Extye (N, L) |

I Gz, (vl

— <N’L>_<A)B> H A B T

[L],[N]€Iso(mod™il (kQ))
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Then (3.20) follows from (3.22) and (3.28). O
4. Quantum symmetric pairs and quantum groups

In this section, we review and set up notations for quantum symmetric pairs (U, U?)
and universal squantum groups U*. We formulate a Serre presentation for U”.

4.1. Quantum groups

Let @ be a quiver (without loops) with vertex set Qo = I. Let n;; be the number
of edges connecting vertex i and j. Let C' = (¢ij); jer be the symmetric generalized
Cartan matrix of the underlying graph of @), defined by ¢;; = 20;; — n;;. Let g be the
corresponding Kac-Moody Lie algebra. Let «; (i € I) be the simple roots of g.

Let v be an indeterminant. Write [A, B] = AB — BA. Denote, for r,m € N,

[r] = %, [r]! = H[@]’ [T} _ [m][m — 1] [r]'[m —r+ 1].

Then U = ﬁv(g) is defined to be the Q(v)-algebra generated by E;, F;, f(i, f(l’, 1 e 1,
where K, K| are invertible, subject to the following relations:

K, — K/ .

[Ei’Fj] = 5ij v —_ o1’ [KﬂK7] = [K“KJI] = [K{’Ké] =0, (4'1)
[?iEj = ’UCijEjI?i, [?iFj = ’UiciijI?i, (42)
K/E; =v % E;K!, KIFj=v%FK] (4.3)

and the quantum Serre relations, for ¢ # 5 € I,

1—cij
>y BB~ ()
r=0
1—c;j
ST () EDEETTD <. (4.5)
r=0

Here
F™ =Fr /i), E™ =E'/[n)!, forn>1i€el.

Note that I?JN(Z’ are central in U for all i. The comultiplication A : U — U ® U is
defined as follows:
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AE)=E®1+K ®FE, AF)=18F+F K,

~ -~ - ~ ~ (4.6)
A(K;) =K, K;, AK]) =K, ®K].
The Chevalley involution w on U is given by
w(B) =F;, w(F)=E;, wk)=K!, wKk)=K; Viel. (4.7)

Analogously as for U, the quantum group U is defined to be the Q(v)-algebra gen-
erated by E,-,Fi,Ki,Ki_l, i € I, subject to the relations modified from (4.1)—(4.5) with
INQ and K ! replaced by K; and K ! respectively. The comultiplication A and Chevalley
involution w on U are obtained by modifying (4.6)—(4.7) with K, and I?l/ replaced by Kj;
and K;l, respectively (cf. [31]; beware that our K; has a different meaning from K; € U
therein.)

The algebra U is isomorphic to a quotient algebra of U by the ideal (IN(ZI?;—l | Vi e ).

Let U be the subalgebra of U generated by E; (i € T), U° be the subalgebra of U
generated by K;, l?{ (i € T), and U~ be the subalgebra of U generated by F; (1 € T),
respectively. The subalgebras UT, U% and U~ of U are defined similarly. Then both
U and U have triangular decompositions: U=Ut @U@ U-, U=U+tg U’ U".
Clearly, Ut =2 U+, U~ 2 U, and U’ 2 U /(K;K! —1|i ).

4.2. The rquantum groups U* and U

For a generalized Cartan matrix C' = (¢;;), let Aut(C) be the group of all permutations
7 of the set I such that ¢;; = ¢;-j. An element 7 € Aut(C) is called an involution if
72 =1d.

Let 7 be an involution in Aut(C). We define U* to be the Q(v)-subalgebra of U
generated by

B;=F,+E,K!, k=KK., Viel

T

Let U be the Q(v)-subalgebra of U generated by Ei, for i € I. The elements

ki (i=71i)  kike; (i # 70) (4.8)

are central in U".
Let ¢ = (5;) € (Q(v)*)! be such that ; = ¢,; for each i € T which satisfies ¢; ,; = 0.
Let U* := U be the Q(v)-subalgebra of U generated by

B =F,+GE K ', ki=KK}, Vi e 1.

It is known [20,19] that U” is a right coideal subalgebra of U, i.e., A(U*) C U* ® U,
and (U, U") is called a quasi-split quantum symmetric pair, as they specialize at v = 1
to (U(g),U(g%)), where § = w o 7, and 7 is understood here as an automorphism of g.
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We call U* an tquantum group and U" a universal rquantum group. The algebras Ug,
for ¢ € (Q(v)*)L, are obtained from U* by central reductions.

Proposition 4.1 (/27, Proposition 6.2]). (1) The Q(v)-algebra U* is isomorphic to the
quotient of U by the ideal generated by ki—q (for i = 1i) and Kikri — Sicri (for i # T1).
The isomorphism is given by sending B; w— B;, kj — ¢~ lkj,kj Ly gflifiTj,Vi el,je
I\I,.

(2) The algebra U is a right coideal subalgebra of U.

4.8. A Serre presentation of U*
For ¢ € T with 7i # 4, we define the 1divided power of B; as
B™ .= B /Im]l, ¥m >0,  (if i #7i). (4.9)

For ¢ € T with 7¢ = i, generalizing the constructions in [4,6], we define the divided
powers of B; to be (see also [9])

. k 2— ~- - 2 1 =
N S s
bl [m]! [Ii_1 (B — vki[2s — 1]%) if m = 2k;
B(,):L BHS 12( —vk:[?s]) 1f'm:2k+1, (4.11)
&0 [m]! Hs:l(‘Bi vki[2s — 22)  if m = 2k.

Denote
(a;2)0 =1, (a;2)n =1 —a)1—az)---(1—az" '), n>1
The following theorem is an upgrade of (and can be derived from) [8, Theorem 3.1] for
U’ to the setting of a universal :quantum group U’; it generalizes [27, Proposition 6.4]

for U* of ADE type.

Theorem 4.2. Fixp;, € Z/2Z for eachi € 1. The Q(v)-algebra U* has a presentation with
generators By, k; (i € 1) and the relations (4.12)—(4.16) below: for £ € I, and i # j € 1,

EiEg = ’];g’kv'i, %ZBg = UCT’:’EicingEi, (412)
BiBj — BjBi = 0, Zf Cij = 0 and Ti 7’5 j, (413)

lfcij
ST ()"BMBBI T =0, ifj#£Ti A, (4.14)

n=0

176,;77—1 1

_pyrren g gl - L 115
S (-1 B BB — (1.15)

n=0
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B.(ichfi),i{,‘ii — (’U2; Ug)fciniBgici’Ti)kTi) ) Zf Ti 7& i?

—Ci,ri i

(’Uci'” (0—2; ’()_2)

1—0”
S (-)"BE BB =0, ifri=i (4.16)
n=0

(This presentation is called a Serre presentation of INJ”)

Proof. Recall the main differences between U* and U" are as follows. Let K be a field
which contains parameters g;, for i € I, such that ¢.; = ¢; for all . The K-algebra U*
(cf. [8, Theorem 3.1]) does not contain the central elements (4.8) as in U*; additionally,
instead of ’kvri (iel)in INJ’, U’ contains generators k; (j € I;); note k; here corresponds
to the notation f{jf{;jl in [8].

Let us now fix the field K = Q(v) (gi | i € ]IT), where the ¢;’s are algebraically
independent over Q(v). Fixing a square root (k;k,;)'/2 and identifying it with ;, for
j € 1., we consider the base change U = K @ U Then, over K, I~J]ZK is isomorphic
to the K-algebra U* (with U® in [8, Theorem 3.1]) by sending B; — B; (i € 1), Ej —
oik; (j € I,) (and it follows that k; — gjkij_l).

Now the presentation of U” in [8, Theorem 3.1] translates into the presentation for
U’ in the statement. O

The relation (4.15) in the setting of U* originates in [3], and will be referred to as
the BK relation. The :Serre relation (4.16) first appeared in [8] and higher order Serre
relations have been formulated in [9].

Remark 4.3. All constructions and results in this section (in particular, Theorem 4.2)
are valid for U* and U" associated to symmetrizable generalized Cartan matrices, with
various v-powers in v-binomials, :divided powers and (4.12)—(4.16) replaced by suitable
Vi-POWerS.

4.4. Virtually acyclic 1quivers

To facilitate the computations in sHall algebras in connection to zquantum groups I~JZ,
we shall consider a distinguished class of iquivers. Recall an oriented cycle of @ is called
minimal if it does not contain any proper oriented cycle. A minimal cycle of length m is
called an m-cycle.

Definition 4.4. An quiver (Q, 7) is called wvirtually acyclic if its only possible cycles are
2-cycles formed by arrows between i and 7i for 7i # i € Q.

Note that acyclic quivers are virtually acyclic :quivers.
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Lemma 4.5. Let (Q,7) be a virtually acyclic 1quiver and i € Qg such that Ti # i. Then
#Ha:i=sjlaeQt=#{a:j—i|a€ @}, and the number of edges between i and
Ti 18 even.

Proof. Follows by the definition. O

Example 4.6. Denote by

Op——— X
Q=1_—""2, Q=1_—g5—2 (4.17)
<~—fBr— <~—Br——

Then @ is a generalized Kronecker quiver, with involution 7 given by 71 = 2. Note that
the aquiver (Q,7) is virtually acyclic but not acyclic, for » > 1; moreover, A* = kQ/I,
where

I = (169,061, viga — €153, Bier — e20; | 1 < i < 7).

This is a new rank one iquiver algebra which did not appear in [27]. (The rank here
refers to the number of 7-orbits on the vertex set of @Q.)

In the remainder of this paper, we shall restrict ourselves to the :Hall algebras
ﬁ(kQ, 7) associated to virtually acyclic equivers. This suffices for the :Hall algebra re-
alization of the quantum groups U which we shall develop. The generalized Cartan
matrix of U has to satisfy ¢; ;; € —2N whenever 7i # ¢ € I (and no other conditions), a
condition imposed from the quivers; see Example 4.6.

5. The BK relation in :Hall algebra

In this section, we shall establish an identity in :Hall algebra ﬁ(kQ, 7) which corre-
sponds to the BK relation (4.15) in U*. By Lemma 3.9, we are reduced to consider the
rank one generalized Kronecker iquiver.

5.1. First computation in H(kQ, 1)
Let (Q,7) be generalized Kronecker squivers as in Example 4.6. Recall A* = kQ/T
where I = (169,961,560 — €15;, Bie1 — o | 1 < i < r) and see (4.17) for Q. A

A*-module M is a tuple of the form

M = (M;, M(a;), M(B;), M(g;))i=1,2:1<j<r-
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Recall k@ is a subalgebra (and also a quotient algebra) of A”. Recall

q=v>
For a A~module S, we shall write
S)=[Se---@S8), [S]"=[9]*---*[9].
l —
The following formula follows by definitions.
Lemma 5.1. Forl > 1 and i = 1,2, we have
1S = v T 1S4, (5.1)

Corresponding to the idivided powers in (4.9), we define the divided powers, for i =
L2,

[Sz]*l B v_z(zz—l) [lSz]

% U

Our goal in this section is to verify the relation (4.15) for ¢ = 1 and 7i = 2, see (4.17);

[S;]® = (5.2)

the other case when i = 2 follows by symmetry.
For any A*-module M = (M;, M (), M(B;), M(&;))i=1,2;1<;j<r such that M = (2r +
1)S1 + 52 in Ko(modnﬂ(Al)), we define

Un = [ KerM(ay)[|KerM(e1), — Wi :=TImM(e2) + > ImM(B)),
1<5<r j=1
(5.3)
and let

Upr = dimUM, wpr = dlmWM (54)

Since A’ is a quotient algebra of kQ, we can view each A’-module as a k@Q-module
naturally. Let #(kQ) be the Hall algebra of mod™!(kQ) with its Hall multiplication
twisted by v{-)e.

Lemma 5.2. There exists an algebra epimorphism
¢: H(kQ) — H(kQ,T)

defined by letting
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[M], if M € mod""(A"),
[M] = { 0, otherwise. (5:5)

Proof. Let ¢ : H(kQ) — H(A) be the linear map defined by (5.5). It suffices to check
that ¢ is a homomorphism.
For any L, M, N € mod“il(k@), if there exists a short exact sequence

0O—M-—N—>L—0

such that N € mod™!(A*), then L, M € mod™!(A"). So ¢([L]*[M]) = 0 = ¢(|L])*$([M])
if one of L, M is not in modnﬂ(AZ).
Now let L, M € mod™(A*). Then, for any N € mod™!(A"), we have
|Hom,5(L, M)| = [Hom. (L, M), |Extys (L, M)n| = [Exty. (L, M) y].

So ¢([L] = [M]) = ¢([L]) * #([M]) by definition.
The lemma follows. O

For any three objects X,Y, Z, let
Fy =|{LCZ|L2Y,Z/L=X}| (5.6)
Lemma 5.3 (Riedtman-Peng formula). For any three objects X,Y, Z, we have

_ [Bxt'(X,Y)s| |Aut(Z)|
[Hom(X,Y)| [Aut(X)|[Aut(Y)|’

Fiy
Similar to [34,14], a direct computation in H(kQ) using Lemma 5.3 shows that

[S1]®) s [So] # [S1] ™)

_ @D (- 1) (1) Z - (¢ —1)*+2 [M] (5.7)
pa T Aut (M)
[M]€Iso(modni (KQ))

where pas¢ = 0 unless Wyy C Upy (see (5.3)); if Wiy C Uy, then we have

P =|Gr(t — war, upr — way)| = viem—HE=wan) {UM B} wM] , (5.8)

t—wps
where Gr(a, N) denotes the Grassmannian of a-subspaces in k', and

[Aut(M)] =(q — 1)(g" 7 = 1) (g7 — gt v (5.9)

wM(uM—wM)+wM(27’+1—uM)+(UM—U)M)(2T+1—UM)_

g
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Here one should note the difference between Ringel’s Hall multiplication and Bridge-
land’s; see [7, §2.3]. By Lemma 5.2 and (5.7), we have the following identity in H(kQ, 7):

[S1]®) s [So] # [51]

_ @D (- D) (1) Z - (g —1)*+2 (M] (5.10)
. " JAut(M))]
[M]€Iso(mod™i!(Ar))
Summing up (5.10), we obtain
S DS xS [P = > pu[M], (5.11)
I+t=2r+1 [M]WMQUM
where, thanks to (5.8),
2r+1 p
_ _ - Mt
PM :(q _ 1>(2r+2) (—l)lv r(2r+1)+tl+1(1—1)+t(t—1) ) (5.12)
2 Aut(M)]

(q— D@+ R
[Aut(3)]

:Vr(2r+l)7uMwM (_1)2r+17tvf(2r+17uM7wM)t |:'U/M — ’LUM:|

t—wps
t=0

For any M such that M = (27“—!—1)3;4—3'; in Ko(mod™(A%)), clearly, either M(g;) =0
or M(e2) = 0. To complete the computation of (5.11), we proceed by dividing into 3
cases below:

(1) M(&l) :OZM(EQ),
(2) M(e1) =0# M(e2),
(3) M(ez) =0 # M(en).

We shall need the following specializations of the quantum binomial formula.

Lemma 5.4. Let p € Z>1. Let d € Z be such that |d| < p—1andd=p—1 (mod 2).
Then,

W) SLo-v 7] <o
(2) Cio(-D)o= @ B = 0=%072),,;

) Sy [P] — e,
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Proof. Recall the quantum binomial formula (cf., e.g., [31, 1.3.1(c)])

p p—1
th(lfp) [Zt)] 2= H(l + o). (5.13)
t=0 3=0

Then Formula (1) follows from it by letting z = v?~'~¢. Formula (2) follows by letting
z =v"2, and (3) follows from (2) by applying the bar involution v — v=!. O

5.2. Case M(e1) =0 = M(e2)

In this case, we may regard M € mod™ (k@) € mod™(A*). Recall pys from (5.12).
Lemma 5.5. We have py; = 0, for any M € mod™ (kQ) such that M= (2r +1)S; + S,.
Proof. For any such M with M(g;) = 0, for i = 1,2, we have up; > r+ 1 > wy;. We

deduce that 1 —up —wpr <2r+1—up —wpyr <upr +wpr — 1.
By a change of variables s =t — wj; and Lemma 5.4(1), we have

2r4+1
Z (_1)2r+1—tv—(27'+1—uM—wM)t |:UM - wM:|

t— Wz
t=0
UM —WM
— (_1)2r+1+wMv—(2r+1—uM—wM)wM Z (_1>sv—(2r+1—uM—u;M)s |:UM ; ’lUM:|
s=0 v

=0.
Then by (5.12), we obtain pp; =0. O
5.8. Case M(e3) =0 # M(eq)

In this case, we have M(B;) = 0, for 1 < ¢ < r, by noting that M(8;)M(e1) =
M (e2)M (c;) = 0. Then wys = 0 (recall ups,wps from (5.4)). Denote

Uy = ﬂ KerM (o), uhy = dimUj,.

1<i<r

Lemma 5.6. Retain the notations and assumptions as above. Then there exists a short
exact sequence 0 — Ky — M — SP* — 0 if M(e1)|uy, # 0.

Proof. It follows by the definition of morphisms of quiver representations. O

We now proceed by dividing into 2 subcases.
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Subcase (a): M(e1)|vy, = 0. Clearly, Uy, C ker M(e1). Then we have Uy = Uy, by
definition. It follows that up; > r+1 > wy =0, and 1 —upy —wpr < 2r+1—up —wpr <
upr + wps — 1. Similar to Lemma 5.5, we deduce that py; = 0.

Subcase (b): M(e1)|y;, # 0. Note by Lemma 5.6 that [M] = [K; @ SP27]. In this case
up = u); — 1 by noting that KerM (e1) is a hyperplane. Note that u}, > r + 1, and
hence up; > 7. In case ups > r+ 1, we have py; = 0 by arguments similar to the above.

It remains to consider the subcase when uy; = r. In this case, there is a unique M
(up to isomorphism) such that up; = r, and note that

[Aut(M)] = (¢ = 1)(¢" = 1)+~ (¢" —""Hg""+Y. (5.14)
Thus, applying Lemma 5.4(2) (with p = r) we have

r 2r+1
r(2r+1)—upmwnm (q — 1)(2 +2)

_ -1 2r+1—t_ —(2r+l—up —wpr)t | UM — WM
par=v [Aut(M)] (=17 t—wa
t=0
(5.15)
(2r+2) _"
V(@) (¢— 1)t Z( 1)ty [ ]
t
[Aut(M)| = v
_ 1)(@2r+2)
7(27+1) (q 1) -2
Run) V)
_ (q o 1)(2r+1)v (—27‘—1).
We also note that
[2r51] % [Ky] = vi577 resKi)e = (ST K (9.8, g K (5.16)
= qr2+T[2T51 &) Kﬂ
Therefore, using (5.1) and (5.15)-(5.16) we obtain
> pulM]= > pm[2rS: & K] (5.17)
[M]:M(g1)#0 [M]:upr=uly,—1
= v ¥, pu[S1]®7) # [Ky]
UpN =T

== a7 (g = D)EFURAS]E « K]
5.4. Case M(e1) =0 % M(ea)

In this case, we have M(c;) =0, for 1 <i<r.Soupy =2r+1,and wy; <r+1.In
case wy; < r 4+ 1, similar to Lemma 5.5, we have py; = 0.
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It remains to consider the subcase wy; = r+1. In this case, there is a unique M (up to
isomorphism) such that war = r+1. When wyr = r+1 (recall ups = 2r+1), [Aut(M)| is
given again as in (5.14). By applying Lemma 5.4(3) (with p = r) and changing variables
t' =t—r—1, we have

(g D+ KR

r(2r+1) UMW (_1)2r+17tvf(2r+17uM7wM)t |:'U/M — UJM:|

Pyv = TV _
|Aut(M)| — t—wnm
(5.18)
_ 1)(2r42) 2r+1
_ (@) —(2r 1) (1) (@ — 1) (—1)2r ity ()t { r ]
=v - 1) v
|Aut(M)] ; t—=(r+1)]
(q _ 1) (2r+2) T ' (r 1)t |:7*:|
=v" (=)t vl\"
AwQn 2 v,
2 (¢ — 1)+ 2.2
vt () (),
| Aut (M)
=V72T27T(q _ 1)2r+1.
Note also that
[2r81] % [Ko] = (ST resKala = (577 Ka) 9.5, @ K, (5.19)
= q—TZ_T[QrSl (&) Kg].
Therefore, using (5.1) and (5.18)—(5.19) we obtain
Z pm[M] = Z pm[2rS1 @ Ks] (5.20)
[M]:M (g2)#0 [M]:wpar=r+1
2r(2r—1)
= Y VI 2 e[S ¢ [K)
[M):wpr=r+1

=¢" (q — 1)V [2r)} [$1]®) % [Ko).
5.5. Relation (4.15) in H(kQ,T)

Now we are ready to establish the following identity in the :Hall algebra corresponding
to the BK relation (4.15).

Proposition 5.7. The following identity holds in 1Hall algebra ﬁ(kQ, T):

2r4+1

Z (=1)![S1]® % [So] % [S4]PrH1—0)

t=0



M. Lu, W. Wang / Advances in Mathematics 430 (2023) 109215 37

=—v (g —1)(g a7 2 [S1]®) % [Ki] + V7 (g — 1)(g; )2-[S1] ") * [Ka).

Proof. Combining Lemma 5.5, (5.17) and (5.20), we finish the computation in (5.11) as
follows:

2r+1

D (=)' [S1]D s [So] # [Sy]HY

t=0
= — ¢ (g = 1)UL [S1] 30 % [Ka] + ¢ (g — 1)@V [20][$1] 3 # [Ko]

= —v (g =1)(g a7 )2 [S1]P7 5 [Ka] + v (g — 1)(q; 0)2r[S1] P # [Ka].
The proposition is proved. 0O
6. 2Divided powers in <Hall algebra

In this section, we establish closed formulas for the idivided powers in terms of :Hall
basis for the 2Hall algebra ﬁ(kQ, 7).

To that end, by Lemma 3.9, it suffices to consider the iquiver which consists of
a single vertex with a trivial involution, and the associated :quiver algebra given by
A" = k[z]/(2?). The corresponding split :quantum group U* of rank one is the algebra
Q(v)[B, k*1]. The following is the special case of [27, Proposition 7.5] at rank one.

Lemma 6.1. There exists a Q(v)-algebra isomorphism ¢ : Ut|y—y — H(kQ, ) (of rank
one) which sends

B —1[s], ke -X
qg—1 q

Lemma 6.2. The following identity holds in ?—NL(kQ, T), for m € N:
[S]* [mS]=v ™" [(m+1)S]+ (v"™ — v ™) [(m — 1)S] * [K]. (6.1)
Proof. The required Euler form is given by (S, S9™)o = m = dimxHomn. (S, S®™). For

any non-split short exact sequence 0 — S®™ — M — S — 0 in mod““(A’), we have
M =2 §9(m=1) ¢ K. Note that Ext}.(S, S™) = m. Then we have

[S] * [mS] =v"™"[(m + 1)S] +v_"(¢™ — 1)[(m — 1)S & K]
=v"[(m + 1)S] + (v — v"™)[(m — 1)S] * [K].

The lemma is proved. O
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Inspiring by (4.10)—(4.11), we define the +-divided power of [S] in H(kQ, 7) as follows:

s e L [ ISITLL (S + v (v = 1225 — 1RIK]) - ifm = 2k + 1,
L Il | TSP v (v = 1022 — 1R[K]) ifm = 2k;
e = ! MHLMW+v%ﬁ—U[mm>ﬁm=%+L
O [l | TI o ([S12 + v (v2 = 1)2[25 — 22[K])  if m = 2k.

These «-divided powers satisfy the following recursive relations:

(ST [SIF™ = [2m + 1][SIF Y, (6.2)
1] % [S)2™ ) = [2m 4+ 2)[S]P7 ) —v(v —v 12 2m + 1S < K], (6.3)
(] (ST~ = [2mlSI5"™, (6.4)
18] % [S]2™) = [2m + ][]V — v(v — v 1)22m][S)" TV < K] (6.5)
Lemma 6.3. The isomorphism 12 in Lemma 6.1 satisfies that, for m € N,
(m) (m)
= pm)y _ 153 = )y _ 15
Proof. Follows by definitions. O
We denote by [0 ] =1, and for any k € Z>1,
[2k]v = [Qk]v[2k - 2}\, T [4]V[2]v-
We denote by |x] the largest integer not exceeding z, for z € R.
Proposition 6.4. The following identity holds in 7—~l(kQ, T), form € N:
(n) L ke =(57) (v—vhF k
(S5 = [(n — 2k)S] * [K]". (6.7)

[ — 2KTL 2K}

Proof. We prove the formula by induction on n; the cases when n = 0,1 are clear. To
facilitate the induction, let us rewrite (6.7) depending on the parity of n: for ¢ € N,

 yh(k—1)— (2524 . (v— v 1)k

(2¢) _
155 = ];) [2c — 2H]L |2k

[(2¢ — 2k)S] * [K]F, (6.8)

peit € R ="y 1)k
[ =3 72 2k]!([2k]!! Pl v 2e—2m8 K. (6.9)
k=0 v v
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First we shall prove (6.8) for [S]ézc) by assuming the formula holds for [5]82671) with
¢ > 1. Using the inductive assumption (6.9) (with ¢ replaced by ¢ — 1), (6.4) and (6.1),
we have

[QC]V[S](%QC) _ [S} % [S]éZC—l)

ezl k()= (273 1) (v— v 1)k

=2 [2c — 2k — 1]\, [2K]

[S] % [(2¢ — 2k — 1)S] * [K]*

"
v

ezl k)= (2735 1) (v—v 1)k

2 — 2k — 1)L [2k]

I
k=0 v

<V1+2k72c[(26 — 2k)S] * [K]F + (v2=2h—1 _ y1+2k=2¢)[(90 ok — 2)] « [K]k+1)

a 1 ok
Y memm (T (v v 2o o,

!
k=0 v

vk(k—l)—(%*;kﬂ) ) (V _ V—l)k—l(v2c—2k+1 _ v2k—2c—1)[2k]
+ e 2k 1Ty >[(2c—2k)5] * [K]*

c Vk(k—l)—(%;?’“) (v — vk

- [2¢ — 2K [2K]E (v**[2¢ — 2k]y + v 22k ) [(2¢ — 2k)S] * [K]*

c hk—1)—(>3%") . (v— v 1)k

[2c — 2RI} (2]}

[(2¢ — 2k)S] * [K]*.

In the equation (a) above, we have shifted the index k +— k — 1 in the second summand
on the LHS of (a). This proves (6.8).
We now prove (6.9) for [S](%%H) by assuming (6.8) for [S]® and the formula for

0
[5]82671) (i.e., (6.9) with ¢ replaced by ¢ —1). Together with (6.5) and (6.1), we compute

[2¢ + 1]y [5)7FY

= [5] % [S]%? 4+ v(v — v 1)2[2¢)y [S] Y # [K]
c vk(kfl)f(%;z’“) ) (V _ V*l)k

- [2¢ — 2k]}, [2k]" [S] * [(2c — 2k)S] = [K]*
k= v v

+v(v— v H2[2d, [S)5TY # K]

[}

B € yhk=1)—(>3%") . (v— v 1)k .
& [2¢ — 2k] [2k] %

(V2200 + 20 = 28)S] # [K]* + (v 2 — v2E-2)(26 — 2k — 1)8] + [K]*+)
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c—1 Vk(k+1)_(2c7§k71)+1 ) (

2c]v 2_:

k=0

V_V—1>k+2

e — 2k — 1L A" [(2¢ — 2k — 1)S] * [K]*

which can be reorganized as

© k=)= (*3%*)+2k—2¢ (v—vhk
- Z [2¢ — 2K]%, [2K)% (14 2¢ — 2k)S] * K]
k=0 v v
el k(k—1)—(2952%) (o _ u—1\k
v 3 v N B
" (k—o [2¢ - 2k]!v[(2k]!v! ) (v2em2k _ y2h=2e)

“lkwﬂ>0“?*ﬁlmv—v1

DE -
Z [2¢ — 2k — 1], [2k]" ) [(2¢ — 2k — 1)S] * [K]**

c vk(k_l)_(zc;%).;.zk_zc . (V _ V—l)k .
= [2c — 2L [2H]! [(14 2c—2k)S] * [K]

. ci:l Vk(k—l)—(zcg%)"‘élc X (V _ v—l)k+1
[2c — 2k — 1], [2K]!

k=0
R+ = (12572 (v— v 1)k

1+ 2¢ — 2k], [2k]"

[(2¢ — 2k —1)8] * [K]FH!

k=0

(v—2k+(2c—2k)+2k—2c[1 2 — 2Ky + V2—4k—(1+2c—2k)+4c[2k]v) [(1+ 2 — 2k)S] * [K]k

c vk(k+1)*(1+2§_2k
=[2c+1 >
k=0

). (v —v1)F

[T+ 2c — 2k] [2k]Y [(14 2¢ — 2k)S] * [K]*.

In the equation (b) above, we have shifted the index k — k — 1 in the second summand
on the LHS of (b).
The proposition is proved. O

Proposition 6.5. The following identity holds in 7—~L(kQ, T), forn € N:

LV (M5) L (y -y )k .
[5)() = > TRl [(n — 2k)S] * [K]*. (6.10)

Proof. The proof is entirely similar to the one for Proposition 6.4, using now the recur-
sions (6.2)—(6.3); it will be skipped. O

7. The 2Serre relation in 2Hall algebra

In this section, we shall establish an identity in the :Hall algebra ﬁ(kQ, 7) correspond-
ing to the Serre relation (4.16) in U* (where j = 7j), modulo a combinatorial identity
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which will be established in Section 8. By Lemma 3.9, we are reduced to considering a
rank two wquiver.

7.1. Identities in 1Hall algebra

Consider the iquiver
Q=(1"_-""2), 7=1Id, where a = —¢j. (7.1)

Then the corresponding :quiver algebra A* has its quiver Q as

€1 13
Lo O
Al (7.2)
Qg
We shall prove the following identity corresponding to the 2Serre relation (4.16), where
Jj=TJ.

Theorem 7.1. Let A* be the wquiver algebra associated with the vquiver (7.1). Then the
following identity holds in H(kQ,T), for any D € Z/2:

1+a

ST (=1)PSYY # [So] # [SaSH T =0, (7.3)
n=0
14a
D (1) Salg * [S1] # [Saliy ™™ = 0. (7.4)
n=0

Remark 7.2. The identity in the :Hall algebra corresponding to Serre relation (4.16) for
j # 7j can be proved similarly to or simply derived from Theorem 7.1; see Proposition 9.4
below.
7.2. A building block
We denote
Iy = {[M] € Iso(mod™(kQ)) | IN C M such that N = Sy, M/N = kSl}. (7.5)

We also introduce the following polynomial in 4 variables:

pla,r,s,t) = —s(a+1t) +2ra+ (upr —t+2s —r)(t —7) + (s —7)? (7.6)

+<S;r)+(t—r)2+<t;T)+r(s+t)— <T"2H)+1.
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Any k@-module M with dimension vector n§I + 3; can be decomposed as
M = N g SPum (7.7)

with N indecomposable (unique up to isomorphism), for a unique uy; € N.
The following formula is a basic building block in the subsequent computations of the
15erre relation in an ‘Hall basis.

Proposition 7.3. The following identity holds in ﬁ(kQ, T), for s,t > 0:

[557] * [S2] * [tS1] (7.8)

min{s,t}

yParst) (g _ y—lys+t—r+l [S]'v[t]‘v UM [M] * r
2 2 e o 12, iy

r=0 [M]€Zsii—2r v

Proof. By definition, we have
[5S1] * [Sa] * [tS1] = [sS1] * [S2 @ SP!]. (7.9)
Observe that for any morphism f : % — Sy@SP", we have Imf = SP" Kerf = S?(S_T)

and Cokerf = Sy & S?(t_r) for some r. In particular, 0 < r < min{s,¢} in this case.
Using a standard linear algebra fact (cf., e.g., [33]), we obtain

[{f:SP° = Sy @ 8P | Kerf = 877", Cokerf = S, &SP} (7.10)

r—1

s _ 47 t_ g
:‘{AeMsxt(kHrankA:r}‘:H(q Q)(q‘ q )
0 q" — ¢’
j=
By (7.9) and applying (3.20), we have
[8S1] * [Sa] * [tS4]
min{s,t}
= Z Z vfsa+stq7(sfr)a+t(sfr)7(57T)S+(577,)2+8a78t (711)

r=0 [M]€elso(modmil(A*))

Ext'(S7¢ 7, S @ STl T (¢ — @)(d — )
[Hom(SPC ™, 8, 0 ST 5y -

[M] + [Kq]"

min{s,t}

Z Z V(2rfs)(a7t)72r(s r)—=2(s—r)(t—r 1:[ 7 7qj q 7qj)

—qJ
r=0 [M]E€Lsii1—_or ¢ —a

Ext (ST Gy @ SPET) ) - [M] KT
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since |E><‘51(Sf9 ) Sy @ Sy tir))M| # 0 implies [M] € Zsyy—2, by (7.5). Recall M =
N@SP" for some indecomposable kQ-module N from (7.7). From [34] or [35, Theorem
3.16] and its proof, recalling (5.6) we have

(wnr—(t—7))(t—7) |:UM :| )

Fea<< " ges8t- =V t—p

Using the Riedtman-Peng formula in Lemma 5.3, one obtains that

[Ext! (ST, 85 @S2 | (7.12)

s—r—1/, ¢—p i t—r—1 —r i
:Hi:O (¢ —¢)Iico (¢ -4 (q - 1)v(uM—(t—r))(t—r)+2(s—r)(t—r) Upg )
|Aut (M) t=r],

Thus using (7.12), we rewrite (7.11) as

[s51] * [S2] * [t51] (7.13)
min{s,t} r—1, ¢ j t j
—s(a ra+(unr —t+2s—r)(t—r q _qJ q _q]
373 e ] €0 o)
=0 [M]€Tsti—2r Jj=0
o (@ =) Tizg ("""~ ') [un
 Adi= i= M) * [K4]".
[Aut(M)] t—r) MIx K]

Recall ¢ = v2. Note that

r—1

[ -a)=v*Dw—vyph,

=0

1:[ (¢*—¢’) = TS+(;)(V —v Y slv[s = 1]y ...[s =7 + 1]y,

_H (¢ = q') = v (v — vy s — o

These identities (and the counterparts of the last 2 identities with s replaced by t)
allow us to convert the formula (7.13) to (7.8) by a direct computation. This proves the
proposition. O

7.8. 1Serre relation in H(kQ,T)

It is well known that H(kQ°P, 7) = H(kQ, 7)°P. Hence the identity (7.4) is equivalent
o (7.3). It remains to prove (7.3).
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In this subsection, we shall prove (7.3) (and hence Theorem 7.1), modulo the validity
of a combinatorial identity (which will be established in Section 8). Note that the identity
(7.3) can be rewritten as

14a
S ) # [8] (ST =0, (7.14)
n=0
f(-l)"[sl]g’” % [So] + [Sa] e =0, (7.15)
n=0

We will provide a detailed proof of (7.14), which will be modified to give a proof of
(7.15).

7.3.1. Proof of (7.14)
We divide the computation of the LHS of (7.14) into 2 cases.
Case (I): n even. By Proposition 6.4 and Proposition 7.3 we have

(S5 [Sa] # [S1)S ™

5L Rt )= ()= () Ly e

[0 = 2k]V![1 + @ — n — 2m] 1 [2K]5 [2m]y

1)k+m

X [(n — 2k)S1] % [Sa] % [(1 + a — n — 2m)Sy] * [K,]*+™

5 La+;7n'J min{n—2k,1+a—n—2m}

- >

k=0 m=0 r=0

yhE=1)+mmt1)—("57) = (")

X Z — o1 o ! n m
(MIETor oo [n— 2k]L[1 + a — n — 2m]}, [2k]L[2m]

~ (V _ Vfl)k+mvp(a,r,n72k,1+afn72m)
X (v — V71)2+a72k72m77’ [n — 2]@]!\,[1 + C'L —n- 2m]i,
[l
U [M] r4k+m
[Ha—n—zm—r]vm*ml] :

This can be simplified to be, for n even,

+1—

wl3

7 n—2k
[S18 (3] « [S1]¢ T = Z 22 (7.16)
m= r=0 [M]€T1ta—2k—2m—2r

2+a k— [M] * [Kﬂr—&-k—&-m

vi(v—v!
a—n—2m—r |Aut(M)|

[T]!v[%
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where we denote (recall the polynomial p from (7.6))

c=k(k— 1)+ m(m+1) — (”2%) - (1 e 2’”) (7.17)

+pla,r,n—2k,14+a—n—2m).

Case (II): n odd. By Proposition 6.4 and Proposition 7.3 we have

Bﬂy)*Wﬂ*wﬂgﬂkw

2 k(k+1)— (n Qk) k
= o f} Lt - 200« [l 0 [5)
ar
L& ymlm-n= () |y yetym 1+ 2m) 1]  [Ka]™
— 14+ a—n—2m],[2m]} ! !

5 L#J min{n—2k,1+a—n—2m}

ST LE

r=0 [M]€T1+a—2k—2m—2r
Vk(k+1)+m(m_1)_<7L—22k)_(1+a72n—2m) ] (V . V—l)k+m

[n — 2kl ![1 + a — n — 2m]![2K])L[2m]4

% Vp(a,r,n—2k,1+a—n—2m)< —1>2+a—2k—2m—r [n — 2k]l/[1 ta—n-— 2m]|v

V—V [’r}!
Up [M} r+k+m
1+a—n—2m—7‘]v|Aut(M)|*[Kﬂ '

This can be simplified to be, for n odd,

n— lLa+1 an 2%

[S115") s [Sa] # [S]E ™) = Z > 3 (7.18)

m=0 7=0 [M]€Zi14 2k—2m—2r
Vz+2k:72m(v _ V71)2+a7k7m71” ny [M] * [Kl]rJrk:er
[r]y [2K]5[2m]y Ita=n=2m=r|  |Aut(M)|
Summing up (7.16) and (7.18) above, we obtain
a+1
PG VR ENFCR CARICA S (7.19)
n=0

atl 5 1 n

2,

:Ovz‘nk:O m=0 [M]el-1+a72k721n—27*
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VZ(V _ V71)2+a7k7m7r |: e :| [M] % [Kﬂr+k+m
(], [2K] % [2m ] Ita-—n=2m=r|  |Aut(M)]

n2 1 La«#l n,J

a+1

Sy y Y ¥

n=0,2ln k=0 m=0 r=0 [M]€T11q—2k—2m—2r

Vz+2k:72m (V _ V71)2+a7k7m7r ny [M] * [Kl]rJrker
[V [2k]5[2m]y Ita=—n=2m=r| — |Aut(M)|

Set
d=r+k+m.

Now we have reduced the proof of (7.14) to proving that the coefficient of W in
the RHS of (7.19) is zero, for any given [M] € Z1,4_24 and any d € N. Note the powers
of (v —v7!) in all terms are the same (and = 2 + a — d). Denote

at+1 5 1

T(a,d,u) Z Z Z 6{O<r<n—2k‘}[][ ][m] {1+a—nu—2m—r]
n=0,2|n k=0 m=0
(7.20)

;1 La«#l nJ

+2k—2m u
X 3 sosrsn- e (et

a+1
0,2 m=0

n=

where we set {X} = 1 if the statement X holds and §{X} = 0 if X is false. We note
r=d—k—m>0;see (7.17) for z, and also see (7.6) for the polynomial p.

Then the coefficient of ‘Aut(l\/}%‘ in the RHS of (7.19) is equal to (v — v~1)2+2=4T(q,
d,w). Summarizing the above discussions, we have established the following.

Proposition 7.4. The identity (7.14) is equivalent to the identity T(a,d,u) = 0, for any
integers a,d,u subject to the constrains
a>0, 0<d<(a+1)/2, 0<u<a+1-2d, d andu notboth zero. (7.21)
7.3.2. Proof of (7.15)
Note the differences on the formulas for [S]én) versus [S]%") in Proposition 6.4-6.5
merely lie in the powers of v. Going through the same computations in §7.3.1, we see
that the identity (7.15) is equivalent to the following identity

Ti(a,d,u) =0,

for a, d, u satisfying (7.21), where T} is modified from 7" in (7.20) by changing the power
of v in the first summand from 2 to z + 2k — 2m and the power of v in the second
summand from z -+ 2k — 2m to z.
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We shall establish the identities T'(a,d,u) = 0 and Ti(a,d,u) = 0 in the next section.
8. Combinatorial identities

The goal of this section is to prove the following identities (and hence complete the
proof of Theorem 7.1). In the process, we establish some interesting v-binomial identities,

which are of independent interest.

Proposition 8.1. For integers a,d,u satisfying (7.21), the following identities hold:

where T is defined in (7.20) and Ty is defined in §7.3.2.
8.1. Some v-binomial identities

We first establish some identities which will be used later.
Lemma 8.2. The following (equivalent) identities hold, for p € N:

3—
p—20k—1)m—2C-P)

p)' k;N PP (8.3)
k+m=p

L p(p+1 —2k(p— 1 2 "

];Ov U5 =2kt ) [Z]Uz = %. (8.4)

Proof. Clearly the 2 identities (8.3)—(8.4) are equivalent, by noting that [2k]" = [2]*[]

Pl 2t
and {kkz = [gk]npw with m =p — k.

By switching &k to p — k and noting [p g k’] = {z} , we see that the identity (8.4)
v2 v2

is equivalent to

P "
Z’Up(p;l)_Z(k—i_l)(p_k) |:p:| — [2p]l . (85)
k=0 o B

It remains to prove (8.4) by induction on p. It is clear when p = 0. Assuming the
statement for p (8.4) (and its equivalent (8.5)), we shall prove

+1
pz o EEREED ok(p-kt2) [P 1| M
. Ele T e
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Indeed, using the v-binomial identity [p—]i:— 1} =2k [g] + v 2pHI=k) [k _ 1} )
v2 v2 2

we have

p+1
Z v%,gk(rmz) {p Z 1]
,U2

k=0
@@ _op(p—k+2) [, 2k | P —2(p—k+1) | P

Z VU k| LT k=1,

k= v v

- @@ ok (p—k+1) «- EAUPED) _o(k+1)(p—k+2)+2 | P
— 2

Qv i Tt > v k-1

k=0 v k=1

p
i (P+1)(P+2) Qk‘(p k+1) (P+1)(P+2) 2(k+2 p— k+1)+2
- K 2+Z

: v k 0
_ . ptl 2t _op(p—k+1) | P -p-1 2t 9 (k+1)(p—k)
— P Zv 2 P 1 +v p— Z p—

)yl el _ R+ D)
vl N TR

where the identity (x) is obtained by shifting the index & in the second summand on the
LHS to k + 1, and (xx) uses the inductive assumption (8.4)—(8.5). O

—+ v

Identity (8.4) (after a rescaling v? — v) can be further reformulated as the following
identity (also compare [1, Ex. 5, pp.49)):

zp:v (p= ’““)H f[ 1+v7%). (8.6)

Lemma 8.3. The following identity holds, for d > 1:

U(Tgl)fz(kq)m

LV " )

k,m,reN
k+m+r=d

Proof. Using (8.3) we have

U(T;1)72(k71)m

D e D ey
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In the last step above, we have used the standard v-binomial formula (5.13). O
8.2. Proof of Identity (8.1)
It is crucial for our purpose to introduce a new variable

w=n+m-—k—d

. . u u
in place of n in (7.20). Hence we have 1+a—n—d—m—|—k}v: [1+a—2d—w]v

and
n=w—-—m+k+d=w+r (mod?2). (8.8)

The condition r < n — 2k in T'(a, d, ) in (7.20) is transformed into the condition w > 0.
By a direct computation we can rewrite z in (7.17) as

2= (”;1) — 2k — )ym + L, (8.9)

where
L=dd-1)—aw+ (u+w)(l+a—-2d—w)+w?+1.

(We do not need the precise formula for L except noting that L is independent of
k,m,r, and only depends on a,d,w, u.) Hence, for fixed a,w, d, u, using (8.8)—(8.9) and
u

Lemma 8.3, we calculate that the contribution to the coefficient of
) l1+a—2d—w Y

in T(a,d,u) in (7.20), for d > 0, is equal to

r+1)_2( E—1)m v("'gl)—zl.'(m 1)

L Tv(2
B D Y AP D 3e T

"
k,m,reN,r even v k,m,reN,r odd
k+m+r=d k+m+r=d

) _2(k—1)m

("3
Oy g
BRI M 5673 7
k+m+r=d

Note that the identity (x) above is obtained by switching notation k <> m in the second
summand on the LHS of (x). Therefore, we have obtained that T'(a,d,u) = 0, for d > 0.

It remains to determine the contributions of the terms with d = 0 to T'(a,0,u) in
(7.20), for fixed a,u; recall from (7.21) that w > 0 when d = 0. In this case, we have

k=m =1r =0, and a direct computation shows that the power z can be simplified to
be z=(1 —u)w+ (1 +a)u+1. Then, for 0 < u < a+ 1, we have
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_ (14a)u+1 1\ W (1—w)w U
D MR P |

w>0

(:) (_1)1+av(1+a)+1 Z(_l)wv(u—l)x |:'LL:| (:2) 0,
v

X
x>0

where we have changed variables © = 14+a—w in the identity (1), and used the v-binomial
formula (5.13) in (2) above.
Therefore, we have established the identity (8.1).

8.3. Proof of Identity (8.2)

The proof is essentially the same as the proof in §8.2 for the identity (8.1), with some
modification of details below.
Going through §8.2, we calculate that the contribution to the coefficient of

[1 +a—u2d— w] in Ty(a,d,u) (see §7.3.2 for definition of T1), for d > 0, is equal
to v

V(T;I)—Qk(m,—l) T;rl)—2(k—1)m

(

v

(—1)“v"h (=) =i + (=) ==

B o5 7 D R = st
k+m+r=d k+m+r=d

) _2(k—1)m

vl
_(_ va _1\" _
SRR SRl 57577

n
k,m,reN v
k+m+r=d
Therefore, we obtain that T} (a,d,u) = 0, for d > 0. In exactly the same way as in §8.2,
we see T (a,0,u) =0, for 0 < u < a + 1. This proves the identity (8.2).
Hence the proofs of Proposition 8.1 and then of Theorem 7.1 are completed.

9. 2Hall algebras and zquantum groups

In this section, we establish several more identities in the :Hall algebras corresponding
to the relations (4.12), (4.14) and a remaining part of (4.16). Then we prove the main
theorem which provides a Hall algebra realization of the iquantum groups.

9.1. Relation (4.12)

Recall the Euler form (-,-)g is used in the twisted product of the :Hall algebra
HEKQ,T). B

We have the following identities in H(kQ, 7) corresponding to the relation (4.12) in
U,
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Proposition 9.1. Let (Q, ) be an vquiver. Then the following identities hold in ﬁ(kQ, T),
fori,jel:
[Ki] % [S5] = voria 9 [S5] + [Ki],
(K] * (K] = [Kj] * [Ks].
Proof. By Lemma 3.1, we have
K] * [S;] = v<reS(K1),res(51)>Qq—(Kiij>[Ki @ S;]
= V<Srmsj>Q—<SmSj>Q[Ki o) Sj]7
[S;] * [K,] = v{%i-Se=(SiSmle K, @ ).
Hence we have
(K] % [S;] = V<Sfi»5j>Q_<si’Sj>Q_<Sjxsi>Q+<SjvSﬂ'>Q[Sj] % K]
= V(Sﬂ,Sj)—(Si,Sj)[Sj] * [K;]
= vOrii T [SJ] * [Kz]
This proves the first formula. The second formula follows from (3.7). O

9.2. Relation (4.14)

We first recall the usual Serre relation in the twisted Ringel-Hall algebra associated
to @ over k, denoted by (H(kQ), *).

a1

Lemma 9.2 ([3/,1/]). Let Q = 1 . 2 . The following identity holds in H(kQ), for
1#jel:

ST (1S (S5 % [S]) = 0.
r+s=a+1

Recall the definition of virtually acyclic tquivers from Definition 4.4.

Proposition 9.3. Let (Q,7) be a virtually acyclic iquiver. The following identity holds in
H(KkQ,T), for any i # j € 1 such that Ti # i:

Y. CUTSIT [S) « [8i]¢) = 0.
Proof. We have [S;](") * [S;] * [S;]*®) = > (M]emodnit (ar) Par[M]. If par # 0, then M €

mod™" (kQ). So it boils down to the same computation as computing [S;](") % [S;] * [S,]¢*)
in H(kQ). Therefore the proposition follows from Lemma 9.2. O
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9.3. Relation (4.16) for j # 7j

a1 B1
Let Q= 1.7 2" .. 3 with involution 7 given by 71 = 3 and 72 = 2, where
“a Ba

a = —cy2. Then the quiver @Q of A? is

€1

(9.1)

@)
€2
The following is a variant of Theorem 7.1 and will be derived from it.

Proposition 9.4. Let A" be the wquiver algebra with its quiver (or opposite quiver) given
by (9.1). Then the following identities hold in H(kQ, ), for anyD € Z./2Z and j = 1,3:

f(—l)“[sz];” « [S)] # [SalS ™ = 0. (9.2)

Proof. Set i = 2. It suffices to prove the case when j = 1. Consider the full subquiver
Q' of Q formed by vertices 1 and 2. Let 'A* := kQ'/(¢3). We have [S;]() % [S;] * [S;]®) =
> Py [M]. For any [M] € mod™(A*) such that pys # 0, we have M € mod™'("A?).
In this proof, we shall denote the opposite quiver in (7.1) by Q" and its tquiver algebra
(i.e., the one in Theorem 7.1) by ”A”. Then 'A* can be viewed as a quotient algebra (and
also a subalgebra) of ”A* naturally. So it is the same computation as computing [S;](")
[S;] % [Si]®) in H(kQ",1d). Therefore the proposition follows from Theorem 7.1. O

9.4. 1Hall algebra realization of U

Let U be the Q(v)-subalgebra of U generated by Ei, for ¢ € 1. By the Serre presen-
tation of U* (see Theorem 4.2), letting degB; = «; and degk; = 0, for i € I, endows U* a
NI-filtered algebra structure. Let U be the associated graded algebra. Then by The-
orem 4.2 and the PBW theorem for 6’, there exists a natural algebra monomorphism
¢:U" — Uner by mapping F; — B; for any i € 1. Moreover, Urer = Ime - U,

Let (@, 7) be a virtually acyclic equiver. Recall I- from (2.6). The following result due
to Ringel and Green is well known (except that we follow Bridgeland’s Hall multiplication
here).

Lemma 9.5 ([34,1}]; cf. [27]). There exists an algebra monomorphism

R:U | =y — H(kQ)
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-1 o v iy
Fpov =18} ifi€ley  Fyo IS} i ¢ L.

Recall from [27, Lemma 5.3] that there is a filtered algebra structure on 7—~l(kQ, T),
and we denote the associated graded algebra

H(kQ, )& = P HKQE

a€Ko(mod™(kQ))

It is natural to view the quantum torus 7 (A") (see the end of §3.3) as a subalgebra of
H(kQ,7)8. Then H(kQ,7)8" is also a T (A*)-bimodule.
Just as in [27, Lemma 5.4 (ii)], the linear map

ﬁ(kQ) — ﬁ(kQ,T)gr, ([M]) = [M], YM € mod™(kQ), (9.3)
is an embedding of algebras. Now we are ready to establish the main result of this paper.

Theorem 9.6. Let (Q,7) be a virtually acyclic 1quiver. Then there exists a Q(v)-algebra
monomorphism

¢: UL, — H(KkQ,7),
which sends

—1 ~
Bj (F—l[sj], if j €1, ki —q YKy, if i =i € I; (9.4)

—Ci,Ti

B; »—)qL[ 30, if g ¢ Ly, Fiov 2Ky, ifrigicl.  (9.5)

Proof. To show that »J is a homomorphism, we verify that {/; preserves the defining
relations (4.12)~(4.16) for U*. According to Lemma 3.9, the verification of the relations
is local and hence is reduced to the rank 1 and rank 2 quivers, which were treated
in Section 5, Section 7 and earlier parts of this section. More precisely, the relation
(4.12) follows from Proposition 9.1. The relation (4.13) is obvious. The relation (4.14)
follows from Proposition 9.3. The relation (4.15) follows from Proposition 5.7. Finally,
the relation (4.16) follows from Theorem 7.1 and Proposition 9.4.
The homomorphism w UZ v ’H(kQ7 T) restricts to an algebra homomorphism

w U|v v %(A’L%

ki = —q VK], ifri=i, ko [K], if 7i # .

Since both U

|'u—v

generators, 1) : U‘U I T(A") is an isomorphism.

and %(Al) are Laurent polynomial algebras in the same number of
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It remains to prove that zz : I~J’v:v — ﬁ(kQ,T) is injective. We observe that zz is a

morphism of filtered algebras. Let Jgr : ﬁ‘lvg:r v ﬁ(kQﬂ')gr be its associated graded

morphism, and we obtain the following commutative diagram

¢

U |pmy — Uy

e

H(kQ) — > H(kQ,7)=

It follows that wgr o ¢ is injective since ¢ and R are mJectlve by Lemma 9.5 and (9. 3)

We claim that wgr is injective. Indeed, any element in U is of form Y ac ZI o(Va)- Kas
for V,, € U™. Here kq =[x k% for o = > ier @icvi. Assume wgr(z ,O(Va)ka) =0, 1ie.,
Yoezr VE(¢(Va)) # Ko = 0. Since H(kQ, 7) is graded, we obtain ¢#" (¢(Va)) * Ko = 0
for any a. Together with Theorem 3.6, we obtain V= (4(V,)) = 0, and then V,, = 0. It
follows that wgr is injective.

Now by a standard filtered algebra argument, we obtain that 12 : ﬁlv:v — ﬁ(kQ7 T)
is an algebra monomorphism. The theorem is proved. O

Remark 9.7. We expect Theorem 9.6 to hold for general iquivers (@, 7) without loops.
It will be interesting to develop a theory of quantum symmetric pairs (INLINJ%) and

(U, U") associated to Borcherds-Cartan matrices (corresponding to quivers possibly with

loops). We conjecture that a version of Theorem 9.6 holds for general quivers with loops.

9.5. Variations

The reduced Hall algebra associated to (Q,T) (or reduced 1Hall algebra), denoted by
SDHyea(AY), is defined (cf. [27]) to be the quotient Q(v)-algebra of H(kQ,7) by the
ideal generated by the central elements

[K;] + gs; (Vi € I with 76 =), and [K;] * [K;5] — vomiger; (Vi € T with 76 # ).
The following corollaries of Theorem 9.6 are immediate.

Corollary 9.8. Let (Q,7) be a virtually acyclic irquiver. Then there exists an injective
homomorphism 1 : va:v — SDHyea(AY), which sends k; — vz [5—] fori € I\I,,
Bi = Z4[Si], fori €L, and By = 25[Si], fori¢ L.

Let C'}TL(kQ, 7) be the Q(v)-subalgebra (called the composition algebra) of ﬁ(kQ,T)
generated by [S;] and [K;]*!, for i € I.

Corollary 9.9. Let (Q, ) be a virtually acyclic 1quiver. Then there exists an algebra iso-
morphism: 1 : szv:v = CH(KQ, ) given by (9.4)~(9.5).



M. Lu, W. Wang / Advances in Mathematics 430 (2023) 109215 55

Following Ringel, we define a generic composition subalgebra Cﬁ(Q, 7) below. Let K be
an infinite set of (nonisomorphic) finite fields, and let us choose for each k € K an element
vk € C such that vi = |k|. Consider the direct product CH(Q,7) := [Tkex CH(kQ, ).
We view CH(Q, T) as a Q(v)-module by mapping v to (vk)k. As in [34,14], we have the
following consequence of Corollary 9.9.

Corollary 9.10. Let (Q,7) be a wirtually acyclic rquiver. Then we have the following
algebra isomorphism ¢ : U* — CH(Q, ) defined by

-1

Bjn—>(|k|—_1

1571), i €L, Fioms (= 7K i ri =

By (rgl8il), #9¢ 1

EX

-H(V%[Ki])k, ifri 4.

References

[1] G. Andrews, The Theory of Partitions, The theory of partitions. Reprint of the 1976 original,
Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
[2] T. Bozec, Quivers with loops and generalized crystals, Compos. Math. 152 (2016) 1999-2040.
[3] M. Balagovic, S. Kolb, The bar involution for quantum symmetric pairs, Represent. Theory 19
(2015) 186-210.
[4] H. Bao, W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric
pairs, Astérisque 402 (2018) vii+134pp, arXiv:1310.0103.
[5] H. Bao, W. Wang, Canonical bases arising from quantum symmetric pairs, Invent. Math. 213 (2018)
1099-1177.
[6] C. Berman, W. Wang, Formulae of «-divided powers in Ug(sl2), J. Pure Appl. Algebra 222 (2018)
2667-2702.
[7] T. Bridgeland, Quantum groups via Hall algebras of complexes, Ann. Math. 177 (2013) 739-759.
[8] X. Chen, M. Lu, W. Wang, A Serre presentation for the :quantum groups, Transform. Groups 26
(2021) 827-857.
[9] X. Chen, M. Lu, W. Wang, Serre-Lusztig relations for :quantum groups, Commun. Math. Phys. 382
(2021) 1015-1059.
[10] E.E. Enochs, O.M.G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., vol. 30, Walter
de Gruyter Co., 2000.
[11] Z. Fan, C. Lai, Y. Li, L. Luo, W. Wang, Affine flag varieties and quantum symmetric pairs, Mem.
Am. Math. Soc. 265 (2020) 1285, 123pp.
[12] M. Gorsky, Semi-derived Hall algebras and tilting invariance of Bridgeland-Hall algebras, arXiv:
1303.5879v2.
[13] M. Gorsky, Semi-derived and derived Hall algebras for stable categories, Int. Math. Res. Not.
2018 (1) (2018) 138-159.
[14] J.A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math. 120 (1995)
361-377.
[15] D. Happel, On Gorenstein Algebras, Progress in Math., vol. 95, Birkhduser Verlag, Basel, 1991,
pp. 389-404.
[16] B. Keller, Chain complexes and stable categories, Manuscr. Math. 67 (1990) 379-417.
[17] B. Keller, Deriving DG categories, Ann. Sc. Norm. Super. Pisa, ClL. Sci. (4) 27 (1) (1994) 63-102.
[18] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005) 551-581.
[19] S. Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014) 395-469.
[20] G. Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999) 729-767.
[21] G. Letzter, Coideal subalgebras and quantum symmetric pairs, in: New Directions in Hopf Algebras
(Cambridge), in: MSRI Publications, vol. 43, Cambridge Univ. Press, 2002, pp. 117-166.
[22] Y. Li, On canonical bases for the Letzter algebra U’(sl2), J. Pure Appl. Algebra 224 (2020) 106227.
[23] M. Lu, Semi-derived Ringel-Hall algebras of 1-Gorenstein algebras, Appendix A, to [27].



56 M. Lu, W. Wang / Advances in Mathematics 430 (2023) 109215

[24] M. Lu, L. Peng, Semi-derived Ringel-Hall algebras and Drinfeld doubles, Adv. Math. 383 (2021)
107668.

[25] M. Lu, S. Ruan, W. Wang, «Hall algebra of the projective line and ¢g-Onsager algebra, Trans. Am.
Math. Soc. 376 (2023) 1475-1505.

[26] M. Lu, W. Wang, Hall algebras and quantum symmetric pairs II: reflection functors, Commun.
Math. Phys. 381 (2021) 799-855.

[27] M. Lu, W. Wang, Hall algebras and quantum symmetric pairs I: foundations, Proc. Lond. Math.
Soc. (3) 124 (2022) 1-82.

[28] M. Lu, W. Wang, Braid group symmetries on quasi-split :quantum groups via :Hall algebras, Sel.
Math. New Ser. 28 (2022) 84.

[29] M. Lu, B. Zhu, Singularity categories of Gorenstein monomial algebras, J. Pure Appl. Algebra 225
(2021) 106651.

[30] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Am. Math. Soc. 3 (1990)
447-498.

[31] G. Lusztig, Introduction to Quantum Groups, Birkhduser, Boston, 1993.

[32] H. Minamoto, K. Yamaura, The Happel functor and homologically well-graded Iwanaga-Gorenstein
algebras, J. Algebra 565 (2021) 441-488.

[33] K.E. Morrison, Integer sequences and matrices over finite fields, J. Integer Seq. 9 (2006) 06.2.1.

[34] C.M. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990) 583-591.

[35] O. Schiffmann, Lectures on Hall algebras, in: Geometric Methods in Representation Theory II, in:
Sémin. Congr., vol. 24-I1, Soc. Math. France, Paris, 2012, pp. 1-141, arXiv:math/0611617.



	Hall algebras and quantum symmetric pairs of Kac-Moody type
	1 Introduction
	2 ıQuiver algebras and homological properties
	2.1 Notations
	2.2 The ıquiver algebras
	2.3 Λı as a 1-Gorenstein algebra
	2.4 Modules of finite projective dimensions
	2.5 Singularity categories

	3 The ıHall algebras
	3.1 Euler forms
	3.2 Semi-derived Hall algebras for ıquiver algebras
	3.3 An ıHall basis
	3.4 ıHall algebras for ısubquivers
	3.5 An ıHall multiplication formula

	4 Quantum symmetric pairs and ıquantum groups
	4.1 Quantum groups
	4.2 The ıquantum groups Uı and Uı
	4.3 A Serre presentation of Uı
	4.4 Virtually acyclic ıquivers

	5 The BK relation in ıHall algebra
	5.1 First computation in H(kQ,τ)
	5.2 Case M(ε1)=0=M(ε2)
	5.3 Case M(ε2)=0∕=M(ε1)
	5.4 Case M(ε1)=0∕=M(ε2)
	5.5 Relation (4.15) in H(kQ,τ)

	6 ıDivided powers in ıHall algebra
	7 The ıSerre relation in ıHall algebra
	7.1 Identities in ıHall algebra
	7.2 A building block
	7.3 ıSerre relation in H(kQ,τ)
	7.3.1 Proof of (7.14)
	7.3.2 Proof of (7.15)


	8 Combinatorial identities
	8.1 Some v-binomial identities
	8.2 Proof of Identity (8.1)
	8.3 Proof of Identity (8.2)

	9 ıHall algebras and ıquantum groups
	9.1 Relation (4.12)
	9.2 Relation (4.14)
	9.3 Relation (4.16) for j∕=τj
	9.4 ıHall algebra realization of Uı
	9.5 Variations

	References


