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1. Introduction

1.1. In [27], the authors formulated the ıHall algebras, denoted by H̃(kQ, τ) in this 

paper, of ıquiver algebras Λı associated to acyclic ıquivers (Q, τ) over a finite field k = Fq

in the framework of semi-derived Ringel-Hall algebras of 1-Gorenstein algebras [24,23]. 

This new form of Hall algebras was motivated by the constructions of Bridgeland’s Hall 

algebra of complexes [7] and Gorsky’s semi-derived Hall algebras [12,13] (which were in 

turn built on [34,30,14]; for a survey see [35]). The ıHall algebras of ıquiver algebras 

were conjectured to provide a realization of the universal ıquantum groups arising from 

quasi-split quantum symmetric pairs of Kac-Moody type, and for finite type this was 

established in [27].

Bridgeland’s Hall algebra construction in [7] produces the Drinfeld double Ũ of a 

quantum group U, and our ıHall algebra construction produces a universal ıquantum 

group Ũı. The main difference between the ıquantum groups Uı (namely, the quantum 

symmetric pair coideal subalgebra of U) à la G. Letzter [20] and the universal ıquantum 

groups Ũı (a coideal subalgebra of Ũ) in [27] is that Uı depends on various parameters 

while Ũı admit various central elements. A central reduction of Ũı recovers Uı.

We view ıquantum groups as a vast generalization of Drinfeld-Jimbo quantum groups, 

and aim at extending various fundamental constructions from quantum groups to ıquan-

tum groups [4] (see also [5,11]). Bridgeland’s Hall algebra realization of a quantum group 

[7] has been reformulated in [27] as ıHall algebra for ıquivers of diagonal type, just as a 

quantum group can be viewed as an ıquantum group of diagonal type.

A Serre presentation of quasi-split ıquantum groups Uı of Kac-Moody type is more 

complicated than a Serre presentation (which is the definition) of a quantum group, and 

it was recently completed in full generality in our work joint with X. Chen [8]. Our work 

was built on partial results in [19,3] in Kac-Moody setting; a complete presentation of 

Uı in finite type was already given earlier by Letzter [21]. A crucial relation, known as 

the ıSerre relation, in the final presentation for Uı, involves the ıdivided powers which 

originated from the theory of canonical basis for quantum symmetric pairs [4,6]. The 

ıdivided powers come in 2 forms, depending on a parity.

1.2. In this paper, we first extend the definition of ıHall algebra from acyclic ıquiv-

ers as treated in [27] to general ıquivers (allowing oriented cycles), (Q, τ). Since the 

ıquiver algebra Λı associated to a non-acyclic ıquiver is infinite-dimensional (and still 

1-Gorenstein), the technique of Bridgeland’s Hall algebras or Gorsky’s semi-derived Hall 
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algebras does not seem to apply. However, the foundation (such as singularity categories 

and Hall basis) for the semi-derived Ringel-Hall algebra of 1-Gorenstein algebras in [23]

(see also [24]) can be extended to this infinite-dimensional setting. To keep the exposi-

tion at a reasonable length, we have chosen to focus on formulating the ıHall algebra 

H̃(kQ, τ) and its main properties (instead of treating general 1-Gorenstein algebras; see 

Remark 3.8). Some of these new technical developments can be applied to shed new 

light to the Hall algebra realization of Drinfeld-Jimbo quantum groups via non-acyclic 

quivers.

Motivated by the connection to the ıquantum groups Ũı, we formulate the notion 

of virtually acyclic ıquivers; see Definition 4.4. The virtually acyclic ıquivers include all 

acyclic ıquivers, but also allow the generalized Kronecker ıquivers Q (4.17) as new rank 

one ısubquivers. By the requirement of ıquivers that the nontrivial involution τ preserves 

the generalized Kronecker quiver Q, the number of arrows in Q is necessarily even. This 

translates into that the generalized Cartan matrix C = (cij)i,j∈I associated to Q satisfies 

that ci,τi ∈ −2N whenever i �= τi. (In the setting of [27], the acyclic condition on ıquivers 

imposes that ci,τi = 0 whenever i �= τi.)

The ıdivided powers in the setting of Ũı are formulated in (4.10)–(4.11), by suitably 

modifying earlier versions in Uı in various generalities (cf. [4,6,8,22]). These ıdivided 

powers are then used to provide a presentation of Ũı with generators Bi, ̃ki (i ∈ I)

subject to relations (4.12)–(4.16) in Theorem 4.2, a variant of the presentation for Uı in 

[8].

With the above constructions in place, we are ready to formulate the main result of 

this paper, which generalizes [27, Theorem 7.7] for ADE type and, in case of acyclic 

ıquivers, settles [27, Conjecture 7.9] completely. Set v =
√

q.

Main Theorem (Theorem 9.6). Let (Q, τ) be a virtually acyclic ıquiver. Then there exists 

a Q(v)-algebra monomorphism ψ̃ : Ũı
|v=v

→ H̃(kQ, τ), which sends

Bj �→ −1

q − 1
[Sj ], if j ∈ Iτ , k̃i �→ −q−1[Ki], if τi = i ∈ I;

Bj �→ v

q − 1
[Sj ], if j /∈ Iτ , k̃i �→ v

−ci,τi
2 [Ki], if τi �= i ∈ I.

1.3. There are 2 relations for Ũı which are quite involved at this level of generality, 

namely the BK relation (4.15) (which goes back to [3]) and the ıSerre relation (4.16). The 

main new technical difficulty in showing that ψ̃ in the Main Theorem is a homomorphism 

is to verify the BK relation (4.15) and especially the ıSerre relation (4.16) in the ıHall 

algebra H̃(kQ, τ). (In contrast, in the ADE setting of [27], the relation (4.15) is easy 

thanks to i �= τi and hence ci,τi = 0, while the ıSerre relation (4.16) for cij = −1 is all 

one needs to verify.)
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The proof of the relation (4.15) in the ıHall algebra H̃(kQ, τ) requires some interesting 

Hall algebra computation in Section 5. In particular, we are able to see clearly how the 

two summands in (4.15) arise from the viewpoint of Hall algebra.

The verification of the ıSerre relation (4.16) in the ıHall algebra setting is highly 

nontrivial and occupies Sections 6 through 8. The strategy here bears some formal sim-

ilarities with that used in establishing the ıSerre relation for Uı; see [8]. The expansion 

formulas [6] for the ıdivided powers in terms of PBW basis of U are used [8] to reduce 

the verification of the ıSerre relation in Uı to some new v-binomial identity, which was 

then established after some serious work.

In the current ıHall algebra setting, we first establish closed formulas for the ıdivided 

powers in terms of an ıHall basis; see Propositions 6.4–6.5. These formulas are of inde-

pendent interest and have other applications; for example, they play a basic role in [28]

where we generalize the reflection functors on ıHall algebras from Dynkin ıquivers [26]

to virtually cyclic ıquivers; this establishes a conjecture in [9] on the relative braid group 

action on Ũı. The existence of such closed formulas (as well as those in [6]) is in our view 

a manifestation of the basic nature of ıdivided powers. (In contrast, closed formulas for 

monomials [Si]
∗n or Bn

i , for i = τi and n ∈ N, in terms of Hall basis or PBW basis are 

unknown.)

Next we convert the summation in the ıSerre relation (which are defined via ıdivided 

powers) into a linear combination of the ıHall basis, and a new quantum binomial identity 

arises this way. We eventually reduce the proof of this identity (see Proposition 8.1) 

further to the following identities (8.6)–(8.7): for p, d ≥ 1,

p∑

k=0

v−k(p−k+1)

[
p
k

]
=

p∏

j=1

(1 + v−j),
∑

k,m,r∈N

k+m+r=d

(−1)r v(r+1
2 )−2(k−1)m

[r]![2k]!![2m]!!
= 0.

(The first v-binomial formula here is non-standard, and as we learned from G. Andrews, 

it is a variant of a known identity of Rogers-Szegö polynomials, cf. [1, Exercise 5, pp.49].)

Both Ũı and H̃(kQ, τ) admit natural filtered algebra structures, whose associated 

graded are half a quantum group U− and Ringel-Hall algebra H̃(kQ) over a quantum 

torus, respectively. Once we know that ψ̃ is a homomorphism, the injectivity of ψ̃ can 

be established by applying some filtered algebra argument and reducing to the main 

theorem of Ringel and Green on Hall algebra realization of U−.

1.4. Note that a general quiver (possibly with loops) leads to a Borcherds-Cartan 

matrix, Borcherds Lie algebra and its corresponding quantum group. The theory of ıHall 

algebras developed in Sections 2–3 and a conjectural extension of Theorem 9.6 for general 

ıquivers call for a development of a theory of quantum symmetric pairs and ıquantum 

groups associated to Borcherds-Cartan matrices, which should be of independent interest.

1.5. The paper is organized as follows. In Section 2, following and generalizing [27], 

we formulate the ıquiver algebras, their projective modules and singularity categories in 
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the generality of arbitrary ıquivers. This requires us to overcome various technical issues. 

The ıHall algebras of ıquiver algebras associated to general ıquivers and their ıHall bases 

are established in Section 3.

In Section 4, we review and set up notations for quantum groups and ıquantum groups. 

A Serre presentation for Ũı is formulated. The verification of the BK relation (4.15) in 

the ıHall algebra is taken up in Section 5.

In Section 6, we formulate and establish the Hall basis expansion formulas for the 

ıdivided powers. These formulas are applied in Section 7 to reduce the verification of the 

ıSerre relation (4.16) in the ıHall algebra to a new v-binomial identity; the proof of this 

identity is given in Section 8.

Finally, in Section 9 we verify the remaining defining relations for Ũı in the ıHall 

algebra setting. We complete the proof of the main Theorem 9.6, providing a Hall algebra 

realization of the quasi-split ıquantum groups of Kac-Moody type.

Acknowledgments. We thank Changjian Fu and Yang Han for helpful discussions on 

quiver algebras. ML thanks Liangang Peng for his continuing encouragement and helpful 

discussions on Hall algebras. ML thanks for University of Virginia for hospitality and 

support. We thank East China Normal University for hospitality and support which 

helps to facilitate this collaboration. ML is partially supported by the National Natural 

Science Foundation of China (No. 12171333). WW is partially supported by the NSF 

grant DMS-1702254 and DMS-2001351.

2. ıQuiver algebras and homological properties

In this section, we review and generalize the ıquiver algebras Λı and their homological 

properties from acyclic ıquivers to general ıquivers allowing oriented cycles. Following 

[27, §3], we shall prove that Λı is 1-Gorenstein algebra, describe its singularity category 

Dsg(modnil(Λı)) and characterize the finite-dimensional nilpotent modules of finite pro-

jective dimensions. However, since the ıquiver algebra Λı may be infinite-dimensional, 

various results for modfg(Λı) and Dsg(modfg(Λı)), known for Λı finite-dimensional, have 

to be reestablished for modnil(Λı) and Dsg(modnil(Λı)) (see Lemma 2.4 and Lemma 2.6).

2.1. Notations

Let k be a field. For a quiver algebra A = kQ/I (not necessarily finite-dimensional), 

we always identify left A-modules with representations of Q satisfying relations in I. A 

representation V = (Vi, V (α))i∈Q0,α∈Q1
of A is called nilpotent if for each oriented cycle 

αm · · · α1 at a vertex i, the k-linear map V (αm) · · · V (α1) : Vi → Vi is nilpotent. We 

denote

� modfg(A) – category of finitely generated (left) A-modules

� proj(A) – category of finitely generated projective A-modules

� modnil(A) – category of finite-dimensional nilpotent A-modules
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� Kb(proj(A)) – bounded homotopy category of proj(A)

� Db(modfg(A)) – bounded derived category of modfg(A), with shift functor Σ

� Db(modnil(A)) – bounded derived category for modnil(A)

� proj.dimAM – projective dimension of an A-module M

� inj.dimAM – injective dimension of M

2.2. The ıquiver algebras

Let Q = (Q0, Q1) be a general quiver (where oriented cycles are allowed). Throughout 

the paper, we shall identify Q0 = I. An involution of Q is defined to be an automorphism 

τ of the quiver Q such that τ2 = Id. In particular, we allow the trivial involution 

Id : Q → Q. An involution τ of Q induces an involution of the path algebra kQ, again 

denoted by τ . A quiver together with an involution τ , (Q, τ), will be called an ıquiver.

Let R1 denote the truncated polynomial algebra k[ε]/(ε2). Let R2 denote the radical 

square zero of the path algebra of 1
ε

1′

ε′

, i.e., ε′ε = 0 = εε′. Define a k-algebra

Λ = kQ ⊗k R2. (2.1)

Associated to the quiver Q, the double framed quiver Q� is the quiver such that

• the vertex set of Q� consists of 2 copies of the vertex set Q0, {i, i′ | i ∈ Q0};

• the arrow set of Q� is

{α : i → j, α′ : i′ → j′ | (α : i → j) ∈ Q1} ∪ {εi : i → i′, ε′
i : i′ → i | i ∈ Q0}.

Note Q� admits a natural involution, denoted by swap. The involution τ of a quiver Q

induces an involution τ � of Q� which is basically the composition of swap and τ (on the 

two copies of subquivers Q and Q′ of Q�), cf. [27, §2.1].

The algebra Λ can be described in terms of the quiver Q� with relations [27, §2.2]. 

More precisely, we have Λ ∼= kQ�
/

I�, where I� is the admissible ideal of kQ� generated 

by

• εiε
′
i, ε

′
iεi for each i ∈ Q0;

• ε′
jα′ − αε′

i, εjα − α′εi for each (α : i → j) ∈ Q1.

By [27, Lemma 2.4], τ � on Q� preserves I� and hence induces an involution τ � on the 

algebra Λ. The ıquiver algebra of (Q, τ) is defined to be the τ �-fixed point subalgebra of 

Λ:

Λı = {x ∈ Λ | τ �(x) = x}. (2.2)
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Let Q be a new quiver obtained from Q by adding a loop εi at the vertex i ∈ Q0 if 

τi = i, and adding an arrow εi : i → τi for each i ∈ Q0 if τi �= i. The algebra Λı can 

be described in terms of the quiver Q with relations, cf. [27, Proposition 2.6]; that is, 

Λı ∼= kQ/I, where I is generated by

• εiετi for each i ∈ Q0;

• εiα − τ(α)εj for each arrow α : j → i in Q1.

The algebras Λ and Λı are finitely generated and hence are Neotherian. Note also that 

Λı is finite dimensional if and only if Q is acyclic. We call (Q, τ) an acyclic ıquiver if Q

is acyclic.

Note that Λı is an N-graded algebra, Λı = Λı
0

⊕
Λı

1, where Λı
0 = kQ, with the grading 

| · | given by |εi| = 1, |α| = 0, for i ∈ I and α in Q ⊆ Q. It follows that kQ is naturally a 

subalgebra and also a quotient algebra of Λı, cf. [27, Corollary 2.12].

2.3. Λı as a 1-Gorenstein algebra

Similar to [27, Remark 2.11], we obtain a pushdown functor

π∗ : modnil(Λ) −→ modnil(Λı). (2.3)

In particular, π∗ is an exact functor, which preserves projective modules and injective 

modules. However, π∗ may not be dense in general. π∗ admits a left and also right adjoint 

functor, i.e., the pullup functor π∗ : modnil(Λı) −→ modnil(Λ).

Viewing kQ as a subalgebra of Λı, we have restriction functors

res : modfg(Λı) −→ modfg(kQ), res : modnil(Λı) −→ modnil(kQ);

viewing kQ as a quotient algebra of Λı, we obtain pullback functors

ι : modfg(kQ) −→ modfg(Λı), ι : modnil(kQ) −→ modnil(Λı). (2.4)

In this way, we can and shall view modfg(kQ) (respectively, modnil(kQ)) as subcategory 

of modfg(Λı) (respectively, modnil(Λı)).

Let CZ/2(modfg(kQ)) be the category of Z/2-graded complexes over modfg(kQ). We 

shall identify modfg(Λ) ∼= CZ/2(modfg(kQ)) below. For i ∈ Q0, we denote by Pi the 

indecomposable projective kQ-module (kQ)ei.

Lemma 2.1 ([27, Proposition 3.11]). A Λı-module X = (Xi, X(α), X(εi))i∈Q0,α∈Q1
is 

isomorphic to an indecomposable projective Λı-module Λıej if and only if

{
the kQ-module (Xi, X(α))i∈Q0

is equal to Pj ⊕ Pτj

and X(εj) is a linear isomorphism,
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for some j ∈ Q0; see (2.4). In particular, we have a short exact sequence in modnil(Λı):

0 −→ Pτj −→ (Λı)ej −→ Pj −→ 0.

Similarly, one can describe the injective Λı-modules.

Following [15,10], a Noetherian algebra A is called d-Gorenstein if inj.dimAA ≤ d and 

inj.dimAA ≤ d.

Proposition 2.2. For a general ıquiver (Q, τ), Λ and Λı are 1-Gorenstein algebras.

Proof. The proof in [27, Proposition 3.5(1)] works verbatim for a general ıquiver. �

2.4. Modules of finite projective dimensions

Let (Q, τ) be an ıquiver. Recall that Λı = kQ/I with (Q, I) as defined in §2.2. 

Following [27, (2.7)], for each i ∈ Q0, define a k-algebra

Hi :=

⎧
⎪⎨
⎪⎩

k[εi]/(ε2
i ) if τi = i,

k( i
εi

τi
ετi

)/(εiετi, ετiεi) if τi �= i.
(2.5)

Note that Hi = Hτi for any i ∈ Q0. Choose one representative for each τ -orbit on 

I = Q0, and let

Iτ = {the chosen representatives of τ -orbits in I}. (2.6)

Define a subalgebra of Λı:

H =
⊕

i∈Iτ

Hi. (2.7)

Note that H is a radical square zero self-injective algebra. Denote by

resH : modnil(Λı) −→ modnil(H) (2.8)

the natural restriction functor. As H is a quotient algebra of Λı, every H-module can 

also be viewed as a Λı-module.

Recall the algebra Hi for i ∈ Iτ from (2.5). For i ∈ Q0 = I, define the indecomposable 

module over Hi (if i ∈ Iτ ) or over Hτi (if i /∈ Iτ )

Ki =

⎧
⎪⎨
⎪⎩

k[εi]/(ε2
i ), if τi = i;

k
1

k
0

on the quiver i
εi

τi
ετi

, if τi �= i.
(2.9)
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Then Ki, for i ∈ Q0, can be viewed as a Λı-module and will be called a generalized simple

Λı-module.

For any k-algebra A, denote by P≤d(A) the subcategory of modnil(A) formed by 

modules of projective dimension ≤ d for any d ∈ N. Similarly, P<∞(A) denotes the 

subcategory of modnil(A) formed by modules of finite projective dimensions.

Lemma 2.3. We have the following.

(a) proj.dimΛı(Ki) ≤ 1 and inj.dimΛı(Ki) ≤ 1 for any i ∈ Q0.

(b) For any M ∈ modnil(Λı), if proj.dimΛıM < ∞, then resH(M) is projective as 

H-module.

(We shall see from Corollary 2.13 below that the converse in (b) here also holds.)

Proof. (a). The proof is the same as for [27, Lemma 3.7].

(b). It follows from Lemma 2.1 that resH(Λıei) is projective for any i ∈ I. By con-

sidering the projective resolution of M and applying the exact functor resH the result 

follows. �

As we cannot find a suitable reference for the following result below, we include a 

proof here.

Lemma 2.4. For any M ∈ modnil(Λı), there exist short exact sequences

0 −→ M −→ HM −→ XM −→ 0, (2.10)

0 −→ XM −→ HM −→ M −→ 0, (2.11)

with HM , HM ∈ P≤1(Λı).

Proof. Let Si be the simple Λı-module corresponding to the vertex i ∈ Q0. We prove it 

by induction on the dimension of M .

First, if M = Si, then we have a short exact sequence

0 −→ Si −→ Kτi −→ Sτi −→ 0.

For any nonzero M , we have a short exact sequence for some i ∈ I:

0 −→ N −→ M −→ Si −→ 0.

By induction, there exists a short exact sequence

0 −→ N −→ HN −→ XN −→ 0

with HN ∈ P≤1(Λı). We have the following commutative pushout diagram
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N HN

f1

XN

M
g1

X

f2

XN

Si Si.

Since Λı is 1-Gorenstein, we have inj.dimΛıHN ≤ 1 by [10, Theorem 9.1.10]. Then 

there exists a commutative diagram of short exact sequences:

HN

f1

HN

X
g2

f2

HM Sτi

Si Kτi Sτi

(2.12)

by noting that Ext2
Λı(Sτi, H

N ) = 0. We have HM ∈ P≤1(Λı) by using the short exact 

sequence in the second column of (2.12), and g2 ◦ g1 : M → HM is injective. Hence the 

desired short exact sequence (2.10) follows.

Dually, one can prove the existence of the second short exact sequence (2.11). �

2.5. Singularity categories

2.5.1. The singularity category of modfg(A) is defined to be the Verdier localization

Dsg(modfg(A)) := Db(modfg(A))/Kb(proj(A)).

As Db(modnil(A)) is a thick subcategory of Db(modfg(A)), we define the singularity 

category Dsg(modnil(A)) of modnil(A) to be the subcategory of Dsg(modfg(A)) formed 

by all objects in Db(modnil(A)). Then Dsg(modnil(A)) is a triangulated category.

Note that Λı is a 1-Gorenstein algebra. Denote by

Gproj(Λı) := {X ∈ modfg(Λı) | Ext1
Λı(X, Λı) = 0} (2.13)

the category of finitely generated Gorenstein projective modules. Buchweitz-Happel’s 

Theorem shows that Gproj(Λı) is a Frobenius category with projective modules as 

projective-injective objects, and its stable category Gproj(Λı) is triangulated equivalent 

to Dsg(modfg(Λı)):

Φ : Gproj(Λı)
�−→ Dsg(modfg(Λı)). (2.14)
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Lemma 2.5. For any projective Λı-module V and for any N > 0, there exists a short 

exact sequence

0 −→ V ′ f−→ V −→ U −→ 0

such that U ∈ P≤1(Λı), and f is induced by paths of length ≥ N .

Proof. We can assume V is indecomposable. Then V = π∗(W ) for some indecomposable 

projective Λ-module W . By [27, Lemma 3.10], without loss of generality, we assume 

W to be of the form P
1

P
0

for some indecomposable projective kQ-module P . 

Let Q be the submodule of P generated by paths of length ≥ N , then Q is projective. 

We have P/Q is finite-dimensional nilpotent kQ-module. Let V ′ = Q
1

Q
0

and 

U = P/Q
1

P/Q
0

. By applying π∗, the desired short exact sequence follows. �

The following lemma is well known for modfg(Λı), and we need to prove it for 

modnil(Λı).

Lemma 2.6. For any X, Y ∈ modnil(Λı), we have X ∼= Y in Dsg(modnil(Λı)) if and only 

if there exist two short exact sequences

0 −→ U1 −→ Z −→ X −→ 0, 0 −→ U2 −→ Z −→ Y −→ 0

with U1, U2 ∈ P<∞(Λı), Z ∈ modnil(Λı).

Proof. The “if part” follows by definition.

For the “only if part”, since Λı is 1-Gorenstein, by [10, Theorem 11.5.1], we have two 

short exact sequences

0 −→ PX
f1−→ GX

f2−→ X −→ 0, 0 −→ PY
g1−→ GY

g2−→ Y −→ 0

with PX , PY ∈ proj(Λı), and GX , GY ∈ Gproj(Λı). Since X ∼= Y in Dsg(modnil(Λı)), we 

have GX
∼= GY in Gproj(Λı). Without loss of generality, we can assume that GX = G =

GY .

Consider g2 ◦ f1 : PX −→ Y . Since Y is nilpotent, there exists N > 0 such that 

g2 ◦ f1(p) = 0, for any path p of length ≥ N . By Lemma 2.5, there exists a nilpotent 

finite dimensional module U1 ∈ P<∞(Λı) and a projective resolution

0 −→ P
h1−→ PX −→ U1 −→ 0

with h1 induced by paths of length ≥ N . Then we have the following pushout diagram:
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P

h1

P

PX

f1

G
f2

h2

X

U1 Z X.

Clearly, Z ∈ modnil(Λı), and the third row gives us the first short exact sequence in the 

lemma.

By assumption, g2f1h1 = 0. So g2 factors through h2, i.e., there exists h : Z → Y

such that g2 = hh2. Note that h is epic. So we have the following commutative diagram 

of short exact sequences:

P PY

g1

U2

P
f1h1

G
h2

g2

Z

h

Y Y.

The exact sequence in the third column shows that U2 ∈ modnil(Λı); and together with 

the short exact sequence in the first row, we have U2 ∈ P≤1(Λı). Then the third column 

gives us the second short exact sequence in the lemma. �

Inspired by the definition of Dsg(modnil(Λı)), we denote by Gprojnil(Λı) the subcat-

egory of Gproj(Λı) formed by G such that there exists a short exact sequence

0 −→ U −→ G −→ X −→ 0 (2.15)

where U is of finite projective dimension and X ∈ modnil(Λı). In particular, we have 

proj(Λı) ⊆ Gproj(Λı).

Lemma 2.7 (cf. [15, Lemma 4.3]). The natural functor

U : modnil(Λı) → Dsg(modnil(Λı))

is dense.

Proof. Let Cb(modnil(Λı)) be the category of bounded complexes. Let C−,b(P≤1(Λı)) be 

the category of complexes bounded above with bounded cohomology over P≤1(Λı). Using 

Lemma 2.4, similar to [16, Lemma 4.1] (see also [24, Proposition 5.6]), one can prove that 
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for any bounded complex X• ∈ Cb(modnil(Λı)), there exists P • ∈ C−,b(modnil(P≤1(Λı)))

and an epimorphism P • → X• which is a quasi-isomorphism.

Let D−,b(P≤1(Λı)) be the derived category of C−,b(P≤1(Λı)). Then we have 

Db(modnil(Λı)) � D−,b(P≤1(Λı)), and we shall identify them. The remaining part of 

the proof is the same as in [15, Lemma 4.3] by using Lemma 2.4, and will be omitted 

here. �

Lemma 2.8 (cf. Buchweitz-Happel’s Theorem). Gprojnil(Λı) is a Frobenius category with 

projective modules as its projective-injective objects, and its stable category Gprojnil(Λı)

is triangulated equivalent to Dsg(modnil(Λı)).

Proof. It is obvious that Gprojnil(Λı) is an extension-closed subcategory.

For any G ∈ Gprojnil(Λı), by definition, there exists a short exact sequence 0 →
U → G → X → 0 where U is of finite projective dimension, and X ∈ modnil(Λı). 

By Lemma 2.4, there exists a short exact sequence 0 → X → Y → X ′ → 0 such 

that Y ∈ P≤1(Λı), and X ′ ∈ modnil(Λı). Then there exists a short exact sequence 

0 → U ′ → G′ → X ′ → 0 where U ′ is of finite projective dimension, and G′ ∈ Gproj(Λı). 

Then G′ ∈ Gprojnil(Λı) by definition. Since Λı is 1-Gorenstein, we have inj.dimΛıU ≤ 1. 

So we have the following left commutative diagram with all rows and columns short 

exact; doing pullback, we also obtain the following right commutative diagram:

U U U ′ U ′

G P ′ X ′ G P G′

X Y X ′, G P ′ X ′.

Combining the above two commutative diagram, we have the following commutative 

diagram with rows and columns short exact:

U U ′′ U ′

G P G′

X Y X ′.

So U ′′ is of finite projective dimension by the first row, and then P is projective by using 

the second row and column. It follows that Gprojnil(Λı) has enough injective objects. 
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Dually, one can prove that it has enough projective objects. Therefore, Gprojnil(Λı) is a 

Frobenius category with projective modules as its projective-injective objects.

The triangulated equivalence Φ defined in (2.14) induces a triangulated embedding, 

also denoted by Φ,

Φ : Gprojnil(Λı) −→ Dsg(modnil(Λı)),

G �→ X,

where G, X fit into (2.15). By Lemma 2.7, we have Φ : Gprojnil → Dsg(modnil(Λı)) is 

dense, and then it is a triangulated equivalence. �

2.5.2. Let T be an algebraic triangulated category with Σ as its shift functor. We 

call T ∈ T a partial tilting object if HomT (T, ΣiT ) = 0 for any i �= 0. In this case, we 

have a triangulated embedding Kb(proj(End(T )op)) −→ T ; see [17].

Recall that Λı is positively graded by degεi = 1, degα = 0 for any i ∈ Q0, α ∈ Q1. Note 

that Λı
0 = kQ. Let modfg,Z(Λı) be the category of finitely generated graded Λı-modules. 

One can define Dsg(modfg,Z(Λı)), Dsg(modnil,Z(Λı)), GprojZ(Λı) and Gprojnil,Z(Λı)

similarly; see, e.g., [27, §3.5]. Buchweitz-Happel’s Theorem also holds for this Z-graded 

version.

Lemma 2.9. The T = Λı
0 is a partial tilting object in Dsg(modfg,Z(Λı)), and its (oppo-

site) endomorphism algebra is isomorphic to kQ. In particular, we have the following 

triangulated embedding

Db(modfg(kQ)) −→ Dsg(modfg,Z(Λı)).

Proof. This result generalises [27, Proposition 3.14] to arbitrary ıquiver algebra, where 

the proof uses [29, Proposition 3.4] on finite-dimensional algebras. However, it is given 

in [32, Theorem 5.15] the corresponding result of [29, Proposition 3.4] for infinite-

dimensional algebras. With the help of [32, Theorem 5.15], the proof is the same as 

for [27, Proposition 3.14], hence omitted here. �

The triangulated embedding in Lemma 2.9, denoted by G, is given by the composition 

of functors:

G : Db(modfg(kQ))
T ⊗L

kQ−
−−−−−→ Db(modfg,Z(Λı))

π−→ Dsg(modfg,Z(Λı)). (2.16)

On the other hand, T is isomorphic to kQ as a Λı-kQ-bimodule, so (T ⊗kQ −) � ι, where 

ι is defined in (2.4). So G is equivalent to the composition

Db(modfg(kQ))
Db(ι)−−−→ Db(modfg,Z(Λı))

π−→ Dsg(modfg,Z(Λı)),
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where Db(ι) is the derived functor of ι since ι is exact. Moreover, the restriction of G to 

Db(modnil(kQ)) gives a triangulated embedding

Db(modnil(kQ))
Db(ι)−−−→ Db(modnil,Z(Λı))

π−→ Dsg(modnil,Z(Λı)).

Let τ̂ be the triangulated auto-equivalence of Db(modnil(kQ)) induced by τ . Similar 

to [27, Theorem 3.18], we have

(1) ◦ G � G ◦ Σ ◦ τ̂ . (2.17)

Lemma 2.10. The restriction of G to Db(modnil(kQ)) gives a triangulated equivalence

Db(modnil(kQ))
�−→ Dsg(modnil,Z(Λı)).

Proof. Since Db(modnil,Z(Λı)) is the smallest triangulated subcategory of

Db(modfg,Z(Λı)) containing modnil,Z(Λı), by definition, it suffices to check that all 

graded nilpotent Λı-modules are in G(Db(modnil(kQ))). Similar to [29, Lemma 3.2], 

we only need to check that S(i) ∈ G(Db(modnil(kQ))) for any simple Λı-module S and 

i ∈ Z. First, we have G(S) = S, where S is viewed as kQ-module naturally. From (2.17), 

S(i) = G(S)(i) = G((Σ ◦ τ̂)iS), and then S(i) ∈ G(Db(modnil(kQ))) for any simple 

Λı-module S and i ∈ Z. �

Theorem 2.11. Let (Q, τ) be an ıquiver. Then Db(modnil(kQ))/Σ ◦ τ̂ is a triangulated 

orbit category à la Keller [18], and we have the following triangulated equivalence

Dsg(modnil(Λı))
�−→ Db(modnil(kQ))/Σ ◦ τ̂ .

Proof. The proof is the same as for [27, Lemma 3.17, Theorem 3.18] by using now 

Lemma 2.10 and (2.17). �

Corollary 2.12 (cf. [27, Corollary 3.21]). For any M ∈ Dsg(modnil(Λı)), there exists a 

unique (up to isomorphisms) module N ∈ modnil(kQ) ⊆ modnil(Λı) such that M ∼= N

in Dsg(modnil(Λı)).

Proof. The proof is the same as for [27, Corollary 3.21]. �

Corollary 2.13. For any M ∈ modnil(Λı) the following are equivalent.

(i) proj.dimM < ∞;

(ii) inj.dimM < ∞;

(iii) proj.dimM ≤ 1;

(iv) inj.dimM ≤ 1;

(v) resH(M) is projective as an H-module.
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Proof. Proposition 2.2 states that Λı is 1-Gorenstein, and then the equivalence of (i)–(iv) 

follows by [10, Theorem 9.1.10].

(i)⇒(v) follows from Lemma 2.3, so it remains to prove (v)⇒(i).

Assume resH(M) is projective as H-module. By Corollary 2.12, there exists N ∈
modnil(kQ) such that M ∼= N in Dsg(modnil(Λı)). Together with Lemma 2.6, we have

0 −→ U1 −→ Z −→ M −→ 0, 0 −→ U2 −→ Z −→ N −→ 0

in modnil(Λı) with U1, U2 ∈ P<∞(Λı).

By applying resH to the first short exact sequence, since resH(U1) is projective, so is 

resH(Z). Then resH(N) is projective by applying resH to the second one, which implies 

that N = 0. So proj.dimΛıM < ∞. �

Remark 2.14. Bozec [2] studied semi-nilpotent representations of quivers (possibly with 

loops) and developed connections to crystals. It will be interesting to see if semi-nilpotent 

representations play a role in the setting of ıquivers in the generality of Section 1.4.

3. The ıHall algebras

In this section, we take the field k = Fq, a finite field of q elements. We formulate the 

ıHall algebra H̃(kQ, τ) as a twisted semi-derived Hall algebra for the ıquiver algebra Λı

and study its properties.

3.1. Euler forms

For K, M ∈ modnil(Λı), if K ∈ P≤1(Λı), we define the Euler forms

〈K, M〉 =

+∞∑

i=0

(−1)idimkExti(K, M) = dimkHom(K, M) − dimkExt1(K, M), (3.1)

and

〈M, K〉 =
+∞∑

i=0

(−1)idimkExti(M, K) = dimkHom(M, K) − dimkExt1(M, K). (3.2)

As in [23, (A.1)-(A.2)], these forms descend to bilinear Euler forms on the Grothendieck 

groups K0(P≤1(Λı)) and K0(modnil(Λı)):

〈·, ·〉 : K0(P≤1(Λı)) × K0(modnil(Λı)) −→ Z, (3.3)

〈·, ·〉 : K0(modnil(Λı)) × K0(P≤1(Λı)) −→ Z. (3.4)

Denote by 〈·, ·〉Q the Euler form of kQ. Denote by Si the simple kQ-module (respec-

tively, Λı-module) corresponding to vertex i ∈ Q0 (respectively, i ∈ Q0).



M. Lu, W. Wang / Advances in Mathematics 430 (2023) 109215 17

Lemma 3.1. For K, K ′ ∈ P≤1(Λı), M ∈ modnil(Λı), i, j ∈ I, we have

〈K, M〉 = 〈resH(K), M〉, 〈M, K〉 = 〈M, resH(K)〉, (3.5)

〈Ki, Sj〉 = 〈Si, Sj〉Q, 〈Sj , Ki〉 = 〈Sj , Sτi〉Q, (3.6)

〈K, K ′〉 =
1

2
〈res(K), res(K ′)〉Q. (3.7)

Proof. The proof of (3.6)–(3.7) is the same as for [27, Lemma 4.3].

It remains to prove (3.5). Since K0(modnil(Λı)) = 〈Si | i ∈ I〉 ∼= ZI, without loss of 

generality, we assume M = Si for some i ∈ I. For any K =
(
Ki, K(α), K(εi)

)
i∈Q0,α∈Q1

∈
modnil(Λı), define a Λı-module

φ(K) :=
(
Ki, K(α), −K(εi)

)
i∈Q0,α∈Q1

,

which lies in modnil(Λı). This defines an involution φ of modnil(Λı).

For any K ∈ P≤1(Λı), we have φ(K), π∗π∗(K) ∈ P≤1(Λı) by Corollary 2.13. Note 

that π∗π∗(K)i = Ki ⊕ Ki for i ∈ I. We have the following short exact sequence

0 −→ K
(fi)i∈I−−−−→ π∗π∗(K)

(gi)i∈I−−−−→ φ(K) −→ 0,

where fi = (IdKi
, IdKi

)t and gi = (IdKi
, −IdKi

).

Clearly φ preserves the Euler form (3.3)–(3.4). Since φ(Si) = Si for any i ∈ I, it 

follows that

〈K, Si〉 = 〈φ(K), Si〉, 〈Si, K〉 = 〈Si, φ(K)〉. (3.8)

By the proof of [24, Proposition 2.3], we have π̂∗(K) ∈ K0(P≤1(Λ)) = 〈K̂i, K̂i′ | i ∈ I〉. 
Since π∗ preserves the exactness, we have π̂∗π∗(K) ∈ 〈K̂i | i ∈ I〉 ⊆ K0(P≤1(Λı)). So 

one can show that (3.5) with K replaced by π∗π∗(K) holds. Then (3.5) follows from this, 

using (3.8) and the fact that resH(K) ∼= resH(φ(K)). �

3.2. Semi-derived Hall algebras for ıquiver algebras

We shall follow [23] with some suitable modification to define semi-derived Hall algebra 

of Λı for an arbitrary ıquiver (Q, τ). Let

v =
√

q.

Let H(Λı) be the Ringel-Hall algebra of modnil(Λı) over Q(v), that is, the Q(v)-vector 

space whose basis is formed by the isoclasses [M ] of objects M ∈ modnil(Λı), with the 

multiplication defined by (see [7])
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[M ] � [N ] =
∑

[L]∈Iso(modnil(Λı))

|Ext1(M, N)L|
|Hom(M, N)| [L].

Here Ext1(M, N)L ⊆ Ext1(M, N) is the subset parameterizing extensions whose middle 

term is isomorphic to L.

Define J to be the linear subspace of H(Λı) spanned by

{[K] − [K ′] | resH(K) ∼= resH(K ′), K, K ′ ∈ P≤1(Λı)}
⋃

(3.9)

{[L] − [K ⊕ M ] | ∃ exact sequence 0 −→ K −→ L −→ M −→ 0, K ∈ P≤1(Λı)}.

Let I be the two-sided ideal of H(Λı) generated by J .

Consider the following subset of H(Λı)/I:

SΛı := {a[K] | a ∈ Q×, K ∈ P≤1(Λı)}. (3.10)

For any ıquiver (Q, τ), modnil(Λı) satisfies [23, §A.2, (E.a)–(E.d)], where (E.d) holds due 

to Lemma 2.4. Thus, we can define the semi-derived Ringel-Hall algebra of Λı as

SDH(Λı) := (H(Λı)/I)[S−1
Λı ].

The quantum torus T (Λı) is defined to be (H(P≤1(Λı))/Iac)[S−1
Λı ], where Iac is the 

ideal generated by

{[K] − [K ′] | resH(K) ∼= resH(K ′), K, K ′ ∈ P≤1(Λı)}.

Then

T (Λı) = 〈[Ki] | i ∈ I〉. (3.11)

For any α =
∑
i∈I

aiŜi ∈ K0(modnil(kQ)) = ZI, define

Kα := q−〈X̂−Ŷ ,Ŷ 〉[X] � [Y ]−1 ∈ SDH(Λı),

where X =
⊕

i∈I:ai≥0

K⊕ai

i and Y =
⊕

i∈I:ai<0

K
⊕(−ai)
i . In this way, we have T (Λı) = Q{Kα |

α ∈ ZI}.

Lemma 3.2. {Kα | α ∈ ZI} forms a basis of T (Λı).

Proof. Consider the group K0(P≤1(Λı)) := K0(P≤1(Λı))/(K̂ − K̂ ′ | resH(K) =

resH(K ′)). Clearly we have

K0(P≤1(Λı)) = {K̂α | α ∈ ZI}. (3.12)
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For any 0 → K → K ′ → K ′′ → 0 in P≤(Λı), we have resH(K ′) = resH(K ⊕ K ′′). So 

T (Λı) is the group algebra of K0(P≤1(Λı)) over Q(v) with its multiplication twisted 

by q−〈·,·〉. By Corollary 2.13, there is a morphism K0(P≤1(Λı)) → K0(proj(H)) =

ZI induced by K �→ resH(K), which is surjective. Together with (3.12), we have 

K0(P≤1(Λı)) ∼= K0(proj(H)) = ZI, which is a free abelian group. So {Kα | α ∈ ZI} is 

a basis of T (Λı). �

The following Hall multiplication endows SDH(Λı) a T (Λı)-bimodule structure:

[M ] � [K] = q−〈M,K〉[M ⊕ K], [K] � [M ] = q−〈K,M〉[K ⊕ M ] (3.13)

for any K ∈ P≤1(Λı), M ∈ modnil(Λı).

With the help of (3.5), similar to [23, §A.3], we can define a T (Λı)-bimodule M(Λı) :=

T (Λı) ⊗H(P≤1(Λı))/Iac

(
H(Λı)/J

)
⊗H(P≤1(Λı))/Iac

T (Λı) via the action given by (3.13). 

The proof of [23, Lemmas A.11-A.12] proceeds in the same way with the help of (2.10). 

Therefore, SDH(Λı) is isomorphic to M(Λı) as T (Λı)-bimodules by [23, Proposition 

A.13].

3.3. An ıHall basis

In this subsection, we shall construct a Hall basis for SDH(Λı) via a new approach; 

comparing with [23, Lemma A.17]. For [23, Lemma A.17] (in the setting of a finite-

dimensional 1-Gorenstein algebra), we argue that SDH(Λı) is isomorphic to the semi-

derived Hall algebra SDH(Gproj(Λı)) of Gproj(Λı) defined in [13], and then a basis 

of SDH(Gproj(Λı)) gives rise to a Hall basis of SDH(Λı). For arbitrary (non-acyclic) 

ıquiver, Gorenstein projective Λı-modules may be infinite-dimensional, and then its semi-

derived Hall algebra is not well defined.

For [X] ∈ Iso(modnil(kQ)) ⊆ Iso(modnil(Λı)), by Corollary 2.12, we define 

H(Λı)[X] to be the subspace of H(Λı) spanned by {[M ] ∈ Iso(modnil(Λı)) | M ∼=
X in Dsg(modnil(Λı))}. One can decompose H(Λı) into a direct sum

H(Λı) =
⊕

[X]∈Iso(modnil(kQ))

H(Λı)[X].

Then H(Λı) is an Iso(modnil(kQ))-graded vector space.

For a short exact sequence 0 → K → L → M → 0 in modnil(Λı) with K of finite 

projective dimension, we have L ∼= M ∼= K ⊕M in Dsg(modnil(Λı)). It follows from (3.9)

that H(Λı)/J , and then M(Λı), are Iso(modnil(kQ))-graded vector spaces, that is,

M(Λı) =
⊕

[X]∈Iso(modnil(kQ))

M(Λı)[X].

Lemma 3.3. We have M(Λı)[X] = [X] � T (Λı) for any [X] ∈ Iso(modnil(kQ)) ⊆
Iso(modnil(Λı)).
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Proof. For any M ∈ modnil(Λı) such that M ∼= X in Dsg(modnil(Λı)), by Lemma 2.6

we have the following short exact sequences

0 −→ U1 −→ Z −→ X −→ 0, 0 −→ U2 −→ Z −→ M −→ 0

with U1, U2 ∈ P≤1(Λı). Then [X] = q−〈X,U1〉[Z] � [U1]−1, and [M ] = q−〈M,U2〉[Z] � [U2]−1

in M(Λı). Therefore,

[M ] =q−〈M,U2〉[Z] � [U2]−1

=q−〈M,U2〉+〈X,U1〉[X] � [U1] � [U2]−1 ∈ [X] � T (Λı).

The lemma is proved. �

It is well known that K0(modnil(kQ)) ∼= K0(modnil(Λı)) ∼= ZI are free abelian groups 

with a basis {Ŝi | i ∈ I}. For any M = (Mi, M(α), M(εi))i∈I,α∈Q1
in modnil(Λı), we 

denote

Îm(M(ε)) =
∑

i∈I

dimk(Im(εi))Ŝi ∈ K0(modnil(kQ)). (3.14)

Lemma 3.4. For any short exact sequence 0 → K → L → M → 0 in modnil(Λı) with K

of finite projective dimension, we have Îm(L(ε)) = Îm(K(ε)) + Îm(M(ε)).

Proof. It suffices to show that dimkIm(L(εi)) = dimkIm(K(εi)) + dimkIm(M(εi)) for 

any i ∈ I. It is equivalent to consider it in mod(Hi). For i �= τi, it follows from [24, 

Lemma 3.12] by using Corollary 2.13. A similar proof for i = τi will be omitted here. �

Consider the following set

G :=
{

(α, [X]) | α ∈ K0(modnil(kQ)), [X] ∈ Iso(modnil(kQ))
}

. (3.15)

Then H(Λı) is a G-graded vector space, that is,

H(Λı) =
⊕

(α,[X])∈G

( ⊕

Îm(M(ε))=α

M∼=X in Dsg(modnil(Λı))

Q(v)[M ]
)

. (3.16)

Lemma 3.5. M(Λı) is a G-graded vector space with grading induced by (3.16).

Proof. The proof is the same as for [24, Lemma 3.13] with the help of Lemma 3.4, and 

hence omitted here. �

Theorem 3.6 (ıHall basis). Let (Q, τ) be an ıquiver. Then

{
[X] � Kα

∣∣ [X] ∈ Iso(modnil(kQ)) ⊆ Iso(modnil(Λı)), α ∈ ZI
}

(3.17)
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is a basis of SDH(Λı).

Proof. Our proof here is inspired by that of [13, Theorem 3.7].

By Lemma 3.3, we have the following surjective morphism

T (Λı) −→ M(Λı)[X] = [X] � T (Λı), [K] �→ [X] � [K].

Let Ksplit
0 (H) be the split Grothendieck group of mod(H). Then we have the following 

composition of natural maps

ζ : T (Λı) −→ M(Λı)[X] −→ M(Λı)
ξ−→ Q(v)[Ksplit

0 (H)]

where ξ maps M to resH(M). Note that ξ is well defined. Indeed, applying resH to a 

short exact sequence 0 → K → L → M → 0 makes it split in mod(H) since resH(K) is 

injective by Corollary 2.13.

We claim that ζ is injective. Indeed, any M ∈ mod(H) can be decomposed in a 

unique way (up to a permutation of factors) into a direct sum of indecomposables: 

M =
⊕

i∈I
(S⊕ni

i ⊕ K⊕mi

i ), for some mi, ni ∈ N. Then the linear map

ζ ′ : Q(v)[Ksplit
0 (H)] −→ T (Λı), [M ] �→ [

⊕

i∈I

K⊕mi

i ]

is well defined. Note that T (Λı) = 〈[Ki] | i ∈ I〉. Then ζ ′ ◦ ζ = Id. So ζ is injective.

It follows that the map

T (Λı) −→ M(Λı)[X] = [X] � T (Λı), [K] �→ [X] � [K] (3.18)

is an isomorphism.

Assume that

∑

α∈ZI,[X]∈Iso(modnil(kQ))

aX,α[X] � Kα = 0

in M(Λı), where aX,α ∈ Q(v). It follows from (3.16) that 
∑

α∈ZI

aX,α[X] � Kα = 0 for any 

[X] ∈ Iso(modnil(kQ)) in M(Λı). Together with (3.18), we have 
∑

α∈ZI
aX,αKα = 0 in 

T (Λı), and then aX,α = 0 by Lemma 3.2. So (3.17) is a basis of M(Λı).

The lemma follows since SDH(Λı) is isomorphic to M(Λı) as T (Λı)-bimodules. �

Remark 3.7. Using the ideal I in [23] to define SDH(Λı), we expect that SDH(Λı) is a 

(left) free T (Λı)-module with a basis given by {[X] | X ∈ modnil(kQ) ⊆ modnil(Λı)}. 

However, it is not clear if T (Λı) defined there is generated by {Ki | i ∈ I}.
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Remark 3.8. For an infinite-dimensional finitely generated 1-Gorenstein algebra A, we 

can still define the semi-derived Ringel-Hall algebra SDH(A) using the ideal I in [23]. 

However, we have chosen to focus on SDH(Λı) and making it more explicit in this 

section.

Via the restriction functor res : modnil(Λı) → modnil(kQ), we define the twisted 

semi-derived Ringel-Hall algebra to be the Q(v)-algebra on the same vector space as 

SDH(Λı) with twisted multiplication given by

[M ] ∗ [N ] = v〈res(M),res(N)〉Q [M ] � [N ]. (3.19)

We shall denote this algebra (SDH(Λı), ∗) by H̃(kQ, τ), and call it the Hall algebra 

associated to the ıquiver (Q, τ), (or an ıHall algebra, for short). The twisted quantum 

torus T̃ (Λı) is defined to be the subalgebra of H̃(kQ, τ) generated by Kα, α ∈ ZI. By 

Lemma 3.2, T̃ (Λı) is a Laurent polynomial algebra generated by [Ki], for i ∈ I; and 

[Kα] ∗ [Kβ ] = [Kα+β ] for any α, β ∈ ZI.

3.4. ıHall algebras for ısubquivers

Let (Q, τ) be an ıquiver and Λı be its ıquiver algebra. Let ′Q be a full subquiver of 

Q preserved by τ . Hence we obtain an ısubquiver (′Q, τ) of (Q, τ), and denote by ′Λı

the ıquiver algebra of (′Q, τ). Clearly, ′Λı is a quotient algebra (also a subalgebra) of Λı. 

Then we can view modnil(′Λı) as a full subcategory of modnil(Λı).

Lemma 3.9. [27, Lemma 4.12] Retain the notation as above. Then H̃(k ′Q, τ) is natu-

rally a subalgebra of H̃(kQ, τ), with the inclusion morphism induced by modnil(′Λı) ⊆
modnil(Λı).

3.5. An ıHall multiplication formula

Let E be an exact category. For any short exact sequence 0 → A 
f−→ B

g−→ C → 0 in E , 

we denote by (f, g) the corresponding element in Ext1
E(C, A). Below, we present a fairly 

general multiplication formula in the ıHall algebra H̃(kQ, τ) with τ = Id. In concrete 

situations (see Proposition 7.3 for example), the items appearing in RHS (3.20) below 

are computable, and this makes Proposition 3.10 useful and applicable.

Proposition 3.10. Let (Q, τ) be an ıquiver with τ = Id. For any A, B ∈ modnil(kQ) ⊂
modnil(Λı), we have

[A] ∗ [B] =
∑

[L],[M ],[N ]∈Iso(modnil(kQ))

v〈A,B〉Qq〈N,L〉Q−〈A,B〉Q
|Ext1(N, L)M |
|Hom(N, L)| (3.20)

· |{s ∈ Hom(A, B) | Kers ∼= N, Cokers ∼= L}| · [M ] ∗ [K
Â−N̂

]



M. Lu, W. Wang / Advances in Mathematics 430 (2023) 109215 23

in H̃(kQ, τ).

Proof. A 1-periodic complex over modnil(kQ) is a pair M• = (M, d) such that 

M ∈ modnil(kQ) and d : M → M is a morphism of kQ-modules with d2 = 0. Let 

C1(modnil(kQ)) be the category of 1-periodic complexes over modnil(kQ). It is well known 

that C1(modnil(kQ)) � modnil(Λı), and we identify them in the following.

By definition,

[A] ∗ [B] =
∑

[C•]∈Iso(C1(modnil(kQ)))

v〈A,B〉Q
|Ext1

C1(modnil(kQ))(A, B)C• |
|HomC1(modnil(kQ))(A, B)| [C•]. (3.21)

For any C• = (C, d) ∈ C1(modnil(kQ)) such that |Ext1
C1(modnil(kQ))(A, B)C• | �= 0, denote 

by M = H(C•) the homology group of C•, i.e., Kerd/Imd. Then we have [C•] = [M ⊕
KImd] = [M ] ∗ [K

Îmd
]; see, e.g., [25, Lemma 2.10]. Note that

Îmd =
Â + B̂ − M̂

2
∈ K0(modnil(kQ)).

Denote by S[M ] := {[ξ] ∈ Ext1
Λı(A, B)C• | H(C•) ∼= M}. Then we have

[A] ∗ [B] =
∑

[M ]∈Iso(modnil(kQ))

v〈A,B〉Q
|S[M ]|

|Hom(A, B)| [M ] ∗ [K Â+B̂−M̂
2

]. (3.22)

Let C• = (C, d) ∈ C1(modnil(kQ)) such that |Ext1
Λı(A, B)C• | �= 0. Then we have the 

following short exact sequence

0 −→ B
f−→ C

g−→ A −→ 0

such that df = 0 = gd. Denote by U = Kerd and V = Imd. Then we have the following 

short exact sequences

0 −→ U
l2−→ C

d1−→ V −→ 0, 0 −→ V
p1−→ U

p2−→ M −→ 0.

By definition, d = l2p1d1. Then there exist the following two commutative diagrams, 

which are both push-outs and pull-backs

B
h1

U
h2

l2

N

t2

B
f

C
g

d1

A

s1

V V,

V
s2

B
s3

h1

L

t0

V
p1

U
p2

h2

M

t1

N N.

(3.23)
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Conversely, denote by

G[L],[N ] := {s ∈ Hom(A, B) | Kers ∼= N, Cokers ∼= L}.

For any s ∈ G[L],[N ], denote by V = Ims. Then there exist s1 : A → V and s2 : V → B

such that s = s2s1. In fact, s1, s2 are unique up to a group action of Aut(V ). Then we 

have two short exact sequences

0 −→ N
t2−→ A

s1−→ V −→ 0, 0 −→ V
s2−→ B

s3−→ L −→ 0. (3.24)

For any s ∈ G[L],[N ], denote by

Ss,[M ] := {[η] ∈ Ext1(A, B)C | Ext1
kQ(N, s3) ◦ Ext1

kQ(t2, B)([η]) ∈ Ext1(N, L)M }.

(3.25)

From above, we define a map

Ξ : S[M ] −→ �
s∈G[L],[N]

Ss,[M ]

(f, g) �→ (f, g)s2s1
∈ Ss2s1,[M ]

by using diagrams (3.23).

Claim (�). Ξ is a bijection.

First, we prove that Ξ is surjective. For any (f, g)s ∈ Ss,[M ] and s ∈ G[L],[N ], we have 

a short exact sequence 0 → B
f→ C

g→ A → 0. Define C• = (C, d) where d = fsg. Then 

there exists a short exact sequence 0 → B
f→ C• g→ A → 0 in C1(modnil(kQ)). One can 

check Ξ((f, g)) = (f, g)s by definition.

Next, we prove that Ξ is injective. Consider two short exact sequences 0 → B
f→

(C, d) 
g→ A → 0 and 0 → B

f ′

→ (C ′, d′) 
g′

→ A → 0. Assume that (f, g), (f ′, g′) ∈ S[M ]

with Ξ((f, g)) ∈ Ss,M and Ξ(f ′, g′) ∈ Ss′,M . In place of the notations in the diagrams 

(3.23) associated to (f, g), we shall use the corresponding prime notations for all objects 

and maps in the counterpart diagrams associated to (f ′, g′). If Ξ((f, g)) = Ξ((f ′, g′)), 

then s = s′. Without loss of generality, we assume that s1 = s′
1 and s2 = s′

2 in the 

diagrams (3.23). Since (f, g) = (f ′, g′) in Ext1
kQ(A, B), there exists an isomorphism 

β : C → C ′ such that βf = f ′ and g′β = g. Note that d = fsg and d′ = f ′sg′. We have 

βd = βfsg = f ′sg′β = d′β. So β : (C, d) → (C ′, d′) is an isomorphism in C1(modnil(kQ)), 

and then there is a commutative diagram of short exact sequences in C1(modnil(kQ))

0 B
f

(C, d)
g

β

A 0

0 B
f ′

(C ′, d′)
g′

A 0.
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Therefore, (f, g) = (f ′, g′) ∈ S[M ]. The injectivity of Ξ and hence the Claim (�) is proved.

By Claim (�), we have |S[M ]| =
∑

s∈G[L],[N]
|Ss,[M ]|. For any s ∈ G[L],[N ], keep the 

notations as in (3.24). Then we have two long exact sequences

0 −→ HomkQ(V, B) −→ HomkQ(A, B) −→ HomkQ(N, B) −→ Ext1
kQ(V, B)

−→ Ext1
kQ(A, B)

ϕ1−→ Ext1
kQ(N, B) −→ 0;

(3.26)

0 −→ HomkQ(N, V ) −→ HomkQ(N, B) −→ HomkQ(N, L) −→ Ext1
kQ(N, V )

−→ Ext1
kQ(N, B)

ϕ2−→ Ext1
kQ(N, L) −→ 0,

(3.27)

where ϕ1 = Ext1
kQ(t2, B) and ϕ2 = Ext1

kQ(N, s3). We have a map ϕ2 ◦ ϕ1 : Ss,[M ] →
Ext1

kQ(N, L)M . By using (3.23), one can easily see that ϕ2 ◦ ϕ1 is surjective, and

(ϕ2 ◦ ϕ1)−1(Ext1
kQ(N, L)M ) = Ss,[M ].

Then it follows from (3.26)–(3.27) that

|Ss,[M ]| =|ϕ−1
1

(
ϕ−1

2 (Ext1
kQ(N, L)M )

)
|

=|ϕ−1
2 (Ext1

kQ(N, L)M )| · |Kerϕ1|

=|ϕ−1
2 (Ext1

kQ(N, L)M )| ·
|Ext1

kQ(V, B)| · |HomkQ(A, B)|
|HomkQ(V, B)| · |HomkQ(N, B)|

=|Ext1
kQ(N, L)M | ·

|Ext1
kQ(N, V )| · |HomkQ(N, B)|

|HomkQ(N, V )| · |HomkQ(N, L)|

·
|Ext1

kQ(V, B)| · |HomkQ(A, B)|
|HomkQ(V, B)| · |HomkQ(N, B)|

=q−〈N,V 〉−〈V,B〉 · |HomkQ(A, B)|
|Ext1

kQ(N, L)M |
|HomkQ(N, L)|

=q〈N,L〉−〈A,B〉 · |HomkQ(A, B)|
|Ext1

kQ(N, L)M |
|HomkQ(N, L)| .

Here the last equality follows by V̂ = Â − N̂ = B̂ − L̂.

Note that |Ss,[M ]| depends only on [L], [N ] for any s ∈ G[L],[N ]. So we have

|S[M ]| =
∑

s∈G[L],[N]

|Ss,[M ]| (3.28)

=
∑

[L],[N ]∈Iso(modnil(kQ))

q〈N,L〉−〈A,B〉|HomkQ(A, B)|
|Ext1

kQ(N, L)M |
|HomkQ(N, L)| |G[L],[N ]|.
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Then (3.20) follows from (3.22) and (3.28). �

4. Quantum symmetric pairs and ıquantum groups

In this section, we review and set up notations for quantum symmetric pairs (U, Uı)

and universal ıquantum groups Ũı. We formulate a Serre presentation for Ũı.

4.1. Quantum groups

Let Q be a quiver (without loops) with vertex set Q0 = I. Let nij be the number 

of edges connecting vertex i and j. Let C = (cij)i,j∈I be the symmetric generalized 

Cartan matrix of the underlying graph of Q, defined by cij = 2δij − nij . Let g be the 

corresponding Kac-Moody Lie algebra. Let αi (i ∈ I) be the simple roots of g.

Let v be an indeterminant. Write [A, B] = AB − BA. Denote, for r, m ∈ N,

[r] =
vr − v−r

v − v−1
, [r]! =

r∏

i=1

[i],

[
m
r

]
=

[m][m − 1] . . . [m − r + 1]

[r]!
.

Then Ũ := Ũv(g) is defined to be the Q(v)-algebra generated by Ei, Fi, K̃i, K̃
′
i, i ∈ I, 

where K̃i, K̃
′
i are invertible, subject to the following relations:

[Ei, Fj ] = δij
K̃i − K̃ ′

i

v − v−1
, [K̃i, K̃j ] = [K̃i, K̃ ′

j ] = [K̃ ′
i, K̃ ′

j ] = 0, (4.1)

K̃iEj = vcij EjK̃i, K̃iFj = v−cij FjK̃i, (4.2)

K̃ ′
iEj = v−cij EjK̃ ′

i, K̃ ′
iFj = vcij FjK̃ ′

i, (4.3)

and the quantum Serre relations, for i �= j ∈ I,

1−cij∑

r=0

(−1)rE
(r)
i EjE

(1−cij−r)
i = 0, (4.4)

1−cij∑

r=0

(−1)rF
(r)
i FjF

(1−cij−r)
i = 0. (4.5)

Here

F
(n)
i = F n

i /[n]!, E
(n)
i = En

i /[n]!, for n ≥ 1, i ∈ I.

Note that K̃iK̃
′
i are central in Ũ for all i. The comultiplication ∆ : Ũ −→ Ũ ⊗ Ũ is 

defined as follows:
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∆(Ei) = Ei ⊗ 1 + K̃i ⊗ Ei, ∆(Fi) = 1 ⊗ Fi + Fi ⊗ K̃ ′
i,

∆(K̃i) = K̃i ⊗ K̃i, ∆(K̃ ′
i) = K̃ ′

i ⊗ K̃ ′
i.

(4.6)

The Chevalley involution ω on Ũ is given by

ω(Ei) = Fi, ω(Fi) = Ei, ω(K̃i) = K̃ ′
i, ω(K̃ ′

i) = K̃i, ∀i ∈ I. (4.7)

Analogously as for Ũ, the quantum group U is defined to be the Q(v)-algebra gen-

erated by Ei, Fi, Ki, K
−1
i , i ∈ I, subject to the relations modified from (4.1)–(4.5) with 

K̃i and K̃ ′
i replaced by Ki and K−1

i , respectively. The comultiplication ∆ and Chevalley 

involution ω on U are obtained by modifying (4.6)–(4.7) with K̃i and K̃ ′
i replaced by Ki

and K−1
i , respectively (cf. [31]; beware that our Ki has a different meaning from Ki ∈ U

therein.)

The algebra U is isomorphic to a quotient algebra of Ũ by the ideal (K̃iK̃
′
i−1 | ∀i ∈ I).

Let Ũ+ be the subalgebra of Ũ generated by Ei (i ∈ I), Ũ0 be the subalgebra of Ũ

generated by K̃i, K̃
′
i (i ∈ I), and Ũ− be the subalgebra of Ũ generated by Fi (i ∈ I), 

respectively. The subalgebras U+, U0 and U− of U are defined similarly. Then both 

Ũ and U have triangular decompositions: Ũ = Ũ+ ⊗ Ũ0 ⊗ Ũ−, U = U+ ⊗ U0 ⊗ U−. 

Clearly, U+ ∼= Ũ+, U− ∼= Ũ−, and U0 ∼= Ũ0/(K̃iK̃
′
i − 1 | i ∈ I).

4.2. The ıquantum groups Uı and Ũı

For a generalized Cartan matrix C = (cij), let Aut(C) be the group of all permutations 

τ of the set I such that cij = cτi,τj . An element τ ∈ Aut(C) is called an involution if 

τ2 = Id.

Let τ be an involution in Aut(C). We define Ũı to be the Q(v)-subalgebra of Ũ

generated by

Bi = Fi + EτiK̃
′
i, k̃i = K̃iK̃

′
τi, ∀i ∈ I.

Let Ũı0 be the Q(v)-subalgebra of Ũı generated by k̃i, for i ∈ I. The elements

k̃i (i = τi) k̃ik̃τi (i �= τi) (4.8)

are central in Ũı.

Let ς = (ςi) ∈ (Q(v)×)I be such that ςi = ςτi for each i ∈ I which satisfies ci,τi = 0. 

Let Uı := Uı
ς

be the Q(v)-subalgebra of U generated by

Bi = Fi + ςiEτiK
−1
i , ki = KiK

−1
τi , ∀i ∈ I.

It is known [20,19] that Uı is a right coideal subalgebra of U, i.e., ∆(Uı) ⊂ Uı ⊗ U; 

and (U, Uı) is called a quasi-split quantum symmetric pair, as they specialize at v = 1

to (U(g), U(gθ)), where θ = ω ◦ τ , and τ is understood here as an automorphism of g.
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We call Uı an ıquantum group and Ũı a universal ıquantum group. The algebras Uı
ς
, 

for ς ∈ (Q(v)×)I, are obtained from Ũı by central reductions.

Proposition 4.1 ([27, Proposition 6.2]). (1) The Q(v)-algebra Uı is isomorphic to the 

quotient of Ũı by the ideal generated by k̃i − ςi (for i = τi) and k̃ik̃τi − ςiςτi (for i �= τi). 

The isomorphism is given by sending Bi �→ Bi, kj �→ ς−1
τj k̃j , k−1

j �→ ς−1
j k̃τj , ∀i ∈ I, j ∈

I \ Iτ .

(2) The algebra Ũı is a right coideal subalgebra of Ũ.

4.3. A Serre presentation of Uı

For i ∈ I with τi �= i, we define the ıdivided power of Bi as

B
(m)
i := Bm

i /[m]!, ∀m ≥ 0, (if i �= τi). (4.9)

For i ∈ I with τi = i, generalizing the constructions in [4,6], we define the ıdivided 

powers of Bi to be (see also [9])

B
(m)

i,1̄
=

1

[m]!

{
Bi

∏k
s=1(B2

i − vk̃i[2s − 1]2) if m = 2k + 1,∏k
s=1(B2

i − vk̃i[2s − 1]2) if m = 2k;
(4.10)

B
(m)

i,0̄
=

1

[m]!

{
Bi

∏k
s=1(B2

i − vk̃i[2s]2) if m = 2k + 1,∏k
s=1(B2

i − vk̃i[2s − 2]2) if m = 2k.
(4.11)

Denote

(a; x)0 = 1, (a; x)n = (1 − a)(1 − ax) · · · (1 − axn−1), n ≥ 1.

The following theorem is an upgrade of (and can be derived from) [8, Theorem 3.1] for 

Uı to the setting of a universal ıquantum group Ũı; it generalizes [27, Proposition 6.4]

for Ũı of ADE type.

Theorem 4.2. Fix pi ∈ Z/2Z for each i ∈ I. The Q(v)-algebra Ũı has a presentation with 

generators Bi, k̃i (i ∈ I) and the relations (4.12)–(4.16) below: for � ∈ I, and i �= j ∈ I,

k̃ik̃� = k̃�k̃i, k̃iB� = vcτi,�−ci�B�k̃i, (4.12)

BiBj − BjBi = 0, if cij = 0 and τi �= j, (4.13)

1−cij∑

n=0

(−1)nB
(n)
i BjB

(1−cij−n)
i = 0, if j �= τi �= i, (4.14)

1−ci,τi∑

n=0

(−1)n+ci,τiB
(n)
i BτiB

(1−ci,τi−n)
i =

1

v − v−1
× (4.15)
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(
vci,τi(v−2; v−2)−ci,τi

B
(−ci,τi)
i k̃i − (v2; v2)−ci,τi

B
(−ci,τi)
i k̃τi

)
, if τi �= i,

1−cij∑

n=0

(−1)nB
(n)
i,pi

BjB
(1−cij−n)
i,cij+pi

= 0, if τi = i. (4.16)

(This presentation is called a Serre presentation of Ũı.)

Proof. Recall the main differences between Uı and Ũı are as follows. Let K be a field 

which contains parameters ςi, for i ∈ Iτ , such that ςτi = ςi for all i. The K-algebra Uı

(cf. [8, Theorem 3.1]) does not contain the central elements (4.8) as in Ũı; additionally, 

instead of k̃i (i ∈ I) in Ũı, Uı contains generators kj (j ∈ Iτ ); note kj here corresponds 

to the notation K̃jK̃−1
τj in [8].

Let us now fix the field K = Q(v)
(
ςi | i ∈ Iτ

)
, where the ςi’s are algebraically 

independent over Q(v). Fixing a square root (k̃j k̃τj)1/2 and identifying it with ςi, for 

j ∈ Iτ , we consider the base change Ũı
K

= K ⊗ Ũı. Then, over K, Ũı
K

is isomorphic 

to the K-algebra Uı (with Uı in [8, Theorem 3.1]) by sending Bi �→ Bi (i ∈ I), k̃j �→
ςjkj (j ∈ Iτ ) (and it follows that k̃τj �→ ςjk−1

j ).

Now the presentation of Uı in [8, Theorem 3.1] translates into the presentation for 

Ũı in the statement. �

The relation (4.15) in the setting of Uı originates in [3], and will be referred to as 

the BK relation. The ıSerre relation (4.16) first appeared in [8] and higher order ıSerre 

relations have been formulated in [9].

Remark 4.3. All constructions and results in this section (in particular, Theorem 4.2) 

are valid for Uı and Ũı associated to symmetrizable generalized Cartan matrices, with 

various v-powers in v-binomials, ıdivided powers and (4.12)–(4.16) replaced by suitable 

vi-powers.

4.4. Virtually acyclic ıquivers

To facilitate the computations in ıHall algebras in connection to ıquantum groups Ũı, 

we shall consider a distinguished class of ıquivers. Recall an oriented cycle of Q is called 

minimal if it does not contain any proper oriented cycle. A minimal cycle of length m is 

called an m-cycle.

Definition 4.4. An ıquiver (Q, τ) is called virtually acyclic if its only possible cycles are 

2-cycles formed by arrows between i and τi for τi �= i ∈ Q0.

Note that acyclic ıquivers are virtually acyclic ıquivers.
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Lemma 4.5. Let (Q, τ) be a virtually acyclic ıquiver and i ∈ Q0 such that τi �= i. Then 

#{α : i → j | α ∈ Q1} = #{α : j → i | α ∈ Q1}, and the number of edges between i and 

τi is even.

Proof. Follows by the definition. �

Example 4.6. Denote by

Q = 1

αr

α1
···

2β1

βr

···
, Q = 1

ε1

αr

α1
···

2.β1

ε2

βr

···
(4.17)

Then Q is a generalized Kronecker quiver, with involution τ given by τ1 = 2. Note that 

the ıquiver (Q, τ) is virtually acyclic but not acyclic, for r ≥ 1; moreover, Λı = kQ/I, 

where

I = (ε1ε2, ε2ε1, αiε2 − ε1βi, βiε1 − ε2αi | 1 ≤ i ≤ r).

This is a new rank one ıquiver algebra which did not appear in [27]. (The rank here 

refers to the number of τ -orbits on the vertex set of Q.)

In the remainder of this paper, we shall restrict ourselves to the ıHall algebras 

H̃(kQ, τ) associated to virtually acyclic ıquivers. This suffices for the ıHall algebra re-

alization of the ıquantum groups Ũı which we shall develop. The generalized Cartan 

matrix of U has to satisfy ci,τi ∈ −2N whenever τi �= i ∈ I (and no other conditions), a 

condition imposed from the ıquivers; see Example 4.6.

5. The BK relation in ıHall algebra

In this section, we shall establish an identity in ıHall algebra H̃(kQ, τ) which corre-

sponds to the BK relation (4.15) in Ũı. By Lemma 3.9, we are reduced to consider the 

rank one generalized Kronecker ıquiver.

5.1. First computation in H̃(kQ, τ)

Let (Q, τ) be generalized Kronecker ıquivers as in Example 4.6. Recall Λı = kQ/I

where I = (ε1ε2, ε2ε1, αiε2 − ε1βi, βiε1 − ε2αi | 1 ≤ i ≤ r) and see (4.17) for Q. A 

Λı-module M is a tuple of the form

M = (Mi, M(αj), M(βj), M(εi))i=1,2;1≤j≤r.
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Recall kQ is a subalgebra (and also a quotient algebra) of Λı. Recall

q = v2.

For a Λı-module S, we shall write

[lS] = [S ⊕ · · · ⊕ S︸ ︷︷ ︸
l

], [S]∗l = [S] ∗ · · · ∗ [S]︸ ︷︷ ︸
l

.

The following formula follows by definitions.

Lemma 5.1. For l ≥ 1 and i = 1, 2, we have

[Si]
∗l = v− l(l−1)

2 [lSi]. (5.1)

Corresponding to the ıdivided powers in (4.9), we define the divided powers, for i =

1, 2,

[Si]
(l) :=

[Si]
∗l

[l]!
v

= v− l(l−1)
2

[lSi]

[l]!
v

. (5.2)

Our goal in this section is to verify the relation (4.15) for i = 1 and τi = 2, see (4.17); 

the other case when i = 2 follows by symmetry.

For any Λı-module M = (Mi, M(αj), M(βj), M(εi))i=1,2;1≤j≤r such that M̂ = (2r +

1)Ŝ1 + Ŝ2 in K0(modnil(Λı)), we define

UM :=
⋂

1≤j≤r

KerM(αj)
⋂

KerM(ε1), WM := ImM(ε2) +
r∑

j=1

ImM(βj),

(5.3)

and let

uM := dimUM , wM := dimWM . (5.4)

Since Λı is a quotient algebra of kQ, we can view each Λı-module as a kQ-module 

naturally. Let H̃(kQ) be the Hall algebra of modnil(kQ) with its Hall multiplication 

twisted by v〈·,·〉Q .

Lemma 5.2. There exists an algebra epimorphism

φ : H̃(kQ) −→ H̃(kQ, τ)

defined by letting
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[M ] �→
{

[M ], if M ∈ modnil(Λı),

0, otherwise.
(5.5)

Proof. Let φ̃ : H̃(kQ) → H̃(Λı) be the linear map defined by (5.5). It suffices to check 

that φ̃ is a homomorphism.

For any L, M, N ∈ modnil(kQ), if there exists a short exact sequence

0 −→ M −→ N −→ L −→ 0

such that N ∈ modnil(Λı), then L, M ∈ modnil(Λı). So φ̃([L] ∗ [M ]) = 0 = φ̃([L]) ∗ φ̃([M ])

if one of L, M is not in modnil(Λı).

Now let L, M ∈ modnil(Λı). Then, for any N ∈ modnil(Λı), we have

∣∣Hom
kQ(L, M)

∣∣ =
∣∣HomΛı(L, M)

∣∣,
∣∣Ext1

kQ(L, M)N | = |Ext1
Λı(L, M)N

∣∣.

So φ̃([L] ∗ [M ]) = φ̃([L]) ∗ φ̃([M ]) by definition.

The lemma follows. �

For any three objects X, Y, Z, let

F Z
XY :=

∣∣{L ⊆ Z | L ∼= Y, Z/L ∼= X}
∣∣. (5.6)

Lemma 5.3 (Riedtman-Peng formula). For any three objects X, Y, Z, we have

F Z
XY =

|Ext1(X, Y )Z |
|Hom(X, Y )| · |Aut(Z)|

|Aut(X)||Aut(Y )| .

Similar to [34,14], a direct computation in H̃(kQ) using Lemma 5.3 shows that

[S1](l) ∗ [S2] ∗ [S1](t)

= v−r(2r+1)+tl+l(l−1)+t(t−1)
∑

[M ]∈Iso(modnil(kQ))

pM,t
(q − 1)2r+2

|Aut(M)| [M ], (5.7)

where pM,t = 0 unless WM ⊆ UM (see (5.3)); if WM ⊆ UM , then we have

pM,t =|Gr(t − wM , uM − wM )| = v(uM −t)(t−wM )

[
uM − wM

t − wM

]

v

, (5.8)

where Gr(a, N) denotes the Grassmannian of a-subspaces in kN , and

|Aut(M)| =(q − 1)(quM −wM − 1) · · · (quM −wM − quM −wM −1) (5.9)

· qwM (uM −wM )+wM (2r+1−uM )+(uM −wM )(2r+1−uM ).
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Here one should note the difference between Ringel’s Hall multiplication and Bridge-

land’s; see [7, §2.3]. By Lemma 5.2 and (5.7), we have the following identity in H̃(kQ, τ):

[S1](l) ∗ [S2] ∗ [S1](t)

= v−r(2r+1)+tl+l(l−1)+t(t−1)
∑

[M ]∈Iso(modnil(Λı))

pM,t
(q − 1)2r+2

|Aut(M)| [M ]. (5.10)

Summing up (5.10), we obtain

∑

l+t=2r+1

(−1)l[S1](l) ∗ [S2] ∗ [S1](t) =
∑

[M ]:WM ⊆UM

pM [M ], (5.11)

where, thanks to (5.8),

pM =(q − 1)(2r+2)
2r+1∑

l=0

(−1)lv−r(2r+1)+tl+l(l−1)+t(t−1) pM,t

|Aut(M)| (5.12)

=vr(2r+1)−uM wM
(q − 1)(2r+2)

|Aut(M)|

2r+1∑

t=0

(−1)2r+1−tv−(2r+1−uM −wM )t

[
uM − wM

t − wM

]

v

.

For any M such that M̂ = (2r+1)Ŝ1+Ŝ2 in K0(modnil(Λı)), clearly, either M(ε1) = 0

or M(ε2) = 0. To complete the computation of (5.11), we proceed by dividing into 3 

cases below:

(1) M(ε1) = 0 = M(ε2),

(2) M(ε1) = 0 �= M(ε2),

(3) M(ε2) = 0 �= M(ε1).

We shall need the following specializations of the quantum binomial formula.

Lemma 5.4. Let p ∈ Z≥1. Let d ∈ Z be such that |d| ≤ p − 1 and d ≡ p − 1 (mod 2). 

Then,

(1)
∑p

t=0(−1)tv−dt

[
p
t

]
= 0;

(2)
∑p

t=0(−1)tv−(p+1)t

[
p
t

]
= (v−2; v−2)p;

(3)
∑p

t=0(−1)−tv(p+1)t

[
p
t

]
= (v2; v2)p.
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Proof. Recall the quantum binomial formula (cf., e.g., [31, 1.3.1(c)])

p∑

t=0

vt(1−p)

[
p
t

]
zt =

p−1∏

j=0

(1 + v−2jz). (5.13)

Then Formula (1) follows from it by letting z = vp−1−d. Formula (2) follows by letting 

z = v−2, and (3) follows from (2) by applying the bar involution v �→ v−1. �

5.2. Case M(ε1) = 0 = M(ε2)

In this case, we may regard M ∈ modnil(kQ) ⊆ modnil(Λı). Recall pM from (5.12).

Lemma 5.5. We have pM = 0, for any M ∈ modnil(kQ) such that M̂ = (2r + 1)Ŝ1 + Ŝ2.

Proof. For any such M with M(εi) = 0, for i = 1, 2, we have uM ≥ r + 1 > wM . We 

deduce that 1 − uM − wM ≤ 2r + 1 − uM − wM ≤ uM + wM − 1.

By a change of variables s = t − wM and Lemma 5.4(1), we have

2r+1∑

t=0

(−1)2r+1−tv−(2r+1−uM −wM )t

[
uM − wM

t − wM

]

v

= (−1)2r+1+wM v−(2r+1−uM −wM )wM

uM −wM∑

s=0

(−1)sv−(2r+1−uM −wM )s

[
uM − wM

s

]

v

= 0.

Then by (5.12), we obtain pM = 0. �

5.3. Case M(ε2) = 0 �= M(ε1)

In this case, we have M(βi) = 0, for 1 ≤ i ≤ r, by noting that M(βi)M(ε1) =

M(ε2)M(αi) = 0. Then wM = 0 (recall uM , wM from (5.4)). Denote

U ′
M =

⋂

1≤i≤r

KerM(αi), u′
M = dimU ′

M .

Lemma 5.6. Retain the notations and assumptions as above. Then there exists a short 

exact sequence 0 → K1 → M → S⊕2r
1 → 0 if M(ε1)|U ′

M
�= 0.

Proof. It follows by the definition of morphisms of quiver representations. �

We now proceed by dividing into 2 subcases.
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Subcase (a): M(ε1)|U ′
M

= 0. Clearly, U ′
M ⊆ ker M(ε1). Then we have UM = U ′

M by 

definition. It follows that uM ≥ r+1 > wM = 0, and 1 −uM −wM ≤ 2r+1 −uM −wM ≤
uM + wM − 1. Similar to Lemma 5.5, we deduce that pM = 0.

Subcase (b): M(ε1)|U ′
M

�= 0. Note by Lemma 5.6 that [M ] = [K1 ⊕ S⊕2r
1 ]. In this case 

uM = u′
M − 1 by noting that KerM(ε1) is a hyperplane. Note that u′

M ≥ r + 1, and 

hence uM ≥ r. In case uM ≥ r + 1, we have pM = 0 by arguments similar to the above.

It remains to consider the subcase when uM = r. In this case, there is a unique M

(up to isomorphism) such that uM = r, and note that

|Aut(M)| = (q − 1)(qr − 1) · · · (qr − qr−1)qr(r+1). (5.14)

Thus, applying Lemma 5.4(2) (with p = r) we have

pM =vr(2r+1)−uM wM
(q − 1)(2r+2)

|Aut(M)|

2r+1∑

t=0

(−1)2r+1−tv−(2r+1−uM −wM )t

[
uM − wM

t − wM

]

v

(5.15)

= − vr(2r+1) (q − 1)(2r+2)

|Aut(M)|

r∑

t=0

(−1)tv−(r+1)t

[
r
t

]

v

= − vr(2r+1) (q − 1)(2r+2)

|Aut(M)| (v−2; v−2)r

= − (q − 1)(2r+1)vr(−2r−1).

We also note that

[2rS1] ∗ [K1] = v〈S⊕2r
1 ,resK1〉Qq−〈S⊕2r

1 ,K1〉[2rS1 ⊕ K1] (5.16)

= qr2+r[2rS1 ⊕ K1].

Therefore, using (5.1) and (5.15)-(5.16) we obtain

∑

[M ]:M(ε1) �=0

pM [M ] =
∑

[M ]:uM =u′
M −1

pM [2rS1 ⊕ K1] (5.17)

=
∑

uM =r

v−3r[2r]!
v
pM [S1](2r) ∗ [K1]

= − q−r2−2r(q − 1)(2r+1)[2r]!
v
[S1](2r) ∗ [K1].

5.4. Case M(ε1) = 0 �= M(ε2)

In this case, we have M(αi) = 0, for 1 ≤ i ≤ r. So uM = 2r + 1, and wM ≤ r + 1. In 

case wM < r + 1, similar to Lemma 5.5, we have pM = 0.
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It remains to consider the subcase wM = r+1. In this case, there is a unique M (up to 

isomorphism) such that wM = r +1. When wM = r +1 (recall uM = 2r +1), |Aut(M)| is 

given again as in (5.14). By applying Lemma 5.4(3) (with p = r) and changing variables 

t′ = t − r − 1, we have

pM =vr(2r+1)−uM wM
(q − 1)(2r+2)

|Aut(M)|

2r+1∑

t=0

(−1)2r+1−tv−(2r+1−uM −wM )t

[
uM − wM

t − wM

]

v

(5.18)

=vr(2r+1)−(2r+1)(r+1) (q − 1)(2r+2)

|Aut(M)|

2r+1∑

t=0

(−1)2r+1−tv(r+1)t

[
r

t − (r + 1)

]

v

=vr2 (q − 1)(2r+2)

|Aut(M)|

r∑

t′=0

(−1)r−t′

v(r+1)t′

[
r
t′

]

v

=vr2 (q − 1)(2r+2)

|Aut(M)| (−1)r(v2; v2)r

=v−2r2−r(q − 1)2r+1.

Note also that

[2rS1] ∗ [K2] = v〈S⊕2r
1 ,resK2〉Qq−〈S⊕2r

1 ,K2〉[2rS1 ⊕ K2] (5.19)

= q−r2−r[2rS1 ⊕ K2].

Therefore, using (5.1) and (5.18)–(5.19) we obtain

∑

[M ]:M(ε2) �=0

pM [M ] =
∑

[M ]:wM =r+1

pM [2rS1 ⊕ K2] (5.20)

=
∑

[M ]:wM =r+1

qr2+rv
2r(2r−1)

2 [2r]!
v
pM [S1](2r) ∗ [K2]

=qr2

(q − 1)(2r+1)[2r]!
v
[S1](2r) ∗ [K2].

5.5. Relation (4.15) in H̃(kQ, τ)

Now we are ready to establish the following identity in the ıHall algebra corresponding 

to the BK relation (4.15).

Proposition 5.7. The following identity holds in ıHall algebra H̃(kQ, τ):

2r+1∑

t=0

(−1)t[S1](t) ∗ [S2] ∗ [S1](2r+1−t)
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= − v−r(q − 1)(q−1; q−1)2r[S1](2r) ∗ [K1] + vr(q − 1)(q; q)2r[S1](2r) ∗ [K2].

Proof. Combining Lemma 5.5, (5.17) and (5.20), we finish the computation in (5.11) as 

follows:

2r+1∑

t=0

(−1)t[S1](t) ∗ [S2] ∗ [S1](2r+1−t)

= − q−r2−2r(q − 1)(2r+1)[2r]!
v
[S1](2r) ∗ [K1] + qr2

(q − 1)(2r+1)[2r]!
v
[S1](2r) ∗ [K2]

= − v−r(q − 1)(q−1; q−1)2r[S1](2r) ∗ [K1] + vr(q − 1)(q; q)2r[S1](2r) ∗ [K2].

The proposition is proved. �

6. ıDivided powers in ıHall algebra

In this section, we establish closed formulas for the ıdivided powers in terms of ıHall 

basis for the ıHall algebra H̃(kQ, τ).

To that end, by Lemma 3.9, it suffices to consider the ıquiver which consists of 

a single vertex with a trivial involution, and the associated ıquiver algebra given by 

Λı = k[x]/(x2). The corresponding split ıquantum group Ũı of rank one is the algebra 

Q(v)[B, ̃k±1]. The following is the special case of [27, Proposition 7.5] at rank one.

Lemma 6.1. There exists a Q(v)-algebra isomorphism ψ̃ : Ũı|v=v → H̃(kQ, τ) (of rank 

one) which sends

B �→ −1

q − 1
[S], k̃ �→ −K

q
.

Lemma 6.2. The following identity holds in H̃(kQ, τ), for m ∈ N:

[S] ∗ [mS] = v−m[(m + 1)S] + (vm − v−m)[(m − 1)S] ∗ [K]. (6.1)

Proof. The required Euler form is given by 〈S, S⊕m〉Q = m = dimkHomΛı(S, S⊕m). For 

any non-split short exact sequence 0 → S⊕m → M → S → 0 in modnil(Λı), we have 

M ∼= S⊕(m−1) ⊕ K. Note that Ext1
Λı(S, S⊕m) = m. Then we have

[S] ∗ [mS] =v−m[(m + 1)S] + v−m(qm − 1)[(m − 1)S ⊕ K]

=v−m[(m + 1)S] + (vm − v−m)[(m − 1)S] ∗ [K].

The lemma is proved. �
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Inspiring by (4.10)–(4.11), we define the ı-divided power of [S] in H̃(kQ, τ) as follows:

[S]
(m)

1̄
:=

1

[m]v!

{
[S]
∏k

j=1([S]2 + v−1(v2 − 1)2[2j − 1]2
v
[K]) if m = 2k + 1,∏k

j=1([S]2 + v−1(v2 − 1)2[2j − 1]2
v
[K]) if m = 2k;

[S]
(m)

0̄
:=

1

[m]v!

{
[S]
∏k

j=1([S]2 + v−1(v2 − 1)2[2j]2
v
[K]) if m = 2k + 1,∏k

j=1([S]2 + v−1(v2 − 1)2[2j − 2]2
v
[K]) if m = 2k.

These ı-divided powers satisfy the following recursive relations:

[S] ∗ [S]
(2m)

1̄
= [2m + 1][S]

(2m+1)

1̄
, (6.2)

[S] ∗ [S]
(2m+1)

1̄
= [2m + 2][S]

(2m+2)

1̄
− v(v − v−1)2[2m + 1][S]

(2m)

1̄
∗ [K], (6.3)

[S] ∗ [S]
(2m−1)

0̄
= [2m][S]

(2m)

0̄
, (6.4)

[S] ∗ [S]
(2m)

0̄
= [2m + 1][S]

(2m+1)

0̄
− v(v − v−1)2[2m][S]

(2m−1)

0̄
∗ [K]. (6.5)

Lemma 6.3. The isomorphism ψ̃ in Lemma 6.1 satisfies that, for m ∈ N,

ψ̃(B
(m)

1̄
) =

[S]
(m)

1̄

(1 − v2)m
, ψ̃(B

(m)

0̄
) =

[S]
(m)

0̄

(1 − v2)m
. (6.6)

Proof. Follows by definitions. �

We denote by [0]
!!

v
= 1, and for any k ∈ Z≥1,

[2k]
!!

v
= [2k]v[2k − 2]v · · · [4]v[2]v.

We denote by �x� the largest integer not exceeding x, for x ∈ R.

Proposition 6.4. The following identity holds in H̃(kQ, τ), for n ∈ N:

[S]
(n)

0̄
=

� n
2 �∑

k=0

vk(k−(−1)n)−(n−2k
2 ) · (v − v−1)k

[n − 2k]!
v
[2k]!!

v

[(n − 2k)S] ∗ [K]k. (6.7)

Proof. We prove the formula by induction on n; the cases when n = 0, 1 are clear. To 

facilitate the induction, let us rewrite (6.7) depending on the parity of n: for c ∈ N,

[S]
(2c)

0̄
=

c∑

k=0

vk(k−1)−(2c−2k
2 ) · (v − v−1)k

[2c − 2k]!
v
[2k]!!

v

[(2c − 2k)S] ∗ [K]k, (6.8)

[S]
(2c+1)

0̄
=

c∑

k=0

vk(k+1)−(1+2c−2k
2 ) · (v − v−1)k

[1 + 2c − 2k]!
v
[2k]!!

v

[(1 + 2c − 2k)S] ∗ [K]k. (6.9)
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First we shall prove (6.8) for [S]
(2c)

0̄
by assuming the formula holds for [S]

(2c−1)

0̄
with 

c ≥ 1. Using the inductive assumption (6.9) (with c replaced by c − 1), (6.4) and (6.1), 

we have

[2c]v[S]
(2c)

0̄
= [S] ∗ [S]

(2c−1)

0̄

=

c−1∑

k=0

vk(k+1)−(2c−2k−1
2 ) · (v − v−1)k

[2c − 2k − 1]!
v
[2k]!!

v

[S] ∗ [(2c − 2k − 1)S] ∗ [K]k

=
c−1∑

k=0

vk(k+1)−(2c−2k−1
2 ) · (v − v−1)k

[2c − 2k − 1]!
v
[2k]!!

v

×

(
v1+2k−2c[(2c − 2k)S] ∗ [K]k + (v2c−2k−1 − v1+2k−2c)[(2c − 2k − 2)S] ∗ [K]k+1

)

(a)
=

c∑

k=0

1

[2c − 2k]!
v
[2k]!!

v

(
vk(k+1)−(2c−2k−1

2 )+(1+2k−2c) · (v − v−1)k[2c − 2k]v

+
vk(k−1)−(2c−2k+1

2 ) · (v − v−1)k−1(v2c−2k+1 − v2k−2c−1)[2k]

[2c − 2k + 1]v

)
[(2c − 2k)S] ∗ [K]k

=
c∑

k=0

vk(k−1)−(2c−2k
2 ) · (v − v−1)k

[2c − 2k]!
v
[2k]!!

v

(
v2k[2c − 2k]v + v2k−2c[2k]v

)
[(2c − 2k)S] ∗ [K]k

= [2c]v

c∑

k=0

vk(k−1)−(2c−2k
2 ) · (v − v−1)k

[2c − 2k]!
v
[2k]!!

v

[(2c − 2k)S] ∗ [K]k.

In the equation (a) above, we have shifted the index k �→ k − 1 in the second summand 

on the LHS of (a). This proves (6.8).

We now prove (6.9) for [S]
(2c+1)

0̄
by assuming (6.8) for [S]

(2c)

0̄
and the formula for 

[S]
(2c−1)

0̄
(i.e., (6.9) with c replaced by c − 1). Together with (6.5) and (6.1), we compute

[2c + 1]v[S]
(2c+1)

0̄

= [S] ∗ [S]
(2c)

0̄
+ v(v − v−1)2[2c]v[S]

(2c−1)

0̄
∗ [K]

=
c∑

k=0

vk(k−1)−(2c−2k
2 ) · (v − v−1)k

[2c − 2k]!
v
[2k]!!

v

[S] ∗ [(2c − 2k)S] ∗ [K]k

+ v(v − v−1)2[2c]v[S]
(2c−1)

0̄
∗ [K]

=
c∑

k=0

vk(k−1)−(2c−2k
2 ) · (v − v−1)k

[2c − 2k]!
v
[2k]!!

v

×

(
v2k−2c[(1 + 2c − 2k)S] ∗ [K]k + (v2c−2k − v2k−2c)[(2c − 2k − 1)S] ∗ [K]k+1

)
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+ [2c]v

c−1∑

k=0

vk(k+1)−(2c−2k−1
2 )+1 · (v − v−1)k+2

[2c − 2k − 1]!
v
[2k]!!

v

[(2c − 2k − 1)S] ∗ [K]k+1,

which can be reorganized as

=
c∑

k=0

vk(k−1)−(2c−2k
2 )+2k−2c · (v − v−1)k

[2c − 2k]!
v
[2k]!!

v

[(1 + 2c − 2k)S] ∗ [K]k

+

(
c−1∑

k=0

vk(k−1)−(2c−2k
2 ) · (v − v−1)k

[2c − 2k]!
v
[2k]!!

v

(v2c−2k − v2k−2c)

+[2c]v

c−1∑

k=0

vk(k+1)−(2c−2k−1
2 )+1 · (v − v−1)k+2

[2c − 2k − 1]!
v
[2k]!!

v

)
[(2c − 2k − 1)S] ∗ [K]k+1

=
c∑

k=0

vk(k−1)−(2c−2k
2 )+2k−2c · (v − v−1)k

[2c − 2k]!
v
[2k]!!

v

[(1 + 2c − 2k)S] ∗ [K]k

+

c−1∑

k=0

vk(k−1)−(2c−2k
2 )+4c · (v − v−1)k+1

[2c − 2k − 1]!
v
[2k]!!

v

[(2c − 2k − 1)S] ∗ [K]k+1

(b)
=

c∑

k=0

vk(k+1)−(1+2c−2k
2 ) · (v − v−1)k

[1 + 2c − 2k]!
v
[2k]!!

v

(
v−2k+(2c−2k)+2k−2c[1 + 2c − 2k]v + v2−4k−(1+2c−2k)+4c[2k]v

)
[(1 + 2c − 2k)S] ∗ [K]k

= [2c + 1]v

c∑

k=0

vk(k+1)−(1+2c−2k
2 ) · (v − v−1)k

[1 + 2c − 2k]!
v
[2k]!!

v

[(1 + 2c − 2k)S] ∗ [K]k.

In the equation (b) above, we have shifted the index k �→ k − 1 in the second summand 

on the LHS of (b).

The proposition is proved. �

Proposition 6.5. The following identity holds in H̃(kQ, τ), for n ∈ N:

[S]
(n)

1̄
=

� n
2 �∑

k=0

vk(k+(−1)n)−(n−2k
2 ) · (v − v−1)k

[n − 2k]!
v
[2k]!!

v

[(n − 2k)S] ∗ [K]k. (6.10)

Proof. The proof is entirely similar to the one for Proposition 6.4, using now the recur-

sions (6.2)–(6.3); it will be skipped. �

7. The ıSerre relation in ıHall algebra

In this section, we shall establish an identity in the ıHall algebra H̃(kQ, τ) correspond-

ing to the ıSerre relation (4.16) in Ũı (where j = τj), modulo a combinatorial identity 
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which will be established in Section 8. By Lemma 3.9, we are reduced to considering a 

rank two ıquiver.

7.1. Identities in ıHall algebra

Consider the ıquiver

Q = ( 1
α1

···
αa

2 ), τ = Id, where a = −c12. (7.1)

Then the corresponding ıquiver algebra Λı has its quiver Q as

1
�
�· · ·

α1

αa

2
� �

ε1 ε2

(7.2)

We shall prove the following identity corresponding to the ıSerre relation (4.16), where 

j = τj.

Theorem 7.1. Let Λı be the ıquiver algebra associated with the ıquiver (7.1). Then the 

following identity holds in H̃(kQ, τ), for any p ∈ Z/2:

1+a∑

n=0

(−1)n[S1]
(n)
p ∗ [S2] ∗ [S1]

(1+a−n)
a+p = 0, (7.3)

1+a∑

n=0

(−1)n[S2]
(n)
p ∗ [S1] ∗ [S2]

(1+a−n)
a+p = 0. (7.4)

Remark 7.2. The identity in the ıHall algebra corresponding to ıSerre relation (4.16) for 

j �= τj can be proved similarly to or simply derived from Theorem 7.1; see Proposition 9.4

below.

7.2. A building block

We denote

Ik =
{

[M ] ∈ Iso(modnil(kQ)) | ∃N ⊆ M such that N ∼= S2, M/N ∼= kS1

}
. (7.5)

We also introduce the following polynomial in 4 variables:

p(a, r, s, t) = −s(a + t) + 2ra + (uM − t + 2s − r)(t − r) + (s − r)2 (7.6)

+

(
s − r

2

)
+ (t − r)2 +

(
t − r

2

)
+ r(s + t) −

(
r + 1

2

)
+ 1.
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Any kQ-module M with dimension vector nŜ1 + Ŝ2 can be decomposed as

M ∼= N ⊕ S⊕uM

1 (7.7)

with N indecomposable (unique up to isomorphism), for a unique uM ∈ N.

The following formula is a basic building block in the subsequent computations of the 

ıSerre relation in an ıHall basis.

Proposition 7.3. The following identity holds in H̃(kQ, τ), for s, t ≥ 0:

[sS1] ∗ [S2] ∗ [tS1] (7.8)

=

min{s,t}∑

r=0

∑

[M ]∈Is+t−2r

vp(a,r,s,t)(v − v−1)s+t−r+1 [s]!
v
[t]!

v

[r]!
v

[
uM

t − r

]

v

[M ]

|Aut(M)| ∗ [K1]r.

Proof. By definition, we have

[sS1] ∗ [S2] ∗ [tS1] = [sS1] ∗ [S2 ⊕ S⊕t
1 ]. (7.9)

Observe that for any morphism f : S⊕s
1 → S2⊕S⊕t

1 , we have Imf ∼= S⊕r
1 , Kerf ∼= S

⊕(s−r)
1

and Cokerf ∼= S2 ⊕ S
⊕(t−r)
1 for some r. In particular, 0 ≤ r ≤ min{s, t} in this case. 

Using a standard linear algebra fact (cf., e.g., [33]), we obtain

|{f : S⊕s
1 → S2 ⊕ S⊕t

1 | Kerf ∼= S
⊕(s−r)
1 , Cokerf ∼= S2 ⊕ S

⊕(t−r)
1 }| (7.10)

=
∣∣{A ∈ Ms×t(k) | rankA = r}

∣∣ =
r−1∏

j=0

(qs − qj)(qt − qj)

qr − qj
.

By (7.9) and applying (3.20), we have

[sS1] ∗ [S2] ∗ [tS1]

=

min{s,t}∑

r=0

∑

[M ]∈Iso(modnil(Λı))

v−sa+stq−(s−r)a+t(s−r)−(s−r)s+(s−r)2+sa−st (7.11)

|Ext1(S
⊕(s−r)
1 , S2 ⊕ S

⊕(t−r)
1 )M |

|Hom(S
⊕(s−r)
1 , S2 ⊕ S

⊕(t−r)
1 )|

r−1∏

j=0

(qs − qj)(qt − qj)

qr − qj
[M ] ∗ [K1]r

=

min{s,t}∑

r=0

∑

[M ]∈Is+t−2r

v(2r−s)(a−t)−2r(s−r)−2(s−r)(t−r)
r−1∏

j=0

(qs − qj)(qt − qj)

qr − qj

· |Ext1(S
⊕(s−r)
1 , S2 ⊕ S

⊕(t−r)
1 )M | · [M ] ∗ [K1]r,
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since |Ext1(S
⊕(s−r)
1 , S2 ⊕ S

⊕(t−r)
1 )M | �= 0 implies [M ] ∈ Is+t−2r by (7.5). Recall M ∼=

N ⊕S⊕uM

1 for some indecomposable kQ-module N from (7.7). From [34] or [35, Theorem 

3.16] and its proof, recalling (5.6) we have

F M

S
⊕(s−r)
1 ,S2⊕S

⊕(t−r)
1

= v(uM −(t−r))(t−r)

[
uM

t − r

]

v

.

Using the Riedtman-Peng formula in Lemma 5.3, one obtains that

∣∣Ext1(S
⊕(s−r)
1 , S2 ⊕ S

⊕(t−r)
1 )M

∣∣ (7.12)

=

∏s−r−1
i=0 (qs−r − qi)

∏t−r−1
i=0 (qt−r − qi)

|Aut(M)| (q − 1)v(uM −(t−r))(t−r)+2(s−r)(t−r)

[
uM

t − r

]

v

.

Thus using (7.12), we rewrite (7.11) as

[sS1] ∗ [S2] ∗ [tS1] (7.13)

=

min{s,t}∑

r=0

∑

[M ]∈Is+t−2r

v−s(a+t)+2ra+(uM −t+2s−r)(t−r)(q − 1)
r−1∏

j=0

(qs − qj)(qt − qj)

qr − qj

·
∏s−r−1

i=0 (qs−r − qi)
∏t−r−1

i=0 (qt−r − qi)

|Aut(M)|

[
uM

t − r

]

v

[M ] ∗ [K1]r.

Recall q = v2. Note that

r−1∏

j=0

(qr − qj) = vr2+(r
2)(v − v−1)r[r]!

v
,

r−1∏

j=0

(qs − qj) = vrs+(r
2)(v − v−1)r[s]v[s − 1]v . . . [s − r + 1]v,

s−r−1∏

i=0

(qs−r − qi) = v(s−r)2+(s−r
2 )(v − v−1)s−r[s − r]!

v
.

These identities (and the counterparts of the last 2 identities with s replaced by t) 

allow us to convert the formula (7.13) to (7.8) by a direct computation. This proves the 

proposition. �

7.3. ıSerre relation in H̃(kQ, τ)

It is well known that H̃(kQop, τ) = H̃(kQ, τ)op. Hence the identity (7.4) is equivalent 

to (7.3). It remains to prove (7.3).
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In this subsection, we shall prove (7.3) (and hence Theorem 7.1), modulo the validity 

of a combinatorial identity (which will be established in Section 8). Note that the identity 

(7.3) can be rewritten as

1+a∑

n=0

(−1)n[S1]
(n)

0̄
∗ [S2] ∗ [S1]

(1+a−n)
a = 0, (7.14)

1+a∑

n=0

(−1)n[S1]
(n)

1̄
∗ [S2] ∗ [S1]

(1+a−n)

1̄+a
= 0. (7.15)

We will provide a detailed proof of (7.14), which will be modified to give a proof of 

(7.15).

7.3.1. Proof of (7.14)

We divide the computation of the LHS of (7.14) into 2 cases.

Case (I): n even. By Proposition 6.4 and Proposition 7.3 we have

[S1]
(n)

0̄
∗ [S2] ∗ [S1]

(1+a−n)
a

=

n
2∑

k=0

� a+1−n
2 �∑

m=0

vk(k−1)+m(m+1)−(n−2k
2 )−(1+a−n−2m

2 ) · (v − v−1)k+m

[n − 2k]v![1 + a − n − 2m]v![2k]!!
v
[2m]!!

v

× [(n − 2k)S1] ∗ [S2] ∗ [(1 + a − n − 2m)S1] ∗ [K1]k+m

=

n
2∑

k=0

� a+1−n
2 �∑

m=0

min{n−2k,1+a−n−2m}∑

r=0

×
∑

[M ]∈I1+a−2k−2m−2r

vk(k−1)+m(m+1)−(n−2k
2 )−(1+a−n−2m

2 )

[n − 2k]!
v
[1 + a − n − 2m]!

v
[2k]!!

v
[2m]!!

v

× (v − v−1)k+mvp(a,r,n−2k,1+a−n−2m)

× (v − v−1)2+a−2k−2m−r [n − 2k]!
v
[1 + a − n − 2m]!

v

[r]!
v

×
[

uM

1 + a − n − 2m − r

]

v

[M ]

|Aut(M)| ∗ [K1]r+k+m.

This can be simplified to be, for n even,

[S1]
(n)

0̄
∗ [S2] ∗ [S1]

(1+a−n)
a =

n
2∑

k=0

� a+1−n
2 �∑

m=0

n−2k∑

r=0

∑

[M ]∈I1+a−2k−2m−2r

(7.16)

vz(v − v−1)2+a−k−m−r

[r]!
v
[2k]!!

v
[2m]!!

v

[
uM

1 + a − n − 2m − r

]

v

[M ] ∗ [K1]r+k+m

|Aut(M)|
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where we denote (recall the polynomial p from (7.6))

z = k(k − 1) + m(m + 1) −
(

n − 2k

2

)
−
(

1 + a − n − 2m

2

)
(7.17)

+ p(a, r, n − 2k, 1 + a − n − 2m).

Case (II): n odd. By Proposition 6.4 and Proposition 7.3 we have

[S1]
(n)

0̄
∗ [S2] ∗ [S1]

(1+a−n)
a

=

n−1
2∑

k=0

vk(k+1)−(n−2k
2 ) · (v − v−1)k

[n − 2k]v![2k]!!
v

[(n − 2k)S1] ∗ [K1]k ∗ [S2]

∗
� a+1−n

2 �∑

m=0

vm(m−1)−(1+a−n−2m
2 ) · (v − v−1)m

[1 + a − n − 2m]!
v
[2m]!!

v

[(1 + a − n − 2m)S1] ∗ [K1]m

=

n−1
2∑

k=0

� a+1−n
2 �∑

m=0

min{n−2k,1+a−n−2m}∑

r=0

∑

[M ]∈I1+a−2k−2m−2r

vk(k+1)+m(m−1)−(n−2k
2 )−(1+a−n−2m

2 ) · (v − v−1)k+m

[n − 2k]v![1 + a − n − 2m]v![2k]!!
v
[2m]!!

v

× vp(a,r,n−2k,1+a−n−2m)(v − v−1)2+a−2k−2m−r [n − 2k]!
v
[1 + a − n − 2m]!

v

[r]!
v

×
[

uM

1 + a − n − 2m − r

]

v

[M ]

|Aut(M)| ∗ [K1]r+k+m.

This can be simplified to be, for n odd,

[S1]
(n)

0̄
∗ [S2] ∗ [S1]

(1+a−n)
a =

n−1
2∑

k=0

� a+1−n
2 �∑

m=0

n−2k∑

r=0

∑

[M ]∈I1+a−2k−2m−2r

(7.18)

vz+2k−2m(v − v−1)2+a−k−m−r

[r]!
v
[2k]!!

v
[2m]!!

v

[
uM

1 + a − n − 2m − r

]

v

[M ] ∗ [K1]r+k+m

|Aut(M)| .

Summing up (7.16) and (7.18) above, we obtain

a+1∑

n=0

(−1)n[S1]
(n)

0̄
∗ [S2] ∗ [S1]

(1+a−n)
a (7.19)

=
a+1∑

n=0,2|n

n
2∑

k=0

� a+1−n
2 �∑

m=0

n−2k∑

r=0

∑

[M ]∈I1+a−2k−2m−2r
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vz(v − v−1)2+a−k−m−r

[r]!
v
[2k]!!

v
[2m]!!

v

[
uM

1 + a − n − 2m − r

]

v

[M ] ∗ [K1]r+k+m

|Aut(M)|

−
a+1∑

n=0,2�n

n−1
2∑

k=0

� a+1−n
2 �∑

m=0

n−2k∑

r=0

∑

[M ]∈I1+a−2k−2m−2r

vz+2k−2m(v − v−1)2+a−k−m−r

[r]!
v
[2k]!!

v
[2m]!!

v

[
uM

1 + a − n − 2m − r

]

v

[M ] ∗ [K1]r+k+m

|Aut(M)| .

Set

d = r + k + m.

Now we have reduced the proof of (7.14) to proving that the coefficient of [M ]∗[K1]d

|Aut(M)| in 

the RHS of (7.19) is zero, for any given [M ] ∈ I1+a−2d and any d ∈ N. Note the powers 

of (v − v−1) in all terms are the same (and = 2 + a − d). Denote

T (a, d, u) =
a+1∑

n=0,2|n

n
2∑

k=0

� a+1−n
2 �∑

m=0

δ{0 ≤ r ≤ n − 2k} vz

[r]!
v
[2k]!!

v
[2m]!!

v

[
u

1 + a − n − 2m − r

]

v

(7.20)

−
a+1∑

n=0,2�n

n−1
2∑

k=0

� a+1−n
2 �∑

m=0

δ{0 ≤ r ≤ n − 2k} vz+2k−2m

[r]!
v
[2k]!!

v
[2m]!!

v

[
u

1 + a − n − 2m − r

]

v

,

where we set δ{X} = 1 if the statement X holds and δ{X} = 0 if X is false. We note 

r = d − k − m ≥ 0; see (7.17) for z, and also see (7.6) for the polynomial p.

Then the coefficient of [M ]∗[K1]d

|Aut(M)| in the RHS of (7.19) is equal to (v − v−1)2+a−dT (a,

d, u). Summarizing the above discussions, we have established the following.

Proposition 7.4. The identity (7.14) is equivalent to the identity T (a, d, u) = 0, for any 

integers a, d, u subject to the constrains

a ≥ 0, 0 ≤ d ≤ (a + 1)/2, 0 ≤ u ≤ a + 1 − 2d, d and u not both zero. (7.21)

7.3.2. Proof of (7.15)

Note the differences on the formulas for [S]
(n)

0̄
versus [S]

(n)

1̄
in Proposition 6.4–6.5

merely lie in the powers of v. Going through the same computations in §7.3.1, we see 

that the identity (7.15) is equivalent to the following identity

T1(a, d, u) = 0,

for a, d, u satisfying (7.21), where T1 is modified from T in (7.20) by changing the power 

of v in the first summand from z to z + 2k − 2m and the power of v in the second 

summand from z + 2k − 2m to z.
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We shall establish the identities T (a, d, u) = 0 and T1(a, d, u) = 0 in the next section.

8. Combinatorial identities

The goal of this section is to prove the following identities (and hence complete the 

proof of Theorem 7.1). In the process, we establish some interesting v-binomial identities, 

which are of independent interest.

Proposition 8.1. For integers a, d, u satisfying (7.21), the following identities hold:

T (a, d, u) = 0, (8.1)

T1(a, d, u) = 0, (8.2)

where T is defined in (7.20) and T1 is defined in §7.3.2.

8.1. Some v-binomial identities

We first establish some identities which will be used later.

Lemma 8.2. The following (equivalent) identities hold, for p ∈ N:

[p]!
∑

k,m∈N

k+m=p

v−2(k−1)m− p(3−p)
2

[2k]!![2m]!!
= 1, (8.3)

p∑

k=0

v
p(p+1)

2 −2k(p−k+1)

[
p
k

]

v2

=
[2p]!!

[p]!
. (8.4)

Proof. Clearly the 2 identities (8.3)–(8.4) are equivalent, by noting that [2k]!! = [2]k[k]!v2

and 

[
p
k

]

v2

= [2p]!!

[2k]!![2m]!! with m = p − k.

By switching k to p − k and noting 

[
p

p − k

]

v2

=

[
p
k

]

v2

, we see that the identity (8.4)

is equivalent to

p∑

k=0

v
p(p+1)

2 −2(k+1)(p−k)

[
p
k

]

v2

=
[2p]!!

[p]!
. (8.5)

It remains to prove (8.4) by induction on p. It is clear when p = 0. Assuming the 

statement for p (8.4) (and its equivalent (8.5)), we shall prove

p+1∑

k=0

v
(p+1)(p+2)

2 −2k(p−k+2)

[
p + 1

k

]

v2

=
[2(p + 1)]!!

[p + 1]!
.
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Indeed, using the v-binomial identity 

[
p + 1

k

]

v2

= v2k

[
p
k

]

v2

+ v−2(p+1−k)

[
p

k − 1

]

v2

, 

we have

p+1∑

k=0

v
(p+1)(p+2)

2 −2k(p−k+2)

[
p + 1

k

]

v2

=

p+1∑

k=0

v
(p+1)(p+2)

2 −2k(p−k+2)

(
v2k

[
p
k

]

v2

+ v−2(p−k+1)

[
p

k − 1

]

v2

)

=

p∑

k=0

v
(p+1)(p+2)

2 −2k(p−k+1)

[
p
k

]

v2

+

p+1∑

k=1

v
(p+1)(p+2)

2 −2(k+1)(p−k+2)+2

[
p

k − 1

]

v2

(∗)
=

p∑

k=0

v
(p+1)(p+2)

2 −2k(p−k+1)

[
p
k

]

v2

+

p∑

k=0

v
(p+1)(p+2)

2 −2(k+2)(p−k+1)+2

[
p
k

]

v2

= vp+1

p∑

k=0

v
p(p+1)

2 −2k(p−k+1)

[
p
k

]

v2

+ v−p−1

p∑

k=0

v
p(p+1)

2 −2(k+1)(p−k)

[
p
k

]

v2

(∗∗)
= vp+1 [2p]!!

[p]!
+ v−p−1 [2p]!!

[p]!
=

[2(p + 1)]!!

[p + 1]!
,

where the identity (∗) is obtained by shifting the index k in the second summand on the 

LHS to k + 1, and (∗∗) uses the inductive assumption (8.4)–(8.5). �

Identity (8.4) (after a rescaling v2 �→ v) can be further reformulated as the following 

identity (also compare [1, Ex. 5, pp.49]):

p∑

k=0

v−k(p−k+1)

[
p
k

]
=

p∏

j=1

(1 + v−j). (8.6)

Lemma 8.3. The following identity holds, for d ≥ 1:

∑

k,m,r∈N

k+m+r=d

(−1)r v(r+1
2 )−2(k−1)m

[r]![2k]!![2m]!!
= 0. (8.7)

Proof. Using (8.3) we have

∑

k,m,r∈N

k+m+r=d

(−1)r v(r+1
2 )−2(k−1)m

[r]![2k]!![2m]!!
=

d∑

r=0

(−1)r v(r+1
2 ) · v

(d−r)(3−d+r)
2

[r]![d − r]!

=
v

3d−d2

2

[d]!

d∑

r=0

(−1)rv(d−1)r

[
d
r

]
= 0.
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In the last step above, we have used the standard v-binomial formula (5.13). �

8.2. Proof of Identity (8.1)

It is crucial for our purpose to introduce a new variable

w = n + m − k − d

in place of n in (7.20). Hence we have 

[
u

1 + a − n − d − m + k

]

v

=

[
u

1 + a − 2d − w

]

v

and

n = w − m + k + d ≡ w + r (mod 2). (8.8)

The condition r ≤ n − 2k in T (a, d, u) in (7.20) is transformed into the condition w ≥ 0.

By a direct computation we can rewrite z in (7.17) as

z =

(
r + 1

2

)
− 2(k − 1)m + L, (8.9)

where

L = d(d − 1) − aw + (u + w)(1 + a − 2d − w) + w2 + 1.

(We do not need the precise formula for L except noting that L is independent of 

k, m, r, and only depends on a, d, w, u.) Hence, for fixed a, w, d, u, using (8.8)–(8.9) and 

Lemma 8.3, we calculate that the contribution to the coefficient of 

[
u

1 + a − 2d − w

]

v

in T (a, d, u) in (7.20), for d > 0, is equal to

(−1)wvL

⎛
⎜⎝

∑

k,m,r∈N,r even

k+m+r=d

(−1)r v(r+1
2 )−2(k−1)m

[r]!
v
[2k]!!

v
[2m]!!

v

+
∑

k,m,r∈N,r odd

k+m+r=d

(−1)r v(r+1
2 )−2k(m−1)

[r]!
v
[2k]!!

v
[2m]!!

v

⎞
⎟⎠

(∗)
= (−1)wvL

∑

k,m,r∈N

k+m+r=d

(−1)r v(r+1
2 )−2(k−1)m

[r]!
v
[2k]!!

v
[2m]!!

v

= 0.

Note that the identity (∗) above is obtained by switching notation k ↔ m in the second 

summand on the LHS of (∗). Therefore, we have obtained that T (a, d, u) = 0, for d > 0.

It remains to determine the contributions of the terms with d = 0 to T (a, 0, u) in 

(7.20), for fixed a, u; recall from (7.21) that u > 0 when d = 0. In this case, we have 

k = m = r = 0, and a direct computation shows that the power z can be simplified to 

be z = (1 − u)w + (1 + a)u + 1. Then, for 0 < u ≤ a + 1, we have
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T (a, 0, u) = v(1+a)u+1
∑

w≥0

(−1)wv(1−u)w

[
u

1 + a − w

]

v

(1)
= (−1)1+av(1+a)+1

∑

x≥0

(−1)xv(u−1)x

[
u
x

]

v

(2)
= 0,

where we have changed variables x = 1 +a −w in the identity (1), and used the v-binomial 

formula (5.13) in (2) above.

Therefore, we have established the identity (8.1).

8.3. Proof of Identity (8.2)

The proof is essentially the same as the proof in §8.2 for the identity (8.1), with some 

modification of details below.

Going through §8.2, we calculate that the contribution to the coefficient of[
u

1 + a − 2d − w

]

v

in T1(a, d, u) (see §7.3.2 for definition of T1), for d > 0, is equal 

to

(−1)wvL

⎛
⎜⎝

∑

k,m,r∈N,r even

k+m+r=d

(−1)r v(r+1
2 )−2k(m−1)

[r]!
v
[2k]!!

v
[2m]!!

v

+
∑

k,m,r∈N,r odd

k+m+r=d

(−1)r v(r+1
2 )−2(k−1)m

[r]!
v
[2k]!!

v
[2m]!!

v

⎞
⎟⎠

= (−1)wvL
∑

k,m,r∈N

k+m+r=d

(−1)r v(r+1
2 )−2(k−1)m

[r]!
v
[2k]!!

v
[2m]!!

v

= 0.

Therefore, we obtain that T1(a, d, u) = 0, for d > 0. In exactly the same way as in §8.2, 

we see T1(a, 0, u) = 0, for 0 < u ≤ a + 1. This proves the identity (8.2).

Hence the proofs of Proposition 8.1 and then of Theorem 7.1 are completed.

9. ıHall algebras and ıquantum groups

In this section, we establish several more identities in the ıHall algebras corresponding 

to the relations (4.12), (4.14) and a remaining part of (4.16). Then we prove the main 

theorem which provides a Hall algebra realization of the ıquantum groups.

9.1. Relation (4.12)

Recall the Euler form 〈·, ·〉Q is used in the twisted product of the ıHall algebra 

H̃(kQ, τ).

We have the following identities in H̃(kQ, τ) corresponding to the relation (4.12) in 

Ũı.
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Proposition 9.1. Let (Q, τ) be an ıquiver. Then the following identities hold in H̃(kQ, τ), 

for i, j ∈ I:

[Ki] ∗ [Sj ] = vcτi,j−cij [Sj ] ∗ [Ki],

[Ki] ∗ [Kj ] = [Kj ] ∗ [Ki].

Proof. By Lemma 3.1, we have

[Ki] ∗ [Sj ] = v〈res(Ki),res(Sj)〉Qq−〈Ki,Sj〉[Ki ⊕ Sj ]

= v〈Sτi,Sj〉Q−〈Si,Sj〉Q [Ki ⊕ Sj ],

[Sj ] ∗ [Ki] = v〈Sj ,Si〉Q−〈Sj ,Sτi〉Q [Ki ⊕ Sj ].

Hence we have

[Ki] ∗ [Sj ] = v〈Sτi,Sj〉Q−〈Si,Sj〉Q−〈Sj ,Si〉Q+〈Sj ,Sτi〉Q [Sj ] ∗ [Ki]

= v(Sτi,Sj)−(Si,Sj)[Sj ] ∗ [Ki]

= vcτi,j−cij [Sj ] ∗ [Ki].

This proves the first formula. The second formula follows from (3.7). �

9.2. Relation (4.14)

We first recall the usual Serre relation in the twisted Ringel-Hall algebra associated 

to Q over k, denoted by (H̃(kQ), ∗).

Lemma 9.2 ([34,14]). Let Q = 1
α1

···
αa

2 . The following identity holds in H̃(kQ), for 

i �= j ∈ I:

∑

r+s=a+1

(−1)r[Si]
(r) ∗ [Sj ] ∗ [Si]

(s) = 0.

Recall the definition of virtually acyclic ıquivers from Definition 4.4.

Proposition 9.3. Let (Q, τ) be a virtually acyclic ıquiver. The following identity holds in 

H̃(kQ, τ), for any i �= j ∈ I such that τi �= i:

∑

r+s=1−cij

(−1)r[Si]
(r) ∗ [Sj ] ∗ [Si]

(s) = 0.

Proof. We have [Si]
(r) ∗ [Sj ] ∗ [Si]

(s) =
∑

[M ]∈modnil(Λı) pM [M ]. If pM �= 0, then M ∈
modnil(kQ). So it boils down to the same computation as computing [Si]

(r) ∗ [Sj ] ∗ [Si]
(s)

in H̃(kQ). Therefore the proposition follows from Lemma 9.2. �
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9.3. Relation (4.16) for j �= τj

Let Q = 1
α1

···
αa

2 3
β1

···

βa

with involution τ given by τ1 = 3 and τ2 = 2, where 

a = −c12. Then the quiver Q of Λı is

1 3

αa
α1 β1

βa
···

�
�
�
��

�
�
�
��

�
�

�
��

···
�

�
�
��

2

��
ε1

ε3

ε2

	

(9.1)

The following is a variant of Theorem 7.1 and will be derived from it.

Proposition 9.4. Let Λı be the ıquiver algebra with its quiver (or opposite quiver) given 

by (9.1). Then the following identities hold in H̃(kQ, τ), for any p ∈ Z/2Z and j = 1, 3:

1+a∑

n=0

(−1)n[S2]
(n)
p ∗ [Sj ] ∗ [S2]

(1+a−n)
a+p = 0. (9.2)

Proof. Set i = 2. It suffices to prove the case when j = 1. Consider the full subquiver 

Q′ of Q formed by vertices 1 and 2. Let ′Λı := kQ′/(ε2
2). We have [Si]

(r) ∗ [Sj ] ∗ [Si]
(s) =∑

[M ] pM [M ]. For any [M ] ∈ modnil(Λı) such that pM �= 0, we have M ∈ modnil(′Λı). 

In this proof, we shall denote the opposite quiver in (7.1) by Q′′ and its ıquiver algebra 

(i.e., the one in Theorem 7.1) by ′′Λı. Then ′Λı can be viewed as a quotient algebra (and 

also a subalgebra) of ′′Λı naturally. So it is the same computation as computing [Si]
(r) ∗

[Sj ] ∗ [Si]
(s) in H̃(kQ′′, Id). Therefore the proposition follows from Theorem 7.1. �

9.4. ıHall algebra realization of Ũı

Let Ũı0 be the Q(v)-subalgebra of Ũı generated by k̃i, for i ∈ I. By the Serre presen-

tation of Ũı (see Theorem 4.2), letting degBi = αi and degk̃i = 0, for i ∈ I, endows Ũı a 

NI-filtered algebra structure. Let Ũı,gr be the associated graded algebra. Then by The-

orem 4.2 and the PBW theorem for Ũı, there exists a natural algebra monomorphism 

φ : U− → Ũı,gr by mapping Fi �→ Bi for any i ∈ I. Moreover, Ũı,gr = Imφ · Ũı0.

Let (Q, τ) be a virtually acyclic ıquiver. Recall Iτ from (2.6). The following result due 

to Ringel and Green is well known (except that we follow Bridgeland’s Hall multiplication 

here).

Lemma 9.5 ([34,14]; cf. [27]). There exists an algebra monomorphism

R : U−|v=v −→ H̃(kQ)
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Fj �→ −1

q − 1
[Sj ], if j ∈ Iτ , Fj �→ v

q − 1
[Sj ], if j /∈ Iτ .

Recall from [27, Lemma 5.3] that there is a filtered algebra structure on H̃(kQ, τ), 

and we denote the associated graded algebra

H̃(kQ, τ)gr =
⊕

α∈K0(modnil(kQ))

H̃(kQ, τ)gr
α .

It is natural to view the quantum torus T̃ (Λı) (see the end of §3.3) as a subalgebra of 

H̃(kQ, τ)gr. Then H̃(kQ, τ)gr is also a T̃ (Λı)-bimodule.

Just as in [27, Lemma 5.4 (ii)], the linear map

ϕ : H̃(kQ) −→ H̃(kQ, τ)gr, ϕ([M ]) = [M ], ∀M ∈ modnil(kQ), (9.3)

is an embedding of algebras. Now we are ready to establish the main result of this paper.

Theorem 9.6. Let (Q, τ) be a virtually acyclic ıquiver. Then there exists a Q(v)-algebra 

monomorphism

ψ̃ : Ũı
|v=v

−→ H̃(kQ, τ),

which sends

Bj �→ −1

q − 1
[Sj ], if j ∈ Iτ , k̃i �→ −q−1[Ki], if τi = i ∈ I; (9.4)

Bj �→ v

q − 1
[Sj ], if j /∈ Iτ , k̃i �→ v

−ci,τi
2 [Ki], if τi �= i ∈ I. (9.5)

Proof. To show that ψ̃ is a homomorphism, we verify that ψ̃ preserves the defining 

relations (4.12)–(4.16) for Ũı. According to Lemma 3.9, the verification of the relations 

is local and hence is reduced to the rank 1 and rank 2 ıquivers, which were treated 

in Section 5, Section 7 and earlier parts of this section. More precisely, the relation 

(4.12) follows from Proposition 9.1. The relation (4.13) is obvious. The relation (4.14)

follows from Proposition 9.3. The relation (4.15) follows from Proposition 5.7. Finally, 

the relation (4.16) follows from Theorem 7.1 and Proposition 9.4.

The homomorphism ψ̃ : Ũı
|v=v

→ H̃(kQ, τ) restricts to an algebra homomorphism

ψ̃ : Ũı0
|v=v

−→ T̃ (Λı),

k̃i �→ −q−1[Ki], if τi = i, k̃i �→ [Ki], if τi �= i.

Since both Ũı0
|v=v

and T̃ (Λı) are Laurent polynomial algebras in the same number of 

generators, ψ̃ : Ũı0
|v=v

→ T̃ (Λı) is an isomorphism.
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It remains to prove that ψ̃ : Ũı
|v=v

→ H̃(kQ, τ) is injective. We observe that ψ̃ is a 

morphism of filtered algebras. Let ψ̃gr : Ũ
ı,gr
|v=v

→ H̃(kQ, τ)gr be its associated graded 

morphism, and we obtain the following commutative diagram

U−|v=v

φ

R

Ũı,gr|v=v

ψ̃gr

H̃(kQ)
ϕ

H̃(kQ, τ)gr.

It follows that ψ̃gr ◦ φ is injective since ϕ and R are injective by Lemma 9.5 and (9.3).

We claim that ψ̃gr is injective. Indeed, any element in Ũı,gr is of form 
∑

α∈ZI
φ(Vα) ·k̃α, 

for Vα ∈ U−. Here k̃α =
∏

i∈I
k̃ai

i for α =
∑

i∈I
aiαi. Assume ψ̃gr(

∑
α φ(Vα) ·k̃α) = 0, i.e., ∑

α∈ZI
ψ̃gr(φ(Vα)) ∗ Kα = 0. Since H̃(kQ, τ)gr is graded, we obtain ψ̃gr(φ(Vα)) ∗ Kα = 0

for any α. Together with Theorem 3.6, we obtain ψ̃gr(φ(Vα)) = 0, and then Vα = 0. It 

follows that ψ̃gr is injective.

Now by a standard filtered algebra argument, we obtain that ψ̃ : Ũı
|v=v

→ H̃(kQ, τ)

is an algebra monomorphism. The theorem is proved. �

Remark 9.7. We expect Theorem 9.6 to hold for general ıquivers (Q, τ) without loops.

It will be interesting to develop a theory of quantum symmetric pairs (Ũ, Ũı) and 

(U, Uı) associated to Borcherds-Cartan matrices (corresponding to quivers possibly with 

loops). We conjecture that a version of Theorem 9.6 holds for general ıquivers with loops.

9.5. Variations

The reduced Hall algebra associated to (Q, τ) (or reduced ıHall algebra), denoted by 

SDHred(Λı), is defined (cf. [27]) to be the quotient Q(v)-algebra of H̃(kQ, τ) by the 

ideal generated by the central elements

[Ki] + qςi (∀i ∈ I with τi = i), and [Ki] ∗ [Kτi] − vci,τiςiςτi (∀i ∈ I with τi �= i).

The following corollaries of Theorem 9.6 are immediate.

Corollary 9.8. Let (Q, τ) be a virtually acyclic ıquiver. Then there exists an injective 

homomorphism ψ : Uı
|v=v

→ SDHred(Λı), which sends ki �→ v
−ci,τi

2
[Ki]
ςτi

for i ∈ I\Iτ , 

Bi �→ −1
q−1 [Si], for i ∈ Iτ , and Bi �→ v

q−1 [Si], for i /∈ Iτ .

Let CH̃(kQ, τ) be the Q(v)-subalgebra (called the composition algebra) of H̃(kQ, τ)

generated by [Si] and [Ki]
±1, for i ∈ I.

Corollary 9.9. Let (Q, τ) be a virtually acyclic ıquiver. Then there exists an algebra iso-

morphism: ψ̃ : Ũı
|v=v

∼=−→ CH̃(kQ, τ) given by (9.4)–(9.5).
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Following Ringel, we define a generic composition subalgebra CH̃(Q, τ) below. Let K be 

an infinite set of (nonisomorphic) finite fields, and let us choose for each k ∈ K an element 

vk ∈ C such that v2
k

= |k|. Consider the direct product CH̃(Q, τ) :=
∏

k∈K
CH̃(kQ, τ). 

We view CH̃(Q, τ) as a Q(v)-module by mapping v to (vk)k. As in [34,14], we have the 

following consequence of Corollary 9.9.

Corollary 9.10. Let (Q, τ) be a virtually acyclic ıquiver. Then we have the following 

algebra isomorphism ψ̃ : Ũı → CH̃(Q, τ) defined by

Bj �→
( −1

|k| − 1
[Sj ]
)

k

, if j ∈ Iτ , k̃i �→
(

− |k|−1[Ki]
)

k

, if τi = i;

Bj �→
( vk

|k| − 1
[Sj ]
)

k

, if j /∈ Iτ , k̃i �→
(

v
−ci,τi

2

k
[Ki]
)

k

, if τi �= i.
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