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Abstract—Introduced by Sadeh et al., the K-star-graph private
information retrieval (PIR) problem, so-labeled because the
storage graph is a star-graph with K leaf nodes, is comprised of
K messages that are stored separately (one-each) at K dedicated
servers, and a universal server that stores all K messages, for
a total of K + 1 servers. While it is one of the simplest PIR
settings to describe, the capacity CK of K-star-graph PIR is
open for K ≥ 4. We study the critical K = 4 setting, for which
prior work establishes the bounds 2/5 ≤ C4 ≤ 3/7. As our main
contribution, we characterize the exact capacity of 4-star-graph
PIR as C4 = 5/12, thus improving upon both the prior lower-
bound as well as the prior upper-bound. The main technical
challenge resides in the new converse bound, whose non-trivial
structure is deduced indirectly from the achievable schemes that
emerge from the study of a finer tradeoff between the download
costs from the dedicated servers versus the universal server. A
sharp characterization of this tradeoff is also obtained for K = 4.

I. INTRODUCTION

There is much interest in the capacity of various Private
Information Retrieval (PIR) settings [1] motivated not only by
growing privacy concerns, but also, and perhaps even more
so, by the fundamental connections of PIR to other ideas —
locally decodable codes and interference alignment to name a
few — that provide opportunities for cross-cutting insights.
What makes problems like PIR attractive for information
theoretic analysis is that they are simple to describe (allow-
ing broader connections), but challenging to solve (allowing
deeper insights) — a trait also evident in the celebrated index
coding problem [2], similarly simple-to-describe and broadly
insightful. Following this thought, a particularly appealing PIR
setting is K-star-graph PIR, introduced by Sadeh et al. in [3].

The name ‘K-star-graph PIR’ reflects that the storage
graph1 is a star-graph with K leaf nodes. As illustrated in
Fig. 1, the setting is comprised of K messages, W1, · · · ,WK ,
say of size L bits each, that are stored separately (one-each)
at K dedicated servers, Server 1, · · · , Server K, respectively,
and a universal server, Server 0, that stores all K messages,
for a total of N = K + 1 servers.2 A user generates a private
and uniform index θ ∈ {1, 2, · · · ,K}, and wishes to retrieve
the desired message Wθ with the smallest total download cost
possible, without revealing any information about θ to any

1A storage graph has the servers as vertices, and an edge (hyperedge) for
each message, identifying servers that store that message (cf. [4]–[6]).

2While we identify the K-star-graph with the number of messages K, i.e.,
the number of leaf-nodes in the star-graph, note that reference [3] identifies the
same graph as SN = SK+1, based on the number of servers N = K+1, i.e.,
the total number of nodes in the star graph. Thus, our 4-star-graph corresponds
to S5 in [3]. We avoid the SN notation because it is interpreted differently
by different authors (e.g., see Wikipedia entry on star graphs).

server. The total download cost ∆Σ , ∆0 + ∆1 + · · · +
∆K = ∆0 + K∆, where ∆k is the download cost from
Server k, k ∈ {0, 1, · · · ,K}, and we assume (without loss of
generality) that the download costs from the dedicated servers
are balanced, i.e., ∆1 = ∆2 = · · · = ∆K , ∆. The maximum
number of desired message bits that can be retrieved per bit
of total download is the capacity CK of K-star-graph PIR.
The capacity CK is characterized approximately for large K
by Sadeh et al. in [3] as Θ(1/

√
K), and exactly for K ≤ 3.

However, in spite of the descriptive simplicity of K-star-graph
PIR, a precise capacity characterization is difficult to obtain for
K ≥ 4. The capacity C4 for the critical case of 4-star-graph
PIR, where we have 4 messages stored among 5 servers, is
our focus in this work.

Desired message: Wθ

private, uniform θ ∈ [K]
User

W1, · · · ,WK

Server 0

W1 W2 W3 · · · WK

Server K

Q0

X0 Q1
X1 Q2 X2

Q3 X3

QK
XK

Fig. 1. K-star-graph PIR with messages W1, · · · ,WK stored among K+1
servers according to the K-star storage-graph illustrated with dashed-edges.

To establish a basic understanding, let us start with a
simpler setting for which the capacity is known, i.e., 3-
star-graph PIR. For notational simplicity, let A,B,C rep-
resent the 3 messages W1,W2,W3, respectively. Also let
θ = a, b, c denote the demand being A,B,C, respectively.
Consider the following coding scheme, where L = 3 bits of
each message are encoded together, e.g., A = (A1,A2,A3).
Let (a1, a2, a3), (b1, b2, b3), (c1, c2, c3) be three i.i.d. uniform
permutations of (1, 2, 3) generated privately by the user. Let
the download from Server 0 be

X0 =
[
Aa1 + Bb1 , Aa2 + Cc1 , Bb2 + Cc2

]
, (1)

which is trivially private as it does not depend on θ. For each
possible desired message Wθ ∈ {A,B,C}, the downloads from
the dedicated servers are specified in the form of the tuples
(Wθ,X1,X2,X3) as (A,Aa3 ,Bb1 ,Cc1), (B,Aa1 ,Bb3 ,Cc2), and
(C,Aa2 ,Bb2 ,Cc3). It is readily verified that in every case the
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user is able to retrieve all 3 bits of the desired message from
the downloads. The scheme is private because regardless of θ
the download from each of Servers 1, 2, 3 is equally likely to
be any of the 3 bits of the message stored at that server. The
rate achieved by the scheme is L/∆Σ = 3/6 = 1/2 since L =
3 bits of the desired message are retrieved at a total download
cost of ∆Σ = ∆0 +∆1 +∆2 +∆3 = 3+1+1+1 = 6 bits. In
fact the rate 1/2 is optimal, i.e., the capacity C3 = 1/2. As a
rough intuitive sketch, the converse is based on the following
reasoning. Since the query to Server 0 is independent of θ,
it follows that there exist some queries (Q

a

0 , Q
a

1 , Q
a

2 , Q
a

3) and
(Q̃b0, Q̃

b
1, Q̃

b
2, Q̃

b
3) such that from the corresponding downloads

(X
a

0 ,X
a

1 ,X
a

2 ,X
a

3) the user can recover A, from (X̃b0, X̃
b
1, X̃

b
2, X̃

b
3)

the user can recover B, and Q
a

0 = Q̃b0 so that X
a

0 = X̃b0. Now,
we claim that from C,X

a

0 ,X
a

1 ,X
a

2 , X̃
b
2 the user can recover all

3 messages A,B,C. This claim is justified as follows. The user
is already given C. Because the user is given X

a

0 ,X
a

1 ,X
a

2 , and
can generate X

a

3 locally from C, she must be able to recover
A. Then, having both A and C at this point, the user can
obtain locally anything it needs from Server 1 and Server 3,
i.e., servers that store only A and C. In particular, the user
can locally obtain X̃b1 from A, and X̃b3 from C, and is given
both X̃b0 = X

a

0 , and X̃b2. This allows the user to recover B,
thus completing the recovery of all three messages A,B,C.
Now, by the general property H(f(X)) ≤ H(X), it follows
that 3L = H(A,B,C) ≤ H(C,X

a

0 ,X
a

1 ,X
a

2 , X̃
b
2) ≤ H(C) +

∆0 + ∆1 + 2∆2 = L+ ∆0 + 3∆ = L+ ∆Σ, which gives us
3L ≤ L + ∆Σ, and therefore we obtain the desired converse
bound ∆Σ/L ≥ 2.

Now consider the open problem that is the focus of this
work, i.e., 4-star-graph PIR. Sadeh et al. establish in [3]
that the rate 2/5 is achievable, so we have C5 ≥ 2/5.
Generalization of the converse reasoning from [3] as sketched
above, yields the bound C4 ≤ 3/7. Thus we have a gap,
2/5 ≤ C4 ≤ 3/7. Closing this gap is the immediate goal
of this work, with the long-term hope that the new ideas that
emerge in the process may help with future generalizations,
e.g., leading to CK for K > 4, and subsequently to converse
bounds for related interference alignment schemes that arise
in other contexts (discussed in Section V). As our main
contribution we settle the precise capacity of 4-star-graph PIR
as C4 = 5/12. Thus, the capacity strictly improves upon both
the prior lower-bound and the prior upper-bound. The main
technical challenge is manifested in a new converse bound,
3∆0+14∆ ≥ 8L, that has a remarkably distinct structure from
previous converse bounds. The structure of this new bound is
deduced indirectly from the achievable schemes that emerge
from the study of a finer tradeoff between the download costs
from the dedicated servers (∆) versus the download cost from
the universal server (∆0). A sharp characterization of this
tradeoff is also obtained for K = 4.

Notation: For a positive integer K, [K] denotes the set
of positive integers {1, 2, . . . ,K}.

(
n
r

)
, n!

r!(n−r)! with the
convention that

(
n
r

)
= 0 if n < r or r < 0. Sans-serif letters

are used to denote random variables.

II. PROBLEM STATEMENT: K-STAR-GRAPH PIR

K Messages, K + 1 Servers: There are K independent
messages W1,W2, . . . ,WK . Each message is a stream of
F2 symbols. For ` ∈ N, Wk(`) denotes the `th symbol of
Wk, k ∈ [K]. Each symbol is drawn i.i.d. uniform. There are
K dedicated servers that store one message each, with Server
k storing only Wk, k ∈ [K]. There is one universal server,
called Server 0 that stores all K messages.

User’s demand θ, local randomness Z: The demand θ ∈
[K] is generated privately and uniformly by the user. Addi-
tional local randomness Z may be generated privately by the
user, independent of θ. The user wishes to retrieve Wθ.

Coding scheme: A coding scheme C for K-star-
graph PIR is formally represented as a tuple C =
(L,Z, µ0, µ1, · · · , µK , φ0, φ1, · · · , φK , ψ) where L ∈ N is
the number of bits of each message to be encoded together,
Z ∈ Z is the local randomness generated privately by the user
(independent of θ), µ0, · · · , µK are functions that generate
queries sent by the user to the servers, φ0, · · · , φK are
functions that generate answers returned by the servers to
the user, and ψ is the final decoding function at the user. In
order to be considered feasible, a coding scheme must satisfy
correctness and privacy constraints. Let us denote the set of
feasible coding schemes for K-star-graph PIR by CK . These
functions and constraints are described next.

Queries: The K + 1 functions µk : [K] × Z → Qk,
∀k ∈ {0, 1, · · · ,K}, map (θ,Z) to the K + 1 queries
Q0,Q1, · · · ,QK , respectively, i.e.,

Qk = µk(θ,Z), ∀k ∈ {0, 1, · · · ,K}. (2)

The query functions must satisfy the following which requires
that the query to any server must be independent of the desired
message index θ, i.e.,

I(θ;Qk) = 0, ∀k ∈ {0, 1, · · · ,K}. (3)

Answers from Servers: The K+1 functions, φ0 : [(FL2 )K ]×
Q0 → X0, and φk : FL2×Qk → Xk,∀k ∈ [K], map the stored
message(s) and the query at each server to the answer that the
server returns to the user, i.e.,

X0 = φ0(W1,W2, . . . ,WK , Q0), (4)
Xk = φk(Wk,Qk), k ∈ [K]. (5)

Decoding by the User: The decoding function,

ψ : X0 ×X1 × . . .×XK × [K]×Z → FL2 (6)

allows the user to retrieve the desired message Wθ,

Wθ = ψ(X0,X1, . . . ,XK , θ,Z). (7)

Download Cost: The download cost (in bits) from Server
k is defined as3,

∆k , log2 |Xk|, ∀k ∈ {0, 1, · · · ,K}. (8)

3Since each alphabet set Xk is deterministic, our focus in this work is
limited to the maximum (instead of average) download costs across queries.
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Rates, Capacity: The rate of a feasible coding scheme C =
(L,Z, µ0, µ1, · · · , µK , φ0, φ1, · · · , φK , ψ) ∈ CK is defined as,

R(C) =
L

∆0 + ∆1 + . . .+ ∆K
. (9)

The capacity of K-star-graph PIR is defined as

CK , sup
C∈CK

R(C). (10)

Balanced Costs: Let CK be the set of all feasible schemes
with balanced costs from the dedicated servers, i.e.,

|X1| = |X2| = · · · = |XK | , |X | (11)

∆1 = ∆2 = · · · = ∆K , ∆. (12)

For capacity, it follows from [7, Thm 4] that there is no loss
of generality in restricting the coding schemes to CK , i.e.,

CK = sup
C∈CK

R(C) = sup
C′∈CK

R(C′). (13)

This is because any feasible coding scheme C =
(L,Z, µ0, µ1, · · · , µK , φ0, φ1, · · · , φK , ψ) ∈ CK that does not
have balanced costs, can be mapped to a feasible scheme
C′ ∈ CK with balanced costs, while preserving the rate of
the original scheme, i.e., R(C′) = R(C), by a straightforward
equal ‘time-sharing’ of schemes (cf. [7, Thm 4]) Cπ =
(L,Zπ, µ0, µπ(1), · · · , µπ(K), φ0, φπ(1), · · · , φπ(K), ψ) ∈ CK ,
for all permutations π : [K] → [K], with independent local
randomness Zπ for each Cπ . In fact, it suffices to consider
only cyclic permutations, i.e., all π ∈ {π1, · · · , πK} where
πi(k) = 1+((k+i) mod K), ∀i, k ∈ [K]. There are K cyclic
permutations, producing K such schemes, for a combined
scheme C′ that considers L′ = KL bit messages, and has
a download cost ∆′0 = K∆0, ∆′k = ∆π1(k) + · · ·+ ∆πK(k) =
∆1 + · · · + ∆K = ∆′ for all k ∈ [K]. The rate of the new
scheme C′ is,

R(C′) =
L′

∆′0 + ∆′1 + · · ·+ ∆′K
(14)

=
KL

K∆0 +K(∆1 + · · ·+ ∆K)
(15)

=
L

∆0 + ∆1 + · · ·+ ∆K
= R(C) (16)

i.e., same as the original scheme C, but the new scheme C′
has balanced download costs from the dedicated servers. The
correctness of C′ follows directly from the correctness of C.
The privacy of C′ follows from the reasoning that the queries
to a server in each Cπi

are individually independent of θ
(because the original scheme C is private), and conditioned on
θ the queries to the same server in the different Cπi schemes
are independent because Zπi are independent. From this it
follows4 that the combined-query in C′ is independent of θ.

4For example, consider queries to Server 1 for schemes Cπ1 , Cπ2 , namely
Qπ1

1 ,Qπ2
2 . We have I(θ;Qπ1

1 ) = I(θ;Qπ2
1 ) = 0, I(Qπ1

1 ;Qπ2
1 | θ) = 0.

This implies that H(Qπ1
1 ,Qπ2

1 | θ) = H(Qπ1
1 | θ) + H(Qπ2

1 | θ) −
I(Qπ1

1 ;Qπ2
1 | θ) = H(Qπ1

1 ) +H(Qπ2
1 ) ≥ H(Qπ1

1 ,Qπ2
1 ). Since condition-

ing cannot increase entropy, we have H(Qπ1
1 ,Qπ2

1 | θ) = H(Qπ1
1 ,Qπ2

1 ),
i.e., θ is independent of the combined query (Qπ1

1 ,Qπ2
1 ) to Server 1. The

reasoning extends to any server, and to the combination of all Cπi , i.e., C′.

Normalized Feasible Cost Region: Let us define the nor-
malized feasible cost region as the set of tuples (∆0/L,∆/L)
that are achievable within ε for all positive epsilon.

D∗K ,

(∆0,∆) ∈ R+
2 :
∀ε > 0,∃ C ∈ CK , s.t.

∆0/L ≥ ∆0 − ε,
∆/L ≥ ∆− ε.

 (17)

III. CAPACITY AND (∆0/L,∆/L) TRADEOFF

The converse arguments of Sadeh et al. [3], along the lines
summarized in the introduction, yield the bounds,

∆0 + (1 + 2 + · · ·+ t) ∆ ≥ tL, ∀t ≤ K, (18)

for all K ≥ 1. It is not difficult to show that these bounds
characterize the normalized feasible cost region D∗K for K ≤
3. The boundary of D∗K is is shown in the figures below for
K = 2 and K = 3. Points above the boundary are feasible, and
points below the boundary (shaded region) are not feasible.

∆0

∆

• (0, 1)

•
(
1
2
, 1
2

)
•

(2, 0)

∆0 + ∆ ≥ 1
∆0 + 3∆ ≥ 2

∆0

∆

• (0, 1)

•
(
1
2
, 1
2

)
•

(
1, 1

3

)
•

(3, 0)

∆0 + ∆ ≥ 1
∆0 + 3∆ ≥ 2
∆0 + 6∆ ≥ 3

Fig. 2. Normalized feasible cost regions D∗2 (left) and D∗3 (right). (Optimal)

For K = 4, the converse bounds in [3] yield the con-
straints ∆0 + ∆ ≥ L, ∆0 + 3∆ ≥ 2L, ∆0 + 6∆ ≥ 3L
and ∆0 + 10∆ ≥ 4L. Minimizing the total download cost
∆Σ = ∆0+4∆ subject to these constraints yields the converse
bound ∆Σ ≥ 7L/3, i.e., C4 ≤ 3/7.

On the other hand, the best achievable rate from [3] is
2/(K + 1) = 2/5, so we have the bound C4 ≥ 2/5. Let us
denote W1,W2,W3,W4 as A,B,C,D (respectively) for ease
of exposition, and recall that messages have length L bits,
e.g., A = (A1,A2, · · · ,AL). Let (a1, · · · , aL), (b1, · · · , bL),
(c1, · · · , cL) and (d1, · · · , dL) be i.i.d. uniform permutations
of (1, 2, · · · , L) generated privately by the user. The key idea
of achievable schemes in [3] as well as the generalizations in
this work, is the following: The download from the universal
server, Server 0, is comprised of sums of symbols of subsets of
messages. The download from the dedicated server that stores
the desired message, is comprised of those symbols that do not
appear in X0. The download from each dedicated server that
stores an undesired message is comprised of precisely those
symbols of that message which appear in linear combination
with the desired message symbols in X0. Thus, downloads
from undesired messages are used for interference cancellation
in X0, while those from the desired message retrieve missing
symbols. The privately permuted indices ai, bi, ci, di guarantee
privacy, as the download from each dedicated server is uniform
over the message symbols. Following this principle, there are
two schemes in [3], each achieving the rate 2/5, as follows.
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Scheme 1 [3]: (∆0,∆) = (1, 1), L = 2

The download from Server 0,

X0 =
[
Aa1 + Bb1 + Cc1 + Dd1

]
. (19)

In terms of the tuples (Wθ,X1,X2,X3,X4) the scheme is
summarized as (A,Aa2 ,Bb1 ,Cc1 ,Dd1), (B,Aa1 ,Bb2 ,Cc1 ,Dd1),
(C,Aa1 ,Bb1 ,Cc2 ,Dd1), and (D,Aa1 ,Bb1 ,Cc1 ,Dd2). Since the user
retrieves the L = 2 bits of the desired messages with the
download cost ∆Σ = 5 bits, the rate is 2/5.

Scheme 2 [3]: (∆0,∆) = (6, 1), L = 4

The download from Server 0 is expressed compactly as,

X0 =

[
Aa1 + Bb1 , Aa2 + Cc1 , Aa3 + Dd1

Bb2 + Cc2 , Bb3 + Dd2 , Cc3 + Dd3

]
(20)

According to the general idea described earlier in this section,
for example if B is the desired message, the user downloads
Aa1 ,Bb4 ,Cc2 ,Dd2 from Servers 1, 2, 3, 4, respectively. The rate
is L/(∆0 + 4∆) = 4/(6 + 4) = 2/5 for this scheme as well.

Our main result appears in the following theorem.

Theorem 1. The normalized feasible cost region D∗4 for 4-
star-graph PIR is the set of all (∆0,∆) ∈ R+

2 , such that,

∆0 + ∆ ≥ 1, (21)

∆0 + 3∆ ≥ 2, (22)

∆0 + 10∆ ≥ 4, (23)

3∆0 + 14∆ ≥ 8. (24)

That is, (∆0,∆) tuples that satisfy (21)-(24) are feasible, and
(∆0,∆) tuples that do not satisfy (21)-(24) are not feasible.
Furthermore, the capacity of 4-star-graph PIR, C4 = 5/12.

We note that the inequalities (21)-(23) are already estab-
lished as converse bounds in [3]. The key to Theorem 1
is the bound (24), that is conspicuously distinct from the
remaining bounds, and is the main reason that 4-star-graph
PIR is considerably more challenging. The form of this
bound becomes intuitive if we consider first the achievability
perspective. Inspired by Scheme 1 and Scheme 2, let us present
a new scheme, Scheme 3, that is capacity achieving.

Scheme 3 (Capacity-achieving): (∆0,∆) = (4, 2), L = 5

The download from Server 0 is expressed as,

X0 =

[
Aa1 + Bb1 + Cc1 , Aa2 + Bb2 + Dd1

Aa3 + Cc2 + Dd2 , Bb3 + Cc3 + Dd3

]
. (25)

The scheme follows the same principle as Scheme 1 and
Scheme 2, e.g., if C is the desired message, the user downloads
Aa1 ,Aa3 ,Bb1 ,Bb3 ,Cc4 ,Cc5 ,Dd2 ,Dd3 from Servers 1, 2, 3, 4,
respectively. The rate is L/(∆0 + 4∆) = 5/(4 + 8) = 5/12
for this scheme. This proves that C4 ≥ 5/12.

Considering the (∆0,∆) tuples for the three schemes,
Scheme 1 achieves (1/2, 1/2), Scheme 2 achieves (3/2, 1/4),
and Scheme 3 achieves (4/5, 2/5). The tuples (0, 1) and (4, 0)
are trivial. By time-sharing (cf. [7, Thm. 4], [8, Lem. 1])) we
achieve the boundary of the entire D∗K region specified by the

bounds (21)-(24), and shown in Fig. 3. This completes the
proof of achievability for Theorem 1.

The proof of (24) was found by using symmetry and insights
from alternative caching formulations in conjunction with the
CAI software [9]. The proof is presented separately in the next
section. From (24), we have that (22)×2+(24) =⇒ ∆Σ/L =
∆0 + 4∆ ≥ 12/5 =⇒ C4 ≤ 5/12. Therefore, the capacity
C4 = 5/12.

∆0

∆

• (0, 1)

•
(
1
2
, 1
2

)
•
(
4
5
, 2
5

)
•
(
3
2
, 1
4

)
•

(4, 0)

∆0 + ∆ ≥ 1
∆0 + 3∆ ≥ 2
∆0 + 10∆ ≥ 4
3∆0 + 14∆ ≥ 8• •

Fig. 3. Normalized feasible cost region D∗4 for K = 4. (Optimal)

From Fig. 3 we note that the boundary of the D∗4 region
is comprised of line segments corresponding to the bounds
(21)-(24). In particular, the highlighted blue segment in Fig.
3 corresponds precisely to the desired new bound (24).

Generalized Schemes for K Messages: t ∈ {1, . . . ,K},
(∆0,∆) =

((
K
t

)
,
(
K−2
t−2

))
, L =

(
K−1
t−1

)
+
(
K−2
t−2

)
We generalize the idea to the setting with K messages. Let

t ∈ [K]. For the scheme parameterized by t, the download
from Server 0 is expressed as

X0 =
{
Wk1(σj1k1) + · · ·+ Wkt(σ

jt
kt

)
∣∣ {k1, · · · , kt} ⊂ [K]

}
,

where σk = (σ1
k, · · · , σLk ), k ∈ [K] is a uniform random

permutation of (1, 2, · · · , L). j1, · · · , jt ∈ [L] are chosen such
that σjk, j ∈ [L] appears at most once in X0. It follows that
∆0 =

(
K
t

)
since there are

(
K
t

)
terms in X0. The downloads

from the dedicated servers follow the same rule as in the above
examples. The download cost from the servers that do not
store the desired message is

(
K−2
t−2

)
since it is the number of

interference terms corresponding to one server. The download
cost from the server that stores Wθ is L −

(
K−1
t−1

)
=
(
K−2
t−2

)
since it is the number of bits in Wθ that does not appear in
X0. Thus, the costs from the dedicated servers are balanced
and ∆ =

(
K−2
t−2

)
.

For the K-star-graph PIR, the above generalized scheme
provides K achievable tuples of (∆0,∆). Note that (0, 1) is
trivial and thus we have K+1 achievable tuples. Time-sharing
between adjacent tuples results in the achievable region

Dachi
K =

(∆0,∆) :

(
t+1

2

)
∆0 +

((
K
2

)
+Kt

)
∆ ≥ Kt,

for t ∈ {1, 2, · · · ,K − 1};
∆0 + ∆ ≥ 1.

 .

From previous works and Theorem 1 we have D∗K = Dachi
K for

K up to 4. It remains open whether D∗K = Dachi
K for K > 4.
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IV. PROOF OF THE BOUND: 3∆0 + 14∆ ≥ 8

Due to the privacy constraint regarding Server 0, there must
be such z1, z2, z3, z4 ∈ Z and a resulting query Q0 that

µ0(1, z1) = µ0(2, z2) = µ0(3, z3) = µ0(4, z4) = Q0, (26)

because otherwise some information about θ is revealed by Q0,
thus violating the privacy constraint (3). For k ∈ [4], s ∈ [4],
let Qsk , µk(s, zs). Then let

X0 , φ0(W1,W2,W3,W4, Q0), (27)

X
s

k , φk
(
Wk, Q

s

k

)
, ∀k ∈ [4], s ∈ [4]. (28)

This means that for s ∈ [4], when Z = zs and θ = s, the
answer from Server 0 is X0, and the answer from Server k ∈
[K] is X

s

k. (28) implies that

H(X
s

k|Wk) = 0, ∀k ∈ [4], s ∈ [4]. (29)

Note that (7) implies

Ws = ψ(X0,X
s

1,X
s

2,X
s

3,X
s

4, s, zs). (30)

Since z1, z2, z3, z4 are not random, (30) implies that Ws is a
function of (X0,X

s

1,X
s

2,X
s

3,X
s

4), i.e.,

H(Ws|X0,X
s

1,X
s

2,X
s

3,X
s

4) = 0, ∀s ∈ [4]. (31)

The proof of (24) is then as follows. First,

H(W1) +H(X
2
2) +H(X

2
3) +H(X

2
4) +H(X0)

≥ H(W1,X
2
2,X

2
3,X

2
4,X0)

(29)(31)
≥ H(W1,W2,X

2
3,X

2
4,X0)︸ ︷︷ ︸

T1

.

(32)

Due to symmetry, we have

H(W3) +H(X
1
1) +H(X

1
2) +H(X

1
4) +H(X0)

≥ H(W3,W1,X
1
2,X

1
4,X0)︸ ︷︷ ︸

T2

, (33)

H(W4) +H(X
1
1) +H(X

1
2) +H(X

1
3) +H(X0)

≥ H(W4,W1,X
1
2,X

1
3,X0)︸ ︷︷ ︸

T3

. (34)

Then, by submodularity and (31),

T1 + T2

≥ H(W1,X
2
3,X

1
2,X0)︸ ︷︷ ︸

T4

+H(W1,W2,W3,X
1
4,X

2
4,X0)︸ ︷︷ ︸

T5

. (35)

Again by submodularity,

T3 + T4

≥ H(W1,X
1
2,X0)︸ ︷︷ ︸

T6

+H(W1,W4,X
1
2,X

1
3,X

2
3,X0)︸ ︷︷ ︸

T7

. (36)

Then

T5 +H(X
4
4)

(29)(31)
≥ H(W1,W2,W3,W4), (37)

and by submodularity

T6 +H(W2) +H(X
3
3) +H(X

3
4) +H(X

4
4)

≥ T6 +H(W2,X
3
3,X

3
4,X

4
4,X0)

(31)
≥ H(X

1
2) +H(W1,W2,X

3
3,X

3
4,X

4
4,X0) (38)

(29)(31)
≥ H(X

1
2) +H(W1,W2,W3,W4),

and finally

T7 +H(X
2
2) +H(X

3
3)

≥ H(W1,W4,X
1
2,X

1
3,X

2
3,X

2
2,X

3
3,X0) (39)

(29)(31)
≥ H(W1,W2,W3,W4).

Adding (32), (33), (34), (35), (36), (37), (38), (39) (two terms
of H(X

1

2) are canceled from both sides), we have

2H(X
1
1) + 2H(X

2
2) + 2H(X

3
3) + 2H(X

4
4)

+H(X
1
2) +H(X

1
3) +H(X

1
4) +H(X

2
3) +H(X

2
4) +H(X

3
4)

+ 3H(X0) +H(W1) +H(W2) +H(W3) +H(W4)

≥ 3H(W1,W2,W3,W4). (40)

Note that X0 ∈ X0, X
s

k ∈ Xk,∀k ∈ [4], s ∈ [4]. With (8)
and (12), we have that ∆0 ≥ H(X0), ∆ ≥ H(X

s

k), ∀k ∈
[4], s ∈ [4], and by the definition of the messages, H(W1) =
H(W2) = H(W3) = H(W4) = L, H(W1,W2,W3,W4) =
4L. Combining this with (40), we conclude that

14∆ + 3∆0 + 4L ≥ 12L =⇒ (24). (41)

V. CONCLUSION

The capacity as well as the normalized feasible cost trade-
off between the dedicated servers and the universal server
are found for K = 4. The achievable scheme, generalized
to the setting with K > 4 messages, offers clues to the
general capacity result for K > 4 for future work. Gen-
eralizing the insights from star-graph PIR to other commu-
nication/computation problems is especially of interest. For
example, retrospective interference alignment schemes for K-
user interference channel [10] are similar to star-graph PIR,
and proofs of optimality are not yet available for such schemes.
In these schemes there are two phases. The first phase typi-
cally yields random linear combinations of messages at the
receivers, whereas the second phase involves transmissions
from individual transmitters, one at a time. Conceptually,
the first phase is quite similar to the downloads from the
universal server in K-star-graph PIR, while the second phase
is analogous to the downloads from each dedicated server.
Remarkably, the approximate rate of K-star-graph PIR char-
acterized by Sadeh et al. in [3] as Θ(1/

√
K), matches the

approximate degrees of freedom per user achieved by the
retrospective interference alignment scheme in [10], indicative
of a deeper connection between these problems.
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