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Abstract—Introduced by Sadeh et al., the K -star-graph private
information retrieval (PIR) problem, so-labeled because the
storage graph is a star-graph with K leaf nodes, is comprised of
K messages that are stored separately (one-each) at K dedicated
servers, and a universal server that stores all X messages, for
a total of K + 1 servers. While it is one of the simplest PIR
settings to describe, the capacity C'x of K-star-graph PIR is
open for K > 4. We study the critical K = 4 setting, for which
prior work establishes the bounds 2/5 < C4 < 3/7. As our main
contribution, we characterize the exact capacity of 4-star-graph
PIR as C4y = 5/12, thus improving upon both the prior lower-
bound as well as the prior upper-bound. The main technical
challenge resides in the new converse bound, whose non-trivial
structure is deduced indirectly from the achievable schemes that
emerge from the study of a finer tradeoff between the download
costs from the dedicated servers versus the universal server. A
sharp characterization of this tradeoff is also obtained for K = 4.

I. INTRODUCTION

There is much interest in the capacity of various Private
Information Retrieval (PIR) settings [1] motivated not only by
growing privacy concerns, but also, and perhaps even more
so, by the fundamental connections of PIR to other ideas —
locally decodable codes and interference alignment to name a
few — that provide opportunities for cross-cutting insights.
What makes problems like PIR attractive for information
theoretic analysis is that they are simple to describe (allow-
ing broader connections), but challenging to solve (allowing
deeper insights) — a trait also evident in the celebrated index
coding problem [2], similarly simple-to-describe and broadly
insightful. Following this thought, a particularly appealing PIR
setting is /(-star-graph PIR, introduced by Sadeh et al. in [3].

The name ‘K-star-graph PIR’ reflects that the storage
graph! is a star-graph with K leaf nodes. As illustrated in
Fig. 1, the setting is comprised of K messages, Wy, - ,Wg,
say of size L bits each, that are stored separately (one-each)
at K dedicated servers, Server 1, ---, Server K, respectively,
and a universal server, Server 0, that stores all K messages,
for a total of N = K + 1 servers.> A user generates a private
and uniform index 6 € {1,2,--- K}, and wishes to retrieve
the desired message Wy with the smallest total download cost
possible, without revealing any information about 6 to any

A storage graph has the servers as vertices, and an edge (hyperedge) for
each message, identifying servers that store that message (cf. [4]-[6]).

2While we identify the K -star-graph with the number of messages K, i.e.,
the number of leaf-nodes in the star-graph, note that reference [3] identifies the
same graph as Sy = Sk 41, based on the number of servers N = K41, i.e.,
the total number of nodes in the star graph. Thus, our 4-star-graph corresponds
to S5 in [3]. We avoid the S notation because it is interpreted differently
by different authors (e.g., see Wikipedia entry on star graphs).
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server. The total download cost Ay £ Ag + Ay + -+ +
Ax = Ag + KA, where Ay is the download cost from

Server k, k € {0,1,---, K}, and we assume (without loss of
generality) that the download costs from the dedicated servers
are balanced, i.e., A; = Ay = --- = Ax £ A. The maximum

number of desired message bits that can be retrieved per bit
of total download is the capacity Cx of K-star-graph PIR.
The capacity Ck is characterized approximately for large K
by Sadeh et al. in [3] as ©(1/v/K), and exactly for K < 3.
However, in spite of the descriptive simplicity of K -star-graph
PIR, a precise capacity characterization is difficult to obtain for
K > 4. The capacity Cy for the critical case of 4-star-graph
PIR, where we have 4 messages stored among 5 servers, is
our focus in this work.

Server 0 -

Desired message: Wy
private, uniform 6 € [K]

Fig. 1. K-star-graph PIR with messages W1, --- , W stored among K + 1
servers according to the K -star storage-graph illustrated with dashed-edges.

To establish a basic understanding, let us start with a
simpler setting for which the capacity is known, ie., 3-
star-graph PIR. For notational simplicity, let A, B, C rep-
resent the 3 messages Wi, Wq, W3, respectively. Also let
0 = a,b,c denote the demand being A, B, C, respectively.
Consider the following coding scheme, where L. = 3 bits of
each message are encoded together, e.g., A = (A1, Az, A3z).
Let (a1,a9,a3), (b1, ba, bs), (c1, co, c3) be three i.i.d. uniform
permutations of (1,2,3) generated privately by the user. Let
the download from Server 0 be

Xo=[As; +Bb,, Ay, +Copy B, +Co,], (1)

which is trivially private as it does not depend on 6. For each
possible desired message Wy € {A, B, C}, the downloads from
the dedicated servers are specified in the form of the tuples
(Wo, X1, X9, X5) as (A, As,, Bb,, Coy )y (B, Asy, B, Ce, ), and
(C, A4, Bb,, Ce;). It is readily verified that in every case the
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user is able to retrieve all 3 bits of the desired message from
the downloads. The scheme is private because regardless of 0
the download from each of Servers 1,2, 3 is equally likely to
be any of the 3 bits of the message stored at that server. The
rate achieved by the scheme is L/Ay = 3/6 = 1/2 since L =
3 bits of the desired message are retrieved at a total download
costof Ay, = Ag+A1+As+A3=3+1+1+1 =06 bits. In
fact the rate 1/2 is optimal, i.e., the capacity C3 = 1/2. As a
rough intuitive sketch, the converse is based on the following
reasoning. Since the query to Server 0 is independent of 6,
it ~follgws ~that ~there exist some queries (Qy, Q;,Qy, Qy) and
(QO, QQ, Q 3) such that from the corresponding downloads
(X5, X1 ,X5,X3) the user can recover A, from (Xg, Xl{, X5, Xb)
the user can recover B, and QO = QO so that XO = Xb Now,

we claim that from C XO, X1 , X2, X2 the user can recover all
3 messages A, B, C. This claim is justified as follows The user
is already glven C. Because the user is given XO, X17X2, and
can generate X3 locally from C, she must be able to recover
A. Then, having both A and C at this point, the user can
obtain locally anything it needs from Server 1 and Server 3,
i.e., servers that store only A and C. In particular, the user
can locally obtain X} from A, and X} from C, and is given
both X} = XO, and Xb This allows the user to recover B,
thus completing the recovery of all three messages A, B, C.
Now, by the general property H(f(X)) < H(X), it follows
that 3L = H(A,B,C) < H(C,X.,X,,Xa,X8) < H(C) +
Ag+ Ay +2A5 =L+ Ag+3A =L + Ay, which gives us
3L < L + Ay, and therefore we obtain the desired converse
bound Ay /L > 2.

Now consider the open problem that is the focus of this
work, i.e., 4-star-graph PIR. Sadeh et al. establish in [3]
that the rate 2/5 is achievable, so we have C5 > 2/5.
Generalization of the converse reasoning from [3] as sketched
above, yields the bound C; < 3/7. Thus we have a gap,
2/5 < Cy4 < 3/7. Closing this gap is the immediate goal
of this work, with the long-term hope that the new ideas that
emerge in the process may help with future generalizations,
e.g., leading to C'x for K > 4, and subsequently to converse
bounds for related interference alignment schemes that arise
in other contexts (discussed in Section V). As our main
contribution we settle the precise capacity of 4-star-graph PIR
as C4 = 5/12. Thus, the capacity strictly improves upon both
the prior lower-bound and the prior upper-bound. The main
technical challenge is manifested in a new converse bound,
3A¢+14A > 8L, that has a remarkably distinct structure from
previous converse bounds. The structure of this new bound is
deduced indirectly from the achievable schemes that emerge
from the study of a finer tradeoff between the download costs
from the dedicated servers (A) versus the download cost from
the universal server (Ag). A sharp characterization of this
tradeoff is also obtained for K = 4.

Notation: For a positive integer K, [K ] denotes the set
of positive integers {1,2,...,K}. (7) £ Ay With the
convention that (') = 0 if n < r or r < 0. Sans-serif letters
are used to denote random variables.

II. PROBLEM STATEMENT: K-STAR-GRAPH PIR

K Messages, K + 1 Servers: There are K independent
messages Wi, Ws, ... ,Wg. Each message is a stream of
Fy symbols. For ¢ € N, W (¢) denotes the ¢** symbol of
Wi, k € [K]. Each symbol is drawn i.i.d. uniform. There are
K dedicated servers that store one message each, with Server
k storing only Wy, k € [K]. There is one universal server,
called Server 0O that stores all K messages.

User’s demand 0, local randomness Z: The demand 0 €
[K] is generated privately and uniformly by the user. Addi-
tional local randomness Z may be generated privately by the
user, independent of 6. The user wishes to retrieve Wy.

Coding scheme: A coding scheme C for K-star-
graph PIR is formally represented as a tuple C =
(L7Z7:u07.u17”' ’;U‘K7¢07¢17”' 3¢Ka1/}) where L € N is
the number of bits of each message to be encoded together,
Z € Z is the local randomness generated privately by the user
(independent of 6), ug, -+, ux are functions that generate
queries sent by the user to the servers, ¢g,:--,¢x are
functions that generate answers returned by the servers to
the user, and v is the final decoding function at the user. In
order to be considered feasible, a coding scheme must satisfy
correctness and privacy constraints. Let us denote the set of
feasible coding schemes for K-star-graph PIR by Cx. These
functions and constraints are described next.

Queries: The K + 1 functions py : [K] X Z2 — Q,
Vk € {0,1,---,K}, map (0,Z) to the K + 1 queries
Qo, Qq, -+, Q. respectively, i.e.,

Q;, = (0, 2),

The query functions must satisfy the following which requires
that the query to any server must be independent of the desired
message index 0, i.e.,

Answers from Servers: The K +1 functions, ¢q : [(F£)%]x
Qo — X, and ¢y, : FLx Qp — Ay, Vk € [K], map the stored
message(s) and the query at each server to the answer that the
server returns to the user, i.e.,

Vke{0,1,-- K} )

vk e {0,1, -, K}. 3)

Xo = Do (W1, Wa, ...
X = &r(Wk, Qp),

Decoding by the User: The decoding function,

aWK7 Qo)v (4)
k€ [K]. (5)

VXX X X ... x Xk x [K] x 2 — FL (6)
allows the user to retrieve the desired message Wy,
= P(Xgs Xqy - oy

Download Cost: The download cost (in bits) from Server
k is defined as®,

WO XK767 Z) (7)

A
Ak:10g2|Xk|, Vke{O,l,-'- ,K}. ®)

3Since each alphabet set X} is deterministic, our focus in this work is
limited to the maximum (instead of average) download costs across queries.
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Rates, Capacity: The rate of a feasible coding scheme C =

(L7zvl’(‘07/’('17 e )HK?¢O7¢1? T 7¢K7¢) € CK is defined as,
L
R(C) = . 9
() Ag+A1+...+Ag ©)
The capacity of K-star-graph PIR is defined as
Cx £ sup R(C). (10)

CeCk

Balanced Costs: Let Cx be the set of all feasible schemes
with balanced costs from the dedicated servers, i.e.,

X = |X| = = |Xk| £ |X|
Al =Dg=- = Ag & A

(1)
12)

For capacity, it follows from [7, Thm 4] that therg is no loss
of generality in restricting the coding schemes to C, i.e.,

Ck = sup R(C) = sup R(C). (13)
CeCk C'eCx
This is because any feasible coding scheme C =
(L,Z, pro, po1s- -+ 5 pirc, o, 41, -+, Oxc,¢) € Cc that does not
have balanced costs, can be mapped to a feasible scheme
C' € Ck with balanced costs, while preserving the rate of
the original scheme, i.e., R(C') = R(C), by a straightforward
equal ‘time-sharing’ of schemes (cf. [7, Thm 4]) C, =
(Lv ZTH/J‘O) M (1)s = s M (K)> ¢07 ¢W(1)) T 7¢W(K),w) € Ck,
for all permutations 7 : [K] — [K], with independent local
randomness Z, for each C,. In fact, it suffices to consider
only cyclic permutations, i.e., all # € {my, -+, 7k} where
mi(k) = 1+((k+i) mod K), Vi, k € |[K]. There are K cyclic
permutations, producing K such schemes, for a combined
scheme C’ that considers L' = KL bit messages, and has
a download cost Ay = KAg, A} = Ar )+ +Drp(p) =
Ay + -+ Ag = A’ for all k € [K]. The rate of the new
scheme C’ is,

Ll
no_
R(C)_A6+A’1+-~+A’K (9
KL
— 15
KAog+ K(Ay + -+ Ag) ()
- : RC) (6

ANog+Ar+ -+ A
i.e., same as the original scheme C, but the new scheme C’
has balanced download costs from the dedicated servers. The
correctness of C’ follows directly from the correctness of C.
The privacy of C’ follows from the reasoning that the queries
to a server in each C, are individually independent of 6
(because the original scheme C is private), and conditioned on
0 the queries to the same server in the different C,, schemes
are independent because Z,, are independent. From this it
follows* that the combined-query in C’ is independent of 6.

“For example, consider queries to Server 1 for schemes Cy,, Cr,, namely
Qr', Q3% We have I(6;QT") = I(6;Q7*) = 0, I(QT;QT* | 6) = 0.
This implies that H(QT*,Q7? | 6) = H(QT* | 0) + H(QT? | 6) —
I(QTH; QT2 | 0) = H(QTY) + H(QT?) > H(QT*, Q7?). Since condition-
ing cannot increase entropy, we have H(QT!, Q72 | 0) = H(QT', QT?),
i.e., 6 is independent of the combined query (Q7', Q?) to Server 1. The
reasoning extends to any server, and to the combination of all Cr,, i.e., C'.

Normalized Feasible Cost Region: Let us define the nor-
malized feasible cost region as the set of tuples (Ag/L, A/L)
that are achievable within € for all positive epsilon.

Ve >0,3CeCk, st
Ao/LZE()—G,
A/L>A—e.

Di =< (Ap, A) € R} : (17)

III. CAPACITY AND (Aq/L,A/L) TRADEOFF

The converse arguments of Sadeh et al. [3], along the lines
summarized in the introduction, yield the bounds,

Ao+ (1424 +1)A>tL, vt < K, (18)

for all K > 1. It is not difficult to show that these bounds
characterize the normalized feasible cost region Dy for K <
3. The boundary of D7 is is shown in the figures below for
K = 2and K = 3. Points above the boundary are feasible, and
points below the boundary (shaded region) are not feasible.

A §0+Z721
Ao +3A>2
Ao +6A >3

(3,0)

A
<0
4

Fig. 2. Normalized feasible cost regions D3 (left) and D3 (right). (Optimal)

For K = 4, the converse bounds in [3] yield the con-
straints Ag + A > L, Ag + 3A > 2L, Ag + 6A > 3L
and Ag + 10A > 4L. Minimizing the total download cost
Ayx, = Ag+4A subject to these constraints yields the converse
bound Ay, > 7L/3, ie., Cy < 3/7.

On the other hand, the best achievable rate from [3] is
2/(K + 1) = 2/5, so we have the bound Cy > 2/5. Let us
denote W1, Wy, W3, W, as A, B, C,D (respectively) for ease
of exposition, and recall that messages have length L bits,
e.g., A= (Al,AQ, s ,AL). Let (al, i ,aL), (bl, BN bL),
(c1,-+-,cr) and (dy,--- ,dy) be i.i.d. uniform permutations
of (1,2,--, L) generated privately by the user. The key idea
of achievable schemes in [3] as well as the generalizations in
this work, is the following: The download from the universal
server, Server 0, is comprised of sums of symbols of subsets of
messages. The download from the dedicated server that stores
the desired message, is comprised of those symbols that do not
appear in Xq. The download from each dedicated server that
stores an undesired message is comprised of precisely those
symbols of that message which appear in linear combination
with the desired message symbols in Xg. Thus, downloads
from undesired messages are used for interference cancellation
in Xg, while those from the desired message retrieve missing
symbols. The privately permuted indices a;, b;, c;, d; guarantee
privacy, as the download from each dedicated server is uniform
over the message symbols. Following this principle, there are
two schemes in [3], each achieving the rate 2/5, as follows.
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Scheme 1 [3]: (Ag,A) = (1,1),L =2
The download from Server 0,
Xo = [Aa, +Bb, +Cc, + Dqg,] .

In terms of the tuples (Wy, X1, Xz, X3,X,) the scheme is
summarized as (A, A.,,Bs,,Cc,,Dd;), (B,As;,Bb,,Ce,,Dd;)s
(C,As,, By, Ce,, Dy, ), and (D, A, , Bb,, Cc,, D, ). Since the user
retrieves the L = 2 bits of the desired messages with the
download cost Ay, = 5 bits, the rate is 2/5.

Scheme 2 [3]: (Ag,A) =(6,1),L =4
The download from Server 0 is expressed compactly as,

— A31 + Bb17 Aag + CC17 Aa3 + Dd1
Bb, + Ces» Bbs + D, CC3 + Dd3

19)

Xo (20)

According to the general idea described earlier in this section,

for example if B is the desired message, the user downloads

Aa,,Bb,, Ce,, Dy, from Servers 1, 2, 3, 4, respectively. The rate

is L/(Ap +4A) =4/(6+4) = 2/5 for this scheme as well.
Our main result appears in the following theorem.

Theorem 1. The normalized feasible cost region D for 4-
star-graph PIR is the set of all (Ag, A) € RS, such that,

Ag+A>1, 1)
Ag+3A > 2, (22)
Ay + 10A > 4, (23)
3A0 + 14A > 8. (24)

That is, (Ao, A) tuples that satisfy (21)-(24) are feasible, and
(Ao, A) tuples that do not satisfy (21)-(24) are not feasible.
Furthermore, the capacity of 4-star-graph PIR, Cy = 5/12.

We note that the inequalities (21)-(23) are already estab-
lished as converse bounds in [3]. The key to Theorem 1
is the bound (24), that is conspicuously distinct from the
remaining bounds, and is the main reason that 4-star-graph
PIR is considerably more challenging. The form of this
bound becomes intuitive if we consider first the achievability
perspective. Inspired by Scheme 1 and Scheme 2, let us present
a new scheme, Scheme 3, that is capacity achieving.

Scheme 3 (Capacity-achieving): (Ao, A) = (4,2),L =5
The download from Server O is expressed as,

_ Aal =+ Bbl + CCl? A32 + Bb2 + Ddl

Xo = .
0 A33 + CCz + Dd2, Bb3 + CCs + Dd3

(25
The scheme follows the same principle as Scheme 1 and
Scheme 2, e.g., if C' is the desired message, the user downloads
A, Asg, Bby, Bbss Cey s Cey, Dd,y, Dy, from Servers 1,2, 3,4,
respectively. The rate is L/(Ap +4A) =5/(4+8) = 5/12
for this scheme. This proves that Cy > 5/12.

Considering the (Ag,A) tuples for the three schemes,
Scheme 1 achieves (1/2,1/2), Scheme 2 achieves (3/2,1/4),
and Scheme 3 achieves (4/5,2/5). The tuples (0, 1) and (4, 0)
are trivial. By time-sharing (cf. [7, Thm. 4], [8, Lem. 1])) we
achieve the boundary of the entire D7, region specified by the

bounds (21)-(24), and shown in Fig. 3. This completes the
proof of achievability for Theorem 1.

The proof of (24) was found by using symmetry and insights
from alternative caching formulations in conjunction with the
CAI software [9]. The proof is presented separately in the next
section. From (24), we have that (22)x2+(24) — Ay/L =
Ag +4A > 12/5 = (4 < 5/12. Therefore, the capacity
Cy=5/12.

1) Ap+A>1
L1 Ag+3A>2
(3 2) Ao + 10A > 4
2 8 4 370 + 14A > 8

//////////////

Fig. 3. Normalized feasible cost region D} for K = 4. (Optimal)

From Fig. 3 we note that the boundary of the D} region
is comprised of line segments corresponding to the bounds
(21)-(24). In particular, the highlighted blue segment in Fig.
3 corresponds precisely to the desired new bound (24).

Generalized Schemes for K Messages: ¢t € {1,...,K},
K\ (K-2 K-1 K—2
(80.8) = (), (). £ = () + (1)
We generalize the idea to the setting with K messages. Let

t € [K]. For the scheme parameterized by ¢, the download
from Server O is expressed as

Xo = {Wi, (0]1) + -+ Wy, (07) | {k1,- -, ke} € [K]},

where o = (o}, -+ ,0L), k € [K] is a uniform random
permutation of (1,2,---,L). ji,--- ,j; € [L] are chosen such
that 07, j € [L] appears at most once in X. It follows that
Ay = (It() since there are (It() terms in Xo. The downloads
from the dedicated servers follow the same rule as in the above
examples. The download cost from the servers that do not
store the desired message is (15_—22) since it is the number of
interference terms corresponding to one server. The download
cost from the server that stores Wy is L — (5 ') = (¥77)
since it is the number of bits in Wy that does not appear in
Xg. Thus, the costs from the dedicated servers are balanced

and A = (5:22).

For the K-star-graph PIR, the above generalized scheme
provides K achievable tuples of (Ag, A). Note that (0,1) is
trivial and thus we have K +1 achievable tuples. Time-sharing

between adjacent tuples results in the achievable region

("SH A + ((§) +Kt)Z > Kt,
fort € {1,2,--- , K —1};
ZO -‘rZZ 1.

D"}ghi = (Z(),Z) :

From previous works and Theorem 1 we have D} = DM for
K up to 4. It remains open whether D}, = DM for K > 4.
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IV. PROOF OF THE BOUND: 3A, + 14A > 8

Due to the privacy constraint regarding Server 0, there must
be such 21, 22, 23,24 € Z and a resulting query (), that

po(1, 21) = po(2,22) = po(3,23) = po(4, z1) = Qy,  (26)

because otherwise some information about 6 is revealed by Q),

thus violating the privacy constraint (3). For k € [4],s € [4],
let Q; £ pr(s, z5). Then let

Xo £ ¢o(W1, Wa, W3, Wy, Q).

X, £ 61(Wi, Qp), Yk € 4], s € [4].

27
(28)
This means that for s € [4], when Z = z; and 6 = s, the

answer jtom Server 0 is Xy, and the answer from Server k €
[K] is Xj,. (28) implies that

H(X; W) =0, Vk € [4], s € [4]. (29)
Note that (7) implies
W, = (Xo, X1, X5, X5, X3, 5, 25). (30)

Since 21, 23, 23, 24 are not random, (30) implies that W is a
. 7 TS TS TS IS .
function of (X, X7, X5, X3, Xy), ie.,

H(W,[Xo, X}, X5, X5,X3) =0, Vs e [4]. (31)
The proof of (24) is then as follows. First,
H(Wh) + H(X3) + H(X3) + H(X;) + H(Xo)
2 H(W13X37X§7X42L7X0)
(32)
(29)31) o o
2 H(W17W2ax3ax4aX0)'
T
Due to symmetry, we have
H(Ws) + H(X,) + H(X3) + H(X3) + H(Xo)
2 H(W37W17X;7X17X0)7 (33)
Ts
H(Wy) + HX,) + H(X3) + H(Xs) + H(Xo)
> H(W47W17X;7X§7X0)' (34)
T3
Then, by submodularity and (31),
T + 15
ZH(W17X§7X;7XO)+H(W1>W27W37Y4117Y4217Y0)' (35)
Ty Ts
Again by submodularity,
T34+ Ty
> H(Wi, X5, Xo) + H(W1, Wy, X5, X3, X5, %0) . (36)
Te Ty
Then
a4 (290D
Ts+ H(X;) > H(Wi,Wa, Wa, W), (37)

and by submodularity
To + H(W2) + H(X3) + H(X3) + HX})
> Ty + H(Wa, X3, X5, X1, Xo)

(R} o3 o3 o o
> H(XQ)+H(W17W27X37X47X47X0)

(38)
29)31) —1
H(X3) + H(W1, W2, W3, Wy),
and finally
Tr + H(X3) + H(X3)
2 H(W17W47X;7X§7X§7XS7X§7XO) (39)

@931
> H(Wi, Wa, W, Wy).

Adding 1(32), (33), (34), (35), (36), (37), (38), (39) (two terms

of H(X,) are canceled from both sides), we have

2H(X;) + 2H (X5) + 2H (X3) + 2H (X3)
+ H (%) + H(Xg) + H(Xy) + HX;) + H(X3) + H(X;)
+3H(Xo) + H(W1) + H(W2) + H(Ws) + H(W4)

> 3H (W1, W2, W3, Wy). (40)

Note that X, € Xy, X, € X, Vk € [4],s € [4]. With (8)
and (12), we have that Ay > H(Xp), A > H(XZ), Vk €
[4], s € [4], and by the definition of the messages, H(W;) =
H(Ws) = H(W3) = HW,) = L, HW;, Wy, W3, W,) =
4L. Combining this with (40), we conclude that

14A + 3A0 + 4L > 121 = (24). 41)

V. CONCLUSION

The capacity as well as the normalized feasible cost trade-
off between the dedicated servers and the universal server
are found for K = 4. The achievable scheme, generalized
to the setting with K > 4 messages, offers clues to the
general capacity result for K > 4 for future work. Gen-
eralizing the insights from star-graph PIR to other commu-
nication/computation problems is especially of interest. For
example, retrospective interference alignment schemes for K-
user interference channel [10] are similar to star-graph PIR,
and proofs of optimality are not yet available for such schemes.
In these schemes there are two phases. The first phase typi-
cally yields random linear combinations of messages at the
receivers, whereas the second phase involves transmissions
from individual transmitters, one at a time. Conceptually,
the first phase is quite similar to the downloads from the
universal server in K-star-graph PIR, while the second phase
is analogous to the downloads from each dedicated server.
Remarkably, the approximate rate of K-star-graph PIR char-
acterized by Sadeh et al. in [3] as ©(1/vK), matches the
approximate degrees of freedom per user achieved by the
retrospective interference alignment scheme in [10], indicative
of a deeper connection between these problems.
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