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1. Introduction
1.1. Type B Kazhdan-Lusztig, expanded

Let W = W, be the Weyl group of type By generated by the simple reflections
80,81, ---,84—1, which contains the symmetric group Sy naturally as a subgroup. Let
A, be its associated Hecke algebra generated by Hy, Hi,...,Hy_1 in 2 parameters
q,p, which contains the Hecke algebra 5, as a subalgebra. (In the introduction, we
shall assume that p is an integer power of ¢; a reader can take p = q.)

Consider reflection subgroups of W, of the form

We=Wp, x...x Wp, x8§ X oo X Spys (1.1)

Mk+1

where m; + ... +m; = d, kK < [ and all m; are positive. Clearly, Wy is a parabolic
subgroup of Wy if and only if k£ < 1. For k < 1, there exists a right %5 ,-module My, the
induced module from the trivial module of the subalgebra 4y, parameterized by the
set FTW of right minimal length representatives of W¢. The celebrated Kazhdan-Lusztig
(KL) basis on the regular representation of %, (see [24] for p = ¢, and [37] for p € ¢%)
admits a parabolic generalization in terms of M (see Deodhar [14]); that is, My admits
a bar involution and a distinguished bar-invariant basis, known as the parabolic KL
basis.

Our first main result is to extend the above classical works of Kazhdan, Lusztig and
Deodhar to construct canonical bases (also called quasi-parabolic KL bases) of type
B associated to arbitrary reflection subgroups W of the form (1.1). By definition, our
modules M ; depend only on the reflection subgroup Wy of Wy, and each My comes with
a standard basis { M., }, where o runs over the set /I of minimal length representatives
of right cosets of Wy in Wy4. We denote by < the Chevalley-Bruhat order on fw.

Theorem A (Proposition 3.12, Theorem 3.14). (1) There exists an anti-linear bar invo-
lution ¢, on My such that ¢,(My) = My, which is compatible with the bar operator on
H,, ie., Y, (zh) =Y, (x)h, for all z € My, h € #p,.

(2) The module M admits a canonical basis {C,|oc € W} such that C, is bar
invariant and C, € My., + Zwefw7w<o_ qilz[qfl}Mf.w.

The module M; admits a dual canonical basis {C¥|oc € fW} such that C is bar
invariant and C7 € My.o + >, crw w<o 9Z[q)M .5 see Proposition 3.15.

Theorem A is totally unexpected when Wy is not parabolic, given the fundamental
importance of Kazhdan-Lusztig bases and how well they have been studied from var-
ious viewpoints since 1970’s. We are led to the formulation of this result from a new
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1Schur duality and the corresponding zcanonical bases, which we shall explain below
momentarily.

As W may not be parabolic, the Hecke algebra .7 (Wy) is not a subalgebra of %, in
any natural manner, and hence M is not an induced module from an 2 (W;)-module
in general. Accordingly, it is more difficult to establish a key property (see Theorem 3.6)
concerning the action of the simple reflections s; on the poset W, generalizing the
parabolic case in [13,14]. This leads to explicit formulas (see Proposition 3.8) for the
actions of the generators H; of ¢, on the standard basis of My parametrized by
the minimal length coset representatives for W;\W; remarkably, these formulas look
identical to those for Wy parabolic. The self-contained proof of Theorem A (which is
independent of «Schur duality below) will occupy Section 3.

The canonical bases in Theorem A include parabolic KL bases of type A (besides
those of type B) as special cases. For example, consider the non-parabolic subgroup
Wy = Wi x ... x W (generated by the d sign reflections). In this case, fW =S4, and
the canonical basis of My in Theorem A is identified with the KL basis of J¢5,. See
Example 3.16(2) where an arbitrary parabolic KL basis of type A arises as a canonical
basis of type B.

1.2. 1Schur duality

Let V be the natural representation of the Drinfeld-Jimbo quantum group U =
Ug(slorym). Let (U, U*) be the quantum symmetric pair of type AIII formulated by
G. Letzter [27,28], where U” is a coideal subalgebra of U whose ¢ — 1 limit is the en-
veloping algebra of sl(r + m) @ gl(r); we shall refer to U” as an squantum group. When
V is viewed as a representation of U’, its standard basis {v;|i € I} is naturally
bicolored (where the m indices in the middle are colored as e, while the remaining 2r
indices are colored as o). When m = 0 or 1, U” is quasi-split, and on the other extreme
when r = 0, we have U* = U.

We endow the tensor space V¥ with a (right) /#5,-module structure. The aforemen-
tioned #%,-modules M arise as direct summands of the tensor module V& of 73,
and are called quasi-permutation modules. Each M is spanned by a standard basis M,
where g runs over a Wy-orbit. (We have chosen to parametrize My by “anti-dominant
weights” f.)

Our second main result is the following.

Theorem B (Theorem /.6). The actions of U* and #5, on V¥¢ commute with each
other, and form double centralizers.

The tquantum group U* comes with parameters [28], and for our purpose, the param-
eters are fixed once for all by the double centralizer property in Theorem B.

Note that in the extreme case when r = 0 and U” = U, we (somewhat surprisingly)
claim to have an action on V®¢ by #3,, not by %, which one is familiar with. The
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puzzle is resolved when we note that the action of the generator Hy of J¢5, reduces to
p - Id, and we recover Jimbo duality [23] (q-Schur duality of type A) in disguise in this
extreme case. On the other hand, when m = 0 or 1, (U, U?) is quasi-split, and we recover
the (quasi-split) 2Schur duality due to [8] for p = ¢ (and generalized to p = 1 in [1] and
to general p in [11]). The action of Hy in general is a suitable mixture of the actions in
the 2 special cases.

In the setting of Jimbo duality, the generators of Hecke algebra %5, were realized via
the R-matrix [23]. In the quasi-split :Schur duality, the action of the additional generator
Hy of A3, was realized via the K-matrix by Bao and the second author [8, Theorems
2.18, 5.4] (this is the first construction of a K-matrix built on the notion of an intertwiner
or quasi K-matrix therein); see also [11]. We show that the action of Hy in the setting of
Theorem B is again realized by a K-matrix, which has been available in greater generality
in Balagovic-Kolb [5]. This can be viewed as a distinguished example that the K-matrix
provides solutions to the reflection equation, a property of the K-matrix in general as
established in [5].

1.3. Compatible canonical bases

Generalizing Lusztig’s approach on canonical basis in [34-36], Bao and the second
author [8,9] have developed a theory of «canonical basis for :quantum groups arising from
quantum symmetric pairs. We showed that any based module M of a quantum group
of finite type (cf. [36, Chapter 27]) when viewed as a module over an iquantum group
with suitable parameters can be endowed with a new bar map 1, and a distinguished
1,-invariant basis (called tcanonical basis); this construction in particular applies to the
quantum symmetric pair (U, U*) of type AIIl, and M = V®¢ as in the setting of
Theorem B. Denote by {Cy | g € I} |} and {C; | g € [}, |} the scanonical and dual
wcanonical basis on V&2,

Theorem C (Proposition 5.7, Theorem 5.9). (1) There exists a bar involution on V®
which is compatible with the bar involutions on U* and /7%, .

(2) The (dual) z2canonical basis on V®? viewed as a U’-module coincide with the
(dual) quasi-parabolic KL basis on V& viewed as an #3,-module (see Theorem A.

In the extreme case when r = 0 and U* = U (i.e., in the setting of [23]), Theorem C
recovers the main result of I. Frenkel, Khovanov and Kirillov [19]. In the special case
when m = 0 or 1, it reduces to the (quasi-split) ¢Schur duality in [8] (as well as the
generalizations in [1,11]). In the general case (for arbitrary r and m), the icanonical
basis elements in V®? parameterized by all black nodes e (respectively, by all white
nodes o) can be identified with parabolic KL of type A (respectively, B), but there are
other scanonical basis elements of mixed colors without such identifications.
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1.4. An inversion formula

An inversion formula for KL polynomials originated in [24] and was subsequently
generalized to the parabolic setting by Douglass [17]; also see [38] for an exposition.
In type A, the inversion formula can be reformulated and reproved using a symmetric
bilinear form on the tensor product U-module V®9; see Brundan [2] and Cao-Lam [12].
We generalize the approach in [12] via the :Schur duality by formulating a bilinear form
(-,-) on V& as a U-module.

Theorem D (Theorems 6.7-6.8). (1) The bilinear form (-,-) on V®¢ is symmetric.
(2) The rcanonical basis and dual canonical basis on V®¢ are dual with respect to
(-,-), i.e., (Cg,C* ) = dg p, for g,h € f-Wy.

Theorem D can be reformulated as a duality between (dual) quasi-parabolic KL poly-
nomials; see Corollary 6.9. It can be extended easily to a useful duality between KL
polynomials of super type BCD introduced in [8,1]; see Remark 6.10. The proof of The-
orem D(1) uses some old and new properties of the quasi R-matrix ©° introduced in [8]
(and generalized by Kolb [26]) and an anti-involution ¢; on U in [10].

1.5. Related works

Different constructions of Hecke algebra modules M appeared in earlier works of
Dipper-James-Mathas [16] and Du-Scott [18], independently. To construct ¢g-Schur alge-
bras with desired homological (such as quasi-hereditary) property, these authors were led
to consider generalized g-permutation (i.e., quasi-permutation) modules of Hecke algebra
of type B associated to cosets W \Wy, with Wy as in (1.1). In their approaches, such
a module is defined to be a right ideal of 3, generated by a single generator, say .
The elements x) constructed via Jucy-Murphy elements are not bar invariant in general
(in contrast to the bar-invariance of the generator My of My in our construction); see
Remark 2.3.

It is natural for us to formulate the g-Schur algebras S(r[m|r,d) = End s, (Ved),
which now depend on 3 integers r,m,d; these are close cousins of the (Q, ¢)-Schur (or
g-Schur?) algebras in [16,18], which depend on 2 integers. These algebras include various
g-Schur algebras in [15,20,6,30] as special cases by setting r = 0 or m = 0,1. The basis
theorem established in [16,18] on Hom g, (M, M) provides us a basis for S(r|m|r, d).
There is also a generalization of ¢g-Schur algebras in a different direction which is valid
for Hecke algebras of all finite types in [31].

1.6. Further directions

Let us give brief comments on several directions in which one can extend this work.
We hope to return to some of these topics elsewhere.
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We plan to explore the Hecke modules and quasi-parabolic KL bases associated to
reflection subgroups of Weyl groups and Coxeter groups in greater generalities. Reflec-
tion subgroups of Weyl groups are abundant, and affine Weyl groups offer exciting new
possibilities. For now we are aware that similar constructions make sense in some cases
beyond type B though the level of generalities remains to be clarified.

Further #Schur dualities in connection to icanonical bases can be formulated in the
setting of quantum symmetric pairs of classical (super) finite or affine types; this will be
developed elsewhere.

There exists a bar involution on the ¢-Schur algebra S(r|m|r, d) induced from the bar
involutions on quasi-permutation modules M. It will be interesting to develop a theory
of canonical basis on S(r|m|r,d) and study its relation to the :canonical basis on the
modified ¢quantum group (compare [7,6,29,31]).

The Kazhdan-Lusztig bases (as well as canonical bases arising from Jimbo-Schur du-
ality and quasi-split «Schur duality) afford geometric interpretations in terms of flag
varieties [25,7,21,6,29]. It will be of great importance if one finds a geometric setting
for the quasi-parabolic KL bases (as well as for the :Schur duality), and this might well
stimulate a construction of new wquiver varieties.

1.7. Organization

This paper is organized as follows. The action of the Hecke algebra %%, on the tensor
space V®4 is formulated in Section 2. We develop in Section 3 properties for the minimal
length representatives of Wy in the Weyl group Wy. We then construct the bar involution
and canonical basis on the module My, proving Theorem A.

In Section 4, we recall the :quantum group U® and set up the :Schur duality between
U* and 73, acting on V®9; see Theorem B. In Section 5, the bar involutions on U?,
V@4 and 3 , are shown to be compatible. We then show that the tcanonical basis
on V¥ as a U-module coincides with the canonical basis on it as an #,-module,
proving Theorem C. In Section 6, we establish Theorem D on an inversion formula for
quasi-parabolic KL, polynomials.

Acknowledgment. We thank George Lusztig for insightful comments and suggestions,
and thank Li Luo for helpful remarks. YS is partially supported by a Graduate School
of Arts and Sciences (GSAS) fellowship at University of Virginia, and WW is partially
supported by the NSF grant DMS-2001351.

2. Modules over Hecke algebra of type B

In this section we introduce the Hecke algebra 7%, of type B and its action on a
tensor space. This leads to quasi-permutation modules of %3, .
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2.1. Weyl group and Hecke algebra of type B

The Weyl group W = W of type By is generated by s;, for 0 < i < d — 1, subject to
the Coxeter relations: s? = 1, (s;s:41)° = 1, (s0s1)* = 1, and (s;5;)2 = 1 (Ji — j| > 1).
The symmetric group Sy is a subgroup of W, generated by s;, for 1 <1i < d — 1. Denote
by N the set of non-negative integers. The length function [ : W; — N is defined such
that I(c) = k if o has a reduced expression o = s;, - - - 84, .

For a real number z € R and m € N, we denote [z,z +m]| = {z,z+ 1,...,2 + m}.

For a € Z>,, we denote by

l1—a a—-1
I, = [ . ] .
For r,m € N (not both zero), we introduce a new notation for Is,,, to indicate a fixed
set partition:

Hr|m\r = lorim, ]Ir|m|7" =17 Ul, U I[;i_ (21)
where the subsets

I+ — m+1 ml} H_{lm ml}

I; =-IF
[e] 2 ’7"_"_ 2

o

(2.2)

have cardinalities r, m, r, respectively.
We view f € I%  asamap f:{1,...,d} = L, and identify f = (f(1),..., f(d)),

rlm|r

with f(i) € Lyjm)r- We define a right action of the Weyl group Wy on H;"i|m\'r' such that,
for f 6Hf\m|r and 0<j<d-1,

ij:f'sj: (_f(l)’f(Q)vvf(d))v it j =0, f(l)E]I;U]Ij; (23)
(f(1), f(2),-- f(d),  ifj=0, f(1) €l

The only nontrivial relation (sgs1)* = 1 can be verified by case-by-case inspection de-
pending on whether or not f(1), f(2) € I,. We sometimes write

f7=Ff-0=(fle1), -, f(a(d)),

where it is understood that

f(o(4)), if o(i) > 0;
(@),  ifo(i) <0, f(—o(i)) € Lo
—f(=a(i)), ifo(i) <0, f(—o(i)) ely UTT.
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Let p,q be two indeterminates. We denote ¢; = g for 1 < i < d—1 and ¢y = p.
The Iwahori-Hecke algebra of type B, denoted by #%,, is a Q(p, ¢)-algebra generated

by Hg, Hy,--- ,Hy_1, subject to the following relations:
(H; — qi)(H; + ¢; ') =0, for i > 0;
H;H;\1H; = Hi (1 H;H; 1, for i > 1;
HiHj:HjHi, for IZ—]| > 1;

HyH\HoH, = HiHyoH 1 H).

The subalgebra generated by H;, for 1 < i < d— 1, can be identified with Hecke algebra
Hs, associated to the symmetric group Sg. If o € Wy has a reduced expression o =
Siy * -+ Sip, we denote H, = H;, - -+ H;, . It is well known that {H, | 0 € Wy} form a basis
for #3,, and {H, | o € Sy} form a basis for %,.

2.2. A tensor module of A3,

Consider the Q(p, ¢)-vector space

V= B Qp q)va (2.4)

a€lymr

Given f = (f(1),..., f(d)) € I¢ we denote

rlm|r’
My =vpa) @vp2) ® ... ®Vf(q).-

We shall call f a weight and {My | f € Hﬁ|m|r} the standard basis for V&,
In cases |l4| =0 or 1 (i.e., m = 0 or 1), the following lemma reduces to [8, (6.8)] or

[11, (4.4)] in different notations.

Lemma 2.1. There is a right action of the Hecke algebra %, on V@4 a5 follows:

My, +(q—q Mg, if f(i) < f(i+1), i > 0;
Mp.s. if f(i) > f(i+1), i > 0;
My H, = aMy, if f(i)=f(i+1), i>0;
My, + (p—p~") My, if f(1) eI, i=0;
Mj.ss it f(1)els, i=0,
pMy, if f(1) €T, i =0.

Proof. It is a well known result of Jimbo [23] that the first 3 formulas above for H; with
i > 0 define a right action of Hecke algebra J#%,.
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It is clear that (Ho — p)(Ho +p~') = 0 and HoH; = H;H,, for i > 2.

Hence, it remains to verify the braid relation HyH,HyH, = H1HoH, Hy. To that end,
we only need to consider the case d = 2 and verify the braid relation when acting on
v; @ vj.

If i, € I, then Hy acts on the span of v; ® v; and v; ® v; as p - Id, and so the braid
relation HyH1HoH, = H1HyoH1 Hy trivially holds.

Assume now that at most one of 4, j lies in 1. If we formally regard this possible index
in I, as 0, then we are basically reduced to the setting of the action of Hecke algebra %,
[8, (6.8)] or [11, (4.4)] (except a different partial ordering on Hglmlr was used therein, and
q,p here correspond to ¢~ !,p~! therein). In any case, the braid relation can be verified
directly case-by-case, and we provide some details below.

For 2 < j € 17, we have

(’Ui X ’Uj)HoHlHoHl =V, QU_j + (q — qil)U_j X v_;
= (Ui ®Uj)H1HOH1H0.

For ¢ e 17,5 € L., we have

(vi ® vj)HoH HoHy = pv_; ® v; + p(q — q_l)vj Qv_;
e (’Ui (%9 ’Uj)HlHoHlHo.

For i € I7,5 € IF such that —i > j, we have

(Ui ® Uj)HoHlHoHl
=0 Qv+ (q—q¢ o ;@vi+@-p N @u+p-—p Na—q¢ Qv
= (’Uz' ® ’U]‘)HlHoHlHo.

The remaining cases are similar and skipped. O
2.8. Quasi-permutation modules

Recall ]If‘mw from (2.1). A weight f € 19  is called anti-dominant if

rlm|r

Note that f(j) € I; UT,, for 1 < j <d, if f is anti-dominant. We denote
Hff%p« ={fe ]If|m|r | f is anti-dominant}.

We can decompose V& into a direct sum of cyclic submodules generated by M, for
anti-dominant weights f, as follows:
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vel= @ My, where M = M; 53, (2.6)
fFerd~

rlmlr

Denote by Oy the orbit of f under the action of Wy on H7d'|m\’r" The following is immediate
from the formulas for the action of 5, in Lemma 2.1.

Lemma 2.2. The right J#5,-module My admits a Q(g)-basis {M, | g € O¢}. (It will be
called the standard basis.)

By (2.5), we can suppose that f € ]If";lr is of the form
f=A(a1,. . 01, Ay ey Qly Qg 1y e v ey Ly e e vy Gy v ey A1), (2.7)
—_——— —_——— —— —_————
mi my Mk41 my
where a1 > ... > ap > ag41 > ... > ay, {a1,...,ar} C Lo, {ary1,..., a1} C I, and

m1 + ...+ m; = d. The stabilizer subgroup of f in Wy is

Wi=Wp, x...x Wy, x5 X .. X Sy (2.8)

ME+1

Note the stabilizer subgroup Wy is not a parabolic subgroup of W4 when 2 or more of
the integers my, ..., my are positive. (This phenomenon does not occur in the setting of
[8,11].) We shall call the summand My in (2.6) quasi-permutation modules. Clearly, for
fife ]If";lw we have

M; =My,  if Wp=Wp.

If W; is not parabolic, M¢ is in general not an induced module as those considered in
parabolic Kazhdan-Lusztig theory [14]; see [38,32].

Remark 2.3. The quasi-permutation modules have appeared earlier in different formula-
tions in [16] and [18] independently. In our setting it is straightforward to write down
the Hecke action and bases for the quasi-permutation modules My starting from y®d,
but it takes some nontrivial efforts to achieve this in [16,18]. In their approaches, the
g-permutation modules are cyclic submodules of the right regular representation of ¢35,
with generators constructed by Jucys-Murphy elements. The quasi-permutation modules
here are isomorphic to those [16,18] integrally; this follows by comparing the formulas
in Lemma 2.1 and (2.6) with those in [16, Lemmas 3.9, 3.11].

3. Canonical bases on quasi-permutation modules

In this section, the minimal length representatives of the reflection subgroup W; of
Wq are studied. We construct a bar involution on the quasi-permutation modules M s
which are compatible with the bar involution on .#%,. Then we construct a canonical
basis on M.
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3.1. Basic properties of Wy

There is a natural left action of the Weyl group W, on the set
[£d] :={—d,...,—2,-1,1,2,...,d},
such that
o(—i) = —o(i), Vo € Wy, i € [£d].

In one line notation we write

Let f € ]If";lr. The stabilizer of f in the symmetric group Sy is always a parabolic
subgroup generated by some subset J(f) C {s1,...,84-1}. We continue the notation
(2.7) for f € Hfl’;‘r. Denote

de =m1+ ... +my, do = d — de. (3.1)
That is, among f(j), for 1 < j < d, the first do of them belong to I,. Denote
t1 = so, ti = Si_1ti_18;—1, for1 <i<d. (3.2)
Then ¢; is the swap (sign change) of ¢ and —¢ while fixing j € [+d] with j # =+i.
Lemma 3.1. Let f € Hfl’;‘r. Then the stabilizer Wy in Wy is generated by
Jpi={t; | 1 <i<d}UJ(f).

Proof. Recall f from (2.7). The lemma follows since elements in W are compositions of
permutations in Sy that fix f and sign changes that fix each a;,1 <j < k. O

For o € Wy, the type B inversion number invg (o) is defined to be (cf. [3])

invg(o) = inv(o) + ng(o), (3.3)

where
inv(o) = #{(i,j) [ 1 <i < j < d,o(i) > o(j)}; (3.4)
me)=— Y o). (35)

{1<j<dlo(5)<0}

For o € Sy, invp(o) = inv(o) coincides with the inversion number of Sy .

Lemma 3.2. [3, Proposition 8.1.1] For any o € Wy, we have [(0) = invg(0).
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3.2. Minimal length representatives

Let f € I%~ . Recall the stabilizer subgroup Wy (2.8) of Wy is a (not-necessarily

rlm|r’
parabolic) reflection subgroup in general.

Lemma 3.3. [33, Lemma 1.9] [18, Theorem 2.2.5] Every right coset of W; in the Weyl
group Wy has a unique minimal length representative.

Denote by W the set of minimal length right coset representatives for Wy in Wy, for
fe ]If";lr. We shall establish a basic property for 1.

Lemma 3.4. Let 1 <i < dand o € /W.If |0(i)| < ds, then o(i) > 0.

Proof. We prove by contradiction. Suppose this were not true, then there exists 1 < i, <
d such that o(is) < 0 and ue = |0(ie)| < do. By Lemma 3.1 we have t,, € Wy and thus
tu,o € Wyo. Now by (3.5) we have ng(t,,0) = np(c) — us. On the other hand, since
there are at most ue — 1 indices less than wu,, we have inv(t,, o) < inv(o) 4 ue — 1. Hence
by the above 2 identities, (3.3) and Lemma 3.2, we have

l(ty,0) = inv(ty,0) + np(tu,o)
<inv(o) +ng(c) —1=I(c) — 1,

which is a contradiction to the minimal length property of . O

Example 3.5. If W, is non-parabolic, the equality I(ww’) = l(w) + {(w’) may fail for
w € Wy and w' € fW. For example, take Wy = (so,515051) C Wpg, and s; is the
minimal length representative of Wys;. Note (s15051)s1 = s150, but {(s15051) + I(s1) =
4 #2=1(s150).

The example above indicates [14, Lemma 2.1(i)-(ii)] may fail for non-parabolic reflec-
tion subgroups. The next theorem, which is a generalization of [14, Lemma 2.1(iii)] to
reflection subgroups, is more difficult to establish. It will play a key role in constructing
the bar involution and canonical bases for quasi-permutation modules.

Theorem 3.6. Let 0 € fW, and 0 < i < d — 1. Then ezactly one of the following
possibilities occurs:

(i) l(os;) < (o). In this case, os; € TW;

(ii) I(os;) > (o) and os; € TW;
(iii) I(os;) > U(0) and os; ¢ FW, fori # 0. In this case, os; = s'a, for some s’ € J(f);
(iilp) U(oso) > U(0) and osg & fW. In this case, osg = to, for some t € J\J(f).
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(More precisely, in case (iii), we have f(o(i)) = f(o(i+1)) and 8" = (Jo(i)], |o(i + 1)]);
in case (i), o(1) >0 and t = t,(1).)

Proof. We shall compare o € W with os;. Our argument below uses the action of Wy
on V& crucially. We separate the proof into 2 cases depending on whether or not i = 0.

(1) Assume ¢ = 0. We separate into 3 subcases (ig)-(iiig) below by the range of f(1).

(i0) f7(1) € IF = Case (i) for i = 0.

In this case, we have o(1) < 0 since f(o(1)) = f9(1) € I} while f(j) ¢ I+ (for
1 < j < d) thanks to f being anti-dominant.

Claim 1. I(0sg) = l(0) — 1.

Indeed, by Lemma 3.2 it suffices to show that invp(csg) < invp(c). Note that
gso(j) = o(j), for 2 < j < d, and osp(1) > 0 > o(1). By (3.5) we have ng(osg) =
np(o)+o(1). On the other hand, we have inv(osg) < inv(c) — o (1) — 1 since there are at

most (—o(1) — 1) indices smaller than —o(1). Hence by (3.3), invg(osp) < invg(c) — 1,
and Claim 1 follows.

It remains to verify that osg € 7. If this were not true, there exists 7 € Wiosg such
that I(1) < l(osg) =1(0) — 1. Hence l(7sg) < I(7)+1 < l(0); this is a contradiction since
750 € Wyo and o is a minimal length representative of Wyo.

(iip) f9(1) € IS = Case (ii) for i = 0.

In this case, f7%(1) € I, and ¢(1) > 0, thanks to f being anti-dominant. Arguing as
in (ig) for Claim 1, we have l(0s9) = I(c) + 1. It remains to verify that aso € fW. If this
were not true, we choose the minimal length representative 7 € Wyosg. Since 7 € w
and f7(1) € IF, by (ip) we know that I(rsg) = (1) — 1 < l(0s9) — 1 = I(o); this is a
contradiction since 7sy € Wyo and o is a minimal length representative of Wyo.

(ifig) £7(1) € I, = Case (iio).

Thanks to f7(1) € L,, we obtain f7 = f?°, that is, o0sg € Wyo. Then l(osg) >
I(0) and osy ¢ /W, since o is a minimal length representative in W;o. Also, we have
osgo T = tio(1)]> and thus, 0sg = t|,(1)|0; cf. (3.2). Since f7(1) € I,, we have |o(1)] < de;
cf. (3.1). By Lemma 3.4, we know that (1) > 0. Hence, ;1) € Jp\J(f).

(2) Assume i > 0. We compare o € /W with os;. By using inversion numbers, we see
that l(os;) > l(0) if and only if f7(i) > f7(i + 1). We separate into 3 subcases (i)-(iii)
below depending on whether f7(i) — f7(i + 1) is negative, positive or zero.

() (f7(@) < fo(i+1)) = Case (i) for i > 0.

In this case, [(0s;) < (o). It remains to verify that os; € FW. If this were not true,
then there exists 7 € Wyos; such that I(7) < l(os;) = (o) — 1. Thus I(7s;) <Il(7)+1 <
l(o); this is a contradiction since o has the minimal length and 7s; € Wyo.

(ii) (f°@) > f(i+ 1)) = Case (ii) for i > 0.
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In this case, l(0s;) > (o). Let us verify os; € fW. If this were not true, choose
the minimal length representative 7 € Wyos;. Since f7(i) < f7(i + 1), by (i) we have
l(1s;) =1(1) =1 < l(os;) —1 < (o), which is again a contradiction.

(iii) (f(i) = fo(i+ 1)) = Case (iii).

In this case, f7% = f?, and o0s; € Wyo. Without loss of generality we assume that
lo(i)| < |o(i+1)]. It follows from the anti-dominance of f that o(i) and o(i+1) have the
same sign if f7(i) = f7(i + 1) € I; ULS; On the other hand, if f7(i) = f7(i + 1) € L.,
then o(i) and o(i 4+ 1) have the same + sign by Lemma 3.4.

Therefore, we have f(|o(i)|) = f(|o(i + 1)]), and thus,

osio ' = (lo(i)],lo (i) + 1), (3.6)

that is,

T8 = 80(i)|S|o(i)|+1 " So(i+1)|—1 " So(i)|+15]0(i)|0 € Wyo. (3.7)

Since f is anti-dominant (cf. (2.5)), we must have

{810(0)]> S1o@i)+1 "+ » Slo(i+1)| -1} C J(f)-

Claim. We have |o(i + 1)| = |o ()| + 1.

Let us prove the Claim. Let 0 = ss5--- s}, be a reduced expression. Assume to the
contrary that |o(i+1)| > |o(7)|+1. Then we can reduce the length of the RHS of (3.7) by
deleting a pair of simple reflections, at least one of which is some s from o; otherwise,
it would contradict the identity (3.6). Now the element in the RHS of (3.7) after the
deletion contradicts the minimality of o as a representative of Wyo. Thus the Claim
holds.

Hence, setting s’ = (|o(?)|, |o(i + 1)|) € J(f), we have s'c = 0s;. O

Remark 3.7. The conditions in Theorem 3.6 have their counterparts in terms of f¢ listed
in the proof above, and they are useful in later applications. For instance, for o € T
and i > 0, we have os; € /W if and only if f7(i) # fo(i + 1).

3.8. The Hecke modules My revisited

Recall the action of Hecke algebra on V®? from Lemma 2.1 and hence on My from
(2.6). Applying Theorem 3.6 and its proof, we shall obtain explicit descriptions for the
action of the Hecke generators H; on the standard basis {My., | o € /W} for My, which
is independent of the tensor module V®¢. Clearly, the length inequalities in Theorem 3.6
can be replaced by the Chevalley-Bruhat order < on Wj.
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Proposition 3.8. Let f € 14~ oc IW,and 0 <i<d—1. Then

rlm|r?

My.os, + (i — qfl)Mf.U, if os; < oy

My.os;, if os; >0 and os; € fW;

My H; = "
qMys.,, if 140, 0s; >0 and os; ¢ TW;
pMy.q, if i =0, 0sop >0 and gsq ¢ IW.

Proof. In this proof we label the four cases in the proposition as (i), (ii), (iii), (iiip), as
they exactly correspond to the 4 cases in the same labellings in Theorem 3.6.

We first assume i # 0. Then the cases (i), (ii), (iii) here match with the cases (i), (ii),
(iii) in the proof of Theorem 3.6 in the same order, which correspond to the 3 conditions
@) < fo(i+1), f0) > fo>i+1),and f(z) = f7(i + 1) therein, respectively. Hence,
the formulas in the proposition (with ¢ # 0) follow by the first 3 formulas in Lemma 2.1.

Now we assume ¢ = 0. Then the cases (i), (ii), (iiip) here match with the cases (i),
(iig), (illp) in the proof of Theorem 3.6 in the same order, which correspond to the 3
conditions f7(1) € IF, f7(1) € I, and f°(1) € I, therein, respectively. Hence the
formulas in the proposition (with ¢ = 0) follow by the last 3 formulas in Lemma 2.1. O

Remark 3.9. The formulas in Proposition 3.8 miraculously take the same form as in the
parabolic case [14,38]. However, in contrast to [14,38] it seems difficult to verify directly
these formulas define a representation of 7%, in such a general reflection subgroup
setting. The proof of Theorem 3.6 provides us a crucial identification as posets between
the orbit f - Wy (used in Lemma 2.1) and the set of minimal length representatives T
for W \Wy (used in Proposition 3.8).

3.4. The bar involution on M ¢

We prepare some lemmas toward the construction of the bar involution on M.

Lemma 3.10. For f € Hfl’;l‘r and o € /W, we have MyHy = My.,.
Proof. We use induction on [(c). The case for [(c) = 0 is trivially true. If [(¢) = 1, then
o = s; for some ¢. If i = 0, we have f(1) € I, as otherwise we would have so € Wy
(contradicting o = so € fW). Hence, M¢Hy = Mjy.5,, by Lemma 2.1. If 0 = s; for ¢ > 0,
we must have f(i) > f(i+1). Thus MyH; = Mjy.,,, again by Lemma 2.1.

Suppose (o) > 0. We have a reduced expression o = s;, ---5;,. Denote o' =
Siy -+ 8ip_,, and note (0’) < I(o). By Theorem 3.6(i), o/ € fW. By the inductive
assumption, MyH, = Mj.,.. Now if s;, = s¢, then this only happens when o) els,
by case (ip) in the proof of Theorem 3.6. Thus, we have M;H, = MyH, Hy =
My.oHy = My.,, by Lemma 2.1. If 5;, = s; for some j > 1, similarly we must
have f7 (j) > f°(j + 1), by case (i) in the proof of Theorem 3.6. Thus we have
MiHy, =M¢Hy Hj = My¢.ooHj = My, again by Lemma 2.1. O
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Lemma 3.11. Suppose that o € /W satisfies that 1 # |0(1)| < de. Then (1) > 1, and &
must have a reduced expression which starts with s,(1)-155(1)—2 " - 5251.

Proof. Lemma 3.4 is applicable by the assumption, and so we must have (1) > 0, and
then (1) > 1, thanks to the assumption 1 # |o(1)].

Set u = o(1). We prove the lemma by induction on the length of o. If i(¢) = 1, then
o = s1 (thanks to o(1) > 1), and the lemma holds trivially.

Now suppose that (o) > 1. There exists 1 < a < d such that o(a) = uw — 1 by
Lemma 3.4. Then we have s,_10(1) =u — 1, s,-10(a) = v and thus

(sy—10) = invp(sy—10) =invg(c) — 1 =1(o) — 1.

By the inductive assumption, s, 10 has a reduced expression which starts with
S5(1)—2  + - 5281. Therefore, o has a reduced expression which starts with s, 1)_185(1)—2 "
S981. O

The bar involution on #%,, denoted by ~, is the Q-algebra automorphism such that

Hi:H;17 q:q_lv ﬁ:p_l’ Vo<i<d-1

(We shall refer to a map such that ¢"™ — ¢~™ and p™ — p~™ anti-linear.)
Let f € Hf I We define a Q-linear map 9, on the module My (which has a basis

—
|m

M., for o € W) by
%(CJ) = qila %(P) = pila qu(Mfﬁ) = MfH07 Vo € fW (38)

Now we can establish the existence of bar involution on M, generalizing the parabolic
case [14,38].

Proposition 3.12. Let f € ]If";blT. The map v, on My in (3.8) is compatible with the bar
operator on the Hecke algebra, i.e.,

VY, (zh) = ,(x)h, for all x € My, h € H3,. (3.9)
In particular, 12 = Id. (We shall call 1, the bar involution on M.)
Proof. Note ¢,(My) = My, by definition (3.8).
A simple induction on [(w) reduces the proof of (3.9), for h = H,, with w € Wy, to
proving the following formula:

U (xH;) = 9, () H;, forall € My,0<i<d—1. (3.10)

It suffices to verify (3.10) for the basis elements of My, = M H, (that is, z = My.,
by Lemma 3.10), for o € fW. We proceed case-by-case following Theorem 3.6.
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(i) Assume I(0s;) < (o). In this case os; € /W, and thus

(Mg Hy H;) = ,(MyHys, + (g — g )My H,)
= MfHO's,- + (qz_l - q’i)MfH(f

= Mf(Hos,- + (qz - qz‘_l)Ha) = Mfﬁaﬁi = 1/)Z(MfH0')FIi~
(ii) If I(os;) > (o) and os; € TW, then
wz(MfHaHz) = wz(MfH(rsi) = wl(Mf)Hosi = wz(Mf)-Ha-Hi = fl/}z(MfHa)Ei

(iii) Assume [(os;) > (o) and os; ¢ JW, for i > 0. In this case, we have os; = s’
for some s’ € J(f), and MyHy = gMy by Lemma 2.1. Thus, we have

¢1(MfHaHz) = wz(Mchrsi) = wz(Mst’a) = ¢Z(quHU) = q_leHzr~
On the other hand, we have
Y (MyH,)H; = MyH,H; = MyH,s, = MfHyy = MyH, H, = ¢ * M H,.

Hence (3.10) holds for x = My H, in this case.

(iiig) Assume i = 0, I(0sg) > I(c), and osg ¢ FW. By Theorem 3.6(iiig) and its proof
in case (iilp), we have f7(1) € I, and thus |o(1)| < ds. By Lemma 3.4, o(1) > 0. We
separate into 2 subcases (iiig-1) and (iiip-2).

Subcase (iilip-1): o(1) = 1. Then f(1) € I, and spo = osp, by Theorem 3.6(iiip) and
its proof in case (iiip). Thus we have

'L/}z(Mf-HoHO> :wz(MfHaso) = wz(Mstoa) = wz(MfHOHo') = p_le];[U-

On the other hand, v,(M;H,)Ho = MyH,s, = MHs,; = p~*M;H,. So v,(M;Hy,Hp)
= ¢Z(MfHU)f{0, proving (3.10) for « = My H, in this case.

Subcase (iilip-2): o(1) > 1. Set v = o(1) < d,. We have osy = t,0 by Theo-
rem 3.6(ilip); see (3.2) for ¢,. By Lemma 3.11, o has a reduced expression of the form

0 = Syu—1Su—2"-* 52818, - - Si,, -
Hence, t,0 = sy—1--- 515084, - - - Si,,, also a reduced expression for length reason. Thus

sz(MfHUHO) = ¢Z(MfH0'so) = wz(Mthuo')
= %(Mstu,l...sl Hoqu;l ~~~s,;m)

(u < do,Lemma 2.1 for Hy) = = p_lwl(MfHSu—l“'SlHSil"'Sim)
= p_leHg.
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On the other hand, we have

¢ (MyHy)Hy = MyHyHy = MyHyo, = MyHy,,
= M¢H,, .. HoH,, ..,
(u < de,Lemma 2.1 for Hy) = =p 'M;H,, . Hg, s,
= pileI:L,.

Therefore, the proof of (3.10) is completed, for all z = My H,.
Finally, we have ¢?(M¢H,) = Mff{g =M¢H,, ie,¢¥?=1d. O

Remark 3.13. Recalling (2.7) and (3.1), we define reflection subgroups Sy := Sy, X ... x
S SJ‘C = S, X Smyyy X oo X Sy, and W3 = Wq, x S X ... %X Sy, of W4. Note

M1

that Sy pér' S} cwy pér' Wy, where par. stands for parabolic. Let us outline a 3-step
induction process of realizing (an isomorphic copy of) the ¢%,-module My: first induce
the 1-dimensional “trivial” module from 5, to %;, then view the %;—module as an
j‘fwf—module by imposing the action of Hy as p - Id, and finally induce once more from
%W; to J¢p,. The bar involution on M can also be understood this way. We will not use
this remark in this paper. This 3-step process can be formalized and its generalization
to other types will be treated in detail elsewhere.

3.5. Canonical basis on M ¢

For the formulation of canonical basis on M, we shall specialize to a one-parameter
setting. Our assumption below that p € ¢% below amounts to choosing distinguished
weight functions a la Lusztig [37]. (The general weight functions therein work here too,
but it would require additional notations to set up properly.)

Suppose p € ¢%. Then 3, becomes a Q(q)-algebra, and M becomes a Q(g)-vector
space and an J¢p,-module. The bar involution ¢, on My remain valid. With Proposi-
tion 3.8 and Proposition 3.12 at our disposal, the proof of the next theorem follows by
standard arguments.

Theorem 3.14. Suppose p € ¢%, and let f € Hf[;z\r' Then for each o € YW, there exists
a unique element C, € My such that

(1) /(pz(ca) = Ca;
(i) Co € Mpo+ > q 'Zlg M.
wel W

Moreover, we have

(ii") Co € Mp.o + > q 'Zlg M.

wef Ww<o
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The set {Cy|o € FW} is called a canonical basis or quasi-parabolic KL basis for M.

Proof. Let o € fW. Assume p € ¢Z>°, and set b; = H; + qi_l, which is bar invariant.
Proposition 3.8 can be rewritten as

My.os, + ¢iMs., if 0s; <o

My.ps, +q;'My.,, if 0s; >0 and os; € TW;

(g+q )My, if os; >0 andos; ¢ fW,i#0;
(p+p )My, if osg > o and asg ¢ fW.

My.ob; = (3.11)

Now the existence of C,, satisfying Conditions (i) and (ii’) can be proved using (3.11) by
an induction on the Chevalley-Bruhat order for o, following exactly the same argument
as for [38, Theorem 3.1].

(For p € ¢%<o
by = Hoy — p; for p = 1, one uses bg = Hy instead.)

The uniqueness of the basis {C,} follows from the following (cf. [38]).

Claim. Suppose z = Y., sy hwMys., with all hy, € ¢7'Z[g™"] satisfies 1,(z) = z.
Then z = 0.

Indeed, if z # 0, we can choose w’ with maximal length such that h,. # 0. Then
it follows by the existence of {C,} satisfying (i) and (ii’) above and z = ,(z) that
huw = hy, which forces hy =0 (since h,s € ¢~Z[q']), which is a contradiction. The
Claim follows. O

, one reruns the argument therein by using a variant of (3.11) with

d,—

rlm|r’

Set b, = H; — ¢;. Proposition 3.8, for f €I o € W, can be rewritten as

My.os, — q{le.J, if 0s; <o;
My.os, — q@My.o, if 0s; >0 and os; € TW;

Myt = s T B i ' (3.12)
0, if os; >0 andos; ¢ fW,i#0;

0, if osg > o and asg ¢ fW.

The following counterpart of Theorem 3.14 (with ¢=! replaced by ¢) can be proved in
the same way using (3.12).

Proposition 3.15. Suppose p € ¢%. There exists a basis {C%loc € fW} (called dual
canonical basis) for M which is characterized by ¢,(Ck) = C% and C: € My, +
Y werw 4Z1q)Mj.,. Moreover, we have Cy € My.o + > oty 4Z[q| My .

w<o

The set {C|o € fW} is called a dual canonical or dual quasi-parabolic KL basis for
M.
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Example 3.16.

(1) If f e 1%~ satisfies f(i) € I, for all 1 < i < d (or more generally, if k < 1 in

rlmlr
(2.7)7(2.8|))‘7 then the subgroup /W is parabolic. In this case, the canonical basis of
My is exactly the parabolic Kazhdan-Lusztig basis of type B [24,14].

(2) If f € Hgf;\r satisfies f(i) € L,, for all 1 <14 < d, then the action of Hy is given by
p-Id on My, and the 5 ,-module M ; essentially reduces to an J#5,-module. In this
case, Wy = By, X ... X By,, with m; 4+ ... 4+ my, = d, the canonical basis of My is
identified with the parabolic KL basis of s, associated to (Sp, X ... X Sp, )\Sa-
(This follows by the uniqueness of a canonical basis, since My as an #p,-module
and as an #%,-module has the same standard basis and the same bar map.)

Example 3.17. For non-parabolic Wy, the canonical basis on M may not be a (usual)
KL basis. Consider V®3 for V of dimension 5 with standard basis {vi}_2<i<2, where
I, = {-1,0,1} (i.e., m = 3,7 = 1 and d = 3). We consider f = (0,—1,—2) and
W; = By x By = (s, $101); here and below we shall write s;s;sy - -+ = S;jk.... Then

w = {e, 51,52, 512, 521, 5121, 5210, 52101, 512105 512101, 5210125 5121012 } -

We have the following 12 canonical basis elements in M (as linear combinations of the
12 standard basis elements M., for o € fW):

Cp=My, Crs,=Mps, +q "My, Cpoy =My, +q My,
Cf'512 = Mf'812 + q_le-S1 + q_le~S2 + q_Qva
Cf'521 = Mf'821 + q_le-Sz + q_le>S1 + q_QMf7
C(f'8121 = Mf'5121 + q_le'Slz + q_le'Szl + q_sz~S1 + q_QMf-Sz + q_3Mf7
Cf'Szlo = Mf‘8210 + q_le‘SZI + q_ZMf'Sz + q_QMf'81 + (q_3 - q_l)Mf’
Cf‘32101 = Mf'32101 + qile'Szw + q72Mf'321
+ (qi?’ - qil)Mf'Sl + q73Mf'S2 + (q74 - qiz)Mfa
Cf'81210 = Mf'81210 + qile'S'no + qile'Sml + q72Mf'S21 + q72Mf~812
+ qing-S1 + q73Mf~52 + q74Mfa
Cf'521012 = Mf'521012 + q_le'S2101 + q_le'51210 + q_2Mf‘8210 + q_2Mf‘5121
+q P Mposy, + (@2 — g My, + (¢ — ¢ )My, +q "My, +q My,
Cf'812101 = Mf'812101 + q_le'Slzm + q_le'Szml + q_QMf'Szlo + q_QMf'SIQI
+ q_3Mf'321 + q_3Mf'512 + q_4Mf'82 + q_4Mf-51 + q_5Mf7

—1 —1 -2 -2
C’f'5121012 = Mf‘8121012 +q Mf'521012 +4q Mf‘812101 +4q Mf'Szlol +4q Mf‘81210
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+ q_ng-ng + q_ng'Sl21 + q_4Mf-821 + q_4Mf'812
+ q75Mf'82 + q75Mf'$1 + q76Mf'

1

Note that some polynomials in ¢~" above do not have positive coefficients in contrast to

parabolic KL polynomials. Therefore, we do not expect a straightforward generalization
of the geometric realization of the KL basis given in [25].

4. 1Schur duality of type AIII

In this section, we formulate a double centralizer property for the actions of U* and
3, on the tensor space V®.

4.1. Quantum group of type A

Denote the quantum integers and quantum binomial coefficients by, for a € Z, k € N|

¢t —q al la]la—1]...[a =k +1]
=T M !

For r,m € N (as in the previous sections), it is convenient to introduce

and denote
I'=lyyon1=[1—-n—-rn+r—1].

Denote by (a;j)i jer the Cartan matrix of type Agyym—1. For i # j € I, let S;;(z,y)
denote the noncommutative polynomial in two variables

1—a73j

s ]-_ai' —Qij—S,,,.5

Sij(zy) = > (1) [ s ”}xl YTyt
s=0

The quantum group U = Ug(sla,4rm) is a Q(g)-algebra with generators E;, F;, KijEl
(i € I), subject to the standard defining relations including g-Serre relations

Sij(Ei,Ej)ZSij(Fi,Fj):O, fOri;éjEI,

cf. [36,22]. We define K, =[], K" for p = >, a;i € Y := ZI. As an extension of a bar
involution on Q(q) such that g = ¢~!, the bar involution ¢ on the algebra U is given by
¢(Q) = q_la /(/)(El) = Ei? w(Fl) = Fia ¢(Ku) = K_N'
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A comultiplication A on U is given by, fori € I,u €Y,
A(E)=E @1+ KB, A(F)=FoK '+10F, AK,) =K, ®K, (41)

The comultipication here follows [36]; it is consistent with [9] but different from the one
used [8].
Denote the set of simple roots and the weight lattice for sla, ., by

O={ai=¢ 1 -1 licll, X= P Ze

€L )

Define the symmetric bilinear form on X, (-,-) : X x X — Z, such that (¢;, €;) = &;;.
We also recall the braid group action T; = 7}’ ; : U — U and its inverse from [36,
5.2.1], whose the action on U™ is given as follows: for i # j € I,

r+s=—a;;

T7NE) = -K'F, TN E)= Y. (-1)'¢ EVEEY.

r+s=—a;;

(4.2)

For any Weyl group element w, an automorphism 7T, of U is defined via a reduced
expression of w. This applies in particular to wq, the longest element in the Weyl group
of 5[27’+m‘

4.2. 1Quantum group of type AIII

Fix

m
n=-—¢c

1
-N.
2 2

We consider the Satake diagram of type AIIl with m — 1 = 2n — 1 black nodes and r
pairs of white nodes, together with a diagram involution 7:

—n—r+1 -n  —n+l1 n—1 n n+r—1

(In case n = 0, the black nodes are dropped; the nodes n and —n are identified and fixed
by 7.) The involution 7 on I sends i — 7(i) = —i, for all 4, and it induces an involution
of U, denoted again by 7, by permuting the indices of its generators F;, F;, Kiil.
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Let
Iy=[1-n,n—1]
be the set of all black nodes in I so that
I=1,Ul,, where I, := I\I,.

Denote by w, the longest element in the Weyl group of the Levi subalgebra associated
to I,. Following [9], we define

X, =X/{p+wer(p) | p e X},

4.3
Y'={v—wer(v)|veY}. (43)

We call an element in X* an +-weight and X* the 1-weight lattice.

The quantum group of type AIII, denoted by U*, depends on the parameters ¢; €
Q(q), for i € I,, which satisfy the conditions ¢; = ¢_;, for i € I,\{xn} [28] (also cf. [4,10]).
More precisely, U’ is the Q(g)-subalgebra of U generated by K,, (1 € Y"), E; (i € I,),
and

B; = F; + Ty, (E.i))K; ", foric€ L. (4.4)

(In case n = 0, By will be allowed to take a more general form By = Fy + soEo K Ly
KZ()KO_I, for an additional parameter ko € Q(q).)

Then (U, U*) forms a quantum symmetric pair of type AIII [27,28] (cf. [8,5]). The
algebra U satisfies the relations

K,B; =q ") B,K,, Vic I,
K,Fi=q "W FK, K,E=q¢"EK, Yicl,uecY",

and additional Serre type relations (which we shall not use explicitly in this paper).
4.8. 1Schur duality

In this subsection we will construct an 2Schur duality between type B Hecke al-
gebra with two parameters p,q and U’. To avoid considering a field extension of
Q(q), we shall assume p € Q(q). Then .#3, is a Q(q)-algebra. The Q(q)-vector space
V = @uel,,.;, Q(q)vq from (2.4) can be identified with the natural representation of U,
where

Eiva - 5i+1,ava71a Fiva = 51'_,a:ua+1a (45)
Kava = (qUq, KaUaJrl =q Ug+1, Kavb = Up (b 7é a,a + 1)
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The tensor product V®¢ is naturally a U-module via the comultiplication A. Recall
V@4 is a right #%,-module (and hence a right J#5,-module) from Lemma 2.1.

Proposition 4.1. [23] The actions of U and #%, on V®¢ commute with each other, and
their images in End (V®?) form double centralizers.

We shall compute explicitly the action of B;, for i € I,, on V in the following 2
lemmas. Recall m = 2n € N.

Lemma 4.2. For a € I,,,,, and i € [, = [1 —n — 7, —n] U [n,n +r — 1], we have

E—i(va)v |7’| > n;
Tw. (Er(i))(va) = E7n+1E7n+2 te EnflEn('Ua); 1= —n;

()™ g "M E W E 1 Ep 2By 1(ve),  i=n.

Proof. For i < —n and i > n, we have Ty, (E,;)) = E_;.
Let i = —n. We choose the following reduced expression of ws:

We = (S—ny15-nt2 " Sn—1)(5—nt15 nt2 - Sn—2) (515 nt2)(S—nt1)-

Thus we compute

T, (ET(—n))(Ua) = Ts_n+1 " 'Tsn_l(En)(va) (4~6)
= Ts,n+1 e Tsn,g (EnflEn - q_lEnEnfl)'Ua
=Ts iy Ts, 5 (En1)En(va) — q_lTLnﬂ Ty, (EnEyp_1)vg.

The second term on the RHS (4.6) vanishes since Ty, (En Epn—1)va = 2Tw(EnEn—10u(a)),
for some scalar z, and E,, E;,_1vy(q) = 0 by (4.5), for any w,a. Thus we derive that

Twy(Er(—n))(va) =T

S_n41

T (Bn)(va) = Ts_py - Ty 5 (En1) En(va).
Hence by a simple induction on n we obtain
Tuu(Br(-)(Va) = E-nt1Bnss -+ Buo1En(v).
Similarly, using another reduced expression

We = (Sn—15n—2"*"S—nt1) * (Sn—15n—2)(8n—1);

we compute Ty, (Er(n))(vq) as follows:
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Tw, (Er(n))(va) =Ts, .- .T57n+1 (Efn)(va)

= Tsnfl T T87n+2 (E—n-i-lE—n - q_lE—nE—n-i-l)Ua
= _qilE—nTsnfl e T87n+2 (E_n+1)(11a).

Again by induction on n, recalling m = 2n we have
Twe(Er(ny)(va) = (-1 g E L E i1 Epo By q(va).
The lemma is proved. O
Lemma 4.2 together with the formula for B; in (4.4) immediate imply the following.

Lemma 4.3. Let a € I, and i € I,. The action of B; on V is given by:

Vopyls ifa:—n—%;
B_pn(va) = Sonl_py1, fa=n+ 3
0, else,
Uiy 1, ifa=1i—1;
Bi(vq) = Gv_i_y, ifa=—i+ 1 for |i| > n,
0, else,

and (recall m = 2n)

2

Bn(va) -

b+ D™y a=n—k
0, else.

From now on, we shall fix the parameters to be

G =1, ifi# +n,
S_n =D, itm=2n¢eZs, (4.7
Sn = (*1)m71qmp717

and
¢ =1, ifi#0,
_ 1 : _
So=¢q , if m =0. (4.8)
p—p!
Ry = 1
q—q

That is, for m = 0, we take By = Fy + q_lEOKO_1 + 5:5:1[(0_1, following [11].
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Introduce the Q(g)-subspaces of V:

Vo = @ Q(Q)(Ua —pU—a), Ve = @ Q(q)va,

ae]I?,' acl,

Vi = P Q@)(va+p va).

acld

Lemma 4.4. Assume (4.7)—(4.8). Then V_ and V4 ® V. are U’-submodules of V. Hence,
we have a U*-module decomposition V = (V, @ V) ® V_.

Proof. Follows by a direct computation using the formulas (4.5) and Lemma 4.3. O
The decomposition of V above is also compatible with the Hy-action.

Lemma 4.5. The Hecke generator Hy acts on V_ as (—p~1)Id and acts on V, @ V, as
p - 1d.

Proof. Follows by Lemma 2.1. O

Theorem 4.6. Suppose the parameters satisfy (4.7)—(4.8). Then the actions of U* and
Hp, on VO commutes with each other:

U A Ve A .
Moreover, W(U*) and ®(#3,) form double centralizers in End (V®?).

Proof. As the case for m = 0 was covered in [11], we shall assume m > 1 below.

By the Jimbo duality (see Proposition 4.1), we know that the action of U commutes
with the action of H;, for 1 < i < d— 1. Thus, to show the commuting actions of U* and
A3, it remains to check the commutativity of the actions of Hy and the generators of
LUAR

To that end, it suffices to consider d = 1 (thanks to the coideal property of U* and
the fact that the action of Hy depends solely on the first tensor factor). In this case, the
commutativity between U’-action and Hp-action on V follows directly from Lemmas 4.4
and 4.5.

The double centralizer property is equivalent to a multiplicity-free decomposition of
V@4 as an U' ® J#3,-module, which reduces by a deformation argument to the ¢ = 1
setting. At the specialization ¢ — 1, U* becomes the enveloping algebra of sl(r + m) &
gl(r), V.= (V, ® V. ) @ V_ becomes the natural representation of sl(r +m) @ gl(r), on
which sq € Wy acts as (Idy,gv, , —Idy_). The multiplicity-free decomposition of Ve at
q = 1 can be established by a standard approach where the simples are parameterized by
ordered pairs of partitions (A, ) such that I(A\) < r+m,l(p) <rand |A\ + |u|=d. O
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Remark 4.7. Theorem 4.6 is a common generalization of g-Schur dualities of type A and
B. It specializes to Jimbo duality (Proposition 4.1) when r» = 0. (In this case, U* = U,
and Hy acts as p - Id and so the action of 5, reduces to the action of J5,.)

On the other hand, for m = 0, 1, Theorem 4.6 reduces to [8, Theorems 5.4, 6.27] (for
p = q), [1, Theorem 3.4] (for p = 1), and [11, Theorems 2.6, 4.4] for general p. The

conventions in [1,8,11] are consistent with each other, while a different comultiplication
d
r|lm|r

switch of g, p from [1,8,11] to ¢~ 1, p~! for the action of Hecke algebra; cf. Lemma 2.1.

for U is used in this paper; this has led to a different partial ordering on I and a

5. 2Canonical basis on the tensor module

In this section, we fix the parameters ¢; (i € I,) as in (4.7)—(4.8) as for Theorem 4.6,
and further assume that p € ¢%. We show that the bar involution on the tensor space
is compatible with the bar involutions on the algebras U* and J¢5,. We further show
that the ¢canonical bases on the tensor space arising from the :quantum group and from
Hecke algebra coincide.

5.1. Generalities of 1canonical bases

In this subsection we review several constructions in the theory of :canonical basis
[8,9].

A bar involution ¥, on U* was given in [8] of the quasi-split type AIII (i.e., m = 0,1);
it was stated therein that a bar involution exists for general :quantum groups, and this
was subsequently established in [4]. In any case, the existence of the bar involution for
U* of type AIIT under the assumption on parameters (4.7)—(4.8) can be checked directly
from the known presentation of U".

Lemma 5.1. There is a unique bar involution on U*, denoted by %,, such that
%(Q) = q_17 wz(Bj) = Bj7 d}z(Ez) = FE;, wz(Fz) = F;, "/)z(KM> = K*pu
forjel,,i €l,,and u € Y".
Note that ¢,(p) =p~Laspe q%. The two bar maps on U* and U are not compatible
under the inclusion map U — U. As a generalization of quasi R-matrix [36, 4.1.2], a no-
tion of quasi K-matrix (also known earlier as intertwiner), denoted by Y, was formulated

in [8]; a proof in greater generality was subsequently given in [5]; also cf. [9].

Proposition 5.2. [8,5,9] There exists a unique family of elements Y, € Ul'f7 such that
To=1land T =3 T, satisfies

Yo (u) Y = Tep(u), Vue U"
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Moreover, T, = 0 unless we7 (1) = p.

Given based U-modules M; (i = 1,2) with bar involution ~, Lusztig [36, 27.3.1] defined
a bar involution on ¢ : My ® My — M; ® My by ¢¥(z1 ® x2) = ©O(Z1 ® Z3), where ©
is the quasi-R matrix. The natural representation V of U admits a bar involution such
that v; = v;, for all i. Inductively, we obtain a bar involution 1 on V&%,

The U-weight of f € Hglmlr is defined to be wt(f) = 2?21 €7(i)- Recall the 1weight
lattice X, from (4.3). Define the U’-weight of f to be

d

th(f) = ng(a) € Xu

i=1

which is the image of wt(f) in X,. Following [9, (5.2)] we define the following partial

d .
order <, on ]Ir|m|r'

g =, [ wt,(g9) = wt,(f) and wt(g) — wt(f) € N[I] N N[weI]. (5.1)

We also write g <, fif g <, fand g # f. A U’-module M equipped with a bar involution
1, is called i-involutive if

1/}1('“2) = 1;[}1(“)1,[}1(2), Yu € Ul,Z c M.

Proposition 5.3. [9] The U-module V®¢ is an +-involutive U’-module with the bar invo-

lution
Y, := Y o). (5.2)
Moreover, for f € ]Ifflm‘r, we have
Y(My) € Mp+ Y Zlg.q ' |M,. (5.3)
g=.f

Proof. The first statement is a special case of [9, Proposition 5.1]. The formula (5.3)
follows by Proposition 5.2 and the definition of the partial order <, in (5.1). O

Below is a very special case of [9, Theorem 5.7] concerning about V®.

Proposition 5.4. (1) The U’-module V®¢ admits a unique scanonical basis {Cylg €

d
]Ir|m|7"}
form:

which is characterized by 2 properties: (i) Cy is v,-invariant; (ii) Cy is of the

Cy € My + Z qilz[qil}Mq’- (5.4)

g'E]Id

rlm|r
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2) The V®? admits a unique dual scanonical basis {C*|g € 1¢ such that (i) C7 is
g g

rlm|r
-invariant; (i) Cy € My + Zg’eﬂf\m\r qZ]q) Mg .

It was then shown that the C, satisfy a stronger property: C, € My +
Zg/<1gq_1z[q_1]M9/'

5.2. 1Canonical basis on V

Recall the notations 15,15, T, from (2.2) and m = 2n.

Lemma 5.5. We have

Yu(va) = T(va) =ve, a €l Ul (5.5)
%(Ua) = T(Ua) = Vg + (p_l - p)U—aa a€ Hj' (56)

Proof. As v, is bar invariant (i.e., ¢-invariant), the equality ,(v,) = Y(v,), for all a,
follows by definition v; = T4 in (5.2).

Let a € 17 Ul,. The equality T (v,) = v, is a direct consequence of (5.3).

It remains to prove the formula (5.6), for a € I (i.e., a € L}y, With a > n 4+ %) By
a simple induction on a, we have

By 1+ Bny1Bu(v,_1) = va +ptu_,. (5.7)

1
a— 2

The element (5.7) is ),-invariant, since the By’s are 1,-invariant by Lemma 5.1, Vp_1
is 1,-invariant by (5.5), and V is s-involutive by Proposition 5.3. On the other hand,

thanks to —a € I, we have v_, is ¢,-invariant by (5.5). Hence, it follows that

1/%(%) = %((Ua +p71'U—a) 7p71rU—a)
= (va +p"0_0) =P

=va+(p = pv_g.
This proves the lemma. 0O

Proposition 5.6. The canonical basis of V is given by

(1) {vg |a €l UL} U{ve +pto_q, acli}, if p=qg%>o;
(2) {Ua | ac Hr|m\r}a lfp =1
(3) {va |a€ely UL} U{vy —pv_g, a €I}, if p= gZ<o.

Proof. It follows by Lemma 5.5 that these elements are v,-invariant, and they are clearly
of the form (5.4). Hence the proposition follows by the characterization of :canonical basis
in Proposition 5.4. 0O
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5.8. Compatible bar involutions and canonical bases

We formulate a compatibility between several bar involutions, which generalizes [8,
Theorem 5.8]; the same proof therein carries over.

Proposition 5.7. There exists a unique anti-linear bar involution 1,: V®¥¢ — V@9 such
that ¢,(My) = My, for f € Hf";lr, and it is compatible with the bar involutions on J#3,

and U?’; that is, for u € U*, v € V¥4 and h € #p,,

¥, (uvh) = %(U)%(v)ﬁ

Remark 5.8. Thanks to the compatibility with the bar map on J¢5, and M = My, the
bar map v, on V®? when restricted to M , for anti-dominant f, coincides with 1, in
Proposition 3.12.

Recall from (2.6) that V¥4 is a direct sum of the quasi-permutation modules My of
3,. The union of the (dual) quasi-parabolic KL bases on the direct summands M
(see Theorem 3.14 and Proposition 3.15) provide us a (dual) KL basis on V&4

Theorem 5.9. The (dual) 1canonical bases on V¢ (viewed as a U'-module) coincides
with the (dual) KL bases on V& = &M (viewed as an H3,-module). More precisely,
we have the identifications of bases in My: Cy.o = Cy and Ct, =05, for [ € Hfl’;‘r
and o € TW.

(See Theorem 3.1/, Proposition 3.15 and Proposition 5./ for notations.)

Proof. We only need to consider the icanonical basis as the dual version follows by
the same argument. Both bases are invariant under the same bar map %, (thanks to
Proposition 5.7) and are of the form Cy € M, + Zg’eﬂf‘ q 'Zlq7'|M, . Now by the

uniqueness in Proposition 5.4 the scanoical basis coincides with the KL basis. The precise

m|r

formula C¢., = C, follows as both sides have the same leading term M;.,. O

Remark 5.10.

(1) In case m = 0 (the case m = 1 is similar), Proposition 5.7 and Theorem 5.9 reduce
to [9, Theorem 5.8, Remark 5.9] and [11, Proposition 3.9, Theorem 3.10]. Here we
choose not to use general weight functions as in [11] to avoid clumsy notations
thought there is no difficulty in setting up in such a generality.

(2) In case r = 0, the ¢Schur duality reduces to Jimbo duality by Remark 4.7. Accord-
ingly Proposition 5.7 and Theorem 5.9 recover the main results in [19].

(3) The icanonical basis on V&? coincides with Lusztig’s canonical basis. By Theo-
rem 5.9 and Example 3.16, parts of the zcanonical basis on V®¢ can be identified
with (parabolic) Kazhdan-Lusztig bases of type A or type B, but not always.
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5.4. Realizing Hy via K-matriz

For quantum symmetric pair (U, U?) of quasi-split type AIII, an U’-module isomor-
phism 7 on any weight U-module M was constructed [8, Theorem 2.18] by twisting
the quasi K-matrix T by a weight function £ : X — C. This construction has been
generalized to general quantum symmetric pairs [5, Corollary 7.7], who referred to it as
a K-matrix and changed the notation to be K. Let us quickly review it.

Let v : T — Q(q) be a function defined by

. 1, itiel,
70 = { Si ifieI.
Define a function £: X — Q(g) by the following recursion:
E(p+ i) = A(i)gloeverta)=tnaimwerlade(u) vue Xiel. (58)
The function £ induces a linear map E on any weight module M =35 pex M,, by letting
&(z) =&(N)z, for z € M.

From now on, we fix the function § with {(e,4,_1) = 1.

Lemma 5.11. Let {(€,,4,_1) = 1. Then we have

1

(—q)mtraTe, a<-n-—=<;

2

1

£lea) =4 (=) 1p —n+g<asndtc;
3

(—q)mtr—ae, azn+ .

Proof. The function ¢ is completely determined by the recursion (5.8) and the fixed
value for (e, ;,_1). Note that {(€q) = §(€a+1 + vy 1). Thus by (5.8), for a < —n — 3,
we have

1 «@ ,WeT (X —(€q+1,0 —wWeT(x
§lea) = A+ F)g ot T e d VO S T e ) = —ge(eas):

The remaining cases of the recursion can be similarly made explicit. O

Proposition 5.12. [8, Theorem 2.18] [5, Corollary 7.7] For any finite dimensional U-
module M and any £ which satisfies the recursion in (5.8), the element K = Y¢T,, ' T, 1
defines an U*-module isomorphism:

K:M— M, zHTogoTJ.quzol(z).
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We compute the action of I on the natural U-module V.

Lemma 5.13. The U*-isomorphism K on V acts as (—p)Id on the submodule V_ and as
p1ld on V; & V,.

Proof. First one computes that the actions of T, and T, on V are given by

To (va) = (@)™ ™ " 3u_y,  Va € Ly,

1
—q)" " T2y, ifa €l
Lo (00) = {( q)

Va, else.

Hence by a direct computation using these 2 formulas and Lemma 5.11 we have

~ V_gq, acl; Ult;
§oTy, Ty (Vo) = ) (5.9)

P Vg, a€l,.

By Lemma 5.5 we have

’C(’Un+l —p’U,n,l) = _p(vn+l —pl]infl),

2 2 2 2

K(Un,—i-% +pilv—n—%) = pil(vn—i-% +p711}—n—%)'
Again by Lemma 5.5 we have K(v,) = p~tv,, Va € I,. Now the lemma follows. O

The action of the generators H; for #,, for 1 <i < d — 1, on V¥ are realized via

R-matrix [23] (also see [32]). This has the following generalization for the generator H
in %Bd .

Proposition 5.14. The action of HO_1 on V®? in Lemma 2.1 is realized via the K-matrix
as K @ 1d®4-1.

In case m = 0 or 1, Proposition 5.14 is established in [8,11]. The property of a K-
matrix in Proposition 5.12 also provides a conceptual explanation for the commutativity
of Hy and U* acting on V&9,

5.5. 1Schur algebra

We formulate the :Schur algebra arising from 2Schur duality.

Definition 5.15. The Schur algebra S(r|m|r,d) is defined to be
S(r|m|r,d) = End %Bd(V@)d) =y(U").

(The second equality follows by the double centralizer property in Theorem 4.6.)
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Remark 5.16. When r = 0, our «Schur algebra specializes to ¢-Schur algebra of type A
[15]. When m = 0 or 1, our «Schur algebra specializes to the quasi-split «Schur algebra
in [20,8,6,30].

Lemma 5.17. There exists a unique (anti-linear) bar involution = on S(r|m|r,d) such
that

B(Myh) = 8g gb, (p(My))hy  Vh € Hp,, ¢ €1~

rlm|r?

d,—
rlm|r®

for any p € Hom e, , (Mg, My) C S(r|m|r,d), and any f,g € I

Proof. We first check that the map p is well defined. Indeed,

%(/J(Mg'))h = "/)1 (p(Mg')B) = "/’z (p(Mg’B)) = ¢z (p('(/)Z(Mg’h»)'

The last expression above depend on My h (not just k), and so p is well defined. By this
last expression it is also clear that ~ on S(r|m|r,d) is anti-linear and it is an involu-
tion. O

Remark 5.18. The ¢Schur algebras S(r|m, d) are Morita equivalent to (but not isomorphic
to) various versions of (Q, ¢)-Schur (or g-Schur?) algebras studied in [16] and [18]. The
Hp,-module VO is a direct sum of quasi-permutation modules somewhat different
from those considered [16,18], but the results [16,18] can be used to provide a basis for
S(rim, d).

The current work leads to the natural question of establishing a canonical basis for
the 2Schur algebra S(r|m, d) and developing its connection to the scanonical basis on the
modified zquantum group U

6. An inversion formula for quasi-parabolic KL polynomials

In this section we prove an inversion formula for quasi-parabolic KL polynomials,
generalizing [24] and [17]; also cf. [38]. Inspired by the type A works [2] and [12], our
approach is based on the tensor module formulation and uses the :Schur duality.

6.1. Symmetries o, o, and o,
Let (-,-) denote the standard symmetric bilinear form on V®¢ defined by
(Mg, My) = d5.q, Vf,9 € thn‘r' (6.1)
We recall several symmetries of U; cf. [36].
Lemma 6.1. (1) There is an anti-involution g of U such that, for i e I, p €Y,

o(E;)) = ¢ 'FK;, oF;)=q 'EK ", oK, =K, (6.2)
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(2) There is an anti-involution o of U such that, fori € I, u €Y,
O'(Ei> ZE,L O'(Fi) :Fz U(KH) :K*M' (63)
The bilinear form (-,-) on V¢ defined by (6.1) satisfies (cf. [36])

(uz,y) = (z, o(u)y), (6.4)

for all z,y € V¥4 and u € U.
Following [10, §3.6.2], we consider an anti-linear anti-involution o, of U such that

o, =00T01. (6.5)
Note the (anti-)involutions o, 7, and ¥ commute with each other.
Lemma 6.2. The maps o, and g are coalgebra morphisms, that is,

(0, ® 0))A(u) = Aoy (u),

7

(0® 0)A(u) = A(o(u)), forallu e U.

Proof. It is straightforward to check on generators u € U that

(09 @ o) A(u) = Alop(u)),
(r@7)Au) = AT (u).

Hence these 2 identities hold for all u € U since ot and 7 are (anti-)involutions on U.
The lemma now follows from by definition of o, = g7 in (6.5) and these identities.

The (well known) statement that g is a coalgebra morphism (cf. [12]) can also be
checked on the generators of U directly. O

By the proof of [10, Proposition 3.13], o, defined in (6.5) preserves the subalgebra U*
of U. Note that 1, and o, commute on U”.

Lemma 6.3. [10, Proposition 3.13] We have an anti-linear anti-involution o, of U* by
restriction and a Q(g)-linear anti-involution o, of U* given by

Oy =¢1002- (66)
6.2. Quasi R-matrixz ©"

Recall the quasi K-matrix T from Proposition 5.2. As in [8, (3.1)], we define the quasi
R-matrix © associated to the quantum symmetric pair (U, U?) by
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o'=AMO(r '®1).
We also define

AU — U U,

~x (6.7)
A(u) = ('(/)z ® Tﬁ)A(%(U)), Vu € U,

The fundamental properties of ©* in Proposition 6.4 (1)-(2) below were established in
[8, Propositions 3.2, 3.5] and generalized in [26, Propositions 3.9-3.10]. The uniqueness
below can be found in the proof of [8, Propositions 3.7], and in general can be derived
from a variant of the interwining property given by [26, (3.28)].

Proposition 6.4. (cf. [8,26])

(1) We have ©" = N O}, where © € U' @ U} and 6 = 1@ 1.

(2) O satisfies that A(u)©* = O*A(u).
Moreover, an element ©* of the form (1) satisfying the intertwining property (2) is unique.

The following new property of ©* is actually valid for a general quantum symmetric
pair as in [10]. It will play a role in the proof of Theorem 6.7 below.

Lemma 6.5. We have (o, ® 07)(0*) = ©°.

Proof. Denote ©' = (o, ® 07)(©"), which is well defined thanks to Lemma 6.3 and
Proposition 6.4(1).

Applying the anti-involution o, ® o7 to the identity A(u)©* = ©*A(u) (see Proposi-
tion 6.4), we obtain

0" (0, ® o1)A(u) = (0, ® o7)A(u) O,
which can be rewritten as
0" (¥, ®¥)(0] ® 0))A(u) = (0] ® o)) A (u)) 6.
Applying Lemma 6.2 to the above identity, we obtain
0" (1, ® Y)A(0)(u)) = Ao}, (u)) 6.
Setting x = o], (u) = ¥,0,(u), the above identity can be read in the notation of (6.7) as

v

0" A(z) = Az) O,
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that is, O satisfies the intertwining property in Proposition 6.4(2). Clearly, O also
satisfies Proposition 6.4(1). It follows by the uniqueness (see Proposition 6.4) that ©* =
o' O

6.3. A bilinear form (-, -)
We introduce an anti-linear map

D: V&, yod (6.8)
D(M;) = M_y, for f €14

rlm|r:

We define a new bilinear form (-,-) on V®¢ in terms of the standard one (-,-) in (6.1) by
letting

(@,y) = (z, Doh(y)), Y,y € VL (6.9)

The following lemma will also be used in the proof of Theorem 6.7.
Lemma 6.6. For all z € V®? and u € U, we have D(uzr) = o(o!(u))D(z).
Proof. The formula in case of d = 1 can be verified directly on u being generators and
x = v,. The formula in general follows by induction on d by noting by Lemma 6.2 that
o and o] are coalgebra morphisms. 0O
Theorem 6.7. The bilinear form (-,-) on V¥4 given in (6.9) is symmetric.
Proof. For d = 1, by definition (6.9) and using the formulas ,(v,) in Lemma 5.5, we
compute that (v, v_,) = 1, for all a € I; (v,,v,) = 1, for all a € I]; and otherwise
(va, vp) = 0. Therefore, (-,-) is symmetric on V.

We proceed by induction on d. Given f,g € Hglmlr’ write f/ = (f(1),---, f(d —
1)), f" = (f(d)) and similarly for ¢, ¢". Hence My = My @ My». We use ~ to denote ¢

and ~* to denote 1, below. The bar map %, on a tensor product U-module such as V®¢
can be defined inductively via ©* as (cf. [8, (3.17), Remark 3.14])

(M) = ©' (M ® Myr). (6.10)
Denote ©" =Y d’ ® a” with o’ € U*,a” € U. Then we have
(My, My) = (Mp @ My, DO (V" & W) (6.11)

=3 (My, DN, ) (Mo, P(a"N,))
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By Lemma 6.6 and the adjunction formula (6.4), we have

(M, DD, ) = My, 00l(a) DO, )
= (it My, DOV, )
— (ol )My, My),

which, thanks to the symmetry of (-,-) on V®4~1 by the inductive assumption and
Proposition 5.7, is equal to

(M, DN, )) = (M 0l(a)Mpr) = (My, Dothol(@) (A7), (6:12)
Similarly, we have
(Mf//, B(CLNMg//)) = (Mg//, Po O'T(a/,)(Mf//)) . (613)

The formula (6.13) on V can be verified directly by definitions for a” being generators
of U. (Such a formula is valid in general on V®9; cf. [12, Proposition 3.3] and its proof.)
Plugging (6.12)—(6.13) into (6.11), we obtain

(Mg, My) = (M, Do wzoxa')(M—f/)) (Mg, Do or(a")(Myr))
= (My & My, DY (h0l(a') @ o7(a")) (M & M) )
= (M,, D0, ® m)(@Z)(M—,# ® M—m),
which, by Lemma 6.5 and (6.10), can be rewritten as
(Mg, My) = (Mgv D@l(M—f’l ®m))
= (Mgv Doy (Myr @ Mf”)) = (Mg, My).
This completes the proof of the theorem. O

6.4. An inversion formula

By Proposition 5.4 (also see Theorem 5.9), we can write

Co= > lygla)M,, (6.14)

yeld

rlm|r

forl, 4(q) € Z[g']; these polynomials I, ,(g) are called (quasi-parabolic) KL polynomials.
Note Iy g =1, and [, = 0 unless y =, g.
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Similarly, we have

Co= > I, (M, (6.15)

yeld

rlm|r

for I3 /(q) € Z|q]; these polynomials I = are called (quasi-parabolic) dual KL polynomials.
Note I; , =1, and [}, , = 0 unless y < g.

Theorem 6.8. We have (Cy,C*,) = 0g4., for g,h € f-Wj.

Proof. Since C*,, is 9,-invariant, by (6.15) we have

Co= D lyg@M, C= Y 1", (g (M) (6.16)

UE]I r|lm|r —'lje]I r|lm|r

Similarly, since Cy is ,-invariant, we have

Co= > Iy w@M_y, Co= > lulqg (M) (6.17)

yEHT‘m‘ yeﬂr\mh

By definition of (-,-) we have

<Mya7f}z(M—y’)> = (MyaMy’) = 5y7y“

Therefore, by (6.16) and (6.17) we obtain
(Cg C7, Zlyg “yen(@™!) = dgn (mod ¢ Z[g ™)),

=D 1y (@lyg(a™") =6gn  (mod ¢Z[gq))-

By Theorem 6.7, (C,,C*,) = (C*,,Cy), and so the above two congruence identities
imply that (Cy,C*,) = dgpn. O

We obtain the following inversion formula for quasi-parabolic KL polynomials as a
reformulation of Theorem 6.8; this generalizes [24,17].

Corollary 6.9. For all g, h € 1¢ we have

rlm|r?

Z ly,g(q) iy,fh(q_l) = 0g,h-

yE]I

“|m|r
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Remark 6.10. The bilinear form (-,-) defined by (6.9) still makes sense for a U-module
VO™ @ V@ as studied in [8]. Theorem 6.7 and a version of Corollary 6.9 remain valid
in such a generality, and it provides an inversion formula for the super Kazhdan-Lusztig
polynomials of osp type [8]. This generalizes the results in super type A in [12].
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