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har, we establish bar involutions and canonical (i.e., quasi-
parabolic KL) bases on quasi-permutation modules over the 
type B Hecke algebra, where the bases are parameterized by 
cosets of (possibly non-parabolic) reflection subgroups of the 
Weyl group of type B. We formulate an ıSchur duality be-
tween an ıquantum group of type AIII (allowing black nodes 
in its Satake diagram) and a Hecke algebra of type B act-
ing on a tensor space, providing a common generalization of 
Jimbo-Schur duality and Bao-Wang’s quasi-split ıSchur dual-
ity. The quasi-parabolic KL bases on quasi-permutation Hecke 
modules are shown to match with the ıcanonical basis on 
the tensor space. An inversion formula for quasi-parabolic KL 
polynomials is established via the ıSchur duality.
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1. Introduction

1.1. Type B Kazhdan-Lusztig, expanded

Let W = Wd be the Weyl group of type Bd generated by the simple reflections 
s0, s1, . . . , sd−1, which contains the symmetric group Sd naturally as a subgroup. Let 
HBd

be its associated Hecke algebra generated by H0, H1, . . . , Hd−1 in 2 parameters 
q, p, which contains the Hecke algebra HSd

as a subalgebra. (In the introduction, we 
shall assume that p is an integer power of q; a reader can take p = q.)

Consider reflection subgroups of Wd of the form

Wf = Wm1 × . . .×Wmk
× Smk+1 × . . .× Sml

, (1.1)

where m1 + . . . + ml = d, k ≤ l and all mi are positive. Clearly, Wf is a parabolic 
subgroup of Wd if and only if k ≤ 1. For k ≤ 1, there exists a right HBd

-module Mf , the 
induced module from the trivial module of the subalgebra HWf

, parameterized by the 
set fW of right minimal length representatives of Wf . The celebrated Kazhdan-Lusztig 
(KL) basis on the regular representation of HBd

(see [24] for p = q, and [37] for p ∈ qZ) 
admits a parabolic generalization in terms of Mf (see Deodhar [14]); that is, Mf admits 
a bar involution and a distinguished bar-invariant basis, known as the parabolic KL 
basis.

Our first main result is to extend the above classical works of Kazhdan, Lusztig and 
Deodhar to construct canonical bases (also called quasi-parabolic KL bases) of type 
B associated to arbitrary reflection subgroups Wf of the form (1.1). By definition, our 
modules Mf depend only on the reflection subgroup Wf of Wd, and each Mf comes with 
a standard basis {Mf ·σ}, where σ runs over the set fW of minimal length representatives 
of right cosets of Wf in Wd. We denote by < the Chevalley-Bruhat order on fW .

Theorem A (Proposition 3.12, Theorem 3.14). (1) There exists an anti-linear bar invo-
lution ψı on Mf such that ψı(Mf ) = Mf , which is compatible with the bar operator on 
HBd

, i.e., ψı(xh) = ψı(x)h̄, for all x ∈ Mf , h ∈ HBd
.

(2) The module Mf admits a canonical basis {Cσ|σ ∈ fW} such that Cσ is bar 
invariant and Cσ ∈ Mf ·σ +

∑
w∈fW,w<σ q

−1Z[q−1]Mf ·w.

The module Mf admits a dual canonical basis {C∗
σ|σ ∈ fW} such that C∗

σ is bar 
invariant and C∗

σ ∈ Mf ·σ +
∑

w∈fW,w<σ qZ[q]Mf ·w; see Proposition 3.15.
Theorem A is totally unexpected when Wf is not parabolic, given the fundamental 

importance of Kazhdan-Lusztig bases and how well they have been studied from var-
ious viewpoints since 1970’s. We are led to the formulation of this result from a new 
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ıSchur duality and the corresponding ıcanonical bases, which we shall explain below 
momentarily.

As Wf may not be parabolic, the Hecke algebra H (Wf ) is not a subalgebra of HBd
in 

any natural manner, and hence Mf is not an induced module from an H (Wf )-module 
in general. Accordingly, it is more difficult to establish a key property (see Theorem 3.6) 
concerning the action of the simple reflections si on the poset fW , generalizing the 
parabolic case in [13,14]. This leads to explicit formulas (see Proposition 3.8) for the 
actions of the generators Hi of HBd

on the standard basis of Mf parametrized by 
the minimal length coset representatives for Wf\W ; remarkably, these formulas look 
identical to those for Wf parabolic. The self-contained proof of Theorem A (which is 
independent of ıSchur duality below) will occupy Section 3.

The canonical bases in Theorem A include parabolic KL bases of type A (besides 
those of type B) as special cases. For example, consider the non-parabolic subgroup 
Wf = W1 × . . . ×W1 (generated by the d sign reflections). In this case, fW = Sd, and 
the canonical basis of Mf in Theorem A is identified with the KL basis of HSd

. See 
Example 3.16(2) where an arbitrary parabolic KL basis of type A arises as a canonical 
basis of type B.

1.2. ıSchur duality

Let V be the natural representation of the Drinfeld-Jimbo quantum group U =
Uq(sl2r+m). Let (U, Uı) be the quantum symmetric pair of type AIII formulated by 
G. Letzter [27,28], where Uı is a coideal subalgebra of U whose q �→ 1 limit is the en-
veloping algebra of sl(r + m) ⊕ gl(r); we shall refer to Uı as an ıquantum group. When 
V is viewed as a representation of Uı, its standard basis {vi|i ∈ Ir|m|r} is naturally 
bicolored (where the m indices in the middle are colored as •, while the remaining 2r
indices are colored as ◦). When m = 0 or 1, Uı is quasi-split, and on the other extreme 
when r = 0, we have Uı = U.

We endow the tensor space V⊗d with a (right) HBd
-module structure. The aforemen-

tioned HBd
-modules Mf arise as direct summands of the tensor module V⊗d of HBd

, 
and are called quasi-permutation modules. Each Mf is spanned by a standard basis Mg

where g runs over a Wd-orbit. (We have chosen to parametrize Mf by “anti-dominant 
weights” f .)

Our second main result is the following.

Theorem B (Theorem 4.6). The actions of Uı and HBd
on V⊗d commute with each 

other, and form double centralizers.

The ıquantum group Uı comes with parameters [28], and for our purpose, the param-
eters are fixed once for all by the double centralizer property in Theorem B.

Note that in the extreme case when r = 0 and Uı = U, we (somewhat surprisingly) 
claim to have an action on V⊗d by HBd

, not by HSd
which one is familiar with. The 
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puzzle is resolved when we note that the action of the generator H0 of HBd
reduces to 

p · Id, and we recover Jimbo duality [23] (q-Schur duality of type A) in disguise in this 
extreme case. On the other hand, when m = 0 or 1, (U, Uı) is quasi-split, and we recover 
the (quasi-split) ıSchur duality due to [8] for p = q (and generalized to p = 1 in [1] and 
to general p in [11]). The action of H0 in general is a suitable mixture of the actions in 
the 2 special cases.

In the setting of Jimbo duality, the generators of Hecke algebra HSd
were realized via 

the R-matrix [23]. In the quasi-split ıSchur duality, the action of the additional generator 
H0 of HBd

was realized via the K-matrix by Bao and the second author [8, Theorems 
2.18, 5.4] (this is the first construction of a K-matrix built on the notion of an intertwiner 
or quasi K-matrix therein); see also [11]. We show that the action of H0 in the setting of 
Theorem B is again realized by a K-matrix, which has been available in greater generality 
in Balagovic-Kolb [5]. This can be viewed as a distinguished example that the K-matrix 
provides solutions to the reflection equation, a property of the K-matrix in general as 
established in [5].

1.3. Compatible canonical bases

Generalizing Lusztig’s approach on canonical basis in [34–36], Bao and the second 
author [8,9] have developed a theory of ıcanonical basis for ıquantum groups arising from 
quantum symmetric pairs. We showed that any based module M of a quantum group 
of finite type (cf. [36, Chapter 27]) when viewed as a module over an ıquantum group 
with suitable parameters can be endowed with a new bar map ψı and a distinguished 
ψı-invariant basis (called ıcanonical basis); this construction in particular applies to the 
quantum symmetric pair (U, Uı) of type AIII, and M = V⊗d, as in the setting of 
Theorem B. Denote by {Cg | g ∈ Idr|m|r} and {C∗

g | g ∈ Idr|m|r} the ıcanonical and dual 
ıcanonical basis on V⊗d.

Theorem C (Proposition 5.7, Theorem 5.9). (1) There exists a bar involution on V⊗d

which is compatible with the bar involutions on Uı and HBd
.

(2) The (dual) ıcanonical basis on V⊗d viewed as a Uı-module coincide with the 
(dual) quasi-parabolic KL basis on V⊗d viewed as an HBd

-module (see Theorem A.

In the extreme case when r = 0 and Uı = U (i.e., in the setting of [23]), Theorem C
recovers the main result of I. Frenkel, Khovanov and Kirillov [19]. In the special case 
when m = 0 or 1, it reduces to the (quasi-split) ıSchur duality in [8] (as well as the 
generalizations in [1,11]). In the general case (for arbitrary r and m), the ıcanonical 
basis elements in V⊗d parameterized by all black nodes • (respectively, by all white 
nodes ◦) can be identified with parabolic KL of type A (respectively, B), but there are 
other ıcanonical basis elements of mixed colors without such identifications.



Y. Shen, W. Wang / Advances in Mathematics 427 (2023) 109131 5
1.4. An inversion formula

An inversion formula for KL polynomials originated in [24] and was subsequently 
generalized to the parabolic setting by Douglass [17]; also see [38] for an exposition. 
In type A, the inversion formula can be reformulated and reproved using a symmetric 
bilinear form on the tensor product U-module V⊗d; see Brundan [2] and Cao-Lam [12]. 
We generalize the approach in [12] via the ıSchur duality by formulating a bilinear form 
〈·, ·〉 on V⊗d as a Uı-module.

Theorem D (Theorems 6.7–6.8). (1) The bilinear form 〈·, ·〉 on V⊗d is symmetric.
(2) The ıcanonical basis and dual ıcanonical basis on V⊗d are dual with respect to 

〈·, ·〉, i.e., 〈Cg, C∗
−h〉 = δg,h, for g, h ∈ f ·Wd.

Theorem D can be reformulated as a duality between (dual) quasi-parabolic KL poly-
nomials; see Corollary 6.9. It can be extended easily to a useful duality between KL 
polynomials of super type BCD introduced in [8,1]; see Remark 6.10. The proof of The-
orem D(1) uses some old and new properties of the quasi R-matrix Θı introduced in [8]
(and generalized by Kolb [26]) and an anti-involution σi on Uı in [10].

1.5. Related works

Different constructions of Hecke algebra modules Mf appeared in earlier works of 
Dipper-James-Mathas [16] and Du-Scott [18], independently. To construct q-Schur alge-
bras with desired homological (such as quasi-hereditary) property, these authors were led 
to consider generalized q-permutation (i.e., quasi-permutation) modules of Hecke algebra 
of type B associated to cosets Wf\Wd, with Wf as in (1.1). In their approaches, such 
a module is defined to be a right ideal of HBd

generated by a single generator, say xλ. 
The elements xλ constructed via Jucy-Murphy elements are not bar invariant in general 
(in contrast to the bar-invariance of the generator Mf of Mf in our construction); see 
Remark 2.3.

It is natural for us to formulate the q-Schur algebras S(r|m|r, d) = End HBd
(V⊗d), 

which now depend on 3 integers r, m, d; these are close cousins of the (Q, q)-Schur (or 
q-Schur2) algebras in [16,18], which depend on 2 integers. These algebras include various 
q-Schur algebras in [15,20,6,30] as special cases by setting r = 0 or m = 0, 1. The basis 
theorem established in [16,18] on HomHBd

(Mf , Mf ′) provides us a basis for S(r|m|r, d). 
There is also a generalization of q-Schur algebras in a different direction which is valid 
for Hecke algebras of all finite types in [31].

1.6. Further directions

Let us give brief comments on several directions in which one can extend this work. 
We hope to return to some of these topics elsewhere.
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We plan to explore the Hecke modules and quasi-parabolic KL bases associated to 
reflection subgroups of Weyl groups and Coxeter groups in greater generalities. Reflec-
tion subgroups of Weyl groups are abundant, and affine Weyl groups offer exciting new 
possibilities. For now we are aware that similar constructions make sense in some cases 
beyond type B though the level of generalities remains to be clarified.

Further ıSchur dualities in connection to ıcanonical bases can be formulated in the 
setting of quantum symmetric pairs of classical (super) finite or affine types; this will be 
developed elsewhere.

There exists a bar involution on the q-Schur algebra S(r|m|r, d) induced from the bar 
involutions on quasi-permutation modules Mf . It will be interesting to develop a theory 
of canonical basis on S(r|m|r, d) and study its relation to the ıcanonical basis on the 
modified ıquantum group (compare [7,6,29,31]).

The Kazhdan-Lusztig bases (as well as canonical bases arising from Jimbo-Schur du-
ality and quasi-split ıSchur duality) afford geometric interpretations in terms of flag 
varieties [25,7,21,6,29]. It will be of great importance if one finds a geometric setting 
for the quasi-parabolic KL bases (as well as for the ıSchur duality), and this might well 
stimulate a construction of new ıquiver varieties.

1.7. Organization

This paper is organized as follows. The action of the Hecke algebra HBd
on the tensor 

space V⊗d is formulated in Section 2. We develop in Section 3 properties for the minimal 
length representatives of Wf in the Weyl group Wd. We then construct the bar involution 
and canonical basis on the module Mf , proving Theorem A.

In Section 4, we recall the ıquantum group Uı and set up the ıSchur duality between 
Uı and HBd

acting on V⊗d; see Theorem B. In Section 5, the bar involutions on Uı, 
V⊗d, and HBd

are shown to be compatible. We then show that the ıcanonical basis 
on V⊗d as a Uı-module coincides with the canonical basis on it as an HBd

-module, 
proving Theorem C. In Section 6, we establish Theorem D on an inversion formula for 
quasi-parabolic KL polynomials.

Acknowledgment. We thank George Lusztig for insightful comments and suggestions, 
and thank Li Luo for helpful remarks. YS is partially supported by a Graduate School 
of Arts and Sciences (GSAS) fellowship at University of Virginia, and WW is partially 
supported by the NSF grant DMS-2001351.

2. Modules over Hecke algebra of type B

In this section we introduce the Hecke algebra HBd
of type B and its action on a 

tensor space. This leads to quasi-permutation modules of HBd
.
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2.1. Weyl group and Hecke algebra of type B

The Weyl group W = Wd of type Bd is generated by si, for 0 ≤ i ≤ d − 1, subject to 
the Coxeter relations: s2

i = 1, (sisi+1)3 = 1, (s0s1)4 = 1, and (sisj)2 = 1 (|i − j| > 1). 
The symmetric group Sd is a subgroup of Wd generated by si, for 1 ≤ i ≤ d − 1. Denote 
by N the set of non-negative integers. The length function l : Wd → N is defined such 
that l(σ) = k if σ has a reduced expression σ = si1 · · · sik .

For a real number x ∈ R and m ∈ N, we denote [x, x + m] = {x, x + 1, . . . , x + m}. 
For a ∈ Z≥1, we denote by

Ia =
[
1 − a

2 ,
a− 1

2

]
.

For r, m ∈ N (not both zero), we introduce a new notation for I2r+m to indicate a fixed 
set partition:

Ir|m|r := I2r+m, Ir|m|r = I−◦ ∪ I• ∪ I+
◦ (2.1)

where the subsets

I+
◦ =

[
m + 1

2 , r + m− 1
2

]
. I• =

[
1 −m

2 ,
m− 1

2

]
, I−◦ = −I+

◦ , (2.2)

have cardinalities r, m, r, respectively.
We view f ∈ Idr|m|r as a map f : {1, . . . , d} → Ir|m|r, and identify f = (f(1), . . . , f(d)), 

with f(i) ∈ Ir|m|r. We define a right action of the Weyl group Wd on Idr|m|r such that, 
for f ∈ Idr|m|r and 0 ≤ j ≤ d − 1,

fsj = f · sj =

⎧⎪⎪⎨⎪⎪⎩
(· · · , f(j + 1), f(j), · · · ), if j > 0;
(−f(1), f(2), · · · , f(d)), if j = 0, f(1) ∈ I−◦ ∪ I+

◦ ;
(f(1), f(2), · · · , f(d)), if j = 0, f(1) ∈ I•.

(2.3)

The only nontrivial relation (s0s1)4 = 1 can be verified by case-by-case inspection de-
pending on whether or not f(1), f(2) ∈ I•. We sometimes write

fσ = f · σ = (f(σ(1)), · · · , f(σ(d))),

where it is understood that

f(σ(i)) =

⎧⎪⎪⎨⎪⎪⎩
f(σ(i)), if σ(i) > 0;
f(−σ(i)), if σ(i) < 0, f(−σ(i)) ∈ I•;
−f(−σ(i)), if σ(i) < 0, f(−σ(i)) ∈ I− ∪ I+.
◦ ◦
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Let p, q be two indeterminates. We denote qi = q for 1 ≤ i ≤ d − 1 and q0 = p. 
The Iwahori-Hecke algebra of type B, denoted by HBd

, is a Q(p, q)-algebra generated 
by H0, H1, · · · , Hd−1, subject to the following relations:

(Hi − qi)(Hi + q−1
i ) = 0, for i ≥ 0;

HiHi+1Hi = Hi+1HiHi+1, for i ≥ 1;

HiHj = HjHi, for |i− j| > 1;

H0H1H0H1 = H1H0H1H0.

The subalgebra generated by Hi, for 1 ≤ i ≤ d − 1, can be identified with Hecke algebra 
HSd

associated to the symmetric group Sd. If σ ∈ Wd has a reduced expression σ =
si1 · · · sik , we denote Hσ = Hi1 · · ·Hik . It is well known that {Hσ | σ ∈ Wd} form a basis 
for HBd

, and {Hσ | σ ∈ Sd} form a basis for HSd
.

2.2. A tensor module of HBd

Consider the Q(p, q)-vector space

V =
⊕

a∈Ir|m|r

Q(p, q)va. (2.4)

Given f = (f(1), . . . , f(d)) ∈ Idr|m|r, we denote

Mf = vf(1) ⊗ vf(2) ⊗ . . .⊗ vf(d).

We shall call f a weight and {Mf | f ∈ Idr|m|r} the standard basis for V⊗d.
In cases |I•| = 0 or 1 (i.e., m = 0 or 1), the following lemma reduces to [8, (6.8)] or 

[11, (4.4)] in different notations.

Lemma 2.1. There is a right action of the Hecke algebra HBd
on V⊗d as follows:

Mf ·Hi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mf ·si + (q − q−1)Mf , if f(i) < f(i + 1), i > 0;

Mf ·si , if f(i) > f(i + 1), i > 0;

qMf , if f(i) = f(i + 1), i > 0;

Mf ·si + (p− p−1)Mf , if f(1) ∈ I+
◦ , i = 0;

Mf ·si , if f(1) ∈ I−◦ , i = 0,

pMf , if f(1) ∈ I•, i = 0.

Proof. It is a well known result of Jimbo [23] that the first 3 formulas above for Hi with 
i > 0 define a right action of Hecke algebra HSd

.
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It is clear that (H0 − p)(H0 + p−1) = 0 and H0Hi = HiH0, for i ≥ 2.
Hence, it remains to verify the braid relation H0H1H0H1 = H1H0H1H0. To that end, 

we only need to consider the case d = 2 and verify the braid relation when acting on 
vi ⊗ vj .

If i, j ∈ I•, then H0 acts on the span of vi ⊗ vj and vj ⊗ vi as p · Id, and so the braid 
relation H0H1H0H1 = H1H0H1H0 trivially holds.

Assume now that at most one of i, j lies in I•. If we formally regard this possible index 
in I• as 0, then we are basically reduced to the setting of the action of Hecke algebra HBd

[8, (6.8)] or [11, (4.4)] (except a different partial ordering on Idr|m|r was used therein, and 
q, p here correspond to q−1, p−1 therein). In any case, the braid relation can be verified 
directly case-by-case, and we provide some details below.

For i < j ∈ I−◦ , we have

(vi ⊗ vj)H0H1H0H1 = v−i ⊗ v−j + (q − q−1)v−j ⊗ v−i

= (vi ⊗ vj)H1H0H1H0.

For i ∈ I−◦ , j ∈ I•, we have

(vi ⊗ vj)H0H1H0H1 = pv−i ⊗ vj + p(q − q−1)vj ⊗ v−i

= (vi ⊗ vj)H1H0H1H0.

For i ∈ I−◦ , j ∈ I+
◦ such that −i > j, we have

(vi ⊗ vj)H0H1H0H1

= v−i ⊗ v−j + (q − q−1)v−j ⊗ v−i + (p− p−1)v−i ⊗ vj + (p− p−1)(q − q−1)vj ⊗ v−i

= (vi ⊗ vj)H1H0H1H0.

The remaining cases are similar and skipped. �
2.3. Quasi-permutation modules

Recall Idr|m|r from (2.1). A weight f ∈ Idr|m|r is called anti-dominant if

m− 1
2 ≥ f(1) ≥ f(2) ≥ · · · ≥ f(d). (2.5)

Note that f(j) ∈ I−◦ ∪ I•, for 1 ≤ j ≤ d, if f is anti-dominant. We denote

Id,−r|m|r = {f ∈ Idr|m|r | f is anti-dominant}.

We can decompose V⊗d into a direct sum of cyclic submodules generated by Mf , for 
anti-dominant weights f , as follows:
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V⊗d =
⊕

f∈Id,−r|m|r

Mf , where Mf = MfHBd
. (2.6)

Denote by Of the orbit of f under the action of Wd on Idr|m|r. The following is immediate 
from the formulas for the action of HBd

in Lemma 2.1.

Lemma 2.2. The right HBd
-module Mf admits a Q(q)-basis {Mg | g ∈ Of}. (It will be 

called the standard basis.)

By (2.5), we can suppose that f ∈ Id,−r|m|r is of the form

f = (a1, . . . , a1︸ ︷︷ ︸
m1

, . . . , ak, . . . , ak︸ ︷︷ ︸
mk

, ak+1, . . . , ak+1︸ ︷︷ ︸
mk+1

, . . . , al, . . . , al︸ ︷︷ ︸
ml

), (2.7)

where a1 > . . . > ak > ak+1 > . . . > al, {a1, . . . , ak} ⊂ I•, {ak+1, . . . , al} ⊂ I−◦ , and 
m1 + . . . + ml = d. The stabilizer subgroup of f in Wd is

Wf = Wm1 × . . .×Wmk
× Smk+1 × . . .× Sml

. (2.8)

Note the stabilizer subgroup Wf is not a parabolic subgroup of Wd when 2 or more of 
the integers m1, . . . , mk are positive. (This phenomenon does not occur in the setting of 
[8,11].) We shall call the summand Mf in (2.6) quasi-permutation modules. Clearly, for 
f, f ′ ∈ Id,−r|m|r, we have

Mf
∼= Mf ′ , if Wf = Wf ′ .

If Wf is not parabolic, Mf is in general not an induced module as those considered in 
parabolic Kazhdan-Lusztig theory [14]; see [38,32].

Remark 2.3. The quasi-permutation modules have appeared earlier in different formula-
tions in [16] and [18] independently. In our setting it is straightforward to write down 
the Hecke action and bases for the quasi-permutation modules Mf starting from V⊗d, 
but it takes some nontrivial efforts to achieve this in [16,18]. In their approaches, the 
q-permutation modules are cyclic submodules of the right regular representation of HBd

with generators constructed by Jucys-Murphy elements. The quasi-permutation modules 
here are isomorphic to those [16,18] integrally; this follows by comparing the formulas 
in Lemma 2.1 and (2.6) with those in [16, Lemmas 3.9, 3.11].

3. Canonical bases on quasi-permutation modules

In this section, the minimal length representatives of the reflection subgroup Wf of 
Wd are studied. We construct a bar involution on the quasi-permutation modules Mf

which are compatible with the bar involution on HBd
. Then we construct a canonical 

basis on Mf .
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3.1. Basic properties of Wd

There is a natural left action of the Weyl group Wd on the set

[±d] := {−d, . . . ,−2,−1, 1, 2, . . . , d},

such that

σ(−i) = −σ(i), ∀σ ∈ Wd, i ∈ [±d].

In one line notation we write

σ = [σ(1), . . . , σ(d)].

Let f ∈ Id,−r|m|r. The stabilizer of f in the symmetric group Sd is always a parabolic 
subgroup generated by some subset J(f) ⊂ {s1, . . . , sd−1}. We continue the notation 
(2.7) for f ∈ Id,−r|m|r. Denote

d• = m1 + . . . + mk, d◦ = d− d•. (3.1)

That is, among f(j), for 1 ≤ j ≤ d, the first d• of them belong to I•. Denote

t1 = s0, ti = si−1ti−1si−1, for 1 ≤ i ≤ d. (3.2)

Then ti is the swap (sign change) of i and −i while fixing j ∈ [±d] with j �= ±i.

Lemma 3.1. Let f ∈ Id,−r|m|r. Then the stabilizer Wf in Wd is generated by

Jf := {ti | 1 ≤ i ≤ d•} ∪ J(f).

Proof. Recall f from (2.7). The lemma follows since elements in Wf are compositions of 
permutations in Sd that fix f and sign changes that fix each aj , 1 ≤ j ≤ k. �

For σ ∈ Wd, the type B inversion number invB(σ) is defined to be (cf. [3])

invB(σ) = inv(σ) + nB(σ), (3.3)

where

inv(σ) = #{(i, j) | 1 ≤ i < j ≤ d, σ(i) > σ(j)}; (3.4)

nB(σ) = −
∑

{1≤j≤d|σ(j)<0}
σ(j). (3.5)

For σ ∈ Sd, invB(σ) = inv(σ) coincides with the inversion number of Sd.

Lemma 3.2. [3, Proposition 8.1.1] For any σ ∈ Wd, we have l(σ) = invB(σ).
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3.2. Minimal length representatives

Let f ∈ Id,−r|m|r. Recall the stabilizer subgroup Wf (2.8) of Wd is a (not-necessarily 
parabolic) reflection subgroup in general.

Lemma 3.3. [33, Lemma 1.9] [18, Theorem 2.2.5] Every right coset of Wf in the Weyl 
group Wd has a unique minimal length representative.

Denote by fW the set of minimal length right coset representatives for Wf in Wd, for 
f ∈ Id,−r|m|r. We shall establish a basic property for fW .

Lemma 3.4. Let 1 ≤ i ≤ d and σ ∈ fW . If |σ(i)| ≤ d•, then σ(i) > 0.

Proof. We prove by contradiction. Suppose this were not true, then there exists 1 ≤ i• ≤
d such that σ(i•) < 0 and u• = |σ(i•)| ≤ d•. By Lemma 3.1 we have tu• ∈ Wf and thus 
tu•σ ∈ Wfσ. Now by (3.5) we have nB(tu•σ) = nB(σ) − u•. On the other hand, since 
there are at most u•−1 indices less than u•, we have inv(tu•σ) ≤ inv(σ) +u•−1. Hence 
by the above 2 identities, (3.3) and Lemma 3.2, we have

l(tu•σ) = inv(tu•σ) + nB(tu•σ)

≤ inv(σ) + nB(σ) − 1 = l(σ) − 1,

which is a contradiction to the minimal length property of σ. �
Example 3.5. If Wf is non-parabolic, the equality l(ww′) = l(w) + l(w′) may fail for 
w ∈ Wf and w′ ∈ fW . For example, take Wf = 〈s0, s1s0s1〉 ⊂ WB2 and s1 is the 
minimal length representative of Wfs1. Note (s1s0s1)s1 = s1s0, but l(s1s0s1) + l(s1) =
4 �= 2 = l(s1s0).

The example above indicates [14, Lemma 2.1(i)-(ii)] may fail for non-parabolic reflec-
tion subgroups. The next theorem, which is a generalization of [14, Lemma 2.1(iii)] to 
reflection subgroups, is more difficult to establish. It will play a key role in constructing 
the bar involution and canonical bases for quasi-permutation modules.

Theorem 3.6. Let σ ∈ fW , and 0 ≤ i ≤ d − 1. Then exactly one of the following 
possibilities occurs:

(i) l(σsi) < l(σ). In this case, σsi ∈ fW ;
(ii) l(σsi) > l(σ) and σsi ∈ fW ;
(iii) l(σsi) > l(σ) and σsi /∈ fW , for i �= 0. In this case, σsi = s′σ, for some s′ ∈ J(f);
(iii0) l(σs0) > l(σ) and σs0 /∈ fW . In this case, σs0 = tσ, for some t ∈ Jf\J(f).
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(More precisely, in case (iii), we have f(σ(i)) = f(σ(i + 1)) and s′ = (|σ(i)|, |σ(i + 1)|); 
in case (iii0), σ(1) > 0 and t = tσ(1).)

Proof. We shall compare σ ∈ fW with σsi. Our argument below uses the action of Wd

on V⊗d crucially. We separate the proof into 2 cases depending on whether or not i = 0.

(1) Assume i = 0. We separate into 3 subcases (i0)-(iii0) below by the range of fσ(1).

(i0) fσ(1) ∈ I+
◦ ⇒ Case (i) for i = 0.

In this case, we have σ(1) < 0 since f(σ(1)) = fσ(1) ∈ I+
◦ while f(j) /∈ I+

◦ (for 
1 ≤ j ≤ d) thanks to f being anti-dominant.

Claim 1. l(σs0) = l(σ) − 1.
Indeed, by Lemma 3.2 it suffices to show that invB(σs0) < invB(σ). Note that 

σs0(j) = σ(j), for 2 ≤ j ≤ d, and σs0(1) > 0 > σ(1). By (3.5) we have nB(σs0) =
nB(σ) +σ(1). On the other hand, we have inv(σs0) ≤ inv(σ) −σ(1) −1 since there are at 
most (−σ(1) − 1) indices smaller than −σ(1). Hence by (3.3), invB(σs0) ≤ invB(σ) − 1, 
and Claim 1 follows.

It remains to verify that σs0 ∈ fW . If this were not true, there exists τ ∈ Wfσs0 such 
that l(τ) < l(σs0) = l(σ) −1. Hence l(τs0) ≤ l(τ) +1 < l(σ); this is a contradiction since 
τs0 ∈ Wfσ and σ is a minimal length representative of Wfσ.

(ii0) fσ(1) ∈ I−◦ ⇒ Case (ii) for i = 0.
In this case, fσs0(1) ∈ I+

◦ , and σ(1) > 0, thanks to f being anti-dominant. Arguing as 
in (i0) for Claim 1, we have l(σs0) = l(σ) +1. It remains to verify that σs0 ∈ fW . If this 
were not true, we choose the minimal length representative τ ∈ Wfσs0. Since τ ∈ fW

and fτ (1) ∈ I+
◦ , by (i0) we know that l(τs0) = l(τ) − 1 < l(σs0) − 1 = l(σ); this is a 

contradiction since τs0 ∈ Wfσ and σ is a minimal length representative of Wfσ.

(iii0) fσ(1) ∈ I• ⇒ Case (iii0).
Thanks to fσ(1) ∈ I•, we obtain fσ = fσs0 , that is, σs0 ∈ Wfσ. Then l(σs0) >

l(σ) and σs0 /∈ fW , since σ is a minimal length representative in Wfσ. Also, we have 
σs0σ

−1 = t|σ(1)|, and thus, σs0 = t|σ(1)|σ; cf. (3.2). Since fσ(1) ∈ I•, we have |σ(1)| ≤ d•; 
cf. (3.1). By Lemma 3.4, we know that σ(1) > 0. Hence, tσ(1) ∈ Jf\J(f).

(2) Assume i > 0. We compare σ ∈ fW with σsi. By using inversion numbers, we see 
that l(σsi) > l(σ) if and only if fσ(i) ≥ fσ(i + 1). We separate into 3 subcases (i)-(iii) 
below depending on whether fσ(i) − fσ(i + 1) is negative, positive or zero.

(i) (fσ(i) < fσ(i + 1)) ⇒ Case (i) for i > 0.
In this case, l(σsi) < l(σ). It remains to verify that σsi ∈ fW . If this were not true, 

then there exists τ ∈ Wfσsi such that l(τ) < l(σsi) = l(σ) − 1. Thus l(τsi) ≤ l(τ) + 1 <
l(σ); this is a contradiction since σ has the minimal length and τsi ∈ Wfσ.

(ii) (fσ(i) > fσ(i + 1)) ⇒ Case (ii) for i > 0.
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In this case, l(σsi) > l(σ). Let us verify σsi ∈ fW . If this were not true, choose 
the minimal length representative τ ∈ Wfσsi. Since fτ (i) < fτ (i + 1), by (i) we have 
l(τsi) = l(τ) − 1 < l(σsi) − 1 ≤ l(σ), which is again a contradiction.

(iii) (fσ(i) = fσ(i + 1)) ⇒ Case (iii).
In this case, fσsi = fσ, and σsi ∈ Wfσ. Without loss of generality we assume that 

|σ(i)| < |σ(i +1)|. It follows from the anti-dominance of f that σ(i) and σ(i +1) have the 
same sign if fσ(i) = fσ(i + 1) ∈ I−◦ ∪ I+

◦ ; On the other hand, if fσ(i) = fσ(i + 1) ∈ I•, 
then σ(i) and σ(i + 1) have the same + sign by Lemma 3.4.

Therefore, we have f(|σ(i)|) = f(|σ(i + 1)|), and thus,

σsiσ
−1 = (|σ(i)|, |σ(i)| + 1), (3.6)

that is,

σsi = s|σ(i)|s|σ(i)|+1 · · · s|σ(i+1)|−1 · · · s|σ(i)|+1s|σ(i)|σ ∈ Wfσ. (3.7)

Since f is anti-dominant (cf. (2.5)), we must have

{s|σ(i)|, s|σ(i)|+1, · · · , s|σ(i+1)|−1} ⊂ J(f).

Claim. We have |σ(i + 1)| = |σ(i)| + 1.
Let us prove the Claim. Let σ = s′1s

′
2 · · · s′k be a reduced expression. Assume to the 

contrary that |σ(i +1)| > |σ(i)| +1. Then we can reduce the length of the RHS of (3.7) by 
deleting a pair of simple reflections, at least one of which is some s′i from σ; otherwise, 
it would contradict the identity (3.6). Now the element in the RHS of (3.7) after the 
deletion contradicts the minimality of σ as a representative of Wfσ. Thus the Claim 
holds.

Hence, setting s′ = (|σ(i)|, |σ(i + 1)|) ∈ J(f), we have s′σ = σsi. �
Remark 3.7. The conditions in Theorem 3.6 have their counterparts in terms of fσ listed 
in the proof above, and they are useful in later applications. For instance, for σ ∈ fW

and i > 0, we have σsi ∈ fW if and only if fσ(i) �= fσ(i + 1).

3.3. The Hecke modules Mf revisited

Recall the action of Hecke algebra on V⊗d from Lemma 2.1 and hence on Mf from 
(2.6). Applying Theorem 3.6 and its proof, we shall obtain explicit descriptions for the 
action of the Hecke generators Hi on the standard basis {Mf ·σ | σ ∈ fW} for Mf , which 
is independent of the tensor module V⊗d. Clearly, the length inequalities in Theorem 3.6
can be replaced by the Chevalley-Bruhat order ≤ on Wd.
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Proposition 3.8. Let f ∈ Id,−r|m|r, σ ∈ fW , and 0 ≤ i ≤ d − 1. Then

Mf ·σHi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mf ·σsi + (qi − q−1

i )Mf ·σ, if σsi < σ;
Mf ·σsi , if σsi > σ and σsi ∈ fW ;
qMf ·σ, if i �= 0, σsi > σ and σsi /∈ fW ;
pMf ·σ, if i = 0, σs0 > σ and σs0 /∈ fW.

Proof. In this proof we label the four cases in the proposition as (i), (ii), (iii), (iii0), as 
they exactly correspond to the 4 cases in the same labellings in Theorem 3.6.

We first assume i �= 0. Then the cases (i), (ii), (iii) here match with the cases (i), (ii), 
(iii) in the proof of Theorem 3.6 in the same order, which correspond to the 3 conditions 
fσ(i) < fσ(i + 1), fσ(i) > fσ(i + 1), and fσ(i) = fσ(i + 1) therein, respectively. Hence, 
the formulas in the proposition (with i �= 0) follow by the first 3 formulas in Lemma 2.1.

Now we assume i = 0. Then the cases (i), (ii), (iii0) here match with the cases (i0), 
(ii0), (iii0) in the proof of Theorem 3.6 in the same order, which correspond to the 3 
conditions fσ(1) ∈ I+

◦ , fσ(1) ∈ I−◦ , and fσ(1) ∈ I• therein, respectively. Hence the 
formulas in the proposition (with i = 0) follow by the last 3 formulas in Lemma 2.1. �
Remark 3.9. The formulas in Proposition 3.8 miraculously take the same form as in the 
parabolic case [14,38]. However, in contrast to [14,38] it seems difficult to verify directly 
these formulas define a representation of HBd

in such a general reflection subgroup 
setting. The proof of Theorem 3.6 provides us a crucial identification as posets between 
the orbit f ·Wd (used in Lemma 2.1) and the set of minimal length representatives fW
for Wf\Wd (used in Proposition 3.8).

3.4. The bar involution on Mf

We prepare some lemmas toward the construction of the bar involution on Mf .

Lemma 3.10. For f ∈ Id,−r|m|r and σ ∈ fW , we have MfHσ = Mf ·σ.

Proof. We use induction on l(σ). The case for l(σ) = 0 is trivially true. If l(σ) = 1, then 
σ = si for some i. If i = 0, we have f(1) ∈ I−◦ , as otherwise we would have s0 ∈ Wf

(contradicting σ = s0 ∈ fW ). Hence, MfH0 = Mf ·s0 , by Lemma 2.1. If σ = si for i > 0, 
we must have f(i) > f(i + 1). Thus MfHi = Mf ·si , again by Lemma 2.1.

Suppose l(σ) > 0. We have a reduced expression σ = si1 · · · sik . Denote σ′ =
si1 · · · sik−1 , and note l(σ′) < l(σ). By Theorem 3.6(i), σ′ ∈ fW . By the inductive 
assumption, MfHσ′ = Mf ·σ′ . Now if sik = s0, then this only happens when fσ′(1) ∈ I−◦ , 
by case (i0) in the proof of Theorem 3.6. Thus, we have MfHσ = MfHσ′H0 =
Mf ·σ′H0 = Mf ·σ, by Lemma 2.1. If sik = sj for some j ≥ 1, similarly we must 
have fσ′(j) > fσ′(j + 1), by case (i) in the proof of Theorem 3.6. Thus we have 
MfHσ = MfHσ′Hj = Mf ·σ′Hj = Mf ·σ, again by Lemma 2.1. �
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Lemma 3.11. Suppose that σ ∈ fW satisfies that 1 �= |σ(1)| ≤ d•. Then σ(1) > 1, and σ
must have a reduced expression which starts with sσ(1)−1sσ(1)−2 · · · s2s1.

Proof. Lemma 3.4 is applicable by the assumption, and so we must have σ(1) > 0, and 
then σ(1) > 1, thanks to the assumption 1 �= |σ(1)|.

Set u = σ(1). We prove the lemma by induction on the length of σ. If l(σ) = 1, then 
σ = s1 (thanks to σ(1) > 1), and the lemma holds trivially.

Now suppose that l(σ) > 1. There exists 1 ≤ a ≤ d such that σ(a) = u − 1 by 
Lemma 3.4. Then we have su−1σ(1) = u − 1, su−1σ(a) = u and thus

l(su−1σ) = invB(su−1σ) = invB(σ) − 1 = l(σ) − 1.

By the inductive assumption, su−1σ has a reduced expression which starts with 
sσ(1)−2 · · · s2s1. Therefore, σ has a reduced expression which starts with sσ(1)−1sσ(1)−2 · · ·
s2s1. �

The bar involution on HBd
, denoted by −, is the Q-algebra automorphism such that

H̄i = H−1
i , q̄ = q−1, p̄ = p−1, ∀0 ≤ i ≤ d− 1.

(We shall refer to a map such that qm �→ q−m and pm �→ p−m anti-linear.)
Let f ∈ Id,−r|m|r. We define a Q-linear map ψı on the module Mf (which has a basis 

Mf ·σ, for σ ∈ fW ) by

ψı(q) = q−1, ψı(p) = p−1, ψı(Mf ·σ) = Mf H̄σ, ∀σ ∈ fW. (3.8)

Now we can establish the existence of bar involution on Mf , generalizing the parabolic 
case [14,38].

Proposition 3.12. Let f ∈ Id,−r|m|r. The map ψı on Mf in (3.8) is compatible with the bar 
operator on the Hecke algebra, i.e.,

ψı(xh) = ψı(x)h, for all x ∈ Mf , h ∈ HBd
. (3.9)

In particular, ψ2
ı = Id. (We shall call ψı the bar involution on Mf .)

Proof. Note ψı(Mf ) = Mf , by definition (3.8).
A simple induction on l(w) reduces the proof of (3.9), for h = Hw with w ∈ Wd, to 

proving the following formula:

ψı(xHi) = ψı(x)H̄i, for all x ∈ Mf , 0 ≤ i ≤ d− 1. (3.10)

It suffices to verify (3.10) for the basis elements of Mf , x = MfHσ (that is, x = Mf ·σ
by Lemma 3.10), for σ ∈ fW . We proceed case-by-case following Theorem 3.6.
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(i) Assume l(σsi) < l(σ). In this case σsi ∈ fW , and thus

ψı(MfHσHi) = ψı(MfHσsi + (qi − q−1
i )MfHσ)

= Mf H̄σsi + (q−1
i − qi)Mf H̄σ

= Mf (Hσsi + (qi − q−1
i )Hσ) = Mf H̄σH̄i = ψı(MfHσ)H̄i.

(ii) If l(σsi) > l(σ) and σsi ∈ fW , then

ψı(MfHσHi) = ψı(MfHσsi) = ψı(Mf )H̄σsi = ψı(Mf )H̄σH̄i = ψı(MfHσ)H̄i.

(iii) Assume l(σsi) > l(σ) and σsi /∈ fW , for i > 0. In this case, we have σsi = s′σ

for some s′ ∈ J(f), and MfHs′ = qMf by Lemma 2.1. Thus, we have

ψı(MfHσHi) = ψı(MfHσsi) = ψı(MfHs′σ) = ψı(qMfHσ) = q−1Mf H̄σ.

On the other hand, we have

ψı(MfHσ)H̄i = Mf H̄σH̄i = Mf H̄σsi = Mf H̄s′σ = MfH
−1
s′ H̄σ = q−1Mf H̄σ.

Hence (3.10) holds for x = MfHσ in this case.
(iii0) Assume i = 0, l(σs0) > l(σ), and σs0 /∈ fW . By Theorem 3.6(iii0) and its proof 

in case (iii0), we have fσ(1) ∈ I• and thus |σ(1)| ≤ d•. By Lemma 3.4, σ(1) > 0. We 
separate into 2 subcases (iii0-1) and (iii0-2).

Subcase (iii0-1): σ(1) = 1. Then f(1) ∈ I• and s0σ = σs0, by Theorem 3.6(iii0) and 
its proof in case (iii0). Thus we have

ψı(MfHσH0) =ψı(MfHσs0) = ψı(MfHs0σ) = ψı(MfH0Hσ) = p−1Mf H̄σ.

On the other hand, ψı(MfHσ)H̄0 = Mf H̄σs0 = Mf H̄s0σ = p−1Mf H̄σ. So ψı(MfHσH0)
= ψı(MfHσ)H̄0, proving (3.10) for x = MfHσ in this case.

Subcase (iii0-2): σ(1) > 1. Set u = σ(1) ≤ d•. We have σs0 = tuσ by Theo-
rem 3.6(iii0); see (3.2) for tu. By Lemma 3.11, σ has a reduced expression of the form

σ = su−1su−2 · · · s2s1si1 · · · sim .

Hence, tuσ = su−1 · · · s1s0si1 · · · sim , also a reduced expression for length reason. Thus

ψı(MfHσH0) = ψı(MfHσs0) = ψı(MfHtuσ)

= ψı(MfHsu−1···s1H0Hsi1 ···sim )

(u ≤ d•,Lemma 2.1 for H0) ⇒ = p−1ψı(MfHsu−1···s1Hsi1 ···sim )

= p−1Mf H̄σ.
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On the other hand, we have

ψı(MfHσ)H̄0 = Mf H̄σH̄0 = Mf H̄σs0 = Mf H̄tuσ

= MfHsu−1···s1H̄0Hsi1 ···sim

(u ≤ d•,Lemma 2.1 for H0) ⇒ = p−1MfHsu−1···s1 Hsi1 ···sim

= p−1Mf H̄σ.

Therefore, the proof of (3.10) is completed, for all x = MfHσ.
Finally, we have ψ2

ı (MfHσ) = Mf
¯̄Hσ = MfHσ, i.e., ψ2

ı = Id. �
Remark 3.13. Recalling (2.7) and (3.1), we define reflection subgroups Sf := Sm1 × . . .×
Sml

, S•
f := Sd• × Smk+1 × . . .× Sml

, and W •
f := Wd• × Smk+1 × . . .× Sml

of Wd. Note 

that Sf

par.
⊂ S•

f ⊂ W •
f

par.
⊂ Wd, where par. stands for parabolic. Let us outline a 3-step 

induction process of realizing (an isomorphic copy of) the HBd
-module Mf : first induce 

the 1-dimensional “trivial” module from HSf
to HS•

f
, then view the HS•

f
-module as an 

HW•
f
-module by imposing the action of H0 as p · Id, and finally induce once more from 

HW•
f

to HBd
. The bar involution on Mf can also be understood this way. We will not use 

this remark in this paper. This 3-step process can be formalized and its generalization 
to other types will be treated in detail elsewhere.

3.5. Canonical basis on Mf

For the formulation of canonical basis on Mf , we shall specialize to a one-parameter 
setting. Our assumption below that p ∈ qZ below amounts to choosing distinguished 
weight functions à la Lusztig [37]. (The general weight functions therein work here too, 
but it would require additional notations to set up properly.)

Suppose p ∈ qZ. Then HBd
becomes a Q(q)-algebra, and Mf becomes a Q(q)-vector 

space and an HBd
-module. The bar involution ψı on Mf remain valid. With Proposi-

tion 3.8 and Proposition 3.12 at our disposal, the proof of the next theorem follows by 
standard arguments.

Theorem 3.14. Suppose p ∈ qZ, and let f ∈ Id,−r|m|r. Then for each σ ∈ fW , there exists 
a unique element Cσ ∈ Mf such that

(i) ψı(Cσ) = Cσ;
(ii) Cσ ∈ Mf ·σ +

∑
w∈fW

q−1Z[q−1]Mf ·w.

Moreover, we have

(ii′) Cσ ∈ Mf ·σ +
∑

f

q−1Z[q−1]Mf ·w.

w∈ W,w<σ
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The set {Cσ|σ ∈ fW} is called a canonical basis or quasi-parabolic KL basis for Mf .

Proof. Let σ ∈ fW . Assume p ∈ qZ>0 , and set bi = Hi + q−1
i , which is bar invariant. 

Proposition 3.8 can be rewritten as

Mf ·σbi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mf ·σsi + qiMf ·σ, if σsi < σ;
Mf ·σsi + q−1

i Mf ·σ, if σsi > σ and σsi ∈ fW ;
(q + q−1)Mf ·σ, if σsi > σ and σsi /∈ fW, i �= 0;
(p + p−1)Mf ·σ, if σs0 > σ and σs0 /∈ fW.

(3.11)

Now the existence of Cσ satisfying Conditions (i) and (ii′) can be proved using (3.11) by 
an induction on the Chevalley-Bruhat order for σ, following exactly the same argument 
as for [38, Theorem 3.1].

(For p ∈ qZ<0 , one reruns the argument therein by using a variant of (3.11) with 
b0 = H0 − p; for p = 1, one uses b0 = H0 instead.)

The uniqueness of the basis {Cσ} follows from the following (cf. [38]).
Claim. Suppose z =

∑
w∈fW hwMf ·w with all hw ∈ q−1Z[q−1] satisfies ψı(z) = z. 

Then z = 0.
Indeed, if z �= 0, we can choose w′ with maximal length such that hw′ �= 0. Then 

it follows by the existence of {Cσ} satisfying (i) and (ii′) above and z = ψı(z) that 
hw′ = h̄w′ , which forces hw′ = 0 (since hw′ ∈ q−1Z[q−1]), which is a contradiction. The 
Claim follows. �

Set b′i = Hi − qi. Proposition 3.8, for f ∈ Id,−r|m|r, σ ∈ fW , can be rewritten as

Mf ·σb
′
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mf ·σsi − q−1

i Mf ·σ, if σsi < σ;
Mf ·σsi − qiMf ·σ, if σsi > σ and σsi ∈ fW ;
0, if σsi > σ and σsi /∈ fW, i �= 0;
0, if σs0 > σ and σs0 /∈ fW.

(3.12)

The following counterpart of Theorem 3.14 (with q−1 replaced by q) can be proved in 
the same way using (3.12).

Proposition 3.15. Suppose p ∈ qZ. There exists a basis {C∗
σ|σ ∈ fW} (called dual 

canonical basis) for Mf which is characterized by ψı(C∗
σ) = C∗

σ and C∗
σ ∈ Mf ·σ +∑

w∈fW qZ[q]Mf ·w. Moreover, we have C∗
σ ∈ Mf ·σ +

∑
w∈fW
w<σ

qZ[q]Mf ·w.

The set {C∗
σ|σ ∈ fW} is called a dual canonical or dual quasi-parabolic KL basis for 

Mf .
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Example 3.16.

(1) If f ∈ Id,−r|m|r satisfies f(i) ∈ I−◦ , for all 1 ≤ i ≤ d (or more generally, if k ≤ 1 in 

(2.7)–(2.8)), then the subgroup fW is parabolic. In this case, the canonical basis of 
Mf is exactly the parabolic Kazhdan-Lusztig basis of type B [24,14].

(2) If f ∈ Id,−r|m|r satisfies f(i) ∈ I•, for all 1 ≤ i ≤ d, then the action of H0 is given by 
p · Id on Mf , and the HBd

-module Mf essentially reduces to an HSd
-module. In this 

case, Wf = Bm1 × . . .× Bmk
with m1 + . . . + mk = d, the canonical basis of Mf is 

identified with the parabolic KL basis of HSd
associated to (Sm1 × . . . × Smk

)\Sd. 
(This follows by the uniqueness of a canonical basis, since Mf as an HBd

-module 
and as an HSd

-module has the same standard basis and the same bar map.)

Example 3.17. For non-parabolic Wf , the canonical basis on Mf may not be a (usual) 
KL basis. Consider V⊗3 for V of dimension 5 with standard basis {vi}−2≤i≤2, where 
I• = {−1, 0, 1} (i.e., m = 3, r = 1 and d = 3). We consider f = (0, −1, −2) and 
Wf = B1 ×B1 = 〈s0, s101〉; here and below we shall write sisjsk · · · = sijk···. Then

fW = {e, s1, s2, s12, s21, s121, s210, s2101, s1210, s12101, s21012, s121012}.

We have the following 12 canonical basis elements in Mf (as linear combinations of the 
12 standard basis elements Mf ·σ, for σ ∈ fW ):

Cf = Mf , Cf ·s1 = Mf ·s1 + q−1Mf , Cf ·s2 = Mf ·s2 + q−1Mf ,

Cf ·s12 = Mf ·s12 + q−1Mf ·s1 + q−1Mf ·s2 + q−2Mf ,

Cf ·s21 = Mf ·s21 + q−1Mf ·s2 + q−1Mf ·s1 + q−2Mf ,

Cf ·s121 = Mf ·s121 + q−1Mf ·s12 + q−1Mf ·s21 + q−2Mf ·s1 + q−2Mf ·s2 + q−3Mf ,

Cf ·s210 = Mf ·s210 + q−1Mf ·s21 + q−2Mf ·s2 + q−2Mf ·s1 + (q−3 − q−1)Mf ,

Cf ·s2101 = Mf ·s2101 + q−1Mf ·s210 + q−2Mf ·s21

+ (q−3 − q−1)Mf ·s1 + q−3Mf ·s2 + (q−4 − q−2)Mf ,

Cf ·s1210 = Mf ·s1210 + q−1Mf ·s210 + q−1Mf ·s121 + q−2Mf ·s21 + q−2Mf ·s12

+ q−3Mf ·s1 + q−3Mf ·s2 + q−4Mf ,

Cf ·s21012 = Mf ·s21012 + q−1Mf ·s2101 + q−1Mf ·s1210 + q−2Mf ·s210 + q−2Mf ·s121

+ q−3Mf ·s21 + (q−3 − q−1)Mf ·s12 + (q−4 − q−2)Mf ·s1 + q−4Mf ·s2 + q−5Mf ,

Cf ·s12101 = Mf ·s12101 + q−1Mf ·s1210 + q−1Mf ·s2101 + q−2Mf ·s210 + q−2Mf ·s121

+ q−3Mf ·s21 + q−3Mf ·s12 + q−4Mf ·s2 + q−4Mf ·s1 + q−5Mf ,

Cf ·s121012 = Mf ·s121012 + q−1Mf ·s21012 + q−1Mf ·s12101 + q−2Mf ·s2101 + q−2Mf ·s1210



Y. Shen, W. Wang / Advances in Mathematics 427 (2023) 109131 21
+ q−3Mf ·s210 + q−3Mf ·s121 + q−4Mf ·s21 + q−4Mf ·s12

+ q−5Mf ·s2 + q−5Mf ·s1 + q−6Mf .

Note that some polynomials in q−1 above do not have positive coefficients in contrast to 
parabolic KL polynomials. Therefore, we do not expect a straightforward generalization 
of the geometric realization of the KL basis given in [25].

4. ıSchur duality of type AIII

In this section, we formulate a double centralizer property for the actions of Uı and 
HBd

on the tensor space V⊗d.

4.1. Quantum group of type A

Denote the quantum integers and quantum binomial coefficients by, for a ∈ Z, k ∈ N,

[a] = qa − q−a

q − q−1 ,

[
a
k

]
= [a][a− 1] . . . [a− k + 1]

[k]! .

For r, m ∈ N (as in the previous sections), it is convenient to introduce

n = m

2 ∈ 1
2N,

and denote

I := I2r+2n−1 = [1 − n− r, n + r − 1] .

Denote by (aij)i,j∈I the Cartan matrix of type A2r+m−1. For i �= j ∈ I, let Sij(x, y)
denote the noncommutative polynomial in two variables

Sij(x, y) =
1−aij∑
s=0

(−1)s
[
1 − aij

s

]
x1−aij−syxs.

The quantum group U = Uq(sl2r+m) is a Q(q)-algebra with generators Ei, Fi, K
±1
i

(i ∈ I), subject to the standard defining relations including q-Serre relations

Sij(Ei, Ej) = Sij(Fi, Fj) = 0, for i �= j ∈ I,

cf. [36,22]. We define Kμ =
∏

i K
ai
i for μ =

∑
i aii ∈ Y := ZI. As an extension of a bar 

involution on Q(q) such that q = q−1, the bar involution ψ on the algebra U is given by 
ψ(q) = q−1, ψ(Ei) = Ei, ψ(Fi) = Fi, ψ(Kμ) = K−μ.
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A comultiplication Δ on U is given by, for i ∈ I, μ ∈ Y ,

Δ(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, Δ(Fi) = Fi ⊗K−1
i + 1 ⊗ Fi, Δ(Kμ) = Kμ ⊗Kμ. (4.1)

The comultipication here follows [36]; it is consistent with [9] but different from the one 
used [8].

Denote the set of simple roots and the weight lattice for sl2r+m by

Π = {αi = εi− 1
2
− εi+ 1

2
| i ∈ I}, X =

⊕
i∈Ir|m|r

Zεi.

Define the symmetric bilinear form on X, (·, ·) : X ×X → Z, such that (εi, εj) = δij .
We also recall the braid group action Ti = T ′′

i,+1 : U → U and its inverse from [36, 
5.2.1], whose the action on U+ is given as follows: for i �= j ∈ I,

Ti(Ei) = −FiKi, Ti(Ej) =
∑

r+s=−aij

(−1)rq−r
i E

(s)
i EjE

(r)
i ;

T−1
i (Ei) = −K−1

i Fi, T−1
i (Ej) =

∑
r+s=−aij

(−1)rq−r
i E

(r)
i EjE

(s)
i .

(4.2)

For any Weyl group element w, an automorphism Tw of U is defined via a reduced 
expression of w. This applies in particular to w0, the longest element in the Weyl group 
of sl2r+m.

4.2. ıQuantum group of type AIII

Fix

n = m

2 ∈ 1
2N.

We consider the Satake diagram of type AIII with m − 1 = 2n − 1 black nodes and r
pairs of white nodes, together with a diagram involution τ :

◦
−n− r + 1

· · · ◦
−n

•
−n + 1

· · · •
n− 1

◦
n

· · · ◦
n + r − 1

(In case n = 0, the black nodes are dropped; the nodes n and −n are identified and fixed 
by τ .) The involution τ on I sends i �→ τ(i) = −i, for all i, and it induces an involution 
of U, denoted again by τ , by permuting the indices of its generators Ei, Fi, K

±1
i .
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Let

I• = [1 − n, n− 1]

be the set of all black nodes in I so that

I = I• ∪ I◦, where I◦ := I\I•.

Denote by w• the longest element in the Weyl group of the Levi subalgebra associated 
to I•. Following [9], we define

Xı = X
/
{μ + w•τ(μ) | μ ∈ X},

Y ı = {ν − w•τ(ν) | ν ∈ Y }.
(4.3)

We call an element in Xı an ı-weight and Xı the ı-weight lattice.
The ıquantum group of type AIII, denoted by Uı, depends on the parameters ςi ∈

Q(q), for i ∈ I◦, which satisfy the conditions ςi = ς−i, for i ∈ I◦\{±n} [28] (also cf. [4,10]). 
More precisely, Uı is the Q(q)-subalgebra of U generated by Kμ (μ ∈ Y ı), Ei (i ∈ I•), 
and

Bi = Fi + ςiTw•(Eτ(i))K−1
i , for i ∈ I◦. (4.4)

(In case n = 0, B0 will be allowed to take a more general form B0 = F0 + ς0E0K
−1
0 +

κ0K
−1
0 , for an additional parameter κ0 ∈ Q(q).)

Then (U, Uı) forms a quantum symmetric pair of type AIII [27,28] (cf. [8,5]). The 
algebra Uı satisfies the relations

KμBi = q−(μ,αi)BiKμ, ∀i ∈ I◦,

KμFi = q−(μ,αi)FiKμ, KμEi = q(μ,αi)EiKμ, ∀i ∈ I•, μ ∈ Y ı,

and additional Serre type relations (which we shall not use explicitly in this paper).

4.3. ıSchur duality

In this subsection we will construct an ıSchur duality between type B Hecke al-
gebra with two parameters p, q and Uı. To avoid considering a field extension of 
Q(q), we shall assume p ∈ Q(q). Then HBd

is a Q(q)-algebra. The Q(q)-vector space 
V = ⊕a∈Ir|m|rQ(q)va from (2.4) can be identified with the natural representation of U, 
where

Eiva = δi+1,ava−1, Fiva = δi,ava+1,

Kava = qva, Kava+1 = q−1va+1, Kavb = vb (b �= a, a + 1).
(4.5)
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The tensor product V⊗d is naturally a U-module via the comultiplication Δ. Recall 
V⊗d is a right HBd

-module (and hence a right HSd
-module) from Lemma 2.1.

Proposition 4.1. [23] The actions of U and HSd
on V⊗d commute with each other, and 

their images in End (V⊗d) form double centralizers.

We shall compute explicitly the action of Bi, for i ∈ I◦, on V in the following 2 
lemmas. Recall m = 2n ∈ N.

Lemma 4.2. For a ∈ Ir|m|r and i ∈ I◦ = [1 − n − r, −n] ∪ [n, n + r − 1], we have

Tw•(Eτ(i))(va) =

⎧⎪⎪⎨⎪⎪⎩
E−i(va), |i| > n;

E−n+1E−n+2 · · ·En−1En(va), i = −n;

(−1)m−1q−m+1E−nE−n+1 · · ·En−2En−1(va), i = n.

Proof. For i < −n and i > n, we have Tw•(Eτ(i)) = E−i.
Let i = −n. We choose the following reduced expression of w•:

w• = (s−n+1s−n+2 · · · sn−1)(s−n+1s−n+2 · · · sn−2) · · · (s−n+1s−n+2)(s−n+1).

Thus we compute

Tw•(Eτ(−n))(va) = Ts−n+1 · · ·Tsn−1(En)(va) (4.6)

= Ts−n+1 · · ·Tsn−2(En−1En − q−1EnEn−1)va

= Ts−n+1 · · ·Tsn−2(En−1)En(va) − q−1Ts−n+1 · · ·Tsn−2(EnEn−1)va.

The second term on the RHS (4.6) vanishes since Tw(EnEn−1)va = zTw(EnEn−1vw(a)), 
for some scalar z, and EnEn−1vw(a) = 0 by (4.5), for any w, a. Thus we derive that

Tw•(Eτ(−n))(va) = Ts−n+1 · · ·Tsn−1(En)(va) = Ts−n+1 · · ·Tsn−2(En−1)En(va).

Hence by a simple induction on n we obtain

Tw•(Eτ(−n))(va) = E−n+1E−n+2 · · ·En−1En(va).

Similarly, using another reduced expression

w• = (sn−1sn−2 · · · s−n+1) · · · (sn−1sn−2)(sn−1),

we compute Tw•(Eτ(n))(va) as follows:
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Tw•(Eτ(n))(va) = Tsn−1 · · ·Ts−n+1(E−n)(va)

= Tsn−1 · · ·Ts−n+2(E−n+1E−n − q−1E−nE−n+1)va
= −q−1E−nTsn−1 · · ·Ts−n+2(E−n+1)(va).

Again by induction on n, recalling m = 2n we have

Tw•(Eτ(n))(va) = (−1)m−1q−m+1E−nE−n+1 · · ·En−2En−1(va).

The lemma is proved. �
Lemma 4.2 together with the formula for Bi in (4.4) immediate imply the following.

Lemma 4.3. Let a ∈ Ir|m|r and i ∈ I◦. The action of Bi on V is given by:

B−n(va) =

⎧⎪⎪⎨⎪⎪⎩
v−n+ 1

2
, if a = −n− 1

2 ;
ς−nv−n+ 1

2
, if a = n + 1

2 ;
0, else,

Bi(va) =

⎧⎪⎪⎨⎪⎪⎩
vi+ 1

2
, if a = i− 1

2 ;
ςiv−i− 1

2
, if a = −i + 1

2 ;
0, else,

for |i| > n,

and (recall m = 2n)

Bn(va) =
{
vn+ 1

2
+ (−1)m−1q−mςnv−n− 1

2
, if a = n− 1

2 ;
0, else.

From now on, we shall fix the parameters to be⎧⎪⎪⎨⎪⎪⎩
ςi = 1, if i �= ±n,

ς−n = p, if m = 2n ∈ Z≥1,

ςn = (−1)m−1qmp−1,

(4.7)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ςi = 1, if i �= 0,

ς0 = q−1, if m = 0.

κ0 = p− p−1

q − q−1 .

(4.8)

That is, for m = 0, we take B0 = F0 + q−1E0K
−1
0 + p−p−1

−1 K
−1
0 , following [11].
q−q
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Introduce the Q(q)-subspaces of V :

V− =
⊕
a∈I+◦

Q(q)(va − pv−a), V• =
⊕
a∈I•

Q(q)va,

V+ =
⊕
a∈I+◦

Q(q)(va + p−1v−a).

Lemma 4.4. Assume (4.7)–(4.8). Then V− and V•⊕V+ are Uı-submodules of V . Hence, 
we have a Uı-module decomposition V = (V• ⊕ V+) ⊕ V−.

Proof. Follows by a direct computation using the formulas (4.5) and Lemma 4.3. �
The decomposition of V above is also compatible with the H0-action.

Lemma 4.5. The Hecke generator H0 acts on V− as (−p−1)Id and acts on V• ⊕ V+ as 
p · Id.

Proof. Follows by Lemma 2.1. �
Theorem 4.6. Suppose the parameters satisfy (4.7)–(4.8). Then the actions of Uı and 
HBd

on V⊗d commutes with each other:

Uı Ψ
� V⊗d Φ

� HBd
.

Moreover, Ψ(Uı) and Φ(HBd
) form double centralizers in End (V⊗d).

Proof. As the case for m = 0 was covered in [11], we shall assume m ≥ 1 below.
By the Jimbo duality (see Proposition 4.1), we know that the action of U commutes 

with the action of Hi, for 1 ≤ i ≤ d − 1. Thus, to show the commuting actions of Uı and 
HBd

, it remains to check the commutativity of the actions of H0 and the generators of 
Uı.

To that end, it suffices to consider d = 1 (thanks to the coideal property of Uı and 
the fact that the action of H0 depends solely on the first tensor factor). In this case, the 
commutativity between Uı-action and H0-action on V follows directly from Lemmas 4.4
and 4.5.

The double centralizer property is equivalent to a multiplicity-free decomposition of 
V⊗d as an Uı ⊗ HBd

-module, which reduces by a deformation argument to the q = 1
setting. At the specialization q �→ 1, Uı becomes the enveloping algebra of sl(r + m) ⊕
gl(r), V = (V• ⊕ V+) ⊕ V− becomes the natural representation of sl(r + m) ⊕ gl(r), on 
which s0 ∈ Wd acts as (IdV•⊕V+ , −IdV−). The multiplicity-free decomposition of V⊗d at 
q = 1 can be established by a standard approach where the simples are parameterized by 
ordered pairs of partitions (λ, μ) such that l(λ) ≤ r + m, l(μ) ≤ r and |λ| + |μ| = d. �
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Remark 4.7. Theorem 4.6 is a common generalization of q-Schur dualities of type A and 
B. It specializes to Jimbo duality (Proposition 4.1) when r = 0. (In this case, Uı = U, 
and H0 acts as p · Id and so the action of HBd

reduces to the action of HSd
.)

On the other hand, for m = 0, 1, Theorem 4.6 reduces to [8, Theorems 5.4, 6.27] (for 
p = q), [1, Theorem 3.4] (for p = 1), and [11, Theorems 2.6, 4.4] for general p. The 
conventions in [1,8,11] are consistent with each other, while a different comultiplication 
for U is used in this paper; this has led to a different partial ordering on Idr|m|r and a 
switch of q, p from [1,8,11] to q−1, p−1 for the action of Hecke algebra; cf. Lemma 2.1.

5. ıCanonical basis on the tensor module

In this section, we fix the parameters ςi (i ∈ I◦) as in (4.7)–(4.8) as for Theorem 4.6, 
and further assume that p ∈ qZ. We show that the bar involution on the tensor space 
is compatible with the bar involutions on the algebras Uı and HBd

. We further show 
that the ıcanonical bases on the tensor space arising from the ıquantum group and from 
Hecke algebra coincide.

5.1. Generalities of ıcanonical bases

In this subsection we review several constructions in the theory of ıcanonical basis 
[8,9].

A bar involution ψı on Uı was given in [8] of the quasi-split type AIII (i.e., m = 0, 1); 
it was stated therein that a bar involution exists for general ıquantum groups, and this 
was subsequently established in [4]. In any case, the existence of the bar involution for 
Uı of type AIII under the assumption on parameters (4.7)–(4.8) can be checked directly 
from the known presentation of Uı.

Lemma 5.1. There is a unique bar involution on Uı, denoted by ψı, such that

ψı(q) = q−1, ψı(Bj) = Bj , ψı(Ei) = Ei, ψı(Fi) = Fi, ψı(Kμ) = K−μ,

for j ∈ I◦, i ∈ I•, and μ ∈ Y ı.

Note that ψı(p) = p−1 as p ∈ qZ. The two bar maps on Uı and U are not compatible 
under the inclusion map Uı → U. As a generalization of quasi R-matrix [36, 4.1.2], a no-
tion of quasi K-matrix (also known earlier as intertwiner), denoted by Υ, was formulated 
in [8]; a proof in greater generality was subsequently given in [5]; also cf. [9].

Proposition 5.2. [8,5,9] There exists a unique family of elements Υμ ∈ U+
μ , such that 

Υ0 = 1 and Υ =
∑

μ Υμ satisfies

ψı(u)Υ = Υψ(u), ∀u ∈ Uı.
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Moreover, Υμ = 0 unless w•τ(μ) = μ.

Given based U-modules Mi (i = 1, 2) with bar involution ̄ , Lusztig [36, 27.3.1] defined 
a bar involution on ψ : M1 ⊗ M2 → M1 ⊗ M2 by ψ(x1 ⊗ x2) = Θ(x̄1 ⊗ x̄2), where Θ
is the quasi-R matrix. The natural representation V of U admits a bar involution such 
that v̄i = vi, for all i. Inductively, we obtain a bar involution ψ on V⊗d.

The U-weight of f ∈ Idr|m|r is defined to be wt(f) =
∑d

i=1 εf(i). Recall the ıweight 
lattice Xı from (4.3). Define the Uı-weight of f to be

wtı(f) =
d∑

i=1
ε̄f(a) ∈ Xı,

which is the image of wt(f) in Xı. Following [9, (5.2)] we define the following partial 
order �ı on Idr|m|r:

g �ı f ⇔ wtı(g) = wtı(f) and wt(g) − wt(f) ∈ N[I] ∩N[w•I]. (5.1)

We also write g ≺ı f if g �ı f and g �= f . A Uı-module M equipped with a bar involution 
ψı is called ı-involutive if

ψı(uz) = ψı(u)ψı(z), ∀u ∈ Uı, z ∈ M.

Proposition 5.3. [9] The U-module V⊗d is an ı-involutive Uı-module with the bar invo-
lution

ψı := Υ ◦ ψ. (5.2)

Moreover, for f ∈ Idr|m|r, we have

Υ(Mf ) ∈ Mf +
∑
g≺ıf

Z[q, q−1]Mg. (5.3)

Proof. The first statement is a special case of [9, Proposition 5.1]. The formula (5.3)
follows by Proposition 5.2 and the definition of the partial order �ı in (5.1). �

Below is a very special case of [9, Theorem 5.7] concerning about V⊗d.

Proposition 5.4. (1) The Uı-module V⊗d admits a unique ıcanonical basis {Cg|g ∈
Idr|m|r} which is characterized by 2 properties: (i) Cg is ψı-invariant; (ii) Cg is of the 
form:

Cg ∈ Mg +
∑

g′∈Idr|m|r

q−1Z[q−1]Mg′ . (5.4)
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(2) The V⊗d admits a unique dual ıcanonical basis {C∗
g |g ∈ Idr|m|r} such that (i) C∗

g is 
ψı-invariant; (ii) C∗

g ∈ Mg +
∑

g′∈Idr|m|r
qZ[q]Mg′ .

It was then shown that the Cg satisfy a stronger property: Cg ∈ Mf +∑
g′≺ıg

q−1Z[q−1]Mg′ .

5.2. ıCanonical basis on V

Recall the notations I−◦ , I+
◦ , I• from (2.2) and m = 2n.

Lemma 5.5. We have

ψı(va) = Υ(va) = va, a ∈ I−◦ ∪ I•; (5.5)

ψı(va) = Υ(va) = va + (p−1 − p)v−a, a ∈ I+
◦ . (5.6)

Proof. As va is bar invariant (i.e., ψ-invariant), the equality ψı(va) = Υ(va), for all a, 
follows by definition ψi = Υψ in (5.2).

Let a ∈ I−◦ ∪ I•. The equality Υ(va) = va is a direct consequence of (5.3).
It remains to prove the formula (5.6), for a ∈ I+

◦ (i.e., a ∈ Ir|m|r with a ≥ n + 1
2 ). By 

a simple induction on a, we have

Ba− 1
2
· · ·Bn+1Bn(vn− 1

2
) = va + p−1v−a. (5.7)

The element (5.7) is ψı-invariant, since the Bk’s are ψı-invariant by Lemma 5.1, vn− 1
2

is ψı-invariant by (5.5), and V is ı-involutive by Proposition 5.3. On the other hand, 
thanks to −a ∈ I−◦ , we have v−a is ψı-invariant by (5.5). Hence, it follows that

ψı(va) = ψı

(
(va + p−1v−a) − p−1v−a

)
= (va + p−1v−a) − pv−a

= va + (p−1 − p)v−a.

This proves the lemma. �
Proposition 5.6. The ıcanonical basis of V is given by

(1) {va | a ∈ I−◦ ∪ I•} ∪ {va + p−1v−a, a ∈ I+
◦ }, if p = qZ>0 ;

(2) {va | a ∈ Ir|m|r}, if p = 1;
(3) {va | a ∈ I−◦ ∪ I•} ∪ {va − pv−a, a ∈ I+

◦ }, if p = qZ<0 .

Proof. It follows by Lemma 5.5 that these elements are ψı-invariant, and they are clearly 
of the form (5.4). Hence the proposition follows by the characterization of ıcanonical basis 
in Proposition 5.4. �
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5.3. Compatible bar involutions and canonical bases

We formulate a compatibility between several bar involutions, which generalizes [8, 
Theorem 5.8]; the same proof therein carries over.

Proposition 5.7. There exists a unique anti-linear bar involution ψı : V⊗d → V⊗d such 
that ψı(Mf ) = Mf , for f ∈ Id,−r|m|r, and it is compatible with the bar involutions on HBd

and Uı; that is, for u ∈ Uı, v ∈ V⊗d, and h ∈ HBd
,

ψı(uvh) = ψı(u)ψı(v)h̄.

Remark 5.8. Thanks to the compatibility with the bar map on HBd
and Mf = Mf , the 

bar map ψı on V⊗d when restricted to Mf , for anti-dominant f , coincides with ψı in 
Proposition 3.12.

Recall from (2.6) that V⊗d is a direct sum of the quasi-permutation modules Mf of 
HBd

. The union of the (dual) quasi-parabolic KL bases on the direct summands Mf

(see Theorem 3.14 and Proposition 3.15) provide us a (dual) KL basis on V⊗d.

Theorem 5.9. The (dual) ıcanonical bases on V⊗d (viewed as a Uı-module) coincides 
with the (dual) KL bases on V⊗d = ⊕fMf (viewed as an HBd

-module). More precisely, 
we have the identifications of bases in Mf : Cf ·σ = Cσ and C∗

f ·σ = C∗
σ, for f ∈ Id,−r|m|r

and σ ∈ fW .
(See Theorem 3.14, Proposition 3.15 and Proposition 5.4 for notations.)

Proof. We only need to consider the ıcanonical basis as the dual version follows by 
the same argument. Both bases are invariant under the same bar map ψı (thanks to 
Proposition 5.7) and are of the form Cg ∈ Mg +

∑
g′∈Idr|m|r

q−1Z[q−1]Mg′ . Now by the 

uniqueness in Proposition 5.4 the ıcanoical basis coincides with the KL basis. The precise 
formula Cf ·σ = Cσ follows as both sides have the same leading term Mf ·σ. �
Remark 5.10.

(1) In case m = 0 (the case m = 1 is similar), Proposition 5.7 and Theorem 5.9 reduce 
to [9, Theorem 5.8, Remark 5.9] and [11, Proposition 3.9, Theorem 3.10]. Here we 
choose not to use general weight functions as in [11] to avoid clumsy notations 
thought there is no difficulty in setting up in such a generality.

(2) In case r = 0, the ıSchur duality reduces to Jimbo duality by Remark 4.7. Accord-
ingly Proposition 5.7 and Theorem 5.9 recover the main results in [19].

(3) The ıcanonical basis on V⊗d
• coincides with Lusztig’s canonical basis. By Theo-

rem 5.9 and Example 3.16, parts of the ıcanonical basis on V⊗d can be identified 
with (parabolic) Kazhdan-Lusztig bases of type A or type B, but not always.
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5.4. Realizing H0 via K-matrix

For quantum symmetric pair (U, Uı) of quasi-split type AIII, an Uı-module isomor-
phism T on any weight U-module M was constructed [8, Theorem 2.18] by twisting 
the quasi K-matrix Υ by a weight function ξ : X → C. This construction has been 
generalized to general quantum symmetric pairs [5, Corollary 7.7], who referred to it as 
a K-matrix and changed the notation to be K. Let us quickly review it.

Let γ : I → Q(q) be a function defined by

γ(i) =
{

1, if i ∈ I•

− ςi, if i ∈ I◦.

Define a function ξ : X → Q(q) by the following recursion:

ξ(μ + αi) = γ(i)q(αi,w•τ(αi))−(μ,αi−w•τ(αi))ξ(μ), ∀μ ∈ X, i ∈ I. (5.8)

The function ξ induces a linear map ξ̃ on any weight module M =
∑

μ∈X Mμ by letting

ξ̃(z) = ξ(λ)z, for z ∈ Mλ.

From now on, we fix the function ξ with ξ(εn+r− 1
2
) = 1.

Lemma 5.11. Let ξ(εn+r− 1
2
) = 1. Then we have

ξ(εa) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−q)n+r− 1
2−a, a ≤ −n− 1

2 ;

(−q)m+r−1p−1, −n + 1
2 ≤ a ≤ n + 1

2;

(−q)n+r− 1
2−a, a ≥ n + 3

2 .

Proof. The function ξ is completely determined by the recursion (5.8) and the fixed 
value for ξ(εn+r− 1

2
). Note that ξ(εa) = ξ(εa+1 + αa+ 1

2
). Thus by (5.8), for a ≤ −n − 3

2 , 
we have

ξ(εa) = γ(a + 1
2)q(α

a+1
2
,w•τ(α

a+1
2
))−(εa+1,αa+ 1

2
−w•τ(α

a+ 1
2
))
ξ(εa+1) = −qξ(εa+1).

The remaining cases of the recursion can be similarly made explicit. �
Proposition 5.12. [8, Theorem 2.18] [5, Corollary 7.7] For any finite dimensional U-
module M and any ξ which satisfies the recursion in (5.8), the element K = Υξ̃T−1

w• T
−1
w0

defines an Uı-module isomorphism:

K : M −→ M, z �→ Υ ◦ ξ̃ ◦ T−1
w T−1

w (z).
• 0
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We compute the action of K on the natural U-module V .

Lemma 5.13. The Uı-isomorphism K on V acts as (−p)Id on the submodule V− and as 
p−1Id on V+ ⊕ V•.

Proof. First one computes that the actions of Tw0 and Tw• on V are given by

Tw0(va) = (−q)r+m−a−n− 1
2 v−a, ∀a ∈ Ir|m|r,

Tw•(va) =
{

(−q)m−a−n− 1
2 v−a, if a ∈ I•;

va, else.

Hence by a direct computation using these 2 formulas and Lemma 5.11 we have

ξ̃ ◦ T−1
w• T

−1
w0

(va) =
{
v−a, a ∈ I−◦ ∪ I+

◦ ;

p−1va, a ∈ I•.
(5.9)

By Lemma 5.5 we have

K(vn+ 1
2
− pv−n− 1

2
) = −p(vn+ 1

2
− pv−n− 1

2
),

K(vn+ 1
2

+ p−1v−n− 1
2
) = p−1(vn+ 1

2
+ p−1v−n− 1

2
).

Again by Lemma 5.5 we have K(va) = p−1va, ∀a ∈ I•. Now the lemma follows. �
The action of the generators Hi for HSd

, for 1 ≤ i ≤ d − 1, on V⊗d are realized via 
R-matrix [23] (also see [32]). This has the following generalization for the generator H0
in HBd

.

Proposition 5.14. The action of H−1
0 on V⊗d in Lemma 2.1 is realized via the K-matrix 

as K ⊗ Id⊗d−1.

In case m = 0 or 1, Proposition 5.14 is established in [8,11]. The property of a K-
matrix in Proposition 5.12 also provides a conceptual explanation for the commutativity 
of H0 and Uı acting on V⊗d.

5.5. ıSchur algebra

We formulate the ıSchur algebra arising from ıSchur duality.

Definition 5.15. The ıSchur algebra S(r|m|r, d) is defined to be

S(r|m|r, d) = End HBd
(V⊗d) = Ψ(Uı).

(The second equality follows by the double centralizer property in Theorem 4.6.)
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Remark 5.16. When r = 0, our ıSchur algebra specializes to q-Schur algebra of type A 
[15]. When m = 0 or 1, our ıSchur algebra specializes to the quasi-split ıSchur algebra 
in [20,8,6,30].

Lemma 5.17. There exists a unique (anti-linear) bar involution − on S(r|m|r, d) such 
that

ρ̄(Mg′h) = δg,g′ψı

(
ρ(Mg′)

)
h, ∀h ∈ HBd

, g′ ∈ Id,−r|m|r,

for any ρ ∈ HomHBd
(Mg, Mf ) ⊂ S(r|m|r, d), and any f, g ∈ Id,−r|m|r.

Proof. We first check that the map ρ̄ is well defined. Indeed,

ψı

(
ρ(Mg′)

)
h = ψı

(
ρ(Mg′)h̄

)
= ψı

(
ρ(Mg′ h̄)

)
= ψı

(
ρ(ψı(Mg′h))

)
.

The last expression above depend on Mg′h (not just h), and so ρ̄ is well defined. By this 
last expression it is also clear that − on S(r|m|r, d) is anti-linear and it is an involu-
tion. �
Remark 5.18. The ıSchur algebras S(r|m, d) are Morita equivalent to (but not isomorphic 
to) various versions of (Q, q)-Schur (or q-Schur2) algebras studied in [16] and [18]. The 
HBd

-module V⊗d is a direct sum of quasi-permutation modules somewhat different 
from those considered [16,18], but the results [16,18] can be used to provide a basis for 
S(r|m, d).

The current work leads to the natural question of establishing a canonical basis for 
the ıSchur algebra S(r|m, d) and developing its connection to the ıcanonical basis on the 
modified ıquantum group U̇ı.

6. An inversion formula for quasi-parabolic KL polynomials

In this section we prove an inversion formula for quasi-parabolic KL polynomials, 
generalizing [24] and [17]; also cf. [38]. Inspired by the type A works [2] and [12], our 
approach is based on the tensor module formulation and uses the ıSchur duality.

6.1. Symmetries �, σ′
ı and σı

Let (·, ·) denote the standard symmetric bilinear form on V⊗d defined by

(Mf ,Mg) = δf,g, ∀f, g ∈ Idr|m|r. (6.1)

We recall several symmetries of U; cf. [36].

Lemma 6.1. (1) There is an anti-involution � of U such that, for i ∈ I, μ ∈ Y ,

�(Ei) = q−1FiKi, �(Fi) = q−1EiK
−1
i , �(Kμ) = Kμ. (6.2)
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(2) There is an anti-involution σ of U such that, for i ∈ I, μ ∈ Y ,

σ(Ei) = Ei, σ(Fi) = Fi, σ(Kμ) = K−μ. (6.3)

The bilinear form (·, ·) on V⊗d defined by (6.1) satisfies (cf. [36])

(ux, y) = (x, �(u)y), (6.4)

for all x, y ∈ V⊗d, and u ∈ U.
Following [10, §3.6.2], we consider an anti-linear anti-involution σ′

ı of U such that

σ′
ı = σ ◦ τ ◦ ψ. (6.5)

Note the (anti-)involutions σ, τ , and ψ commute with each other.

Lemma 6.2. The maps σ′
ı and � are coalgebra morphisms, that is,

(σ′
ı ⊗ σ′

ı)Δ(u) = Δ(σ′
ı(u)),

(�⊗ �)Δ(u) = Δ(�(u)), for all u ∈ U.

Proof. It is straightforward to check on generators u ∈ U that

(σψ ⊗ σψ)Δ(u) = Δ(σψ(u)),

(τ ⊗ τ)Δ(u) = Δ(τ(u)).

Hence these 2 identities hold for all u ∈ U since σψ and τ are (anti-)involutions on U. 
The lemma now follows from by definition of σ′

ı = σψτ in (6.5) and these identities.
The (well known) statement that � is a coalgebra morphism (cf. [12]) can also be 

checked on the generators of U directly. �
By the proof of [10, Proposition 3.13], σ′

ı defined in (6.5) preserves the subalgebra Uı

of U. Note that ψı and σ′
ı commute on Uı.

Lemma 6.3. [10, Proposition 3.13] We have an anti-linear anti-involution σ′
ı of Uı by 

restriction and a Q(q)-linear anti-involution σı of Uı given by

σı = ψı ◦ σ′
ı. (6.6)

6.2. Quasi R-matrix Θı

Recall the quasi K-matrix Υ from Proposition 5.2. As in [8, (3.1)], we define the quasi 
R-matrix Θı associated to the quantum symmetric pair (U, Uı) by
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Θı = Δ(Υ)Θ(Υ−1 ⊗ 1).

We also define

Δ :Uı −→ Uı ⊗ U,

Δ(u) = (ψı ⊗ ψ)Δ(ψı(u)), ∀u ∈ Uı.
(6.7)

The fundamental properties of Θı in Proposition 6.4 (1)-(2) below were established in 
[8, Propositions 3.2, 3.5] and generalized in [26, Propositions 3.9-3.10]. The uniqueness 
below can be found in the proof of [8, Propositions 3.7], and in general can be derived 
from a variant of the interwining property given by [26, (3.28)].

Proposition 6.4. (cf. [8,26])

(1) We have Θı =
∑

μ∈NI Θı
μ, where Θı ∈ Uı ⊗ U+

μ and Θı
0 = 1 ⊗ 1.

(2) Θı satisfies that Δ(u)Θı = ΘıΔ(u).

Moreover, an element Θı of the form (1) satisfying the intertwining property (2) is unique.

The following new property of Θı is actually valid for a general quantum symmetric 
pair as in [10]. It will play a role in the proof of Theorem 6.7 below.

Lemma 6.5. We have (σı ⊗ στ)(Θı) = Θı.

Proof. Denote Θ̌ı = (σı ⊗ στ)(Θı), which is well defined thanks to Lemma 6.3 and 
Proposition 6.4(1).

Applying the anti-involution σı ⊗ στ to the identity Δ(u)Θı = ΘıΔ(u) (see Proposi-
tion 6.4), we obtain

Θ̌ı (σı ⊗ στ)Δ(u) = (σı ⊗ στ)Δ(u) Θ̌ı,

which can be rewritten as

Θ̌ı (ψı ⊗ ψ)(σ′
ı ⊗ σ′

ı)Δ(u) = (σ′
ı ⊗ σ′

ı)Δ(ψı(u)) Θ̌ı.

Applying Lemma 6.2 to the above identity, we obtain

Θ̌ı (ψı ⊗ ψ)Δ(σ′
ı(u)) = Δ(σ′

ıψı(u)) Θ̌ı.

Setting x = σ′
ıψı(u) = ψıσ

′
ı(u), the above identity can be read in the notation of (6.7) as

Θ̌ı Δ(x) = Δ(x) Θ̌ı,
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that is, Θ̌ı satisfies the intertwining property in Proposition 6.4(2). Clearly, Θ̌ı also 
satisfies Proposition 6.4(1). It follows by the uniqueness (see Proposition 6.4) that Θ̌ı =
Θı. �
6.3. A bilinear form 〈·, ·〉

We introduce an anti-linear map

Ð : V⊗d −→ V⊗d, (6.8)

Ð(Mf ) = M−f , for f ∈ Idr|m|r.

We define a new bilinear form 〈·, ·〉 on V⊗d in terms of the standard one (·, ·) in (6.1) by 
letting

〈x, y〉 := (x,Ð ◦ ψı(y)), ∀x, y ∈ V⊗d. (6.9)

The following lemma will also be used in the proof of Theorem 6.7.

Lemma 6.6. For all x ∈ V⊗d and u ∈ U, we have Ð(ux) = �(σ′
ı(u))Ð(x).

Proof. The formula in case of d = 1 can be verified directly on u being generators and 
x = va. The formula in general follows by induction on d by noting by Lemma 6.2 that 
� and σ′

ı are coalgebra morphisms. �
Theorem 6.7. The bilinear form 〈·, ·〉 on V⊗d given in (6.9) is symmetric.

Proof. For d = 1, by definition (6.9) and using the formulas ψı(va) in Lemma 5.5, we 
compute that 〈va, v−a〉 = 1, for all a ∈ I; 〈va, va〉 = 1, for all a ∈ I+

◦ ; and otherwise 
〈va, vb〉 = 0. Therefore, 〈·, ·〉 is symmetric on V .

We proceed by induction on d. Given f, g ∈ Idr|m|r, write f ′ = (f(1), · · · , f(d −
1)), f ′′ = (f(d)) and similarly for g′, g′′. Hence Mg = Mg′ ⊗Mg′′ . We use to denote ψ
and ı to denote ψı below. The bar map ψı on a tensor product U-module such as V⊗d

can be defined inductively via Θı as (cf. [8, (3.17), Remark 3.14])

ψı(Mg) = Θı(Mg′
ı ⊗Mg′′). (6.10)

Denote Θı =
∑

a′ ⊗ a′′ with a′ ∈ Uı, a′′ ∈ U. Then we have

〈Mf ,Mg〉 =
(
Mf ′ ⊗Mf ′′ ,Ð(Θı(Mg′

ı ⊗Mg′′))
)

(6.11)

=
∑(

Mf ′ ,Ð(a′Mg′
ı)
) (

Mf ′′ ,Ð(a′′Mg′′)
)
.
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By Lemma 6.6 and the adjunction formula (6.4), we have(
Mf ′ ,Ð(a′Mg′

ı)
)

=
(
Mf ′ , �σ′

ı(a′)Ð(Mg′
ı)
)

=
(
σ′
ı(a′)Mf ′ ,Ð(Mg′

ı)
)

= 〈σ′
ı(a′)Mf ′ ,Mg′〉,

which, thanks to the symmetry of 〈·, ·〉 on V⊗d−1 by the inductive assumption and 
Proposition 5.7, is equal to(

Mf ′ ,Ð(a′Mg′
ı)
)

= 〈Mg′ , σ′
ı(a′)Mf ′〉 =

(
Mg′ ,Ð ◦ ψıσ

′
ı(a′)(Mf ′

ı)
)
. (6.12)

Similarly, we have

(
Mf ′′ ,Ð(a′′Mg′′)

)
=

(
Mg′′ ,Ð ◦ στ(a′′)(Mf ′′)

)
. (6.13)

The formula (6.13) on V can be verified directly by definitions for a′′ being generators 
of U. (Such a formula is valid in general on V⊗d; cf. [12, Proposition 3.3] and its proof.)

Plugging (6.12)–(6.13) into (6.11), we obtain

〈Mf ,Mg〉 =
∑(

Mg′ ,Ð ◦ ψıσ
′
ı(a′)(Mf ′

ı)
)(
Mg′′ ,Ð ◦ στ(a′′)(Mf ′′)

)
=

(
Mg′ ⊗Mg′′ ,Ð

∑
(ψıσ

′
ı(a′) ⊗ στ(a′′))(Mf ′

ı ⊗Mf ′′)
)

=
(
Mg,Ð(σı ⊗ στ)(Θı)(Mf ′

ı ⊗Mf ′′)
)
,

which, by Lemma 6.5 and (6.10), can be rewritten as

〈Mf ,Mg〉 =
(
Mg,ÐΘı(Mf ′

ı ⊗Mf ′′)
)

=
(
Mg,Ðψı(Mf ′ ⊗Mf ′′)

)
= 〈Mg,Mf 〉.

This completes the proof of the theorem. �
6.4. An inversion formula

By Proposition 5.4 (also see Theorem 5.9), we can write

Cg =
∑

y∈Idr|m|r

ly,g(q)My, (6.14)

for ly,g(q) ∈ Z[q−1]; these polynomials ly,g(q) are called (quasi-parabolic) KL polynomials. 
Note lg,g = 1, and ly,g = 0 unless y �ı g.
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Similarly, we have

C∗
g =

∑
y∈Idr|m|r

l∗y,g(q)My, (6.15)

for l∗y,g(q) ∈ Z[q]; these polynomials l∗y,g are called (quasi-parabolic) dual KL polynomials. 
Note l∗g,g = 1, and l∗y,g = 0 unless y � g.

Theorem 6.8. We have 〈Cg, C∗
−h〉 = δg,h, for g, h ∈ f ·Wd.

Proof. Since C∗
−h is ψı-invariant, by (6.15) we have

Cg =
∑

y∈Idr|m|r

ly,g(q)My, C∗
−h =

∑
−y∈Idr|m|r

l∗−y,−h(q−1)ψı(My). (6.16)

Similarly, since Cg is ψı-invariant, we have

C∗
−h =

∑
y∈Idr|m|r

l∗−y,−h(q)M−y, Cg =
∑

y∈Idr|m|r

ly,g(q−1)ψı(M∗
−y). (6.17)

By definition of 〈·, ·〉 we have

〈My, ψı(M−y′)〉 = (My,My′) = δy,y′ .

Therefore, by (6.16) and (6.17) we obtain

〈Cg, C
∗
−h〉 =

∑
y

ly,g(q)l∗−y,−h(q−1) ≡ δg,h (mod q−1Z[q−1]),

〈C∗
−h, Cg〉 =

∑
y

l∗−y,−h(q)ly,g(q−1) ≡ δg,h (mod qZ[q]).

By Theorem 6.7, 〈Cg, C∗
−h〉 = 〈C∗

−h, Cg〉, and so the above two congruence identities 
imply that 〈Cg, C∗

−h〉 = δg,h. �
We obtain the following inversion formula for quasi-parabolic KL polynomials as a 

reformulation of Theorem 6.8; this generalizes [24,17].

Corollary 6.9. For all g, h ∈ Idr|m|r, we have

∑
y∈Id

ly,g(q)l∗−y,−h(q−1) = δg,h.
r|m|r
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Remark 6.10. The bilinear form 〈·, ·〉 defined by (6.9) still makes sense for a U-module 
V⊗m ⊗ V ∗⊗n as studied in [8]. Theorem 6.7 and a version of Corollary 6.9 remain valid 
in such a generality, and it provides an inversion formula for the super Kazhdan-Lusztig 
polynomials of osp type [8]. This generalizes the results in super type A in [12].
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