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ABSTRACT

To mitigate the effects of Radio Frequency Interference (RFI) on the data analysis pipelines of 21 cm interferometric instruments,
numerous inpaint techniques have been developed. In this paper, we examine the qualitative and quantitative errors introduced
into the visibilities and power spectrum due to inpainting. We perform our analysis on simulated data as well as real data from the
Hydrogen Epoch of Reionization Array (HERA) Phase 1 upper limits. We also introduce a convolutional neural network that is ca-
pable of inpainting RFI corrupted data. We train our network on simulated data and show that our network is capable of inpainting
real data without requiring to be retrained. We find that techniques that incorporate high wavenumbers in delay space in their mod-
elling are best suited for inpainting over narrowband RFI. We show that with our fiducial parameters discrete prolate spheroidal
sequences (DPSS) and CLEAN provide the best performance for intermittent RFI while Gaussian progress regression (GPR) and
least squares spectral analysis (LSSA) provide the best performance for larger RFI gaps. However, we caution that these qualitative
conclusions are sensitive to the chosen hyperparameters of each inpainting technique. We show that all inpainting techniques
reliably reproduce foreground dominated modes in the power spectrum. Since the inpainting techniques should not be capable of
reproducing noise realizations, we find that the largest errors occur in the noise dominated delay modes. We show that as the noise
level of the data comes down, CLEAN and DPSS are most capable of reproducing the fine frequency structure in the visibilities.

Key words: methods: observational — methods: statistical —dark ages, reionization, first stars — large-scale structure of Universe.

of how the EoR unfolds are currently observationally unconstrained.

1 INTRODUCTION In most models of the EoR, the onset of the first generation galaxies

The Epoch of Reionization (EoR) plays a crucial role in the evolution
of the Universe since it is the period in which the intergalactic
medium (IGM) transitions from neutral to ionized. The precise details

* E-mail: michael.pagano @mail.mcgill.ca

gives rise to ionizing photons which gradually disperse across the
IGM and ionize the neutral hydrogen, marking the beginning of
the EoR (Furlanetto, Oh & Briggs 2006; Morales & Wyithe 2010;
Pritchard & Loeb 2012; Liu & Shaw 2020). One method to directly
measure the neutral hydrogen in the IGM during the EoR is to use the
21 cm hyperfine transition of hydrogen in which a 21 cm wavelength
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photon is released when the electron flips its spin relative to the
proton (Madau, Meiksin & Rees 1997; Furlanetto, Zaldarriaga &
Hernquist 2004; Furlanetto, Haiman & Oh 2008). Thus the 21 cm
line directly probes the neutral hydrogen in the IGM during the EoR.
The emitted 21 cm wavelength photon is then redshifted into radio
wavelengths and is potentially observable in contrast to the CMB,
enabling tomographic measurements of neutral hydrogen. Ground
based interferometric instruments such as the Hydrogen Epoch of
Reionization array (HERA) (DeBoer et al. 2017), Square Kilometer
Array (SKA) (Dewdney et al. 2009), Precision Array for Probing the
Epoch of Reionization (PAPER) (Parsons et al. 2010), Murchison
Widefield Array (MWA) (Lonsdale et al. 2009), Low Frequency
Array (LOFAR) (van Haarlem et al. 2013) have the ability to measure
the spatial fluctuations of the 21 cm line.

One of the challenges in measuring radio photons using ground
based instruments is the frequent data flagging due to radio frequency
interference (RFI). Most RFI sources are due to terrestrial transmit-
ters and satellites which lead to narrowband flagging in the data
analysis. Other wideband sources of RFI, such as communication
satellites, require flagging more substantive portions of the raw
data. The excision of RFI in the data analysis introduces gaps in
the data which cause artefacts in the 21 cm power spectrum. Data
analysis pipelines which try to separate the foregrounds from the
cosmological signal in the Fourier domain will be directly affected by
the RFI gaps in the data. This impedes measurement of the EoR (for
example, see Wilensky, Hazelton & Morales 2022). A conservative
approach to mitigate the effect of RFI on the power spectrum is
to avoid all frequency bands where RFI has corrupted data. This
ensures that there are no artifacts in the power spectrum. Doing
so severely restricts the available frequency channels to use as part
of our analysis, thereby preventing us from accessing all redshifts.
Further, this approach is not ideal since it decreases the signal to
noise of the measurement.

Data analysis pipelines which are affected by RFI use ‘inpainting’
techniques to partially restore the RFI corrupted data. A number of
algorithms have been developed to perform inpainting, most notably
the CLEAN algorithm which was originally introduced in Hogbom
(1974). Although bearing the same name, we use a modified version
of CLEAN to fit the inpainting needs in the HERA data analysis
pipeline (Parsons & Backer 2009). Besides CLEAN, other inpainting
techniques have been explored as well such as least square spectral
analysis (LSSA), Gaussian process regression (GPR) (Ghosh et al.
2020; Kern & Liu 2021), and discrete prolate spheroidal sequence
(DPSS) (Slepian 1978; Ewall-Wice et al. 2021). These inpainting
methods use the uncorrupted data to form a crude model for the
corrupted data which is then replaced into the RFI flagged regions,
thereby reducing the effect that RFI has on the 21 cm power spectrum.
However, the crudely restored data are imperfect and thus they too
introduce errors in the analysis. In this paper, we critically evaluate
the performance of existing inpainting techniques CLEAN, LSSA,
GPR, and DPSS in reconstructing corrupted visibility data. In this
paper, we study the HERA implementations of these inpainting
techniques; however, similar variations of these techniques have
been implemented in other instruments such as Offringa, Mertens &
Koopmans (2019) in the LOFAR experiment and Barry et al. (2019)
in the MWA. Outside of 21 cm cosmology, inpainting has been
frequently done in CMB studies (Starck, Fadili & Rassat 2013;
Gruetjen et al. 2017; Trott et al. 2020) and gravitational waves
analyses (Zackay et al. 2021).

We also introduce a Convolutional Neural Network (CNN) dubbed
as ‘U-PAINT’ as an alternative to inpainting RFI corrupted data.
CNNs have been previously explored as an inpainting technique
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by Liu et al. (2018), Yan et al. (2018), Roy et al. (2019), Zeng
et al. (2019), Suvorov et al. (2021), Menéndez Gonzalez et al.
(2022), but not in the context of radio astronomy experiments. U-
PAINT marks the introduction of CNNs as an inpainting technique
in the data analysis pipelines of radio astronomy. By assessing
its effectiveness as compared to existing techniques, we show that
convolutional neural networks show great promise as an inpainting
technique. Using a series of Monte Carlo realizations, we propagate
the errors of the inpainted visibilities through to the 21 cm power
spectrum. We quantify the performance of each inpainting technique
and parametrize their errors in the power spectrum. We perform our
analysis using the HERA instrument; however, our approach is gen-
eral enough to apply to any interferometer. This paper is structured
as follows. In Section 2, we introduce our fiducial instrument HERA
as well as sources of RFI which affect the data analysis pipeline. In
Section 3, we discuss existing inpainting techniques CLEAN, LSSA,
GPR, and DPSS as well as quantifying their performance in inpainting
corrupted visibilities. In Section 3.5, we introduce U-PAINT which we
use to inpaint corrupted data. In Section 6, we assess its performance
relative to existing inpainting methods. In Section 7, we propagate
the inpainting errors through the analysis and characterize their effect
on the power spectrum. In Section 8, we apply our analysis on real
HERA data. We conclude in Section 9.

2 HERA OBSERVATIONS

In this section, we introduce the HERA instrument, an interferometer
located in the Karoo desert designed to measure the 21 cm power
spectrum during Cosmic Dawn and the EoR. Though we use
the HERA instrument as the testbed for analysis, our results and
procedures are not strictly limited to HERA and are thus applicable
to any interferometer. When completed, HERA will be comprised of
350 14 m dishes capable of observing at frequencies 50 to 225 MHz.
In this paper, however, we consider the instrumental parameters
taken from Phase 1 data used to set the recent HERA upper limits
(HERA Collaboration et al. 2022) which span frequencies 100 to
200 MHz in 1024 channels using 39 dishes. In this section, we
review the data analysis pipeline established in HERA’s Phase 1
upper limits, which we use in this paper for consistency. In doing
so, we establish notation for the remainder of this paper. We begin
in Section 2.2 where we discuss the Phase 1 data analysis pipeline
from HERA Collaboration et al. (2022) while in Section 2.1, we
discuss RFI scenarios which affect interferometric measurements at
low frequencies. In Section 2.3, we discuss the simulated data sets
that we use as part of our analysis as well as real data from the Phase
1 data release.

2.1 RFI flagging

Though we discuss the effect of RFI on our fiducial instrument
HERA, the systematics caused by RFI are equally applicable to other
instruments. Radio experiments located on the ground ubiquitously
experience RFI. The origin of the RFI are either terrestrial in nature
or due to satellites. Terrestrial sources can range from cell-phones,
WiFi as well any other radio producing mechanism sourced on the
ground. This includes FM radio and broadcast television. The amount
of terrestrial RFI can be minimized by operating the instrument in
radio quiet zone, such as the Karoo desert in HERA’s case. This
minimizes terrestrial RFI but does not totally eliminate it (Kohn
et al. 2016; Kerrigan et al. 2019; La Plante et al. 2021; Zhile Chen
2021; HERA Collaboration et al. 2022). For brevity, we find it useful
to organize RFI by the number of frequency channels they occupy.
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Figure 1. Sample HERA flags from 100-200 MHz. Frequency channels
below 110MHz are reserved for FM radio. The ORBCOMM satellite is
responsible for RFI at v = 136 MHz. Frequency channels above v = 174 MHz
are flagged due to broadcast television.

We shall denote RFI which occupies relatively few channels (~1-3)
as narrowband RFI. We assign the RFI to be wideband if it occupies
a more significant fraction of the frequency band. Note that we are
not setting a strict definition of narrowband or wideband RFI, rather
we find it convenient to use this notation in our analysis. In Fig. 1,
we show example HERA flags. The most frequent type of RFI are
narrowband emitters which can occur irregularly in v and ¢ creating
a scattered assortment of flags in the visibilities. However, other
wideband types of RFI can occur more predictably in the data set. For
example, ORBCOMM satellite communication at v = 13-138 MHz,
broadcast television at v > 174 MHz. While an FM radio broadcast
occupies a single frequency channel, frequencies v < 111 MHz are
reserved for FM broadcast.

HERA searches for RFI in the visibilities by scanning the data
for localized irregularities. Adjacent data in v and local sidereal
time (LST) are used to differentiate between RFI and thermal noise
fluctuations. This procedure is applied after the absolute calibration
step of the visibilities so that any issues with the instrument can also
be flagged (see fig. 3 in HERA Collaboration et al. 2022 for a detailed
description of the HERA data analysis pipeline). For example, in this
flagging scheme, intermittent correlator integration failures (a source
of wideband flags) can also be flagged. The LST binned visibilities
are also manually scanned for narrowband RFI that was undetected
by the automated flagging process.

2.2 Power spectrum

HERA Phase 1 observed the radio sky at frequencies 100 to
200 MHz over 1024 channels corresponding to a channel width of
Av >~ 0.1 MHz. These frequencies are measured at time cadence
of At = 10.7s. The raw data taken from correlated antennas in
the interferometer are termed the visibilities V, which depend on
the observation frequency v, and the time of observation ‘LST’.
The visibilities are complex values and thus can be expressed either
in terms of their real and imaginary components or amplitude and
phase. We denote the amplitude of the visibilities as |V| and the
phase of the visibilities as ¢. Since the visibilities are the product
of correlated antennas, the visibilities are simultaneously measured
on all antenna combinations within the HERA antenna array. The
visibilities measured by the HERA interferometer using the ith
antenna at position x; and jth antenna at position x; form a baseline
b = x; — x;. It was shown by Parsons & Backer (2009) and Parsons
et al. (2012) that for a single baseline b at observation frequency v,
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the visibilities can be written as
V(u,v) = /dldmA(l, m, VT (L, m, v, t)e” "%, 1)

where A(/, m) is the primary beam of the instrument and 7(/, m) is the
temperature of the sky. The time dependence arises because the sky
rotates above the instrument. The terms [ = sin(,) and m = sin(6,)
encode the angular components of the sky and 7, is given by

b-s 1
o= = (bl by + b/ 1= =m?), 2)
C

c

where 7, is the geometric delay corresponding to the projection of
the baseline b = (b,, by, b;) in the direction § = (I, m, v/1 — 2 — m?)
and where c is the speed of light. Although the baseline b in equation
(2) canrepresent any antenna pairing in the HERA array, in this paper,
we focus our analysis on only the shortest baselines, i.e. adjacent
antenna pairs. The Fourier transform of the visibilities in equation
(1) along the frequency direction is defined as

V(t, 1) = /dudldmA(l, m, VT, m, v, p()e>™ "% 3)

where 7 is the Fourier dual to frequency in the Fourier transform
called the delay. The term ¢(v) denotes a tapering function that
defines our spectral window of observation. For consistency with
analysis from the Phase 1 upper limits, we use the Blackman—Harris
window function as our tapering function ¢(v). The delay power
spectrum can be estimated by the square of Vb, 7):

X2Y |~ 2 4
Vau, ]
QppB’ (W, 1) @)

Pk, k) =

where k; is the wavenumber corresponding to the plane of the sky
and k| parallel to the line of sight. The visibility coordinates u are
related to the frequency v through # = vb/c. The term 2, gives the
angular area by integrating the square of the primary beam, while
B is an effective bandwidth given by [ dv|¢|*>. The term k, can be

related to the baseline b using k| = 22’;" . The term k|| can be written
as k) = 2”7’ where 7 is the Fourier dual to the frequency axis v with

dimensions of 1/v. The factor X converts comoving distance r to
angular separation 6, while Y converts radial comoving distances 7
to frequency intervals Av:

Z d !
x="t_ L/ < )
0 Hy Jo E(Z)
AI‘“ C (1 + Z)z

Y

Av  Hyvy E(2)

and where H is the Hubble parameter, E(z) = /Q2,,(1 + 2)* + Q4
and 2, the normalized dark energy density and v, ~ 1420 MHz,
the rest frequency of the 21cm line. For a drift scan telescope
like HERA, one typically first averages V(u, 7) at identical LSTs
across different sidereal days. This process is referred to as coherent
averaging. Once the power spectrum of the coherently averaged
visibilities is computed, one then averages P(k, k||) across different
LSTs, a process known as incoherent averaging. In an observationally
realistic data analysis pipeline (i.e. that aims to measure cosmological
signal), instead of directly computing P(k, , k|) using equation (4),
one instead forms the cross spectra using different times or baselines
in order to avoid a noise bias. In this scenario, one forms the product
of the visibilities at different times or baselines within the context of
equation (4). Since the objective of this paper is to characterize
the statistical properties of inpaint models, and not to measure
cosmological signal, we do not form the cross-spectra as described
above. Thus, the noise bias will be present in our estimates of power

Q)
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spectra. To evaluate the power spectrum in equation (4), we use the
publicly available code HERA PSPEC.!

The delay power spectrum in equation (4) is dominated by
galactic and extragalactic sources of radio emission referred to as the
‘foregrounds’. The foregrounds are orders of magnitude brighter than
the anticipated 21 cm signal. The foregrounds are spectrally smooth,
and thus can be crudely approximated by a flat spectrum. Under
this assumption, the temperature of the sky in equation (1) loses its
dependence on frequency, 7(l, m, v, t) >~ T(l, m, t). If the beam and
spectral window are also frequency independent, with a infinitely
large bandpass, then the delay 7 in equation (4) is geometrically
limited by the baseline length b and the speed of light to values:

T, < = (7)

Under these idealistic assumptions, the foregrounds are confined to
within 7,; however, since the foregrounds are only approximately
smooth as a function of frequency and both the primary beam and
¢ are also not frequency independent. Thus, the foregrounds spread
outside the confines of 7, (Lanman et al. 2020). Though, in this
paper, we separate our analysis for T modes inside and outside of 7,
it should be noted that our analysis is not stringent on the true value
of 7, rather 7, serves as a convenient marker for modes which are
mostly dominated by the foregrounds and modes which are relatively
foreground free. Also note that, in computing the power spectrum
(equation 4), we apply the Blackman—Harris tapering function. Since
this operation is a convolution, this spreads power from each bin
to neighbouring bins. Thus 7, modes which are dominated by the
foregrounds are spread into adjacent bins. The objective of this work
is to establish the errors in the data analysis pipeline due to inpainting.
The errors do not strictly depend on which t modes are part of the
wedge. Thus, we conservatively include v modes satisfying |7| <
500 ns to capture the spillover of foreground power into neighbouring
7 bins and for brevity, we refer to all of these modes as the ‘wedge’.

The presence of flagged channels in the data set complicates the
above power spectrum analysis. Equation 4 is a Fourier transform of
the visibilities along the frequency direction. Performing a Fourier
transform of a data set which contains masked regions will cause
artefacts in the resulting Fourier spectrum. This effect is similar to
carrying out a Fourier analysis of a top-hat function which creates
a ‘ringing’ at high delay modes. We thus expect excess power in
the large T domain. Thus analyses which sample the visibilities in
the EoR window at high delay will be especially affected the by
the artefacts due to flags in the data. One conservative approach
to circumvent this issue is to avoid frequency channels which have
been flagged and select cleaner windows in the visibilities which are
unaffected by RFI. This strategy reduces the amount of data in the
analysis and thus decreases the signal to noise.

2.3 Data sets

In this section, we introduce the data sets (i.e. visibilities) which
we use as part of our analysis. We consider two separate sets of
visibilities, real HERA data and simulations of HERA observations.
For the simulated visibilities, we also consider different noise
scenarios.

For the real data, we use HERA’s phase 1 visibilities (hereafter,
denoted as P1V) in HERA Collaboration et al. (2022), we use data
from the IDR2 data set which spans a range of right ascensions from

Thttps://github.com/HERA-Team/hera_pspec
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0 to 12 h. The instrument parameters match those from Section 2.3.
Since raw HERA data are propagated through a data analysis
pipeline, there are a number of places along the pipeline where we
might choose to apply our analysis. We choose to use the visibilities
after they have been absolutely calibrated. Our primary motivation
for this is because the LST binning process results in averaging the
visibilities by the number of observation nights resulting in lower
noise. This makes it slightly easier for the inpainting algorithms
due to the lower noise and also since there is intermittent RFI that
is not present every day. In future work, we can take advantage
of the symmetries between visibility data on different days by
implementing network changes such as in Maron et al. (2020) which
are optimized to take advantage of symmetries in data sets.

For simulated data, we use the simulations from the HERA
validation pipeline in Aguirre et al. (2022). The simulated visibilities
in Aguirre et al. (2022) are designed to be a realistic representation
of the sky as seen through the HERA instrument, and thus the
instrumental parameters match those of the true visibilities. We
briefly review the simulated data here though the reader is encouraged
to see Aguirre et al. (2022) for further details. To create a model
of the sky as seen by HERA, a foreground plus EoR sky model
is put through a mock HERA observation simulator, RIMEZ, an
internally developed software which correctly simulates HERA’s
drift scan capabilities, and is capable of sampling the sky at the
cadence of HERA time sampling over HERA’s full frequency
resolution and bandwidth. Though RIMEZ simulation also takes into
account instrumental effects such as cross-coupling and reflection
systematics, we do not include them in our simulations. The sky
model is generated by adding an EoR component to the foregrounds.
The EoR component is modelled as a Gaussian random temperature
field with power spectrum Pgor = Aok where this relationship
approximates those which are obtained by simulations and where
Ay is the amplitude of the power spectrum. The EoR component is
added to foreground model which is composed of GLEAM sources
and diffuse emission. Only GLEAM sources with an associated
spectral model are considered. The GLEAM catalogue is composed
of approximately 2.4 x 10° sources (Hurley-Walker et al. 2017),
each with a power-law emission spectrum given by

240x10° v\ F
LwH= Y F (70) 8(1—§-8,), ®)

n

where F, is the flux of the nth point source, B the spectral index
which characterizes the power law and § is its position. Note that,
since the GLEAM catalogue has coverage gaps in regions within
HERA'’s spatial observation window, the observing times of the
simulations are chosen as to avoid times where these gaps coincide
with HERA'’s primary beam. The diffuse emission component of the
foregrounds is simulated based on the Global Sky Model in Zheng
et al. (2017) and de Oliveira-Costa et al. (2008). Thermal noise is
generated and added to the simulations by drawing samples from
a Gaussian distribution with zero mean and standard deviation &
that depends on the time and frequency of observation as well as
the amplitude of the autocorrelation of each baseline through the
radiometer equation

k()W) (Tauo(v, 1) + Tix)
VAvAL ’

where At is the time integration of 10.7 s for HERA, Av is HERA’s

channel width, i.e. Av >~ 0.1 MHz and T}y is the receiver temperature

(assumed to be uniform in v and independent of antenna, see Aguirre
et al. 2022 for precise values) in units of K str=!. The term «(1)$2(v)

Go(v, 1) =«

©)
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is a conversion factor from Kstr~! to Jy through x(v) = (2kz x
10%°)/(A(v)Q2(v)) where kg is the Boltzmann constant, and A(v) is the
effective area, and 2(v) is the solid angle of the beam. The parameter
o is a dimensionless parameter which we use to simulate scenarios
with higher levels of thermal noise. We consider values of o« =[1, 2, 3,
4, 7]. In our fiducial noise level, « = 1. The total simulated visibilities
span roughly 13 h observations corresponding to over 24000 time
integrations of 10.7s each. The simulation data are composed of
39 operational antennas with north and east pointing polarizations.
We consider only the shortest baselines (i.e. antennas separated by
14.7 m) in this work. We find that our results do not depend on the
specific antennas used to form the 14.7 m baseline. Thus without
loss of generality, we perform our analysis using the antenna pair
(84,85), including multiple linear polarizations (EE and NN). We
have repeated our subsequent analyses for redundant baselines using
other antenna pairs and have found no significant differences in our
qualitative or quantitative results. Since this is a simulated data set,
there are not any RFI corrupted regions. To imitate a scenario where
RFI has corrupted regions of our simulated visibilities, we apply the
HERA flags discussed in the previous section to our data set.

3 INPAINTING TECHNIQUES

In this section, we describe the inpainting methods that we use
as part of our analysis. We begin by introducing CLEAN and LSSA
in Sections 3.1 and 3.2. In these sections, we also compute the
optimal value of CLEAN and LSSA hyperparameters to optimize their
respective performances. In Section 3.3, we introduce the covariance-
Based Inpainting methods, GPR & DPSS. Finally in Section 3.5, we
introduce the neural network architecture of U-PAINT.

3.1 CLEAN

The implementation of the CLEAN inpainting algorithm in HERA is
similar in concept to the algorithm originally introduced in Hogbom
(1974). The original algorithm is essentially a deconvolution algo-
rithm for 2D images. The procedure has been slightly modified to fit
the needs of inpainting flagged data in the HERA analysis (Parsons &
Backer 2009; Kern et al. 2020; HERA Collaboration et al. 2022). For
example, the original CLEAN algorithm operates in the image plane
whereas the HERA implementation operates in the T and v domain.
More broadly, the original algorithm operates on 2D images whereas
the HERA implementation acts independently at each LST taking
only the 1D frequency spectrum as input. Since CLEAN operates
at each LST independently, LSTs where the entire frequency band
is flagged remain flagged. The algorithm works by computing the
Fourier transform of the visibilities V (b, T, 1) along the frequency
axis in accordance with equation (4). In doing so, the algorithm
has an adjustable parameter called the ‘zeropad’ parameter, which
is the number of bins to zeropad on both sides of the frequency
axis. The additional padding around the frequency axis increases
the delay space resolution which provides the algorithm with a
finer set of discretized r modes. The algorithm then iteratively
searches and selects the mode 7, that has the largest amplitude
Vma,éb, T, 1), Whigh is then suthracted from the original quantity,
ie. Vi(b, 7, 1) = V(b, 7, 1) — Viax. This process is repeated n times
until the largest remaining delay modes \7,,(b, T;, 1) are consistent
with the desired tolerance threshold. The tolerance threshold is an
adjustable parameter which sets the level at which the algorithm
converges. Decreasing this parameter improves performance but
is computationally expensive. Another adjustable parameter which
determines minimum delay 74 is used in estimating the noise, i.e.

MNRAS 520, 5552-5572 (2023)

only delays 7 > 7 are used in estimating the noise. This sets a hard
cutoff to which modes will be included in the inpainted image. The
subtracted delay modes are then used to reconstruct the visibilities
in the flagged regions. The CLEAN predictions are referred to the
CLEAN model component, whereas the remaining modes are used to
construct the CLEAN residual component.

The accuracy of the CLEAN predictions depend on the input
values of the zeropad and tolerance parameters. Thus we need to
optimize these parameters. Since the optimal values of the zeropad
and tolerance depend on the properties of the data set, this procedure
is repeated for each noise scenario in the simulated data discussed in
Section 2.3. We find that 74 parameter does not dominantly affect
the performance and keep the parameter fixed to 7 4. = 2000 ns unless
otherwise noted. To determine the set of optimal parameters of the
tolerance and zeropad parameters we compute the sum of the square
of the residuals €, of equation (16) between the model visibilities
and the true visibilities:

X2 = Z [Vmodel(LSTi, Vj) — Vire (LSTi, Vj)}z s (10)

LST;, vj

where we have explicitly made mention to that this sum occurs over
all LSTs and frequency channels in the visibilities. Note that it is
not necessary to select only the flagged pixels in this sum (i.e. by
applying the inverse mask of equation 15 and 16), since non-flagged
pixels do not contribute to the sum in equation (10). The optimal
values of these parameters are such that x 2 in equation (10) between
inpainted predictions relative to the true visibilities are minimized.
In Fig. 2, we show the x? for various values of the the tolerance
parameter at different thermal noise levels of the data set. As we
increase the noise level, the optimal values the tolerance increase.
We find that the behaviour of the zeropad parameter is similar for
different thermal noise levels, i.e. increasing the thermal noise of
the data set results necessitates decreasing the value of the zeropad
parameter. For the remainder of this paper, we use CLEAN parameters
tol = 107'°, zp = 256 for the fiducial thermal noise scenario in
Section 2.3 (i.e. « = 1). For « = 2, 3, 4, and 7, we use tol = 107°,
1073, 107>, 10~*. For the zeropad parameter, we use zp = 256, 256,
128, 128, 64, respectively.

3.2 Least squares spectral analysis (LSSA)

The HERA implementation of LSSA follows a generalized least
squares estimator. It finds a best-fitting smooth model derived from
the Fourier components of the data set and uses that model to fill in the
flagged regions. This approach is similar in approach to what CLEAN
does (see Section 3.1), except this uses a linear fit rather than the
non-linear algorithm of CLEAN. As a result, LSSA is computationally
less expensive than CLEAN and in principle, the error properties are
easier to compute. Like the CLEAN algorithm, the code operates at
each LST, independently, i.e. the best-fitting model is derived using
the frequency information at each LST. Thus LSSA does not provide a
model for LSTs where all frequency channels are flagged. Consider
flagged visibilities at V (b, v, t) at time ¢, the model for the flagged
regions in the visibilities is constructed by expressing Viogel(b, v, )
as a linear combination of the Fourier basis, i.e

N=Nmax

Vinoget(b, v, 1) = > ¢e™/BY, an

HN=—HNmax
where BW is the bandwidth of the instrument, n,,,, are the number

of user-specified Fourier modes used to model the data set and ¢,
are the undetermined coefficients for each Fourier mode. To solve
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Figure 2. The results of our parameter optimization procedure for CLEAN and LSSA inpainting methods. In the left image, fractional increase in 2 is plotted
as a function of tolerance parameter values (see Section 3.1). The coloured curves represent different noise levels. As the thermal noise level in the data set
increases, the optimal tolerance decreases. The inset provides a closer examination of of x2/chi rznin for fiducial noise level « = 1. Similarly, on the right image,
the fractional increase in x2 is plotted as a function of nm,x, the number of Fourier components to include in LSSA models. As we increase the thermal noise of
the data set, the optimal number of Fourier components to include in the model decreases.
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Figure 3. Block diagram showing the U-PAINT architecture.

for the coefficients, the code uses a linear least squares optimizer,
which minimizes the y’residual from equation (10). The solution
to equation (10) is the well known least squares solution. The best-
fitting ¢, from equation (10) are then used to construct the model for
the visibilities Viyoger(b, v, 7) in equation (11). The inpainted data are
then obtained by replacing Viodel(b, v, #) into the RFI flagged regions
of Viaa(b, v, 7).

Since the performance of the LSSA algorithm depends on the
number of Fourier components 7« to include in the model, we need
to select npy,y such that the performance is optimized. We repeat our
procedure for each noise scenario in the simulated data discussed in
Section 2.3. Fewer np,y results in a smoother inpainted model while
larger values of ny,x result in producing inpaint models with fine
frequency features. For data sets with a greater fraction of flags or
larger amplitude of thermal noise, increasing 7y, too far can hinder
the performance due to numerical instabilities. In the case of high
percentage of flags, this occurs because there is not enough data to
distinguish between the values of the largest Fourier modes. Similarly

increasing the thermal noise will expand the error bars of the data
set making it difficult to break the degeneracies between the largest
Fourier modes of the LSSA model. In such scenarios, performance
will be improved with a limited number of modes. We chose 7« to
strike a balance between goodness of fit and numerical instabilities.
To find the optimal value of n,x, we use the LSSA method to generate
models for the RFI flagged regions in the visibilities discussed in
Section 2.3. We repeat this procedure for multiple values of ny,x
ranging from ny, from 2 to 60. At each instance, we compute
the sum of the square of the residuals €, of equation (16) between
the model visibilities and the true visibilities, i.e. equation (10). As
discussed earlier, note that, it is not necessary to select only the
flagged pixels in this sum, since non-flagged pixels do not contribute
to the sum in equation (10). Note that, the optimal value of 7,y
depends on which flagged channels, we include in our computation
of equation (10). For example including only the wideband RFI gaps
would lead to solutions where fewer modes (smoother functions) are
preferred. Conversely applying our optimization to narrowband RFI
gaps (for example, the 120-130 MHz in Fig. 1) would favour a larger
number of Fourier modes. Thus by using all flagged channels in our
computation of equation (10), we strike a balance between models
which are best suited for wideband RFI and narrowband RFI. In Fig.
2, we show the x2 as a function of . for various thermal noise
levels. From this, we can see that fewer Fourier components lead to
better results. We also see that the number of Fourier components to
include in the LSSA model decreases with increasing thermal noise.
For the remainder of this paper, we use ny,,x = 10 for the fiducial
noise scenario, i.e. « = 1 in equation (9). For the o« = 2, 3, 4, 7
thermal noise scenarios, we use nm.,x = 9, 7, 7, 6, respectively.

3.3 Covariance-based inpainting (GPR)

A powerful technique for the reconstruction or interpolation of a
noisy signal is the Wiener filter (Wiener 1964), which has a long
history in cosmology (e.g. Zaroubi et al. 1995; Tegmark, de Oliveira-
Costa & Hamilton 2003). A generalization of the Wiener filter is
the Gaussian process regression (GPR) formalism (Rybicki & Press
1992; Rasmussen & Williams 2006). Both are, in essence, techniques
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that down-weight the observed data by its covariance, and then up-
weight by the signal covariance. Recently, GPR has been used in
21 cm cosmology as a tool for signal separation (Mertens, Ghosh &
Koopmans 2018; Ghosh et al. 2020) and for simultaneous filtering
and inpainting (Kern & Liu 2021). Following Kern & Liu (2021),
the expectation value of the conditioned signal model in a Gaussian
process model can be computed as

E[s] = Ci(C, + C + Come)”'d, (12)

where d is our data vector, E[s] is the expectation value of our
statistical model for the signal, and C;, C,, and Coype are the
covariance matrices for the signal, noise and extraneous components
of our data model. This ‘best-fit” also has a covariance given by

Cov[s] = C; — C(Cs + C + Comer) ™' Cs. (13)

Ignoring the Cyper term in equation (12), we see that this indeed
simplifies to the standard Wiener filter. Note that, Kern & Liu (2021)
showed that the GPR foreground subtraction formalism used in 21 cm
cosmology is closely related to the widely studied inverse covariance
weighting found in the quadratic estimator literature, in the sense
that one first weights the data by its inverse covariance, and the
up-weights the residual by a normalization factor. More generally,
typical applications of GPR involve fitting for the hyperparameters
of analytic covariance functions, but at the end of the day, GPR is
simply an inverse covariance weighting, as shown above. Further,
note that any covariance function can be implemented within the
GPR framework discussed above (e.g. Ghosh et al. 2020).

In this work, we adopt a simple squared-exponential covariance
function for modelling the 21 cm foregrounds, and a diagonal matrix
for modelling the (uncorrelated) thermal noise. The hyperparameters
of these covariances (e.g. the squared-exponential length scale and
the noise variance) were set manually via inspection of the data:
although one could choose to regress for these automatically on the
data, given our understanding of the data sets at-hand, we found that
manual selection yielded similar results.

Another recent example of covariance-based modelling for 21 cm
is the DAYENU formalism of Ewall-Wice et al. (2021). Fundamen-
tally, DAYENU is an inverse-covariance technique that explicitly
assumes a Sinc model for the frequency—frequency covariance of
the visibilities. Note that, DAYENU was designed as a filter to
remove foregrounds; however, the construction of the filter to remove
this signal is similar to that of equation (12). In fact, although
not explicitly shown in Ewall-Wice et al. (2021), one can see that
DAYENU is exactly the same as equation (12) in the case of a signal
covariance that is the identity matrix, and a noise covariance that is a
sinc function. The set of vectors that diagonalize this sinc covariance
are the DPSS, which have a long history in signal processing as the
solution to the spectral concentration problem (Slepian 1978).

3.4 DpsS least squares (DPSS-LS)

The LSSA techniqudpe discussed in the previous section can be
generalized to model functions (instead of just fourier components).
In general, we can model the visibility data at a single time as

Vinodel(LSTi, v) = Y Ag(LST)ua(LST;, v)), (14)
o

where u,, are a set of vectors that ideally span all possible foreground

shapes while having minimal overlap with modes outside the wedge.

Since foregrounds within the wedge are heavily ‘band-limited’ —

are ideally only contained within a compact range of delays, sets

of functions whose Fourier transforms maximize power within a
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band-limited region are ideal for describing these foregrounds. The
DPSS (Slepian 1978) maximize the ratio of power within some band-
limited region B; to the total power of the sequence and are thus an
ideal basis for per-baseline modelling of the wedge. Ewall-Wice
et al. (2021) applied these sequences to modelling and filtering
foregrounds with the DAYENU technique in which the covariance
matrix of foregrounds is approximated as a Sinc matrix which is
diagonalized by DPSS modes or DAYENUREST which performs
linear least-squares inpainting.

Although the DAYENU (i.e. DPSS) formalism presented in Ewall-
Wice et al. (2021) and discussed above is presented as a covariance-
based technique similar to the Wiener filter and GPR, there are other
ways to use the DPSS vectors for data modelling and inpaintng. The
DAYENUREST variant presented in Ewall-Wice et al. (2021) does
just this, and instead of inpainting via equation (12), it uses the
DPSS vectors as a basis-set for performing least-squares fitting in the
visibility. In this sense, the DAYENUREST (or DPSS least squares)
is more akin to the LSSA formalism discussed above, except with a
DPSS basis set instead of discrete Fourier modes. Hereafter, when
we refer to ‘DPSS’ in the paper we refer specifically to the DPSS
least squares technique, which is distinctly separate from the pure
covariance-based inpainting techniques like GPR. Similar to LSSA
we must specify how many modes to include in our DPSS basis-set.
To do this, one specifies the parameter t4. which determines the
finest spectral scale that DPSS inpaints over, i.e. 1/74.. Increasing
T4c results in capturing finer frequency structures while decreasing
T4 results in modelling only the smoothest frequency structures.
Thus the maximum RFI gap that is inpainted is proportional to
1/74c. Similar to selecting np,¢ in Section 3.2, our selection of 4.
has consequences for the performance of the model in narrowband
relative to wideband RFI. For example, increasing t4. results in
inpaint models which can account for fine frequency structure,
which optimizes the performance for narrowband RFI. Conversely,
this means that there is a maximum RFI gap size 1/t4. for which,
we can inpaint over which reduces performance in wideband RFI
gaps. In this paper, we use 4. = 1000 ns. This makes our DPSS
technique optimized at inpainting intermittent (i.e. narrowband) RFI
and introducing a maximum gap size of 1/t, = 0.5 MHz. Since
this technique is similar to that of LSSA, and because our parameter
choices for DPSS and LSSA optimize performance for different RFI
properties, our analysis essentially brackets the range of performance
for DPSS and LSSA techniques.

3.5 U-PAINT architecture

Our desired network configuration is one which is capable of making
precise predictions of the data in flagged regions using the unflagged
features in the visibilities. To do this, we use a U-net architecture,
introduced by Ronneberger, Fischer & Brox (2015) which have
been shown to be robust for these type problems (Isensee et al.
2018). Our U-Net construction closely follows the architecture of
Ronneberger et al. (2015) and Gagnon-Hartman et al. (2021). We
show the schematic of our network in Fig. 3. Starting from the input
of Fig. 3, we input images of size 512 x 512. As discussed in
Section 2.3, we use data from antennas (84,85) and (0,1) to perform
our analysis. Thus, all data from these antennas are removed before
training. As discussed in Section 2.3, the HERA visibilities are
measures of 1024 frequency channels over 4000 time integrations
(i.e X Nisrs). Thus, we divide the total HERA visibilities into input
visibilities of size 512 x 512 corresponding to 90 min of data and
a band width of 50 MHz. Thus the frequency band is split into
two sections 100—150 MHz and 150-200 MHz at 90 min observation
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intervals. Our motivation for selecting visibility sizes of 512 x 512 is
to establish a balance between two considerations: we need to divide
the visibilities enough times to generate a large enough data set for
training and while simultaneously allowing a large enough image to
allow the network to recognize typical features in HERA visibilities.
Segmenting the data into too small a size will obscure the larger
features in the visibilities. Conversely, making the image size too
large will reduce the amount of images in our training set. Note that,
we find that the performance of the network is similar when using
image sizes of 256 x 256; however, we find that the performance
of the network is decreased below this threshold. Each visibility
image is then split into 5 input channels? for the initial convolutional
layer. Thus, the input has shape 512 x 512 x 5. Our input channels
are as follows: in channels 1 & 2, we input the real and imaginary
component of the visibilities, respectively, defined in equation (1)
where the flagged regions of the real and imaginary component of
the visibilities have been set to 0. In channel 3, we input the flags,
which are a binarized 512 x 512 map where a 0 pixel represents an
unflagged region in the visibilities and 1 represents a flagged region in
the visibilities. In order to ensure continuity at the boundary between
flagged regions and the unflagged regions, i.e. between our inpainted
predictions and the existing visibilities, we extend the flagged regions
by two adjacent pixels along both axes (i.e. in LST and v). This
encourages the network’s model of the visibilities to be consistent
with the existing information in the unflagged regions. In channels
4 & 5, we input the real and imaginary component of Vb, 1,1),ie.
Equation 4 is applied to the visibilities V(b, 7, #) within channels
1 & 2, respectively. This is done to encourage the network to take
advantage of the delay information. The reason this is effective is
because our data are structured in the delay domain: high power at
low delays due to the foregrounds and then lower power at high
delays due to noise.

Referring again to architecture of the network in Fig. 3, the
objective of left branch of the U-net is to capture context of the
images and propagate them downward through each level. We choose
convolutional kernels of size (2 x 2) which gives us a reasonable
balance between the spatial resolutions and context for the features
comprising the image. At each level, we use a ‘ReLU’ activation
function. As the input data is propagated through each level, the
network increasingly forms an abstraction of the elements in the
image. The bottom of the U-net can be interpreted as a classification
type step, i.e. at this stage, the network has understood the various
elements in the image and has formed an abstract classification of
these items. The objective of the right side of the U-net is to use the
abstract classification of the items in the image to make predictions
of the data in flagged regions of the input data set. To do this, the
network uses a convolutional layer which upscales the size of each
image. Throughout this process, the network has lost all context
about the superficial placement of these features. To reintroduce the
necessary superficial context to each level on the right side of the
U-net, skip connections between the levels on the left branch of the
U-net and right branch of the U-net are formed. The image on the left
hand side of the U-net is combined with the corresponding level on
the right hand side through concatenation. The output at the right of
Fig. 3 has shape 512 x 512 and contains the network’s model for the
flagged regions. We extract the network predictions for the flagged
regions of the visibilities and insert them into the corresponding

2In this subsection, ‘channels’ refer to the inputs to convolutional layers
and not frequency channels. Outside of this subsection, channels refer to
frequency channels.
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flagged regions of the original flagged data set. In other words, we
discard the network’s predictions for the data in unflagged regions.

To compare the training set to the labels, we define difference
between the model visibilities Vioge1(v, 1) and labels Vi (v, 1) as
A = Viodel(V, 1) — Ve (v, 1). We use a loss function

K= 1A =M, ) Al [(1 - M(v,0) Al (15)

where the sum is over n, the number of images in the batch. The
refers to complex conjugation and a transpose. The term 1 — M (v, t)
essentially inverts the flags, i.e. the unflagged regions are 0 and the
flagged regions are 1. The inverse flags prevent non-flagged regions
from contributing to the loss. This is done to encourage the network
to focus on learning the features of the flagged regions, which speeds
up our training process.

We use ~350 images from the the simulated visibilities discussed
in Section 2.3 as part of our training set, and a test set of 35, with a
batch size of 12. The network is trained for 80 epochs and a learning
rate of Ir = 10™* using an Adam optimizer.

4 INPAINT MODELS

In this section, we use the inpainting methods to make predictions
for the RFI corrupted simulated visibilities from Section 2.3. We
also provide a high level qualitative overview of the inpainted
models in their amplitude and phase components. In Fig. 4, we
show sample inpaint predictions for the amplitude and phase of
the RFI corrupted visibilities. The upper left-hand panel of Fig. 4
corresponds to the flagged visibilities while the top of the second
column corresponds to the true visibilities. The first column in
each subsequent row corresponds to visibilities where the inpaint
models have been replaced in the RFI flagged regions. The first
row corresponds to U-PAINT models, the second row corresponds to
CLEAN models, the third row corresponds to LSSA models and the
final two rows correspond to GPR and DPSS models, respectively. The
attributes of the predictions shown in this image are characteristic
of the models for each inpainting method. By visual inspection,
we can see that the U-PAINT network has learned to assimilate the
features in the amplitude and phase into the RFI corrupted regions,
and thus, it is apparent that the network is capable of reproducing
the features of the true visibilities in the RFI corrupted regions.
Another distinguishing feature of the network predictions are that
the network organically inpaints over LSTs that do not contain any
frequency information. In contrast to the other inpaint algorithms
which do not naturally provide predictions for these LSTS, U-PAINT
can take advantage of all the information of the visibilities. This
highlights U-PAINT’s ability to extrapolate data to LSTs in which
there are none. Currently, LSTs without any frequency information
are not used as part of HERA’s data analysis pipeline; however, in
the future, one may be able to take advantage of these LSTs either
from the analysis perspective or simply to avoid discontinuities in
the data. We can also see that all inpainting methods do a reasonable
job at filling in the narrowband RFI portion of the visibilities making
it difficult to discern between the true visibilities and the inpaint
models. In contrast, regions where wideband RFI has been replaced
with inpaint models are still obvious. Referring to the 2 MHz RFI gap
at 136 MHz, we can see that wideband RFI is still easily identifiable
in the model visibilities of each inpainting technique. There appear to
be remaining artefacts in the wideband RFI regions which make the
characteristics of the inpaint models are apparent. Referring to the
top row, we can see that U-PAINT produces models with a speckled
structure in frequency while CLEAN, LSSA, and GPR models tend to
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Figure 4. First row: The amplitude and phase components of the RFI flagged visibilities are shown in the first and third column. In the second and fourth
column are the amplitude and phase component of the true visibilities. The visibilities are simulated (see Section 2.3). Second through fifth rows: in each row, we
show the amplitude and phase components of the RFI flagged visibilities, but with the inpaint models filled into the RFI gaps. Each subsequent row corresponds
to U-PAINT, CLEAN, LSSA, GPR, and DPSS inpainting methods. In the second and fourth column of each row, we show the fractional error of the model amplitude

and the residuals of the model phase (see Section 5).

be smoother in the frequency domain. DPSS models do not entirely
fill in the wideband RFI gap at 136 MHz. As discussed in Section 3,
this is due to our choice of delay cut parameter t4.. The maximum
RFI gap that is inpainted is proportional to 1/t4.. Since we are
using 74 = 1000 ns, then we are limited to RFI gaps larger than
1/t4. = 0.5 MHz. Unless otherwise stated, we do not include DPSS
in our error characterization for wideband RFI. In the third column
of Fig. 4, we show the phase component of the inpaint predictions.
The second through fifth rows again correspond to U-PAINT, CLEAN,
LSSA, GPR, and DPSS models, respectively. We can see that the inpaint
models capture the structure of the phase component. As was the case
with the amplitude component, regions of inpainted narrowband RFI
appear to be seamlessly integrated with the rest of the visibilities
while inpainted wideband regions appear to have artefacts.

In the following sections, we build a quantitative perspective on
the performance of each inpainting technique. In the next section, we
discuss our methodology in quantifying the error characteristics of
the inpaint models.
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5 STATISTICAL ANALYSIS METHODOLOGY

We quantify the errors in inpainted predictions relative to the true
visibilities by computing the residuals, fractional errors, and a
modified version of the fractional errors. We use the same metrics
to quantify the errors in the model power spectra relative to the true
power spectra. The residuals between the inpainted visibilities and
the true visibilities are computed as

€ =11 — MW, )] (Vimodel — Virue) » (16)

where M(v, t) are the flags, V4 are the flagged visibilities where
the inpainted models have been placed into the flagged regions and
Vinee are the true visibilities (i.e. without any flags). The term 1 —
M(v, 1) essentially inverts the flags, i.e. 1 is a flagged region and 0
signifies unflagged. This is done so that only flagged regions enter
the analysis. As discussed in Sections 3.1, 3.2, and 3.3, CLEAN,
LSSA, GPR, and DPSS operate at each LST independently and thus do
not inpaint on LSTs where the entire frequency bands are flagged.
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These LSTs are not used in our error characterization analysis even
for inpainting methods which do inpaint on these LSTs, i.e. U-PAINT.
Note that the residuals defined by equations (16) constitute individual
error realizations. In Section 5, we model the distribution of error
realizations to compute the actual error. Using €, we can define the
fractional error €g,:

v &
€frac = V' . (17)
true

Since the visibilities are complex, they can be split into real and
imaginary components, or amplitude and phase. Within the context
of error quantification, equations (16) and 17 can be applied to
the real, imaginary, and amplitude components of the visibilities.
However, since the phase of the visibilities are periodic, quantifying
the errors using the fractional errors defined in equation (17) becomes
meaningless. To quantify the errors for the phase component of the
visibilities, we use a modified version of the residuals of equation
(16). The phase values of the inpainted models ¢4 and ground
truth ¢y are mapped from their native range [ — m, 7] to [0, 27 ].
The residuals A¢p = Pmogel — Prrue are then computed. Since the sign
of the phase error does not directly indicate the severity of the error,
i.e a phase error of +A¢ is the same ‘angular distance’ from the
true value as phase error —A¢, we define the absolute residual phase
eITor €4 as

€p = min (|27T - (d)model - (blrue)l > |¢model - ¢lrue|) . (18)

Therefore, we can interpret €, to be the smallest angle from ¢ e. In
Sections 6 and 7, we use these metrics as tools to describe the errors
in the model visibilities and power spectra.

To perform our analysis, we construct a sample set of RFI flagged
channels using all flagged channels between v = 110 MHz and v =
174 MHz (see Section 2.1 for details). We exclude LSTs in which
all frequency channels are flagged from our analysis. As discussed
in Section 2.3, we consider only the shortest baselines (i.e. antennas
separated by 14.7 m) in this work. We find that our results do not
depend on the specific antennas used to form the 14.7 m baseline.
Thus, without loss of generality, we perform our analysis using the
antennas (0,1) and (84,85) for strictly east—west baselines, including
multiple linear polarizations (EE and NN). We have repeated our
subsequent analyses for redundant baselines using other antenna
pairs and have found no significant differences in our qualitative
or quantitative results. With the restrictions above, this leads to
a sample set of 10* flagged channels. Using this sample set, we
construct the empirical error distribution. We model the empirical
error distribution with seven main classes of model probability
density functions, which along with their sub-classes, encompass
a flexible range of probability profiles. They include the gamma,
lognormal, skew Cauchy (see Gupta, Chang & Huang 2002), t,
skew normal, generalized normal, skew Laplace distributions. These
distribution functions comprise a family of distributions in which
we find more familiar probability profiles as special cases. We then
compare the empirical distribution to ppes using the Kolmogorov—
Smirnov (KS) test introduced in Karson (1968). In the following
sections, we apply these metrics to the inpainted predictions of U-
PAINT, CLEAN, LSSA, GPR, and DPSS.

6 INPAINT ERROR QUANTIFICATION IN THE
VISIBILITIES OF SIMULATED DATA

In Section 4, we discussed the qualitative features of the inpaint
models. We now examine the quantitative aspects of their errors using
the metrics from Section 5. Since the visibilities are complex valued,
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Table 1. Summary of key error metrics for the amplitude component of
simulated visibilities.

Error Effrac Effmc HGﬁac Eéﬁac
RFI Narrowband All Narrowband All
U-PAINT 5.5 % 5.97 % —0.025 % 0.05 %
CLEAN 3% 9.7 % 0.07 % 0.265 %
LSSA 1.69 % 2.82 % 0.05 % —0.16 %
GPR 3.09 % 3.5 % —0.08 % —0.044 %
DPSS 1.52 % - 0.013 %

they can be expressed in terms of amplitude and phase components.
In Section 6.1, we apply our analysis to both components of the
visibilities. In Section 6.2, we discuss the impact that increased
thermal noise have on the inpaint models.

6.1 Error characterization

In the second column of Fig. 4, we show example fractional errors
of the amplitude of the inpaint models. With this metric, the errors
are normalized by the amplitude of the true visibilities allowing us
to ascertain the performance independent of the brightness of the
visibilities. Referring to the second row of the second column in Fig.
4, we find that the mean fractional error in the amplitude of U-PAINT
models is e, = 0.058 per cent and standard deviation o, =
5.5 per cent.’ Thus, the fluctuation in performance is 5.5 per cent.
We also find that o, is consistent throughout the various types
of RFI, i.e in wideband and narrowband RFI. We also find that U-
PAINT has similar performance in LSTs which are entirely flagged.
In rows, three through six of Fig. 4, we show the fractional error
in the amplitude of the inpainted models for CLEAN, LSSA, GPR, and
DPSS algorithms. Immediately clear from the fractional errors of the
visibility amplitudes are that CLEAN, LSSA, GPR, and DPSS models
are more accurate in the narrowband RFI regions as compared to
the wideband RFI. The standard deviation of the fractional errors
of the inpainted models in narrowband RFI are o, are smallest
for DPSS at 1.52 percent and LSSA at 1.69 percent followed by
CLEAN and GPR at 3.0 per cent and 3.09 per cent, respectively. When
we include flagged channels above 110 MHz, the error fluctuations
Oe;n increase. This is due to the inclusion of wideband RFI gaps
where the fractional errors are larger. When including all flagged
channels above 110 MHz, we find that LSSA produces the smallest
fluctuations at 2.8 per cent followed by GPR at 3.5 per cent, U-PAINT at
5.95 per cent, CLEAN at 9.7 per cent, and DPSS at 10.3 per cent. Recall
that for DPSS our choice of parameters leads to model limitations
on large RFI gaps and thus we do not include DPSS in our error
characterization for wideband RFI. In Table 1, we provide a summary
of these quantitative results. Another distinctive characteristic of the
amplitude in U-PAINT models are that they contain fine frequency
structure. In the top panel of Fig. 5, we show the amplitude of the
visibilities as a function of v averaged over 512 time integrations. The
dotted black line corresponds to the true visibilities, while the solid
coloured curves correspond to the inpaint models. The amount of
grey shading represents the average flag occupancy of each frequency
bin. In the wideband RFI gap, we can closely examine the features
of each inpaint model. In the lower panel of Fig. 5, we can see the
spectral structure in the residuals between the inpaint model and true

3Note that, in this assessment, we are not including the model predictions at
v < 110 MHz.
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Figure 5. Top: LST averaged inpaint model visibilities. The true visibilities
are shown with the dotted black curve. The vertical shaded regions correspond
to the RFI flagged channels. The amount of shade is proportional to
the frequency in which those channels are flagged. Thus the Wideband
ORBCOMM feature is darkest since it is always flagged. Note that, the inpaint
models are only filled into RFI gaps, and so the inpaint models only deviate
from the true visibilities in shaded regions. The orange curve corresponds to
U-PAINT, the yellow curve to LSSA, purple curve to CLEAN and blue curve to
GPR. DPSS models are not shown since we feature the wideband feature in this
image (see Section 3). Bottom: The residuals between inpaint models and the
true visibilities.

visibilities. Note the rapid fluctuating components in the U-PAINT
predictions as compared to the smoother true visibilities.

In Fig. 6, we show the probability distributions of the fractional
errors p(€gy) in the inpainted models. Since the performance and
errors depend on the nature of the RFI, we separate our analysis
into frequency channels which are dominated by narrowband RFI
and frequency channels which are dominated by wideband RFI.
For the narrowband RFI, we construct a sample set using all
flagged pixels from frequency channels 110 to 136 MHz, where
these bounds exclude the wideband features found below 110 MHz
and above 136 MHz. This leads to a sample size of ~52 000 pixels.
For the wideband regions, we isolate the 20 frequency channels
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corresponding to the the ORBCOMM RFI feature at 136 MHz. This
leads to a similar sample size of 54 000 pixels. In the top row Fig.
6, we show the probability density functions of the fractional error
p(ef\r/ac) (equation 17) for the amplitude of the inpainted models in
narrowband and wideband RFI regions. The blue curves correspond
to the probability distribution constructed using only the wideband
RFI samples, while the teal curve corresponds to the probability
distribution constructed using only the narrowband RFI samples.
For the sake of visualization, we display up to the 99.9 percentile
of errors along the horizontal axis. By qualitatively comparing the
maximum range of the teal curve to the blue curve in all five
panels of the first row in Fig. 6, we can see that the U-PAINT, LSSA,
and GPR performances are more consistent across wideband and
narrowband RFI regions as compared to CLEAN and DPSS which
perform significantly better with narrowband RFI. Note that, DPSS
does not inpaint over a 2 MHz gap given our parameter choices in
Section 3. We can also see that the maximum range of fractional
errors for narrowband RFI is smallest for DPSS inpainting methods
and largest for U-PAINT. Conversely, for wideband RFI, LSSA, and GPR
produce the smallest range of fractional errors. Another feature of the
distribution of fractional errors e}, for wideband RFI using CLEAN is
the positive skew, i.e. a disproportionate amount of probability mass
is contained in p(e;,.) > 0. With this exception of this distribution,
we find that generalized normal distributions is an optimal probability
distribution profile to model the empirical distributions p(ey,.) for
each RFI scenario in Fig. 6.

To establish the range of absolute temperature errors introduced
into the analysis, we now examine the distribution of residuals p(erV )
in |V|. The distribution of residuals is shown in the second row
of Fig. 6. Many of the qualitative features in p(eY) are similar
to the distributions of fractional errors from above. For example,
the distribution of residuals in U-PAINT, GPR, and LSSA inpainting
methods are less sensitive to the type of RFIL, i.e. narrowband
and wideband. By comparing the maximum range of residuals for
narrowband RFI for each inpainting technique, we again come to
the same conclusion as above: DPSS produce the smallest residuals,
followed by CLEAN. Similarly, when for wideband RFI, LSSA, and
GPR produce the smallest residuals.

We now discuss the distribution of errors in the phase components
of the visibilities. Referring to the fourth column of Fig. 4, we
show the residuals between the model phase and true phase. We
see that with the exception of the wideband models for DPSS inpaint
methods, all of the residuals fall between |€?| < 0.1 rads. The largest
residuals are sourced from wideband RFI regions. In the bottom row
of Fig. 6, we show the corresponding distributions of the residual
phase errors €4 as defined in equation (18). Recall that the errors
€y are bounded between €, = 0 and €; = 7. We find that the
errors in the phase component €, of the inpainted models are all
characterized by the same type of probability distribution profile, the
lognormal probability function. Similar to our descriptions of p(eY)
and p(ey,.), we find that CLEAN and DPSS models provide the most
accurate description of the phase in narrowband RFI regions and
LSsA providing the best description of the phase in wideband RFI.
Relative to DPSS and CLEAN inpainting methods, we again find that
U-PAINT, GPR, and LSSA have consistent performance in the phase
component for the narrowband and wideband RFI.

6.2 Thermal noise

Since the inpainting techniques cannot predict the exact noise
realizations in the data set, we expect an increase in the amplitude
of the fractional errors. In Fig. 7, we show the evolution of the
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Figure 6. Top row: probability distribution of the fractional errors p(efm) in the amplitude of the inpainted model visibilities. Second row: residuals in the
inpainted model amplitudes p(erV ). Third row: residuals of the phase component of the inpaint models p(ephi). The blue curves correspond to when only
wideband RFI is used to construct the samples while the teal curve corresponds to samples constructed using only narrowband RFI. All inpaint methods are

applied to the simulated visibilities discussed in Section 2.3.
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Figure 7. The standard deviation of the fractional error in the visibilities
el\-r/ac as a function of the thermal noise level in the visibilities. The parameter
« is used as a proxy for the thermal noise level (see equation 9).

standard deviation of the fractional error (in percentage of the true
visibilities) in the wideband and narrowband regions of the visibilities
as a function of thermal noise level in the visibilities. We use the
dimensionless parameter o as a proxy for the thermal noise level
in the data set (see equation 9). Notice the linear evolution of o, v

with . This shows that the standard deviation of the fractional error
is linearly proportional to the standard deviation of the noise level
in the data set. Thus as one averages down « through LST binning
(or equivalently, other types of averaging), the performance of the
inpainting techniques improves linearly. Therefore, performing the
inpainting before the LST binning in a data analysis pipeline will
result in the same performance. In contrast, a non-linear evolution
of o.v with @ would describe a scenario where the o.v ~depends

on the standard deviation of the noise beyond just simple sample
variance of the noise, i.e. there may be advantages to applying the
inpainting technique at a specific noise level before or after LST
binning (depending on whether the relationship between o, v and
« is more or less steep than linear). Thus, Fig. 7 relnforces our
assertion that each inpainting technique captures only the underlying
sky signal of the data set.

Building on the intuition of the error properties in the visibilities,
we now examine errors in the power spectrum derived from the
inpainted visibilities and form connections between the errors of
both components.

7 POWER SPECTRUM ERROR
CHARACTERIZATION

In this section, we characterize the type of errors in P(t) due to the
inpainting as well as establish the relationship between the errors in
the model visibilities and their corresponding delay power spectra.
We propagate two versions of the visibilities through the power
spectrum. The true visibilities (which do not have any corrupted
regions), and the corrupt visibilities (where inpainted models have
been replaced in the RFI corrupt regions). Thus, we have the power
spectrum derived from the model visibilities Pyode, and the true
power spectrum Py derived from the true visibilities. We can define
the residuals analogously to equation (17), i.e €& = Puodel — Prrue-
Similarly for the fractional errors ef};ac = (Puodel — Pirue)/ Pirve- We
separate our analysis in terms of delay modes (7) inside and outside
the wedge. This section is structured as follows. In Section 7.1, we
discuss the properties of the power spectra derived from the model
visibilities. In Section 7.2, we establish a relationship between the
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Figure 8. The fractional errors in the wedge modes (left) and non-wedge
modes (right) of inpaint model power spectra e}iac as a function of the number
of flagged channels within the spectral window. The P1V spectral window is
used to estimate the power spectra.

errors in the model visibilities from Section 6 and the model power
spectra from Section 7.1.

7.1 P1V spectral window

‘We compute the power spectra using the spectral window from 119 to
129 MHz which is one of the spectral windows used to set upper limits
on the power spectrum in HERA Phase 1 Upper Limits. This window
contains both flagged and non-flagged regions of the visibilities.
Recall that in our example HERA flags in Fig. 1, this frequency range
spans over 100 channels and corresponds to a region of the visibilities
with only narrowband RFI. In this spectral range, the number of
flagged channels at each LST range from 0 to 31 frequency channels
which corresponds to up to 31 per cent of the spectral window used
to compute the power spectra. Recall that the power spectrum is
computed independently at each LST and thus there are LSTs where
one third of the band is flagged and LSTs without any flags at all.
We restrict our analysis to LSTs with at least one flagged channel.
This reduces the number of sample power spectra with which we
can form our analysis. We find that the key indicator of performance
is the number of flagged pixels within the band. Denote the number
of flagged channels at each LST by Npaegea. When Npgeeeq = 0, we
have no errors in P(7). As we increase Nfggged, a larger fraction of
the spectral window is flagged. For fixed Npqggeq, the arrangement of
the RFI also affects the performance. For example, scenarios with
four consecutively flagged channels do not yield similar errors as
when the four flagged channels are dispersed. Denote Ny, as the
number of consecutively flagged channels. When Ny, increases,
we eventually have a wideband feature which has greater fractional
errors relative to narrowband RFI. Thus, power spectrum estimates
derived from wideband RFI features in the visibilities have drastically
increased errors relative power spectrum estimates derived from
regions of the visibilities with intermittent (i.e narrowband) RFI.
Thus, both Nyaeeeq and their arrangement within the spectral window
will affect the errors in the model power spectra. For this analysis,
we examine the effect of Nyageea On the model power spectra, i.e.
we treat Npggeed s the dominant effect and Ny, as a secondary
effect which we leave to future work. In Fig. 8, we show the mean
fractional errors of the model power spectrum €f,. as a function
of Nfqgged separated by modes outside and inside the wedge. Note
that, the smallest mean fractional error € occurs when only one
pixel is flagged. In our flags, 25 percent of all LSTs have only
one flagged channel. The mean fractional errors in both wedge and
non-wedge modes of the model power spectra increase rapidly as
a function of the number of flagged regions for Npgeea < 5. By
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Niageed = 5, the fractional errors for modes outside and inside the
wedge are an order of magnitude greater than when only one channel
is flagged. On average, 90 per cent of the LSTs in HERA flags have
5 flagged channels or less. Thus, most LSTs fall within this error
range.

We now look at the model power spectra after averaging over LST.
This implicitly averages over Nyageed. We ignore LSTs that do not
have any flagged channels. In the first column of Fig. 9, we LST
average the model power spectrum (blue curve) and compare it to
the LST averaged true power spectrum (black curve). The dotted red
curve corresponds on the mean residuals €” between the model power
spectra and the true power spectra. Referring to the fractional errors in
the blue curves of the third column, we can see that CLEAN and DPSS
produce power spectra models with the smallest fractional errors
in the wedge, followed by GPR, LSSA, and U-PAINT. By examining
the larger errors in Ppeqe for the largest delay modes, it is clear
that none of inpainting methods inpaint noise. We can see that the
inpainting techniques only capture the sky signal. This leads to larger
errors in the largest ¢ modes which are noise dominated. CLEAN
and DPSS models have fractional errors on the order ~10°, while
GPR and LSSA are on the order 10, and U-PAINT on the order 10*.
This is the due to the fine frequency structure imprinted into the
visibilities by U-PAINT (see Section 6). Note that analysis of these
types of errors (i.e. in the largest T modes of Ppoqe1) are only possible
since we are using simulated data, which are systematic free, and
less noisy than real data. In the future, we will continue to make
progress on reducing systematics in our data, thus increasing the
importance of understanding the behaviour of inpaint models in the
largest T modes. In that scenario, spectral structure imprinted into
model power spectra by inpaint methods such as U-PAINT must be
accounted for.

In the top row of Fig. 10, we show the distribution of residuals
errors p(ef) for modes inside the wedge (blue solid curves). The
residuals are smallest for DPSS and CLEAN inpainting techniques. In
the second row of Fig. 10, we show the distribution of fractional
errors p(ef, ) for wedge modes (solid blue curves) where we again
see that DPSS and CLEAN have the smallest range of fractional errors.
We find that the profile of p(ef,.) for modes inside the wedge
are best described by a generalized normal distribution. For modes
outside the wedge (third row in Fig. 10), LSSA, U-PAINT, and GPR
are characterized by a lognormal distribution. Recall that for the t
modes outside the wedge, Piodel > Pirye fOr U-PAINT, LSSA, and GPR.
Thus, their fractional error distributions are composed of samples
with €f . > 0. This gives the distribution long positive tails..* Since
CLEAN and DPSS have much smaller errors outside the wedge, their
distributions p(ef,.) are confined to p(el,.) < 10.

7.2 Relationship between visibility and power spectrum errors

In Sections 6.1 and 7.1, we discussed the error characteristics of
the model visibilities and model power spectra. Since the model
power spectra are derived from the model visibilities, we expect a
relationship to exist between their errors. Since the errors in Pyoqer (7)
are different for modes inside and outside the wedge, we expect the
relationship between model visibilities and model power spectra to
also depend on 7. In this section, we explore these relationships.

4Lognormal distributions are only defined for positive values and have long
tails making this profile ideal to describe the non-wedge modes of these
inpainting techniques
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Figure 9. Each inpainting technique is applied to the simulated data discussed in Section 2.3. The P1V spectral window is used to estimate the inpaint model
power spectra. Left column: blue curves correspond to inpaint model power spectra. The black curves correspond to the true power spectra and the red dotted
curves correspond to the residuals. Each row corresponds to a different inpaint technique used to inpaint RFI flagged simulated visibilities. Second column (see
Section 8.3): Same as first column but with real P1V data. Purple curves correspond to inpaint model power spectra and black curves, the true power spectra.
Red curves are the residuals. The third column corresponds to the fractional errors sfpmc in inpaint model power spectra from simulated data (blue) and the P1V
data (purple). The dotted teal line corresponds to the power spectrum of the thermal noise floor of P1V data (HERA Collaboration et al. 2022).

Consider the 100 frequency channels spanning the frequencies this spectral window. We therefore find it convenient to establish a
119-129 MHz corresponding to our spectral window. A direct relationship between the mean power spectrum errors and the mean
relationship between the errors in each pixel of the model visibilities amplitude errors of the visibilities. Since the inpaint models do not
and the corresponding model power spectra is impractical since inpaint noise, and since the large t modes are noise dominated, we
the power spectrum is derived from all frequency channels within establish a relationship between the mean fractional errors of the
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Figure 10. Blue curves correspond to simulated data and purple curves correspond to P1V data. Distribution of residuals (first row) and fractional errors (second
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to P1V data.

visibilities €},., and the mean fractional errors in the wedge modes
of their corresponding power spectra €k, . The mean fractional errors
in the visibilities are given by
i=129
Vmodel (LST, vi) - Vtrue(LSTv Vi)
Vtme(LSTv Vi)

€V(LST) = (19)

flagged i=119 |:

The averaging in equation (19) occurs along the frequency domain

which leaves us with N gr samples. This translates to ~5000 samples

in our simulation data. The mean fractional errors for the model

power spectrum are similarly computed

easn= i {Pmodel(LST, %) — Pue(LST, 1)
7 Ptrue(LSTa 1—i)

; (20)

1=—Tg

where the index i tracks the t bins in the wedge modes of the power
spectrum and 7 corresponds to the number of T modes inside the
wedge. The averaging in equation (20) occurs along the T domain
which leaves us with N gt samples. For intuition, we can explore
an analytical relationship between €}, and €, . If we approximate
the wedge modes of equation (20) as being uniform and equal to the
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error in P(t = () then we can approximate equation (20) as

— — —2 2
_p Prodel = Prue Vinodel = Virue
€frac — \ 7 = —=
P
true =0 %

true

21

where the last step is due to P(t = 0) corresponding to the square
mean of the visibilities. Therefore, we can rewrite the right side of
equation (21) as

—P —V (Vmodel + Vtrue )

€fpe = € — 22

frac frac Vtrue ( )
In scenarios where the mean of the model visibilities Voo is
consistently related to the mean of the true visibilities V. by a
constant §, we can write V oqel = 8 V rye. This is not a bad assumption
for LSTs where the amplitude of the visibilities is relatively constant.
For example in Fig. 4, we can see that the fractional error remains
reasonably uniform in LSTs in the vicinity of 119 to 129 MHz. In

this situation, equation (23) can be recast as
Ehrae = (1 + ), (23)

which suggests the mean fractional error in the power spectrum
€F . scale linearly with the mean fractional error in the amplitude
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of the visibilities. Note that, we expect this approximation to no
longer be valid as the largest T modes are included into the mean
fractional errors of equation (20). In the top row of Fig. 11, we
show the relationship between €k and €Y, where each scatter point
corresponds to an individual LST. From the previous section, we also
expect that the relationship between €y, and €F . will depend on the
number of flagged channels at each LST. We colour code the scatter
points according to the number of flagged channels at that LST. Note
that, LSTs with Ngageeq = 1 (the brightest green and smallest points
in Fig. 11) are located at the smallest values of €-_ indicating that
these LSTs produce the smallest mean errors in P(7). It is also clear
that LSTs with Np,geca = 1 do not appear to strongly cluster together,
or follow the same cohesive relationship as when Nyageea > 1. This
is likely due to sample variance, since the mean fractional errors
in the visibility and power spectrum are computed using a single
channel making € = and €Y, prone to scatter. Conversely, LSTs
with Nyageea > 1 appear to follow a clearer linear trend. We can
also see that LSTs with Ngageea > 20 tend to produce the largest

values of €.

8 APPLICATION TO PHASE 1 HERA DATA

In Sections 6 and 7, we discussed the performance of each inpainting
technique as well as the types of errors they introduce as part of
computation of the power spectrum. However, the analysis was per-
formed on simulated data. While our simulated data from Section 2.3
do take into account the instrument, they do not fully capture all the
instrumental effects such as systematics that come along with a real
observation. In this section, we characterize the errors introduced
in an actual HERA analysis pipeline. To do this, we apply U-PAINT,
CLEAN, LSSA, GPR, and DPSS to the P1V HERA data discussed in
Section 2.3 and repeat our analysis from Sections 6 and 7. To keep our
analysis as similar as possible to the true HERA analysis pipeline, we
use the 119-129 MHz spectral window to compute the power spectra.
In order to quantify the errors in Viogel and Ppogel Using the same
methods in the previous sections, the true (i.e. known) visibilities and
power spectrum are required. One hurdle in realizing this goal is that
since the true solution to the RFI flagged regions of real P1V data
does not exist, therefore we need to modify our analysis procedure. In
Section 8.1, we discuss our modifications to the procedure outlined
in Section 6. In Sections 8.2 and 8.3, we discuss our results showing
that our intuition and error characterization carries over from the
previous sections and thus we can infer the error properties in the
true analysis from simulation.

8.1 Flagged regions & analysis configuration

Denote the flagged regions of the P1V visibilities as Mp;y. To apply
the error metrics discussed in Section 6.1, the ‘true’ visibilities
in Mpyy are required to be known. This is not the case for Mp;y
regions of P1V data. This causes several difficulties and prevents
us from directly repeating our analysis procedure from Sections 6
and 7. Furthermore, the presence of RFI flags can introduce artefacts
into the power spectrum due to the Fourier transforming the sharp
discontinuities between flagged and unflagged regions. To avoid
introducing these artefacts into the inpaint models of U-PAINT, CLEAN,
LSSR, GPR, and DPSS, we inpaint over the flagged regions of the P1V
data using the CLEAN algorithm. We use the CLEAN parameter values
that were used in HERA Collaboration et al. (2022). After this step,
the flagged regions have been replaced with CLEAN inpaint models.
Repeating our error analysis on the Mp;y flagged regions of P1V
data now means that we would be using the CLEAN models as the
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true visibilities (which we wish to avoid). We therefore create a new
set of flags by taking Mp;yv and shifting them over in frequency
space by 40 channels. We refer to the shifted flags which are applied
to the visibilities as Mgy Applying our analysis on using Mg
rather than Mp;y allows us to use regions of the visibilities where
the true values are known as well as to keep the structure of the real
P1V flags. This procedure is not perfect in that there is an overlap
of some of the narrowband RFI in the M, and Mp;yv. However,
< 5 percent of the narrowband RFI in Mgy overlaps with nar-
rowband RFI in Mp;y. This estimate does not include the wideband
features below 110 MHz and above 174 MHz. In such overlapping
channels, the true solution is therefore CLEAN inpaint model. Since
the overlap percentage is small, we do not expect this overlap to
significantly influence our results. Note that, by applying this shifting
procedure, certain characteristic broad-band RFI features of M, no
longer align with their corresponding frequency bins. For example,
the ORBCOMM feature is characteristically found at 136MHz.
Conversely, narrowband RFI is intermittent, and thus Mgy flags
provide us with a statistically representative set of narrowband RFI
samples.

To generate the inpainted models for the flagged regions, i.e
M hir using U-PAINT, we consider two network configurations. Each
scenario produces comparable results. In the first case, we use the
weights of the network which has been trained on the simulated
data described in Section 2.3 (at the fiducial noise level). This is the
network which was used in the analysis throughout Sections 6 and
7. For completeness, and to examine the range performance that can
be obtained by our network, we try a second scenario. In the second
scenario, we retrain the network on P1V data after having performed
the CLEAN procedure described above. Thus, in this scenario an initial
CLEAN is still performed and Mg, are used as our flagged regions.
We find that both scenarios produce comparable results on the P1V
data. We thus use the network from scenario 1 (i.e. the network which
was used in the analysis throughout Sections 6 and 7) to generate
inpaint models. To generate inpaint models for CLEAN, LSSA, GPR,
and DPSS, we use the same parameters described in Section 3 for the
simulated data at the fiducial noise level.

8.2 Results

InFig. 12, we show an example image of RFI flagged P1V data which
has been inpainted. The first panel in the first row corresponds to the
P1V visibilities with My applied. The first panel in the second row
corresponds to the P1V visibilities after an initial CLEAN inpaint,
from here onward, we refer to this as the ‘true’ visibilities. Note that,
the LSTs where all frequency channels are flagged have unknown
true visibilities and have not been inpainted over since CLEAN avoids
these LSTs. Therefore, the ‘true’ visibilities in the upper left-hand
panel of Fig. 12 still appear to have flagged regions. The visibilities
where RFI flags have been reapplied are on the upper right. Each
subsequent row corresponds to the indicated inpainted model (left)
and their fractional errors (right). Note that, U-PAINT still inpaints
over LSTs with no data; however, since a fractional error cannot
be computed (true visibilities are unknown), we do not display a
fractional error. In the two last columns of Fig. 12, we show the
corresponding phase component of the visibilities. Referring to the
fractional errors of the amplitude components and residuals in the
phase component of Fig. 12, we can see that the inpainting methods
again perform better in the narrowband regions as compared to the
wideband regions. Notice that, the residuals in the phase component
are much larger than their simulated counterparts in Fig. 4. Similarly
comparing the fractional errors in second column of Fig. 12 to the
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Figure 11. Relationship between the mean fractional errors in the inpaint model visibilities ?Xac and the mean fractional errors in their corresponding power
spectra E'f)mc. We compute the mean fractional error of the inpaint models in RFI flagged frequency channels within the P1V spectral window. This process is
repeated at each LST. Their corresponding power spectra are estimated using the same P1V spectral window. The mean of the fractional errors in the model
power spectra is computed using T modes inside the wedge. Each LST is plotted as a scatter point. The LSTs are colour coded according to the number of
flagged frequency channels at that LST. In the top row, this procedure is applied to simulated data while in the bottom row this procedure is applied to P1V data.

fractional errors of the inpainted model of the simulated data in 4,
we see that there are larger fluctuations in fractional error in the P1V
inpainted models relative to the simulated data. This is the case for
each inpaint method. The standard deviations and the mean of the
fractional errors are summarized in Table 2.

In Fig. 13, we show the probability density function of the
fractional errors p(ef\r’ac) (top row), residuals p(erV ) (middle row)
and the distribution of errors p(eg4) for the phase component of the
visibilities (bottom row) as a function of the type of flags, i.e. nar-
rowband and wideband. Focusing on the top row, we can see that the
profile of the probability distributions functions p(e;, ) share many
qualitative characteristics with their corresponding distributions from
Section 6.1. For example, we can again see that DPSS still produces
the most accurate results for narrowband RFI followed by CLEAN,
GPR, LSSA, and U-PAINT. However, by comparing the extent of the
distributions for narrowband RFI, we can see the performances are
less discrepant. By examining the range of errors, we can see that
GPR and LSSA produce the smallest range of fractional errors for
narrowband RFI.

In the second row of Fig. 13, we show the distribution of residuals
p(eY) for each inpainting technique. Through comparison with the
middle row in Fig. 6, we can see that the residuals using the P1V data
are larger than those using the simulated data. As was the case with
the distribution of fractional errors p(ef,.) from above, we can see
that the maximum range of residuals in narrowband RFI are similar
among the inpainting techniques. For each inpainting technique, we
find that the profile of p(eY) and p(e,.) are best characterized by a
generalized normal distribution.

In the bottom row of Fig. 13, we show the distribution of errors
€, in the phase component of the P1V inpaint models. We can see
that relative to the distributions p(e,) in Fig. 6 which were generated
with simulated data there is an apparent performance decrease when
applying the inpainting techniques to P1V data. For narrowband RFI,
we find that the tails extend into the range €, ~0.75rad while the
tails of p(e4) in wideband RFI regions extend into the range € > /3
which reflects a more significant deviation in phase relative to the
true values. Unlike the distributions in Fig. 6 which were generated
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with simulated data, U-PAINT does show consistent performance in the
phase component. Similar to Section 6.1, we find that all distributions
functions are best described by a lognormal distribution.

8.3 Power spectrum

In this section, we compute the power spectrum of the inpaint models.
To do so, we use the P1V spectral window. In the middle column
of Fig. 9, we show the mean model power spectra (purple curve),
the mean true power spectra (black curve) and their corresponding
residuals (red dotted curve). We show their corresponding mean
fractional errors in purple in the third column. As discussed in Sec-
tion 8.1, the P1V visibilities are noisier than the simulated visibilities
and contain instrument systematics not present in simulations. This
manifests in the true power spectrum as increased amplitude for large
T modes, as well as the systematic feature at & 1.2 us. Referring
to the model power spectra in the middle column of Fig. 9, we can
see that the inpainting techniques reproduce this systematic feature.
Referring to the first row of the second column in Fig. 9, it appears
that Ppoge; for U-PAINT has a similar amplitude as Py, for large t©
modes. However, referencing Ppoqel for U-PAINT with simulated data
(upper left-hand panel) shows that U-PAINT models automatically
produce this amplitude for large 7.

By referring to the mean fractional errors on the right
column of Fig. 9, we can see that the mean fractional
errors of each inpainting technique lie within the range
1073 <€ <10, where the largest fractional errors occur
outside the wedge. The smallest fractional errors are again found
for modes inside the wedge. In the wedge modes, the fractional
errors are within a fraction of a percent of their true value.
Quantitatively, we find that the inpainting techniques are within

1.24 per cent, 0.32 per cent, 1.24 per cent, 1.0 per cent, 0.25 per cent

for U-PAINT, CLEAN, LSSA, GPR, and DPSS, respectively.

To generate the probability density function of the errors in the
model power spectra, we construct two samples sets. One set using t
modes outside the wedge and another set comprised of T modes inside
the wedge. In each case, we use model power spectra from LSTs with
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Figure 12. Same as Fig. 4 but with the P1V visibilities from Section 2.3. The true visibilities in the first row (second and fourth column) have been initially
inpainted with the CLEAN algorithm to generate placeholder data for the RFI flagged regions. The inpaint techniques are then applied to a set of flags which are
shifted 40 channels to the left. This is done in order to avoid inpainting over the already CLEANed data. See Section 8 for more details regarding our procedure.
Note that, as compared to Fig. 4, the fractional errors in the model visibilities increase.

at least one flagged pixel. In the purple curves of Fig. 10, we show the
errors in the model power spectra. In the top row of Fig. 10 (purple
curve), we show the probability density functions of the residuals.
We find that U-PAINT produces the largest range of errors €F, followed
by DPSS, LSSA, GPR, and CLEAN. In the second row in Flg. 10 (purple
curve), we show the probability density functions of the fractional
errors €f . constructed using only wedge modes. Comparing the
mean of the fractional error distributions in the wedge modes of
model power derived from P1V data to the mean fractional errors
of model power spectra derived from simulated visibilities (blue
curve), we find that there is an increase in €5, using all inpainting
techniques. The largest increase in mean fractional errors occurs in
DPSS and CLEAN inpainting techniques. With the smallest increase in
fractional errors using U-PAINT. Conversely, if we construct p(ef,.)
using only modes outside the wedge (bottom row in Fig. 10), we
find that the range of fractional errors decreases as compared to its
equivalent distribution derived from simulated data (third row). This
is due to there being lesser amounts of noise in the simulated data

as compared to the P1V data, thereby exposing the spectral errors in
the inpaint models.

Using the fractional errors €}, ., we can establish a relationship be-
tween the mean fractional errors in the inpainted simulated visibilities
and their corresponding power spectra. We proceed similarly as in
Section 7.1. In the bottom row of Fig. 11, we show the relationship
between the mean fractional errors in the visibilities e}, and the mean
fractional errors in the power spectrum ef, .. Comparing this to the top
row of Fig. 11, we demonstrate that the relationship between the mean
fractional errors in the inpainted P1V data and their corresponding
power spectra follow the same relationship as with the simulated
data. This is important since it suggests that intuition and error
characterization drawn from the simulated visibilities in Section 7.2
translates to P1V data. This result is perhaps not so surprising given
that the fractional errors of the visibilities and power spectrum are
described by the same probability profile for the P1V data visibilities
and power spectra. Recall above that the mean of the fractional error
distributions for the power spectra of P1V data are larger (except
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Figure 13. First row: distribution of fractional errors in the amplitude of P1V visibilities. Second row: distribution of residuals in P1V visibilities. Third row:
distributions of phase errors €4 in the phase of P1V visibilities. In each case, the blue curves correspond to distributions constructed using wideband RFI samples
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Table 2. Summary of key error metrics for the amplitude component of
P1V visibilities.

Error Effrac Effrac ﬁéfmc ﬁéfmc
RFI Narrowband All Narrowband All

U-PAINT 24.5 % 98.7 % 2.1 % 4.9 %
CLEAN 19.1 % 58.2 % 0.81 % 54 %
LSSA 44 % 81.2 % 1.9 % 3.6 %
GPR 19.2 % 41.3 % 0.65 % 2.1 %
DPSS 15 % - 0.5 % -

for U-PAINT) than the corresponding mean fractional errors using
simulated data. Similarly in Section 8.2, we found that there was an
increase in €f,, in the P1V data as compared to the simulated data.
These increases essentially shift the centre of the scatter plots in the
bottom row of Fig. 11 as compared to the top row (simulated data).
In the future, we would like to be able to predict the errors in P1V
based on the error characterization in the simulated data. However,
although the relationship between these quantities remains the same
between simulated and P1V, the centering of the distributions still
needs to be accounted for.

9 CONCLUSION

As 21 cm instruments continue to push towards a detection of the
21 cm power spectrum, quantification of the errors introduced into
the data analysis due to inpainting RFI corrupted data can no longer
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be ignored. In this paper, we assessed the performance of existing
inpainting techniques at restoring RFI flagged data. Our results are
indicative of general trends, but not an exhaustive comparison. We
also introduced our convolutional neural network U-PAINT which we
show to be capable of inpainting RFI corrupted data. Along with
existing methods, we quantified the errors introduced in the data
analysis pipeline due to RFI. We perform our error quantification
analysis on simulated data as well as real data used in HERA’s
Phase 1 limits. We find that inpainting techniques which incorporate
high wavenumbers in delay space in their modelling are best suited
for inpainting over narrowband RFI. Our parameter choices for
DPSS make DPSS best suited for inpainting over narrowband RFI
while our parameter choices for LSSA make LSSA more flexible
to wide RFI gaps and narrow RFI gaps. We find that with our
fiducial parameters, DPSS, and CLEAN provide the best performance
for narrowband RFI while GPR provides the best performance for
wideband RFI. We also find that the error distributions in the
phase component of the visibilities are lognormally distributed. We
find that these results hold in real data as well as simulated data.
Further, we find that the standard deviation of the errors increases
monotonically with increasing thermal noise of the simulated
data set.

To characterize the errors that inpainting cause in the 21 cm delay
power spectrum, we propagate the inpainted visibilities to the 21 cm
power spectrum. We find that all inpainting techniques can reproduce
the wedge modes of the delay power spectrum to within 10 per cent
of the true values. Since the inpainting techniques are not capable of
inpainting noise, the errors are greatest for the largest delay modes.
Currently, systematics and noise prevent instruments from accurately
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measuring the amplitude of the power spectrum at the largest delay
modes. However, we show that in the future, as these effects are
reduced, CLEAN and DPSS can most accurately reproduce the true
power spectra at high delay. Quantitatively, the errors reach the same
order of magnitude as the noise. Conversely, we find that U-PAINT
imparts artificial fine frequency structure into the visibilities which
manifests as an increase in power at the highest delay modes. We also
established a relationship between the mean fractional error in the
model visibilities and the mean fractional errors in the model power
spectrum. We find that this relationship is linear if we restrict the
errors in the model power spectrum to only wedge modes. We also
show that this is the case for both real and simulated data. Moving
forward, we have a better understanding of how the inpainting portion
of the data analysis pipeline affects the 21 cm power spectrum. This
is another important step we must undertake on our continued path
to make a detection of the 21 cm power spectrum.
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