Storage-Based Logic Built-In Self-Test with Multicycle
Tests

Irith Pomeranz

Abstract— Storing deterministic test data on-chip allows logic built-
in self-test (LBIST) to produce a special type of random tests that
consist of random combinations of deterministic test data. Such tests
can achieve a higher fault coverage than random tests whose bits are
determined randomly. A bottleneck of this approach is the volume of
test data that need to be stored. This article observes that the use of
multicycle tests can address this bottleneck by reducing the number of
tests needed for detecting target faults, and thus the volume of test data
needed for producing them. A software procedure is described to support
this solution. Experimental results for benchmark circuits demonstrate
the effectiveness of multicycle tests in this context.

Index Terms— Linear-feedback shift-register (LF'SR), logic built-in
self-test (L B1ST'), multicycle tests, on-chip test generation.

I. INTRODUCTION

The use of logic built-in self-test (L BIST) removes the need for a
tester to store and apply tests [1]-[15]. An added benefit is enhanced
security by avoiding the transfer of test data to and from the chip [4].
Storing deterministic test data on-chip allows LBIST to produce a
special type of tests that are formed by combinations of deterministic
test data. Deterministic combinations of test data are used in [3].
Random as well as deterministic combinations are used in [15]. The
use of random combinations of deterministic test data results in a new
type of random tests that are more effective than the conventional
random tests under which all the bits are assigned randomly. The
deterministic test data preserve some of the ability of deterministic
tests to activate and propagate faults, and carry this ability over to
the random tests. The resulting random tests (random combinations
of deterministic test data) can detect defects that cannot be detected
without the use of deterministic test data. This is demonstrated in
[15] by targeting gate-exhaustive faults.

A bottleneck of storage-based LBIST is the amount of test
data that needs to be stored on-chip when the goal is to achieve
complete fault coverage. This article observes that multicycle tests
are useful in addressing this bottleneck. A multicycle test has one or
more clock cycles between scan operations [16]-[25]. With additional
clock cycles between scan operations, the test can detect more
faults. It is also possible for masking to occur with additional clock
cycles. Procedures for computing multicycle tests avoid adding clock
cycles that result in decreased fault coverage. The ability to detect
more faults with each test makes multicycle tests effective for the
compaction of deterministic test sets [16]-[17]. It can also potentially
support the reduction of the volume of test data for storage-based
LBIST. This is because fewer of the more effective multicycle tests
are required, and less test data are needed for forming tests.

The on-chip test generation logic from [15] is adapted to the
application of multicycle tests as follows.

(1) The stored test data are partitioned into a set S of scan vectors,
and a set P of primary input vectors, which are stored separately.
Such a partition is not needed in [15]. For a circuit with n scan
chains, a test ¢; is defined by n scan vectors, S;0, Si,15 s Si;n—1,
a primary input vector, p;, and a number of clock cycles, k;. A test
is denoted by t; = (8:,0, Si,1, .-+, Si,n—1, Pi, ki). All the clock cycles
between the scan operations of a test are assumed to be functional

Irith Pomeranz is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomer-
anz@ecn.purdue.edu).

The work was supported in part by NSF Grant No. CCF-2041649.

test i
generation I
logic : :
m T
Se | S !
I
N Pc| Py
I 11
I
¥ ¥
N 1P|
LFSRy, Hog(P]) [mux; 1| toSCh,
LESR, log(|S| MUX, 1] to SCO=
LFSR, log(|S| MUX, 1| toSC, -

Fig. 1. On-chip test generation logic.

capture cycles, and the primary input vector p; is held constant for
the duration of the test.

(2) Within the sets S and P, subsets Sc and Pc, respectively, are
identified that are especially effective for forming tests. The vectors
in these subsets are referred to as core vectors. The on-chip test
generation logic applies random tests in two phases. In the first phase
it uses core vectors from S¢c and P to form random tests. In the
second phase it uses vectors from the entire sets S and P. Focusing
on Sc and Pc helps increase the fault coverage.

The article describes a software procedure that initializes S and P
based on a deterministic test set. It then selects the core vectors, and
reduces the sets S and P to reduce the volume of stored test data.
When S and P are reduced, only vectors from S\ Sc¢ and P\ Pc
are eliminated. The procedure selects the least effective vectors from
S and P for removal. When the on-chip test generation logic focuses
on the vectors that remain in S and P, the fault coverage is increased.
Thus, in addition to reducing the volume of stored test data, removing
vectors from S and P also helps the procedure increase the fault
coverage. The use of Sc and Pc also reduces the computational
effort of minimizing S and P, since only vectors in S \ Sc¢ and
P\ Pc are considered during this process.

The target faults in this article are single stuck-at faults. The initial
test data for S and P are derived from a single-cycle deterministic test
set T, for single stuck-at faults. With multicycle tests, delay faults
are detected accidentally, and can be targeted directly by replacing
Tsa with a two-cycle test set for delay faults.

Several other approaches exist for increasing the fault coverage
achieved by LBIST [1]-[2], [5], [7], [11]-[13]. These approaches
include the insertion of test-points, observation of next-state variables,
and reseeding of LF'SRs. The use of multicycle tests as suggested
in this article can be combined with these approaches to reduce the
storage requirements of the on-chip test data.

The article is organized as follows. Section II describes the on-chip
test generation logic. Section III describes the software procedure
for selecting the core vectors. Section IV describes the software
procedure for reducing the sets S and P. Experimental results for
benchmark circuits are presented in Section V.

II. ON-CHIP TEST GENERATION LOGIC

The on-chip test generation logic is illustrated by Figure 1. Figure
1 and Table I include the notation used in this article.

The circuit has m primary inputs, and n scan chains of equal length
l. A scan chain is denoted by SC; in Figure 1. Two of the n scan
chains are shown in Figure 1, SCy and SC,. For uniformity, the
primary inputs are also included in a scan chain denoted by SCri.

TABLE 1
NOTATION
symbol meaning
m number of primary inputs
n number of scan chains
l length of scan chain
SC; scan chain
S set of scan vectors
Sc subset of core scan vectors
P set of primary input vectors
Pc subset of core primary input vectors
B(S, P) number of bits for storing S and P
k number of functional capture cycles in a test
K upper bound on k&
Ngr number of random tests
Ri1 set of random tests in the first phase
Rk 2 set of random tests in the second phase
Tk set of tests that detect new faults
na(s;5), na(p;) | number of times s; € S, p; € P appears in Tk
nso number of core scan vectors
npeo number of core primary input vectors
set of options for (ns.,nps)
Nq number of entries in 2
Tc subset of R 1 that detects new faults
Fc subset of faults detected by Tc

Figure 1 shows a memory that contains the set of scan vectors
S, and a memory that contains the set of primary input vectors P.
The subsets of core vectors S¢c and Pc are shown inside S and P,
respectively. The dashed box inside S is an [-bit scan vector. The
dashed box inside P is an m-bit primary input vector.

To select a primary input vector and a scan-in state for a test,
a linear-feedback shift-register (LF'SR) denoted by LFSRp or
LFSR; for 0 < i < n selects a vector from P or S randomly
through a multiplexer. The number of bits for LF'S Ry is log2(|P|),
and the number of bits for LE'SR; is log2(]S|). The selected vector
is shifted one bit at a time into the corresponding scan chain. This
requires log2(l) and logz(m) counters, not shown in Figure 1.

A multiplexer produces a single bit at a time to be shifted into
the corresponding scan chain. This bit needs to be routed from the
test generation logic to the scan chain. This is similar to the case
where test data decompression is implemented on-chip, producing
scan-in values that need to be loaded into the scan chains. Overall,
in addition to the memory, the on-chip test generation logic includes
n+1 LFSRs and n+ 1 multiplexers. The LF'SRs can be replaced
with a single larger LF'S R that produces different random values for
all the scan chains. The benefit of using an on-chip memory to store
deterministic test data is the effectiveness of the resulting random
tests as discussed earlier.

For a parameter K, the test generation logic produces random tests
with k = K, K — 1, ..., 1 functional capture cycles. For a constant
Ng, the number of k-cycle tests is Nr. A counter (not shown in
Figure 1) controls the number of functional capture cycles of a test.

Test generation proceeds in two phases. In the first phase the
LFSRs select vectors from Sc and Pc to form a set of K Ngr
random tests denoted by Rk, 1. In the second phase the LFSRs
select vectors from the entire sets S and P to form a set of K Ngr
random tests denoted by Rx 2.

In software, the set of target faults F' is simulated under Rx 1 U
R 2 with fault dropping. Tests that detect faults from F' are added to
a test set T'x. Forward-looking reverse order fault simulation removes
unnecessary tests from T'x. A test set Tk will be used in the next
sections to select the subsets of core vectors, and reduce S and P.

III. SELECTING SUBSETS OF CORE VECTORS

Initial sets of vectors S and P are obtained from a compact
deterministic test set T, for single stuck-at faults. Every test ¢; € Tsq
is represented as t; = (si,0, Si,1, .-, Si,n—1, Pi, 1). The vectors s;0,

Si1s ---» Sin—1 are added to S, and the vector p; is added to
P. If the same vector appears more than once, it is stored only
once in S or P. The number of bits for storing T, is denoted by
B(Tsa) =~ (nl + m)|Tsa|. The number of bits for storing S and P
is denoted by B(S, P) =1|S| +m|P)|.

The computation of the core vectors is described for a number of
functional capture cycles K. Initially, Sc = @ and Pc = (). Since
Rk,1 consists of random combinations of vectors from Sc¢ and Pc,
the software procedure obtains Rx,1 = 0. Using Rk 2 it computes
the set of effective tests Tk as described in Section II. A vector that
appears more times in 7Tk is considered more important to include
in the core subset. Accordingly, each vector s; € S and p; € P is
associated with the number of times it appears in 7Tx. This number
is denoted by nq(s;) and nq(p;), respectively.

The procedure orders S and P by decreasing order of n,(s;) and
nq(pj), respectively. In this order, the top vectors in S and P are
the ones most suitable for the core subsets Sc and Pc. To determine
how many of the vectors will be included in the core subsets, the
procedure considers options that are described by two parameters,
ns is the number of top vectors in .S that are included in the core,
and np, is the number of top vectors in P that are included in
the core. The selection of ns. and np. is based on the following
experimental observations.

An effective core should include a sufficient number of vectors to
provide a significant fault coverage. At the same time, the number of
vectors should be small enough to obtain tests that are focused on the
most effective vectors, and require a limited number of storage bits.
The two considerations are balanced by using a constant 0 < w < 1
to ensure that Sc¢ and Pc use approximately w of the number of bits
for Tsq. Thus, B(Sc, Pc) = l|Sc| + m|Pc| ~ wB(Tsa).

In addition, options where B(Sc, Pc) < wB(Tsqs) may some-
times allow Rg,1 to detect more faults. The procedure considers
a constant number Nqo of options for ns, and np, such that
B(Sc, Pc) < wB(Tsq). The options are included in a set Q by
Procedure 1.

Procedure 1: Computing core options
1) Assign Q = 0.
2) For ns, = 1, 2, ..., |S| and for np, = 1, 2, ...
Insg + mnp, < wB(Tsa):
a) Add (ns.,np,) to such that §2 is sorted by increasing
value of Ins, + mnp..
b) If |©2] > Nq, remove the first entry from €.

3) For every (nsg,np,) € S

, |P], if

a) Include in S¢ the first ns, vectors from S.
b) Include in Pc the first np, vectors from P.
¢) Simulate F' under Ry 1 with fault dropping.

4) Select the first pair (ns.,np,) € Q for which the fault
coverage is the highest.

For the pairs (ns,,np,) € €, the procedure performs fault
simulation with fault dropping of F' under Rk,1 using the first ns,
vectors from S to define Sc, and the first np, vectors from P to
define Pc. Of all the pairs in €2, the procedure selects the one where
Rk,1 yields the highest fault coverage.

IV. REDUCING SETS OF VECTORS

This section describes a software procedure that reduces the sets of
vectors S and P. The procedure accepts the sets S and P as well as
the cores Sc and Pc. It also accepts a number of functional capture
cycles K. The procedure removes vectors from S \ S¢ and P\ Pc
to reduce the number of bits for on-chip storage as well as increase
the fault coverage. To ensure that the fault coverage is increased, the

procedure selects the least effective vectors from S\ S¢ and P\ Pc
for removal. This allows it to focus on more effective vectors, and
thus increase the fault coverage. It reintroduces the vectors into S
and P if the fault coverage is reduced.

The core vectors in S¢ and Pc may be computed for a number
of functional capture cycles that is different from K. The procedure
first finds the tests based on S¢ and Pc using tests with 1 < k < K
functional capture cycles. For this purpose, the procedure simulates
F under Rk 1 with fault dropping. It finds a test set T¢, and a set of
faults Fc that are not detected by the core. Since the core will remain
intact as S and P are reduced, only the faults in F are considered
when attempting to remove vectors from .S and P.

Using the given sets S and P, the procedure performs fault
simulation with fault dropping of Fc under Ry 2, and computes
a test set T’k that includes Tc. The procedure stores the number of
detected faults in a variable denoted by nge:. The number of detected
faults will not decrease as S and P are reduced.

An iteration of the procedure consists of the following steps. The
procedure stores S and P in sets Sprev and Ppreo to ensure that it
can recover them. It then permutes S\ S¢ and P\ Pc randomly. The
permutation does not affect Rx 1. The goal is to obtain a different
set of tests Ry 2 in every iteration.

Using the permuted sets S and P, the procedure performs fault
simulation with fault dropping of F under Rk 2, and computes a
test set T’k that includes T¢. Based on Tk, it updates the number of
times each vector appears in Tx. As before, this number is denoted
by na(s;) or na(p;).

For a constant 0 < p < 1, the procedure removes from S\ Sc up to
p|S| scan vectors for which n4(s;) = 0. In addition, it removes from
P\ Pc up to p|P| scan vectors for which nq(p;) = 0. The removed
vectors are the least effective ones in S and P. Removing them is
likely to help the procedure focus on the more effective vectors, and
maintain or increase the fault coverage.

To check the effect on the fault coverage, the procedure performs
fault simulation with fault dropping of Fc under Rk 2. Let the
number of detected faults be mgetr. If Mget > Mget, the removal
of the vectors is accepted. The procedure assigns nger = Mdet-
If mget < nNdet, the procedure restores S and P by assigning
S = Sprev and P = Pprey.

The procedure performs a constant number, N;rgr, of iterations.
The procedure is summarized as Procedure 2.

Procedure 2: Reducing the sets S and P

1) Perform fault simulation with fault dropping of F' under R 1.
Compute a test set Tk, and assign Tc = Tk. Assign Fo = F.

2) Perform fault simulation with fault dropping of Fic under Rx 2.
Store the number of detected faults in nge:. Assign niter = 1.

3) Assign Sprev =S and Pprey = P.

4) Permute S\ Sc and P\ Pc randomly.

5) Perform fault simulation with fault dropping of Fc under R 2
using the permuted sets. Compute a test set Tk that includes
Tc. Update the number of times each vector s; € S and p; €
P appears in Tk.

6) Assign n, = 0. For j = |S¢|, |Sc|+ 1, ..., |[S] — 1, as long
as ny < p|Sprev|, if na(s;) = 0, remove s; from S and
increment 7.

7) Assign n,. = 0. For j = |Pc|, |Pc|+1, ..., |P| — 1, as long
as Ny < p|Pprev|, if na(p;) = 0, remove p; from P and
increment 7.

8) Perform fault simulation with fault dropping of Fic under Rx 2.
Store the number of detected faults in mgez.

9) If Myet > Ndet, asSIiZN Nger = Mdet. Else, assign S = Sprew,
P = Pyrev.

10) Assign Niter = Niter + 1. If Niter < NrrER, g0 to Step 3.

TABLE II
INCREASED FAULT COVERAGE FOR s5378

K |S| | P| s.a.
1 1625 122 99.671
1 1298 94 99.803
2 1298 94 99.912
2 971 67 99.978
3 971 67 99.978
3 598 46 100.000

Table II demonstrates the increase in the fault coverage that occurs
as less effective vectors are removed from .S and P. Table II is based
on benchmark circuit s5378 with the setup described in Section V.
For K =1, 2 and 3, the first (second) row for K shows the numbers
of vectors in S and P, and the stuck-at fault efficiency, before (after)
S and P are reduced. Table II demonstrates that, for a value of
K where the stuck-at fault efficiency is initially lower than 100%,
the removal of less effective vectors from S and P increases the
fault efficiency. Table II also demonstrates the increase in the fault
efficiency that occurs as K is increased.

V. EXPERIMENTAL RESULTS

The software procedure was applied to single stuck-at faults in
benchmark circuits.

The test set T, is a compact test set for single stuck-at faults. The
set of target faults F' consists of all the single stuck-at faults that are
detected by Ts.. The percentage of detected faults is referred to as
a fault efficiency (and not a fault coverage) since undetectable faults
are eliminated from F'. The software procedure is applied with the
following parameter values.

For a circuit with Ngy state variables, the number of scan chains
n and the length of a scan chain [are the smallest values such that
n =1 and nl > Ngv. A large number of short scan chains is also
used by test data compression methods. In the context of storage-
based LBIST, it keeps the storage requirements of S manageable.

Core vectors are computed using K = 1. The procedure for
reducing the sets of vectors is applied using K = 1, 2, ..., 8. With
K =1, the sets S, P, Sc and Pc are optimized for the application of
single-cycle tests. After removing vectors using K > 1, the procedure
benefits from the use of multicycle tests. These cases are compared
to demonstrate the importance of using multicycle tests.

The number of random tests for every value of k is Nr = 8192.
When computing core vectors, the procedure considers No = 64
options with a number of storage bits that does not exceed wB(Tsa),
for w = 0.0625. The value w = 0.0625 is small enough so as not
to limit the reduction of S and P, yet large enough to achieve a
high fault coverage. The best core is found within fewer than the last
Ngq = 64 options in €2, and a higher value of Nq is not needed.

In every iteration of Procedure 2, the procedure removes up to
p = .03125 of the vectors from S and P. This prevents the removal of
excessive numbers of vectors when the fault coverage is incomplete,
and allows the procedure to increase the fault coverage as it performs
additional iterations. The number of iteration is Nyrrr = 128. With
these values of p and Nrrer, each vector is considered for removal
approximately four times. Increasing Nirrr reduces the storage
requirements of .S and P, but also increases the computational effort
of the software procedure.

The use of multicycle tests has an advantage when considering the
detection of delay faults. To demonstrate this advantage, transition
faults are simulated under the tests in Rx 1 U Rk 2.

To demonstrate the possibility of combining the use of multicycle
tests with other approaches for increasing the fault coverage, several

TABLE III

EXPERIMENTAL RESULTS

circuit sV pi_ | K | tests func | sa trans |S| |P| bits ratio | ntime
§35932 1728 35 1 70 1.00 100.000 0.000 33 20 2086 0.059 3296.98
$35932 1728 35 2 44 1.75 100.000 71.800 33 20 2086 0.059 4645.66
aes_core 530 258 1 586 1.00 100.000 0.000 179 26 11004 0.067 374.22
aes_core 530 258 2 361 2.00 100.000 95.491 179 26 11004 0.067 568.72
systemcdes 190 130 1 106 1.00 100.000 0.000 26 17 2574 0.102 819.13
systemcdes 190 130 2 75 2.00 100.000 95.228 25 17 2560 0.101 1113.30
systemcdes.obs 190 130 5 39 5.00 100.000 95.770 14 16 2276 0.090 4199.81
systemcaes 670 258 1 190 1.00 100.000 0.000 372 15 13542 0.121 44417
systemcaes 670 258 2 153 2.00 100.000 86.735 121 15 7016 0.062 745.40
simple_spi 131 15 1 67 1.00 99.952 0.000 308 26 4086 0.777 588.71
simple_spi 131 15 2 57 1.96 100.000 68.848 244 21 3243 0.617 994.81
simple_spi 131 15 3 59 2.90 100.000 73.351 47 19 849 0.162 1468.12
simple_spi 131 15 7 49 6.55 100.000 74.188 34 19 693 0.132 6626.11
simple_spi.obs 131 15 8 47 7.96 100.000 78.110 29 19 633 0.120 10981.14
i2c 128 17 1 86 1.00 99.358 0.000 397 35 5359 0.821 277.23
i2c 128 17 2 78 1.94 100.000 63.380 337 28 4520 0.693 502.85
i2c 128 17 3 74 2.92 100.000 67.669 64 25 1193 0.183 800.27
i2c 128 17 7 72 6.61 100.000 68.415 38 25 881 0.135 3286.18
i2c.obs 128 17 7 60 7.00 100.000 71.865 35 26 862 0.132 3179.64
s5378 179 35 1 220 1.00 99.803 0.000 1298 94 21462 0.822 368.71
s5378 179 35 2 226 1.86 99.978 70.283 971 67 15939 0.611 774.79
s5378 179 35 3 229 2.66 100.000 71.180 598 46 9982 0.382 1534.58
s5378 179 35 4 229 3.53 100.000 72.229 342 46 6398 0.245 2700.51
s5378 179 35 5 239 4.38 100.000 71.426 179 46 4116 0.158 4260.12
s5378 179 35 8 236 7.02 100.000 71.237 129 46 3416 0.131 11466.29
$5378.0bs 179 35 7 198 6.40 100.000 75.008 929 37 2681 0.103 8906.49
s13207 669 31 1 417 1.00 98.986 0.000 5433 207 147675 0.861 160.38
s13207 669 31 2 376 1.89 99.897 73.769 5433 207 147675 0.861 325.66
513207 669 31 3 363 2.79 99.969 76.159 4938 186 134154 0.782 584.23
s13207 669 31 4 358 3.75 100.000 76.846 4633 174 125852 0.734 961.37
s13207 669 31 5 344 4.62 100.000 77.214 3707 136 100598 0.587 1471.14
s13207 669 31 6 351 5.53 100.000 77.548 1667 54 45016 0.262 2139.41
513207 669 31 7 355 6.51 100.000 77.756 538 15 14453 0.084 2864.87
s13207 669 31 8 360 7.44 100.000 78.102 475 13 12753 0.074 3629.56
spi 229 45 1 458 1.00 99.431 0.000 5791 380 109756 0.987 276.10
spi 229 45 2 373 1.96 99.738 62.166 5099 333 96569 0.868 632.12
spi 229 45 3 368 2.90 99.861 67.505 4489 291 84919 0.763 1194.78
spi 229 45 4 378 3.88 99.908 67.330 4348 281 82213 0.739 2016.47
spi 229 45 5 377 4.84 99.969 68.015 4348 281 82213 0.739 3089.11
spi 229 45 6 377 5.79 99.985 69.644 4348 281 82213 0.739 4446.67
spi 229 45 8 368 7.73 100.000 72.268 4080 263 77115 0.693 8085.39
spi.obs 229 45 8 347 7.86 100.000 81.697 387 116 11412 0.103 7712.57
bl4 247 33 1 172 1.00 88.045 0.000 4224 266 76362 0.821 296.50
bl4 247 33 2 181 1.88 89.038 61.478 3603 224 65040 0.700 965.22
bl4 247 33 3 157 2.73 93.759 67.747 3274 203 59083 0.636 1862.15
s15850 597 14 1 320 1.00 97.803 0.000 2726 106 69634 0.863 273.35
s15850 597 14 2 284 1.91 98.500 60.185 2399 91 61249 0.759 727.94
515850 597 14 3 301 2.83 98.924 60.948 1981 73 50547 0.627 1510.50
b20 494 33 1 248 1.00 92.664 0.000 5735 238 139759 0.878 275.77
b20 494 33 2 254 1.85 93.064 73.921 5212 215 126971 0.798 874.42
b20 494 33 3 237 2.81 96.605 76.778 4445 210 109165 0.686 1624.78
s38417 1636 28 1 618 1.00 97.530 0.000 4403 106 183491 0.904 190.54
s38417 1636 28 2 653 1.83 98.981 91.339 4265 102 177721 0.875 415.70
s38417 1636 28 3 675 2.68 99.507 93.936 3753 88 156337 0.770 674.13
wb_dma 523 215 1 186 1.00 99.362 0.000 1379 59 44402 0.912 364.04
wb_dma 523 215 2 187 1.89 99.582 60.069 1293 55 41564 0.853 827.78
wb_dma 523 215 3 191 2.80 99.714 61.235 1212 51 38841 0.797 1688.73
wb_dma.obs 523 215 3 191 2.85 99.857 63.771 1174 49 37537 0.771 1504.88
wb_dma.obs 523 215 5 174 4.67 99.901 64.289 1174 49 37537 0.771 4395.95
wb_dma.obs 523 215 8 183 7.61 99.901 64.594 1032 41 32551 0.668 12978.67
$9234 228 19 1 300 1.00 97.730 0.000 2143 134 36834 0.932 207.52
$9234 228 19 2 288 1.72 98.239 66.017 2076 129 35667 0.903 513.12
$9234 228 19 3 282 243 98.903 68.935 2011 124 34532 0.874 985.63
$9234.0bs 228 19 3 213 2.89 99.925 79.209 1770 108 30372 0.769 708.56
$9234.0bs 228 19 4 208 3.85 99.985 80.321 1460 87 25013 0.633 1162.00
$9234.0bs 228 19 5 194 4.79 100.000 80.833 1369 81 23443 0.593 1756.14
$9234.0bs 228 19 6 196 5.81 100.000 81.351 765 39 12981 0.328 2475.76
$9234.0bs 228 19 7 185 6.79 100.000 81.248 348 39 6309 0.160 3346.90
$9234.0bs 228 19 8 193 7.77 100.000 80.780 122 39 2693 0.068 4373.12

benchmark circuits are considered with observation points inserted
into them. In this case, the name of the circuit is followed by .obs.

The results are shown in Table III. Most of the circuits are
considered with 1 < K < 8. There is a row in Table III for every
value of K where the single stuck-at fault efficiency is increased,
or the storage requirements are reduced, satisfying the following
condition. As before, B(S, P) = l|S| + m/|P)| is the number of bits

for storing S and P, and B(T5s,) is the number of bits for storing the
stuck-at test set Tsq. A value of K is reported if B(S, P)/B(Tsa)
decreases below ..., 0.3, 0.2, 0.1. In addition, the last value of K
where the storage requirements are reduced is reported. For a circuit
with observation points only the results with the final value of K are
shown.

The circuits in Table III are arranged according to the value of K

where the fault efficiency reaches 100%, from low to high. This value
of K is denoted by K,. For the same value of K,, the circuits are
arranged according to the ratio B(S, P)/B(Tsqa), from low to high.
For the circuits at the end of Table III, only 1 < K < 3 is reported,
and the fault efficiency does not reach 100% for these values of K.
Thus, the circuits that appear later in Table III have more faults that
are difficult to detect. The circuits at the end of Table III are the ones
with the most difficult to detect faults, and 1 < K < 3 is used for
demonstrating the importance of multicycle tests. Observation points
are considered as well for several of these circuits.

In Table III, after the circuit name, column sv shows the number
of state variables and column pi shows the number of primary inputs.
Column K shows the value of K. Column tests shows the number
of tests in the test set Tx. Column func shows the average number
of functional capture cycles for a test in Tx. Column s.a. shows
the fault efficiency for stuck-at faults. Column ¢rans shows the fault
coverage for transition faults. Column |S| shows the number of scan
vectors in S. Column | P| shows the number of primary input vectors
in P. Column bits shows the number of bits for storing S and P,
B(S, P) = 1|S|+m|P|. Column ratio shows the number of bits for
storing S and P as a fraction of the number of bits for storing T,.
Column ntime shows the normalized runtime, where the cumulative
runtime of the software procedure is divided by the runtime for fault
simulation with fault dropping of Ri 2 using the initial sets S and
P, with S¢ = () and Pc = (). Under R 2, fault simulation is carried
out for Nr = 8192 random single-cycle tests.

The following points can be seen from Table III. The fault
efficiency for single stuck-at faults reaches 100% for most of the
circuits. It is close to 100% for the circuits at the end of Table III,
with the most difficult to detect faults.

For many of the circuits, the final ratio of storage requirements is
lower than 0.1. For the circuits that appear later in Table III, the faults
are more difficult to detect, and the increase in the fault efficiency
requires more of the vectors to be retained in S and P. Nevertheless,
reductions in storage requirements occur for these circuits as well.
These effects demonstrate the importance of using multicycle tests
for reducing the storage requirements.

The accidental transition fault coverage that occurs for multicycle
tests is another reason to use multicycle tests. The transition fault
coverage is typically higher for higher values of K.

The number of applied tests in Rx,1 URKk,2 is 2Nr K = 16384K,
and it increases with K. The number of tests in T’k that are effective
in detecting faults decreases as K 1is increased. This is consistent
with the effectiveness of multicycle tests for test compaction.

These effects are independent of the size of the circuit, and circuits
of different sizes show similar trends of reduced storage requirements
and increased fault coverages. The normalized runtime of the software
procedure does not increase with the size of the circuit, indicating
that the procedure scales similar to a fault simulation procedure.

VI. CONCLUDING REMARKS

This article suggested the use of multicycle tests as part of storage-
based logic built-in self test (LBIST). Multicycle tests are effective
for reducing the volume of test data that need to be stored since each
test detects more faults. As a result, fewer tests are needed, requiring
smaller numbers of scan and primary input vectors. A software
procedure was described to support this solution. Experimental results
for benchmark circuits demonstrated that, as the procedure reduces
the number of vectors that need to be stored, and the number of
clock cycles is increased, the fault coverage increases, and the storage
requirements decrease.

REFERENCES

[1] P. H. Bardell, W. H. McAnney and J. Savir, Built—In Test for VLSIT

Pseudorandom Techniques, Wiley Interscience, 1987.

S. Hellebrand, S. Tarnick, J. Rajski and B. Courtois, ”Generation of Vector

Patterns Through Reseeding of Multiple-Polynomial Linear Feedback

Shift Register”, in Proc. Intl. Test Conf., 1992, pp. 120-129.

[3] 1. Pomeranz and S. M. Reddy, ”A Storage Based Built-In Test Pattern

Generation Method for Scan Circuits Based on Partitioning and Reduction

of a Precomputed Test Set”, IEEE Trans. on Computers, Nov. 2002, pp.

1282-1993.

S. Pateras, “Security vs. Test Quality: Fully Embedded Test Approaches

are the Key to Having Both”, Intl. Test Conf., 2004, Panel P2.2, p. 1413.

S. Udar and D. Kagaris, "LFSR Reseeding with Irreducible Polynomials”,

in Proc. Intl. On-Line Testing Symp., 2007, pp. 293-298.

[6] R. S. Oliveira, J. Semiao, I. C. Teixeira, M. B. Santos and J. P. Teixeira,

”On-line BIST for Performance Failure Prediction under Aging effects in

Automotive Safety-critical Applications”, in Proc. Latin American Test

Workshop, 2011, pp. 1-6.

0. Acevedo and D. Kagaris, "Using the Berlekamp-Massey Algorithm to

Obtain LFSR Characteristic Polynomials for TPG”, in Proc. Intl. Symp.

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems,

2012, pp. 233-238.

[8] F. Reimann, M. Glas, J. Teich, A. Cook, L. Rodriguez Gomez, D. Ull, H.-
J. Wunderlich, P. Engelke and U. Abelein, ”Advanced Diagnosis: SBST
and BIST Integration in Automotive E/E Architectures”, in Proc. Design
Autom. Conf., 2014, pp. 1-9.

[9] S. U. Hussain, S. Yellapantula, M. Majzoobi and F. Koushanfar, ”"BIST-
PUF: Online, Hardware-Based Evaluation of Physically Unclonable Cir-
cuit Identifiers”, in Proc. Intl. Conf. on Computer-Aided Design, 2014,
pp. 162-169.

[10] R. Wang, K. Chakrabarty and S. Bhawmik, “Built-In Self-Test and
Test Scheduling for Interposer-Based 2.5D IC”, ACM Trans. on Design
Automation, Vol. 20, No. 4, Sep. 2015, Art. 58.

[11] F. Zhang, D. Hwong, Y. Sun, A. Garcia, S. Alhelaly, G. Shofner, L.
Winemberg and J. Dworak, “Putting Wasted Clock Cycles to Use: En-
hancing Fortuitous Cell-aware Fault Detection with Scan Shift Capture”,
in Proc. Intl. Test Conf., 2016 pp. 1-10.

[12] G. Mrugalski, J. Rajski, J. Solecki, J. Tyszer and C. Wang, “Trimodal
Scan-Based Test Paradigm”, IEEE Trans. on VLSI Systems, March 2017,
Vol. 25, No. 3, pp. 1112-1125.

[13] Y. Liu, J. Rajski, S. M. Reddy, J. Solecki and J. Tyszer, "Staggered
ATPG with Capture-per-cycle Observation Test Points”, in Proc. VLSI
Test Symp., 2018, pp. 1-6.

[14] O. E. Erol and S. Ozev, "Knowledge- and Simulation-Based Synthesis
of Area-Efficient Passive Loop Filter Incremental Zoom-ADC for Built-
In Self-Test Applications”, ACM Trans. on Design Automation, Vol. 24,
No. 1, Jan. 2019, Art. 3.

[15] I. Pomeranz, “Storage-Based Built-In Self-Test for Gate-Exhaustive
Faults”, IEEE Trans. on Computer-Aided Design, 2021.

[16] S. Y. Lee and K. K. Saluja, ”Test Application Time Reduction for
Sequential Circuits with Scan”, IEEE Trans. on Computer-Aided Design,
Sept. 1995, pp. 1128-1140.

[17] L Pomeranz and S. M. Reddy, Static Test Compaction for Scan-Based
Designs to Reduce Test Application Time”, in Proc. Asian Test Symp.,
1998, pp. 198-203.

[18] X. Lin and R. Thompson, “Test Generation for Designs with Multiple
Clocks”, in Proc. Design Autom. Conf., 2003, pp. 662-667.

[19] G. Bhargava, D. Meehl and J. Sage, ”Achieving Serendipitous N-Detect
Mark-Offs in Multi-Capture-Clock Scan Patterns”, in Proc. Intl. Test
Conf, 2007, Paper 30.2.

[20] I. Park and E. J. McCluskey, “Launch-on-Shift-Capture Transition
Tests”, in Proc. Intl. Test Conf., 2008, pp. 1-9.

[21] E. K. Moghaddam, J. Rajski, S. M. Reddy and M. Kassab, ”At-Speed
Scan Test with Low Switching Activity”, in Proc. VLSI Test Symp., 2010,
pp. 177-182.

[22] D. Erb, K. Scheibler, M. Sauer, S. M. Reddy and B. Becker, ”"Multi-cycle
Circuit Parameter Independent ATPG for Interconnect Open Defects”, in
Proc. VLSI Test Symp., 2015, pp. 1-6.

[23] I. Pomeranz, ”A Multi-Cycle Test Set Based on a Two-Cycle Test Set
with Constant Primary Input Vectors”, IEEE Trans. on Computer-Aided
Design, July 2015, pp. 1124-1132.

[24] T. McLaurin and I. P. Lawrence, “Improving Power, Performance and
Area with Test: A Case Study”, in Proc. Intl. Test Conf., 2018, pp. 1-10.

[25] I. Pomeranz, “Test Compaction Under Bounded Transparent-Scan”, in
Proc. VLSI Test Symp., 2019.

[2

—

[4

=

[5

—_

[7

—

