Storage-Based Logic Built-In Self-Test with
Variable-Length Test Data

Irith Pomeranz
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907, U.S.A.
E-mail: pomeranz@ecn.purdue.edu

Abstract—Storage-based logic built-in self-test (LBIST) ap-
proaches store deterministic test data on-chip, and use them for
test application. The applied tests are closer to deterministic tests
than the pseudo-random tests that are typically produced by
LBIST. In earlier approaches, the stored test data consisted
of scan vectors of equal length. This article describes a storage-
based LBIST approach where the stored test data have variable
length. Instead of storing a scan vector directly, the approach
described in this article stores a sequence that, when repeated,
produces a scan vector. The use of variable-length sequences that
are shorter than scan vectors reduces the storage requirements.
The article describes a software procedure for computing a set of
variable-length sequences for a set of target faults. Experimental
results are presented for single stuck-at and single-cycle gate-
exhaustive faults in benchmark circuits to demonstrate the
discussion.

I. INTRODUCTION

Logic built-in self-test (LBIST) is typically based on the
use of pseudo-random test data that can be produced efficiently
on-chip [1]-[17]. The use of LBIST enhances security by
avoiding the transfer of test data to and from a chip [5].
Another important advantage of LBIST is that it allows in-
field testing to be carried out [18]-[22].

However, pseudo-random test data are limited in the fault
coverage they can achieve. This is typically addressed by
the insertion of test-points. Storage-based LBIST approaches
address this issue by storing deterministic test data on-chip,
and using them for the application of tests that are closer to
deterministic tests [3], [16], [17]. Such tests provide better
fault coverage, and require fewer or no test-points. In particu-
lar, the tests can be tailored to more complex defect behaviors
and aging effects that need to be addressed by in-field testing.

With storage-based LBIST it is important to limit the
amount of deterministic test data stored on-chip. For this
purpose, it is important to reuse the same test data for the
application of different tests. The approach described in [3]
stores two types of test data: (1) for every scan chain it stores
a set of scan vectors from a deterministic test set, and (2)
it stores combinations of indices of scan vectors to use for
forming tests. A combination includes one index for every

The work was supported in part by NSF Grant No. CCF-2041649.
978-1-6654-5938-9/22/$31.00 (©2022 IEEE

scan chain, and corresponds to a test. Without storing which
combinations of indices to use, the number of applied tests
will be excessive. Therefore, storage of indices is necessary
under this approach.

The approach described in [16] stores scan vectors from
a deterministic test set as a single set. It applies two types
of tests: (1) tests referred to as random are formed by using
scan vectors that are pseudo-randomly selected by LFSRs,
and (2) tests referred to as deterministic are formed using
stored indices of scan vectors, similar to [3]. The number of
combinations of indices that need to be stored is reduced by
the use of pseudo-random combinations that do not require
storage of indices.

In [3], [16] and [17], the stored test data consist of scan
vectors of equal length. This article describes a storage-based
LBIST approach where the stored test data have variable
length. Instead of storing a scan vector directly, as in [3],
[16] and [17], the approach described in this article stores
a sequence that, when repeated, produces a scan vector. For
example, the sequence 011 produces the scan vector 01101101
for a scan chain of length eight when it is repeated to produce
eight bits.

The use of variable-length sequences as suggested in this
article reduces the storage requirements since entire scan
vectors do not need to be stored, and the stored sequences can
be significantly shorter than scan vectors. This is illustrated by
Figure 1, where the dashed box shows a memory for storing
N scan vectors of length L. Inside the dashed box are N
stored sequences that are shorter than scan vectors. Figure 1
is explained in more detail later.

The article describes a software procedure for computing a
set of stored sequences for a set of target faults. The procedure
accepts the following information produced by the procedure
from [16]. (1) A set of scan vectors S. For a circuit where
the length of the longest scan chain is L, all the scan vectors
in S are L-bit vectors. (2) A number of tests R where a test
is obtained by a pseudo-random combination of scan vectors
from S. The corresponding set of tests is denoted by T;.4nq. (3)
A set of tests Ty, Where a test is described by a combination
of indices of scan vectors from S. These combinations need
to be stored on-chip in addition to S.

The software procedure described in this article replaces the



|
|
|
|
|
|
|
|
| -

Ly,
| —
: SN-1
1 Sa
1] 53 ooo
1 51| %2

So
| _
LFSRO log, N, MUXO0 ! scan chain 0 o o o
Y Y
LFSR1 log, N, MUX1 L scan chain 1 oo o

Fig. 1. On-chip test generation logic.

scan vectors in S with sequences whose lengths are bounded
by L. The storage requirements are reduced in two ways. (1)
When a scan vector of length L is replaced with a sequence
of length [ < L, the storage requirements are reduced by
L — [ bits. (2) A by-product of the replacement of the scan
vectors with shorter sequences is that some of the tests in T,
become unnecessary. When fewer combinations of indices
need to be stored, the storage requirements are reduced.

The software procedure described in this article limits the
search space for the set S in several ways. (1) Except for
sequences of lengths one, two and three, where all the possible
sequences are considered, longer sequences are obtained by
truncating scan vectors from S. Other options can be con-
sidered by the same procedure. (2) The procedure does not
attempt to reduce the number of sequences in S relative to the
number of scan vectors initially included in it. The reduction in
storage requirements is achieved only by reducing the lengths
of the sequences, and eliminating stored combinations of
sequence indices that become unnecessary. (3) The procedure
does not attempt to compute new combinations of sequences
that yield effective tests to add to the ones in Tg;p;.

Even with these restrictions, the procedure reduces the stor-
age requirements for benchmark circuits significantly relative
to the fixed-length solution of [16].

The article is organized as follows. Section II describes the
on-chip test generation logic and the set of tests it applies to
the circuit. Section III describes the software procedure for
computing the set S of stored sequences. Section IV presents
experimental results for benchmark circuits.

II. ON-CHIP TEST GENERATION LOGIC

The on-chip test generation logic for storage-based LBIST
with variable-length sequences is illustrated by Figure 1. For
simplicity, Figure 1 shows only the logic needed for applying
tests using pseudo-random combinations of sequences. This
case is described first.

TABLE I
FINITE-STATE MACHINE
NS, Z

apayl = apay = apay = apay =
PS 00 01 10 11
Py Py, 0 P;,0 P, Py, 1
Py X, X Py, 1 P5,0 P, 1
Py X, X X, X Py, 1 Ps3,0
Ps X, X X, X X, X Py, 1

The circuit in Figure 1 has K scan chains, two of which are
shown in the figure. The maximum length of a scan chain is
denoted by L. For simplicity of discussion, all the scan chains
are assumed to be padded such that their length is exactly L.
Padding is not needed in the implementation of the circuit.

The on-chip test generation logic consists of a memory
that holds a set S = {sg,$1,...,Sy—1} of variable-length
sequences. The length of a sequence s; € S is denoted by
l; < L. The dashed box in Figure 1 shows the memory needed
if L-bit scan vectors are stored instead of shorter sequences
as suggested in this article.

In addition, for scan chain 0 < k£ < K, a linear-feedback
shift-register referred to as LF SRk provides the index of a
sequence from S. A multiplexer referred to as MU Xk selects
the sequence to be shifted into scan chain k.

A test t; consists of K scan vectors, t; = (t; 0, Lily oo
t; k—1). The vector t;j is an L-bit scan vector for scan
chain k, where 0 < k < K. During on-chip test generation,
suppose that LEF'SRE holds the index of s; ;. In this case, the
scan vector ¢;j, of the applied test ¢; is determined by s; 1.
Specifically, a counter cycles through s; ; to produce L bits
for scan chain k.

A finite-state machine can be used for implementing the
memory from Figure 1, and the counters needed for test
application. Such a finite-state machine is shown in Table I
for the case where N = 4, sg = 0, s; = 01, s = 101
and s3 = 1101. In Table I, PSS stands for the present-state
of the finite-state machine, NS stands for its next-state, and
Z stands for its primary output vector. An X is used for an
entry (next-state or primary output vector) that can be specified
arbitrarily. The inputs a( and a; in Table I represent the values
assigned by the LF'SRs to the multiplexer select inputs. With
L = 8, the scan vectors produced for aga; = 00, 01, 10 and
11 are vg = 00000000, v; = 01010101, ve = 10110110 and
vs = 11011101, respectively.

The number of tests formed by the on-chip test generation
logic using pseudo-random combinations of sequences from
S is denoted by R. The set of R tests formed based on S is
denoted by T}.4nq- The set T}qnq is not stored on-chip. The
LF'SRs produce pseudo-random indices of sequences, and the
sequences are used for forming tests.

To apply a set Ty, of tests formed using specific indices of
sequences, a memory for storing the indices needs to be added
to Figure 1. An additional multiplexer for every scan chain
needs to select between the LF'SR and the memory holding
Tstor- In this case, application of R tests formed by pseudo-
randomly selecting sequences is followed by application of



assign @ =0 ‘

1

assign p =1 ‘
1
}47

assign /[,y = 1
assigni =0 ‘

'

if I; > 4, apply basic step
with @, p, [, and s;

|

assigni=i+1;i<N?

yes

J o

yes assign lygy = ligrg + 15
Ligre < L?

[ o

assign p=p+1; yes
storage requirements decreased?

[ o

assigna = o+ 1; ¢ <2? ‘

yes +

‘ stop ‘

targ

Fig. 2. Software procedure.

tests formed from indices stored in T,

III. SOFTWARE PROCEDURE FOR SEQUENCE
COMPUTATION

The software procedure for computing the set S of variable-
length sequences is described in this section. The overall
structure of the procedure is illustrated by Figure 2. A basic
step of the procedure is illustrated by Figure 3.

A. Overall Structure of the Procedure

The procedure uses the solution from [16] as an initial
solution. The initial solution consists of a set of scan vectors
St = {50, 81,..., SN—1}, a set T of R tests obtained
from pseudo-random combinations of scan vectors, and a
set Tt of tests obtained from stored combinations of scan
vectors. For 0 < ¢ < N, a scan vector s; € S is considered
as a sequence of length I; = L.

In general, the software procedure results in /; < L. When
l; < L, a scan vector is obtained from s; by repeating s; to
produce L bits. The resulting scan vector is denoted by v;.
For the initial solution, v; = s; for 0 <7 < N.

The set of target faults is denoted by F'. Fault simulation
with fault dropping of F' under 7™, and T:7%! yields a set
of detected faults denoted by D.

During the software procedure, the set of sequences is S,
and the sets of tests applied to the circuit are 7}.4,,q and Ts;op -
Initially, S = S, T,qpq = T and Typor = T, The
goal of the software procedure is to maintain the detection of
the faults in D while reducing the lengths of the sequences

in S to reduce the storage requirements. As S evolves, the

if 1,4y = 1, assign s; = 0;
else, if [, = 2, assign 5; = 01;
else, if [, = 3, assign 5; = 001;
else, keep only the first /,,,, bits in s;

'

simulate D under tests based on E,,,;;
if o =1, simulate D under 7,,,,4;
simulate D under tests based on Tipy;

if all the faults in D are detected, stop

'

if no additional sequences exist,
restore s; and stop;
compute the next sequence s;

Fig. 3. Basic step.

set Th.qanq 1S recomputed to include R tests formed by pseudo-
random combinations of sequences. The combinations are the
same as in 77" since the same on-chip test generation logic
is used for producing the indices. However, different tests are
formed when S is modified relative to S and different tests
may be effective in detecting faults from D.

The set T, also uses the same stored combinations of
indices as Tt but the tests are different when S changes.
Unnecessary tests are removed from T, to further reduce
the storage requirements.

To reduce the lengths of the sequences in S, the proce-
dure considers the sequences in S iteratively. An iteration is
described by three parameters, « = O or 1, p = 1, 2, ...,
and liqrg = 1, 2, ..., L — 1. With given values of «, p and
ltarg, the procedure considers every sequence s; € S such
that I; > liqrg. The procedure attempts to replace s; with a
sequence of length l;4,q. By increasing l;q,4 gradually, the
procedure gives a higher priority to shorter sequences.

As p is increased, the procedure iterates with 1 < l;4,g < L
as long as it can reduce the storage requirements.

The parameter « is introduced to control the computational
effort as discussed later. Until then, the description corresponds
to @ = 1, and « is not mentioned in the description of the
procedure.

The storage requirements are determined by S and Tsor-
The number of bits required for S'is > {l;: 0<i < N}. A
test in T, requires K indices of sequences to be stored, one
for every scan chain. An index requires logs(N) bits. The
total number of bits required for Tsior iS |Tstor|Kloga(N).
The total number of bits is B = > {l; : 0 < i < N} +
|Tstor| K log2(N). For the initial solution with S and Tt
the storage requirements are denoted by B,

B. Basic Step

A basic step of the procedure is applied to a sequence s; € S
in iteration p > 1 with a target length l;4,¢ < ;.

In general, there are 2‘ters sequences of length ltarg, and
any one of them can replace s;. For small values of l¢,g it is
possible to consider all the sequences that yield different scan



TABLE II
REDUCED SEQUENCES
P ltarg Si Vi
0 0 01011101 01011101
1 1 0 00000000
1 2 01 01010101
1 3 010 01001001
1 4 0101 01010101
1 5 01011 01011010
1 6 010111 01011101
1 7 0101110 01011100
TABLE III
TRANSLATING TESTS WITH STORED INDICES
k Sik tik
0 01011101 01011101
1 11110100 11110100
0 010 01001001
1 11110100 11110100

vectors. This option is discussed later. To allow large values
of liarg to be considered, the sequence s; is modified into a
sequence of length ;.4 by keeping only its first l;4. bits.
Only one option is considered in this case.

Table II shows an example for a circuit with L = 8.
The initial scan vector s; is shown in the row with p = 0
and liqrg = 0. With p = 1 and lz4,y = 1, 5; = 0. The
corresponding scan vector is v; = 00000000.

If this sequence is not accepted, s; will be considered with
ltarg = 2. In this case, s; = 01, yielding the scan vector
v; = 01010101.

For 3 < liarg < 7, s; is truncated as shown in Table II to
obtain a sequence of length l;4,, with the corresponding scan
vector v;.

It is interesting to note that s; = 0101 obtained for
ltarg = 4 yields the same scan vector as s; = 01 obtained
for liqrg = 2. It is possible to check for this occurrence and
avoid considering ly4ry = 4 in this case. It is also interesting
to note that l;4,4 = 6 yields the initial scan vector, and larger
values of l;4,4 do not need to be considered.

Every option for s; obtained with p and /4,4 is evaluated
as follows. The procedure simulates the faults in D under
the tests in T,.4ng and Tgior. The set Tpqng is formed by
pseudo-random combinations of sequences from .S, using the
modified set S. As mentioned earlier, T} ,,q4 uses the same
combinations of indices as Tj;’;ﬁi, but the tests are different
since the sequences in S are different.

To construct Ty, every test t; € T is translated into a
test that uses the same stored indices, but with the modified
set S.

An example is shown in Table III. The circuit has K = 2
scan chains of length L = 8. The test t; = (t; 0,t;1) € TVt
is shown in the first two rows of Table III. The sequences s; o
and s; 1 in the first two rows are the 8-bit scan vectors from
Simit Suppose that s; o is replaced with 010, replacing the
scan vector v; o with 01001001. The resulting test is the one
shown in the next two rows of Table III.

If the modified test ¢; does not detect any faults from D, it
is not added to T;,,.. This allows the number of tests in Ti;,,

to be lower than that in 77,
The procedure accepts the replacement of s; if 7}.,,4 and
Tsior together detect all the faults in D, and the number of

bits B is reduced. Otherwise, s; is restored to its earlier value.

C. Computational Effort

To measure the computational effort of the procedure, the
runtime required for simulating the initial solution is denoted
by po. This includes the simulation of R tests from 77", that
are formed using pseudo-randomly selected indices of scan
vectors, followed by tests from T that are formed using
stored indices of scan vectors.

A basic step requires fault simulation of 7.4, and T,
which has a runtime that is similar to pg. For 1 < liqrg <
L, the procedure performs at most one basic step for every
one of IV sequences in .S. Considering all the values of l;4rg
and all the sequences in S, the procedure performs at most
N(L — 1) basic steps. With p iterations, the number of basic
steps is pN (L — 1). Accordingly, the runtime is expected to
be pN(L — 1)pg. The normalized runtime is defined as the
runtime divided by pg, or pN (L — 1).

To speed up the procedure, two experimental observations
are used as discussed next.

The first observation is that there is a small subset of faults
that typically remain undetected in basic steps where not all
the faults from D are detected. Thus, a small subset of faults
prevents the replacement of sequences. If these faults are
simulated earlier, and remain undetected, other faults do not
need to be simulated in the same basic step.

The second observation used for reducing the computa-
tional effort is that the same pseudo-random combinations
of sequences are typically effective in detecting target faults,
even when the sequences in S change. To take advantage of
this observation, pseudo-random combinations from 77!, that
contribute to fault detection are stored in a set denoted by
E,4na- The set E,qyq is computed in a preprocessing step by
performing eight-detection fault simulation of 7", "and stor-
ing in F, 4,4 the pseudo-random combinations that contribute
fault detections. During the procedure, before simulating all
the tests in 1}.,,4, the combinations stored in F,.,,q are used
for forming tests, and these tests are simulated first.

The procedure uses E,.,,4 in two ways. When o = 0, only
tests based on F, ., are simulated. When o« = 1, tests based
on E,.,,q are simulated first, followed by all the tests in T}.4,4-
The procedure is run first with o = 0, and then with o = 1.
With every value of «, the procedure iterates using p = 1, 2,
vnand 1 < lygrg < L.

With the reduced computational effort obtained for oo = 0,
it is possible to consider more than one option for reducing
the length of a sequence. The procedure takes advantage of
this possibility to consider all the possible sequences for 1 <
ltarg < 3. Of all the options, the procedure selects the first
one that allows all the faults in D to be detected.

IV. EXPERIMENTAL RESULTS

The results of the software procedure are presented in this
section. The setup is as in [16] to allow the solution from [16],



TABLE IV
EXPERIMENTAL RESULTS

circuit inp K a P S ave stor bits ratio s.a. g.exh ntime
bl4 289 17 0 0 414 17.00 | 2181 340731 1.000 95.421 100.000 1.00
b14 289 17 0 2 414 1495 | 2175 338964  0.995 95.421 100.000 13.45
bl4 289 17 | 1 414 14.92 | 2167 337727  0.991 95.421 100.000 536.80
$5378 225 15 0 0 193 15.00 0 2895 1.000 99.131 100.000 1.00
85378 225 15 0 3 193 11.25 0 2171 0.750 99.131 100.000 302.35
85378 225 15 1 2 193 10.85 0 2095 0.724 99.131 100.000 3600.49
s15850 625 25 0 0 1448 25.00 95 62325 1.000 96.682 100.000 1.00
$15850 625 25 0 3 1448 19.41 87 52030 0.835 96.682 100.000 6294.34
515850 625 25 1 2 1448 19.08 57 43304 0.695 96.682 100.000 | 26133.68
838584 1521 39 0 0 453 39.00 55 36972 1.000 95.852 100.000 1.00
$38584 1521 39 0 4 453 21.52 47 26245 0.710 95.852 100.000 2353.43
$38584 1521 39 1 2 453 20.04 36 21716 0.587 95.852 100.000 | 11262.38
tv80 400 20 | O 0 287 20.00 134 29860 1.000 99.751 100.000 1.00
tv80 400 20 | O 3 287 14.29 112 24262 0.813 99.763 100.000 218.58
tv80 400 20 1 3 287 12.89 69 16120 0.540 99.776 100.000 4520.03
$1423 100 10 | O 0 70 10.00 1 770 1.000 99.076 100.000 1.00
81423 100 10 | O 2 70 6.43 1 520 0.675 99.076 100.000 31.54
$1423 100 10 1 1 70 6.06 0 424 0.551 99.076 100.000 420.30
$13207 729 27 0 0 737 27.00 0 19899 1.000 98.462 100.000 1.00
813207 729 27 0 4 737 15.82 0 11659 0.586 98.462 100.000 5080.82
513207 729 27 1 2 737 14.86 0 10953 0.550 98.462 100.000 | 26276.92
simple_spi 169 13 0 0 47 13.00 0 611 1.000 | 100.000  100.000 1.00
simple_spi 169 13 0 2 47 8.02 0 377 0.617 | 100.000  100.000 34.43
simple_spi 169 13 1 2 47 5.85 0 275 0.450 100.000  100.000 507.99
b07 64 8 0 0 30 8.00 3 360 1.000 99.915 100.000 1.00
b07 64 8 0 2 30 5.07 2 232 0.644 99.915 100.000 13.10
b07 64 8 1 3 30 3.97 1 159 0.442 99.915 100.000 253.08
wb_dma 784 28 0 0 266 28.00 22 12992 1.000 | 100.000  100.000 1.00
wb_dma 784 28 0 3 266 18.30 17 9152 0.704 | 100.000  100.000 491.09
wb_dma 784 28 1 2 266 16.65 5 5689 0.438 | 100.000  100.000 5087.86
i2c 169 13 0 0 60 13.00 5 1170 1.000 | 100.000  100.000 1.00
i2c 169 13 0 3 60 8.50 1 588 0.503 100.000  100.000 79.36
i2c 169 13 1 1 60 8.10 0 486 0.415 100.000  100.000 492.37
b04 81 9 0 0 30 9.00 1 315 1.000 99.851 100.000 1.00
b04 81 9 0 2 30 5.60 0 168 0.533 99.851 100.000 8.83
b04 81 9 1 2 30 3.57 0 107 0.340 99.851 100.000 163.58
spi 289 17 0 0 241 17.00 1 4233 1.000 99.985 100.000 1.00
spi 289 17 0 4 241 9.05 0 2181 0.515 99.985 100.000 229.99
spi 289 17 1 3 241 4.74 0 1143 0.270 99.985 100.000 2493.95
usb_phy 121 11 0 0 43 11.00 0 473 1.000 | 100.000  100.000 1.00
usb_phy 121 11 0 2 43 291 0 125 0.264 | 100.000  100.000 10.98
usb_phy 121 11 1 1 43 1.95 0 84 0.178 | 100.000  100.000 96.97
sasc 144 12 0 0 112 12.00 0 1344 1.000 | 100.000  100.000 1.00
sasc 144 12 0 3 112 3.44 0 385 0.286 | 100.000  100.000 42.58
sasc 144 12 | 2 112 1.89 0 212 0.158 100.000  100.000 283.65
des_area 400 20 | O 0 431 20.00 0 8620 1.000 100.000  100.000 1.00
des_area 400 20 | O 4 431 6.42 0 2765 0.321 100.000  100.000 175.27
des_area 400 20 1 4 431 2.09 0 902 0.105 100.000  100.000 2943.86
5641 64 8 0 0 27 8.00 24 1176 1.000 | 100.000  100.000 1.00
5641 64 8 0 2 27 5.41 14 706 0.600 | 100.000  100.000 11.86
5641 64 8 1 5 27 3.67 0 99 0.084 | 100.000  100.000 380.28
systemcdes 324 18 0 0 224 18.00 0 4032 1.000 | 100.000  100.000 1.00
systemcdes 324 18 0 4 224 2.58 0 579 0.144 | 100.000  100.000 21.43
systemcdes 324 18 1 1 224 1.44 0 323 0.080 | 100.000  100.000 124.34
$9234 256 16 0 0 221 16.00 264 37328 1.000 93.475 100.000 1.00
$9234 256 16 0 2 221 13.47 241 33824 0.906 93.475 100.000 69.71
59234 256 16 1 18 221 5.76 0 1272 0.034 93.475 100.000 9512.94
835932 1764 42 0 0 444 42.00 0 18648 1.000 89.809 100.000 1.00
$35932 1764 42 0 4 444 1.97 0 876 0.047 89.809 100.000 733.79
835932 1764 42 1 2 444 1.25 0 555 0.030 89.809 100.000 7917.07

with fixed-length scan vectors, to be used as an initial solution
for the procedure described in this article.

Specifically, a circuit has K scan chains of length L, with
K = L, to ensure a large number of short scan chains, for
which storage of scan vectors is feasible.

The set of target faults consists of stuck-at faults and
detectable single-cycle gate-exhaustive faults. Accordingly, the
coverage metric for gate-exhaustive faults is referred to as a
fault efficiency.

The LBIST logic follows the implementation illustrated

by Figure 1. Its size is determined by the number of storage
bits required for S and T

The results are shown in Table IV. The first row for
every circuit describes the initial solution from [16]. The
second (third) row describes the final solution obtained by
the procedure described in this article with @ = 0 (o = 1).

After the circuit name, column inp shows the number of
inputs. Column K shows the number of scan chains. Column
« shows the value of o. Column p shows the iteration. Column
S shows the number of sequences in S. Column ave shows



the average length of a sequence in S. Column stor shows
the number of tests in T;,,. Column bits shows the number
of storage bits required for S and Ty, which is B
for the initial solution from [16], and B for the solution
obtained by the procedure described in this article. Column
ratio shows the ratio B/B". The circuits are arranged
from high to low value of this ratio. Column s.a. shows the
single stuck-at fault coverage. Column g.exh shows the single-
cycle gate-exhaustive fault efficiency. Column ntime shows
the normalized runtime.

The following points can be seen from Table IV. By using
variable-length sequences, the procedure described in this
article reduces the average length of a sequence in S such that
it is significantly lower than L. As a by-product, it also reduces
the number of tests in T, that require storage of sequence
indices. Overall, this reduces the number of bits required for
on-chip test generation.

There are large variations in the results for different circuits
depending on the ability to use sequences shorter than L for
producing scan vectors.

Much of the reduction in the storage requirements is
achieved using o = 0, with significantly reduced computa-
tional effort compared to o = 1. In addition, after the sequence
lengths are reduced with o = 0, fewer options remain to
be considered with @ = 1, and the computational effort for
a = 1 is reduced. The use of @ = 1 is important for achieving
additional reductions in the storage requirements.

The normalized runtime of the software procedure is sig-
nificantly smaller than the bound pN (L — 1) since complete
fault simulation is avoided when o = 0, and in many cases
when a sequence is unacceptable with both values of a.

In addition, the normalized runtime of the software proce-
dure is similar for circuits of different sizes. This indicates that
the procedure scales similar to a fault simulation procedure.

V. CONCLUDING REMARKS

This article considered a storage-based logic built-in self-
test approach. Earlier approaches stored scan vectors from
a deterministic test set, and used combinations of stored
scan vectors to form tests on-chip. The main contribution
of the article is to suggest that, instead of storing equal-
length scan vectors, it is possible to store variable-length
sequences from which scan vectors can be obtained. The
article described a software procedure for computing a set
S of stored sequences. The procedure starts from a solution
with fixed-length sequences that are equal to scan vectors. It
reduces the lengths of the sequences in an iterative process.
Experimental results were presented for benchmark circuits
to demonstrate the ability of the procedure to reduce the
storage requirements compared with a fixed-length solution
considering stuck-at and single-cycle gate-exhaustive faults.

REFERENCES

[1] P. H. Bardell, W. H. McAnney and J. Savir, Built — In Test for
V LSI Pseudorandom Techniques, Wiley Interscience, 1987.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]
(17]
[18]

[19]

[20]

[21]

[22]

N. A. Touba and E. J. McCluskey, "Bit-fixing in Pseudorandom Se-
quences for Scan BIST”, in IEEE Trans. on Computer-Aided Design,
April 2001, Vol. 20, No. 4, pp. 545-555.

I. Pomeranz and S. M. Reddy, A Storage Based Built-In Test Pattern
Generation Method for Scan Circuits Based on Partitioning and Reduc-
tion of a Precomputed Test Set”, in IEEE Trans. on Computers, Nov.
2002, pp. 1282-1993.

H. Takahashi, Y. Tsugaoka, H. Ayano and Y. Takamatsu, "BIST Based
Fault Diagnosis Using Ambiguous Test Set”, in Proc. Symp. on Defect
and Fault Tolerance in VLSI Systems, 2003, pp. 89-96.

S. Pateras, ”Security vs. Test Quality: Fully Embedded Test Approaches
are the Key to Having Both”, in Proc. Intl. Test Conf., 2004, Panel P2.2,
p. 1413.

M. Abramovici, C. E. Stroud and J. M. Emmert, "Online BIST and
BIST-based Diagnosis of FPGA Logic Blocks”, in IEEE Trans. on VLSI
Systems, Dec. 2004, Vol. 12, No. 12, pp. 1284-1294.

A. B. Kahng and S. Reda, "New and Improved BIST Diagnosis
Methods from Combinatorial Group Testing Theory”, in IEEE Trans.
on Computer-Aided Design, March 2006, Vol. 25, No. 3, pp. 533-543.
L.-T. Wang, X. Wen, S. Wu, H. Furukawa, H.-J. Chao, B. Sheu, J. Guo
and W.-B. Jone, "Using Launch-on-Capture for Testing BIST Designs
Containing Synchronous and Asynchronous Clock Domains”, in IEEE
Trans. on Computer-Aided Design, Feb. 2010, Vol. 29, No. 2, pp. 299-
312.

R. S. Oliveira, J. Semiao, I. C. Teixeira, M. B. Santos and J. P. Teixeira,
”On-line BIST for Performance Failure Prediction under Aging Effects
in Automotive Safety-critical Applications”, in Proc. Latin American
Test Workshop, 2011, pp. 1-6.

Y. Sato, H. Yamaguchi, M. Matsuzono and S. Kajihara, "Multi-Cycle
Test with Partial Observation on Scan-Based BIST Structure”, in Proc.
Asian Test Symp., 2011, pp. 54-59.

M. E. Imhof and H. Wunderlich, ”Bit-Flipping Scan - A Unified
Architecture for Fault Tolerance and Offline Test”, in Proc. Design,
Automation & Test in Europe Conf., 2014, pp. 1-6.

S. U. Hussain, S. Yellapantula, M. Majzoobi and F. Koushanfar, "BIST-
PUF: Online, Hardware-Based Evaluation of Physically Unclonable
Circuit Identifiers”, in Proc. Intl. Conf. on Computer-Aided Design,
2014, pp. 162-169.

R. Wang, K. Chakrabarty and S. Bhawmik, “Built-In Self-Test and Test
Scheduling for Interposer-Based 2.5D IC”, in ACM Trans. on Design
Automation, Vol. 20, No. 4, Sep. 2015, Art. 58.

M. Agrawal, K. Chakrabarty and B. Eklow, A Distributed, Reconfig-
urable, and Reusable BIST Infrastructure for Test and Diagnosis of 3-
D-Stacked ICs”, in IEEE Trans. on Computer-Aided Design, Feb. 2016,
Vol. 35, No. 2, pp. 309-322.

C. Shiao, W. Lien and K. Lee, A Test-per-cycle BIST Architecture with
Low Area Overhead and no Storage Requirement”, in Proc. Intl. Symp.
on VLSI Design, Automation and Test, 2016, pp. 1-4.

I. Pomeranz, “Storage-Based Built-In Self-Test for Gate-Exhaustive
Faults”, in IEEE Trans. on Computer-Aided Design, 2021.

I. Pomeranz, “’Storage-Based Logic Built-In Self-Test with Multicycle
Tests”, in IEEE Trans. on Computer-Aided Design, 2021.

A. H. Baba and S. Mitra, "Testing for Transistor Aging”, in Proc. VLSI
Test Symp., 2009, pp. 215-220.

Y. Sato, “Circuit Failure Prediction by Field Test - A New Task of
Testing”, in Proc. Intl. Symp. on Defect and Fault Tolerance in VLSI
Systems, 2010, pp. 69-70.

S. Jin, Y. Han, H. Li and X. Li, ”Unified Capture Scheme for Small
Delay Defect Detection and Aging Prediction”, in IEEE Trans. on VLSI
Systems, May 2013, Vol. 21, No. 5, pp. 821-833.

A. Sivadasan, R. J. Shah, V. Huard, F. Cacho and L. Anghel, "NBTI
Aged Cell Rejuvenation with Back Biasing and Resulting Critical Path
Reordering for Digital Circuits in 28nm FDSOI”, in Proc. Design,
Automation & Test in Europe Conf., 2018, pp. 997-998.

S. Wang, T. Aono, Y. Higami, H. Takahashi, H. Iwata, Y. Maeda and
J. Matsushima, ”Capture-Pattern-Control to Address the Fault Detection
Degradation Problem of Multi-cycle Test in Logic BIST”, in Proc. Asian
Test Symp., 2018, pp. 155-160.



