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We revisit the celebrated Bayesian persuasion setting and examine how well the Sender 
can perform when ignorant of the Receiver’s utility. Taking an adversarial approach, we 
measure the signaling scheme performance via (additive) regret over a single persuasion 
instance. We focus on Receiver with two actions: adoption and rejection, assuming that 
Sender aims to persuade Receiver to adopt.
We show that while Sender’s total ignorance of Receiver’s utility is extremely harmful to 
her, assuming that Sender just knows Receiver’s ordinal preferences over the states of nature 
upon adoption suffices to guarantee a surprisingly low regret even when the number of 
states tends to infinity. Moreover, we exactly pin down the minimum regret that Sender 
can guarantee in this case. We further show that such a positive result is impossible under 
the alternative performance measure of a multiplicative approximation ratio.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian persuasion and applications Since the seminal paper of Kamenica and Gentzkow (2011), the model of Bayesian 
persuasion – also called information design – has been extensively studied in economics, computer science and operational 
research (for recent surveys, see Dughmi (2017); Kamenica (2019); Bergemann and Morris (2019); Candogan (2020)). The 
model considers an informed Sender who knows the state of nature, and an uninformed Receiver who does not know the 
state, but takes an action that affects both Receiver’s and Sender’s utilities. Sender has the ability to commit, before learning 
the state, to an information revelation policy called a signaling scheme. The main question of interest is: what is the optimal 
Sender’s utility, and what scheme should Sender choose to achieve this utility?

One of the fundamental assumptions underlying Bayesian persuasion is that Sender perfectly knows Receiver’s utility, 
and she can use this knowledge in her persuasion efforts. This assumption is too demanding in some circumstances. In 
the oft-cited words of Nobel Laureate Robert Wilson, “I foresee the progress of game theory as depending on successive 
reduction in the base of common knowledge required to conduct useful analyses of practical problems” Wilson (1987) (see 
also Hayek, 1945; Scarf, 1958).

Settings of interest We consider a setting with n states of nature, an arbitrary prior distribution over them and a binary-
action Receiver whose possible actions are adoption and rejection. Sender aims to persuade Receiver to adopt – i.e., Sender’s 
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utility is 1 if Receiver adopts and 0 otherwise.1 In particular, we study a state-independent Sender’s utility. As a leading ex-
ample, let us look at an interaction between a seller of a product – Sender – and a potential buyer – Receiver – and assume 
that the unknown state captures some characteristics of the product. In practice, the seller might be, indeed, unaware of 
the buyer’s utility as a function of these characteristics.

The robust approach A natural way to address Sender’s uncertainty is the robust approach – a.k.a. the adversarial approach
or the prior-free approach. The goal is to design signaling schemes that perform robustly well, that is – perform well for 
all Receiver’s utilities, even when an adversary is allowed to choose the worst case utility for Receiver. The adversarial lens 
has the potential to provide insights on issues such as: (a) How harmful can it be for Sender to be unaware of Receiver’s utility? 
(b) What information about Receiver’s utility is sufficient to enable “reasonably good” persuasion? (c) How should Sender approach 
persuading Receiver if Receiver’s utility is unknown? We shall return to these questions in Subsection 1.2.

Main result We prove that even when the number of states n tends to infinity, it is enough for Sender to know only the 
ordering of the states according to Receiver’s utilities upon adoption to guarantee a surprisingly low regret over a single 
persuasion instance, where the regret is the difference between Sender’s optimal expected utility had she known Receiver’s 
utility function and her actual expected utility. In the seller-buyer example, the assumption of Sender’s ordinal knowledge 
of Receiver’s preferences is natural when the state is the product’s quality. Moreover, we find a simple explicit formula for 
the optimal regret (Theorem 3.6). Upon normalizing the regret to belong to [0,1], the optimal regret turns out to be at most 
1/e.

1.1. Related work

Bayesian persuasion has many applications besides our leading example, which may include criminal justice (Kamenica 
and Gentzkow, 2011), information management in organizations (Dworczak and Martini, 2019), security (Xu et al., 2015; 
Rabinovich et al., 2015), routing (Bhaskar et al., 2016), recommendation systems (Mansour et al., 2016), auctions (Emek et 
al., 2012; Bro Miltersen and Sheffet, 2012), voting (Cheng et al., 2015; Alonso and Câmara, 2016), and queuing (Lingenbrink 
and Iyer, 2019). In these applications and others, Sender might be unsure of Receiver’s exact incentives. Common robust 
approaches are:

1. Regret minimization. It compares the performance of a signaling scheme when Sender does not know the Receiver’s utility 
function to the performance of an optimal scheme with the knowledge of Receiver’s utility by considering the difference
between the optimal utilities in the two cases – the (additive) regret. Attributed to the classic work of Savage (1951) on 
decision theory, it is also the leading paradigm in online machine learning (Shalev-Shwartz and Ben-David, 2014). Recent 
examples in economic contexts are Arieli et al. (2018) (information aggregation) and Guo and Shmaya (2019a) (monopoly 
regulation).

2. Adversarial approximation. It is similar to the previous one, but the comparison is by considering the correspond-
ing ratio. It is the leading paradigm in approximation algorithms (Vazirani, 2003), partially due to it being scale-free. 
In economic contexts, adversarial approximation underlies the well-developed research line on prior-independent auc-
tions (Dhangwatnotai et al., 2015; Talgam-Cohen, 2020) and their sample complexity (Cole and Roughgarden, 2014) 
(see Roughgarden and Talgam-Cohen, 2019 for a survey). Another example is Hurwicz and Shapiro (1978) (sharecropping 
contracts).

3. Minimax. It measures the absolute performance of a signaling scheme with no knowledge of Receiver’s utility function; this 
approach has no benchmark.2 The minimax approach is attributed to the scholarship of Wald (1950). Recent applications 
in economics include auctions (Bandi and Bertsimas, 2014; Carroll, 2017; Gravin and Lu, 2018; Bei et al., 2019) and 
contracts (Carroll, 2015; Dütting et al., 2019) (see the comprehensive survey of Carroll (2019)).

In this paper, we mainly focus on the first approach of regret minimization. Our work is connected to Dworczak and Pavan 
(2020), who study the standard minimax approach to better capture the best policy for Sender. In Subsection 4.1, we also 
study adversarial approximation. We leave the minimax approach for future research.3

Our motivation is very similar to that of Castiglioni et al. (2020), whose interesting work studies Bayesian persuasion in 
an online learning framework, with the goal of relaxing the assumption that Sender knows Receiver’s utility; our approach 
is complementary to theirs. In their model, Sender repeatedly faces Receiver with a non-binary action, whose type is chosen 
by Adversary at each round from a finite set of possibilities. Their regret notion is with respect to a best-in-hindsight single 

1 The binary-action Receiver is a fundamental case in Bayesian persuasion studied in many works – two recent examples are Kolotilin et al. (2017); Guo 
and Shmaya (2019b).

2 Note that the name of this approach is slightly misleading, as all three robust approaches have a minimax flavor, and the difference is in what is being 
optimized within the minimax expression.

3 In our setting, there is not much Sender can do under the minimax approach without further assumptions (see Section 4). It goes well with Savage 
(1972) highlighting the “extreme pessimism” of the minimax approach compared to regret minimization (Chapters 9.8 and 13.2); see Wikipedia contributors 
(2020) for an example in which regret is less pessimistic than minimax.
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signaling scheme. In contrast, we minimize the regret over a single persuasion instance with respect to the best scheme 
tailored to that instance. We consider a Receiver with a quite general class of (continuum-many) possible utilities, focusing 
on a binary-action case.4

Recently, the persuasion literature considers robustness to different ingredients of the persuasion model. Hu and Weng 
(2021); Dworczak and Pavan (2020) study robustness of persuasion with respect to private information that Receiver might 
have. Inostroza and Pavan (2018); Li et al. (2020); Mathevet et al. (2020); Morris et al. (2020); Ziegler (2020) consider per-
suasion with multiple receivers and study robustness with respect to the strategic behavior of the receivers after observing 
their signals.

1.2. Our results

We study the following three settings:

• Arbitrary utilities, with a completely ignorant Sender, who has no information on Receiver’s utility. In our seller-buyer 
example, it represents a seller that is totally ignorant of customer’s preferences over the characteristics – e.g., when the 
state is the product’s color.

• Monotonic utilities, with Sender knowing that Receiver’s utility upon adoption is monotonic as a function of the state. This 
assumption arises naturally when the state reflects possible qualities of a certain product.

• Multidimensional monotonic utilities, with the state representing the qualities of several attributes (dimensions) of a prod-
uct. We assume that Receiver’s utility upon adoption is monotonic in each dimension and focus on a constant number of 
attributes.

Results for arbitrary vs. monotonic utilities Our adversarial analysis shows that Sender cannot hope for a nontrivial bound 
on her regret for arbitrary utilities with a large number of states (Theorem 3.5). In contrast, even if the number of states 
tends to infinity, the regret remains quite low (at most 1/e) in the monotonic utility case (Theorem 3.6). These two results 
answer to questions (a) and (b) from the robust approach introduction – while it might be very harmful for Sender to be 
unaware of Receiver’s utility, knowing Receiver’s ordinal preferences over the states suffices to persuade Receiver “reasonably 
well”. It highlights monotonicity as the distinguishing property among settings in which Sender can persuade and those in 
which she should seek additional information on Receiver before approaching him. Coming back to question (c) – how 
should Sender persuade Receiver without knowing his utility – our positive results are constructive. In particular, the idea 
of “pooling together” the highest-utility states – i.e., sending the same signal realization in them – is useful not only in 
standard persuasion, in which such threshold policies are known to be optimal (Kolotilin, 2015; Renault et al., 2017), but 
also for regret minimization. It makes our work fall within the “classic” theme of the robust mechanism design literature, by 
which well-known mechanisms have robustness properties – e.g. linear contracts (Carroll, 2015) and simultaneous ascending 
auctions (Milgrom, 2000). Our ignorant Sender should randomize the way she pools together the states to achieve the 
minimal regret, leading to a signaling scheme with continuum of signals. It stands in a sharp contrast to optimal policies in 
the standard persuasion model, in which binary-signal policies suffice. Several works on robust persuasion discover a similar 
phenomenon, including: Dworczak and Pavan (2020); Hu and Weng (2021), considering robustness to Receiver’s exogenous 
sources of information; Perez-Richet and Skreta (2022), focusing on robustness to a state falsification; and Kosterina (2022), 
analyzing robustness to Receiver’s prior.

Further results In Subsection 3.3, we study multidimensional states, assuming that Receiver’s utility is monotonic in every 
dimension separately; each dimension represents an attribute of a product. Focusing on a constant number of attributes k, 
we provide a positive result for product priors by upper-bounding the regret in terms of k. However, as a corollary from the 
arbitrary utility analysis, the regret for general priors might approach 1 as the number of possible quality levels grows to 
infinity, even for k = 2.

In Subsection 4.1, we consider the alternative adversarial approximation approach. We establish that all our negative 
results immediately translate to this approach, and even for monotonic utilities – Sender can robustly achieve only a factor 
that is logarithmic in the inverse of the prior probability of the highest-utility state. In particular, when this prior tends to 
zero, the guaranteed fraction tends to zero as well.

Our techniques Robust persuasion defines a zero-sum game between Sender and an adversary (see Section 2). As both 
players have a rich set of strategies (signaling schemes vs. adversarial utility functions), it is unclear how to find the game 
value. Our main result (Theorem 3.6) uses the ordinal knowledge of states to reduce the complex game to a simpler one 

4 Using functional analysis and convexity arguments, one can prove that for two states of nature, the optimal regret for Receiver with arbitrarily many 
actions (even continuum) when Sender knows Receiver’s ordinal preferences over the states is upper-bounded by the optimal regret for a binary-action Re-
ceiver with the Sender knowing Receiver’s ordinal preferences. The knowledge of the ordinal preferences over the states for two states and arbitrarily many 
actions means that Adversary must ensure that Sender’s indirect utility function (Kamenica and Gentzkow, 2011) is monotonic in the posterior probability of 
one of the states.
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in which each player chooses a threshold real number. Without the ordinal knowledge, getting a positive result requires 
complex analysis; in Proposition 3.4, we achieve this via geometric arguments and analytic geometry.

2. Our setting

We start by describing the classic Bayesian persuasion setting with a single Sender and a single Receiver. We impose 
two restrictions on the standard model: (1) Receiver has binary actions, which captures choosing whether to adopt a certain 
offer or not; (2) Sender’s utility is state-independent, which captures caring only about whether Receiver adopts the offer, 
regardless of the circumstances.

Prior, posterior and signaling scheme Let � = [n] = {1, ...,n} be the state space, and let ω ∈ � be the true state. Denote 
by �(�) the set of all the probability distributions over �. For every q ∈ �(�) and i ∈ �, let qi be the probability the 
distribution q assigns to the state i. Define the support of q to be supp(q) := {i ∈ � : qi > 0}. Let μ ∈ �(�) be the prior 
distribution on � – or just the prior. Assume that μ is publicly known. Furthermore, assume w.l.o.g. that the probability of 
every state is strictly positive – that is, μi > 0 for every i ∈ �.5 Therefore, μ is an interior point of �(�).

The signaling scheme is a stochastic mapping π : � → S , where S is a (finite or infinite) set of signals. Sender com-
mits to a signaling scheme π and then observes the true state ω; Receiver does not see ω. Upon learning ω, Sender 
transmits to Receiver, according to π(ω), a signal realization s ∈ S . After receiving s, Receiver updates his belief re-
garding the state distribution to a posterior distribution on � – or just the posterior – denoted by p(s) ∈ �(�), where 
pi(s) = Pr[ω = i | s] = Prs′∼π(i)

[
s′=s

]
μi

Pr[s] . Only the posterior distribution is important to the persuasion instance outcome, rather 
than the signal realization itself.

We slightly abuse the notation and use π also to denote the distribution over the elements of S induced by the signaling 
scheme π considering the prior μ. That is, for every s0 ∈ S:

Pr
s∼π

[s = s0] =
∑
i∈�

μi · Pr
s′∼π(i)

[
s′ = s0

]
.

Remark 2.1. It is well-known (see, e.g., Blackwell, 1953; Aumann et al., 1995) that a distribution D over Receiver’s posteriors 
p ∈ �(�) is implementable by some signaling scheme π if and only if Ep∼D [p] = μ. We refer to this condition as Bayes-
plausibility.

Utilities and adoption In our setting, Receiver has a binary action space; that is, Receiver’s action a is selected from {0,1}. 
Call action 1 adoption and action 0 rejection. Sender’s utility is a function us : {0,1} → [0,1] of Receiver’s action. We assume 
us(a) := a, i.e., Sender wants Receiver to take action 1 (to adopt). Thus, the expected Sender’s utility equals the probability 
that Receiver adopts.

Receiver’s utility is a function ur : � × {0,1} → R of the state and Receiver’s action. W.l.o.g., we normalize Receiver’s 
utility ur(i,0) to zero for every i ∈ �. That is, Receiver’s utility for choosing to reject is always 0, regardless of the state.

Given the posterior p(s), Receiver adopts if and only if6:

Eω′∼p(s)
[
ur
(
ω′,1

)]≥ 0. (1)

Definition 2.2. The adoption region A = A(ur) ⊆ �(�) is the set of posteriors that lead to Receiver’s adoption: A :={
p ∈ �(�) :Eω′∼p

[
ur
(
ω′,1

)]≥ 0
}

.

For a signaling scheme π and Receiver’s utility function ur , denote Sender’s expected utility over π by:

u(π, ur) := Pr
s∼π

[p(s) ∈ A(ur)].

Objective Given a Bayesian persuasion setting with (known) ur as Receiver’s utility, the standard goal of the designer 
(Sender) is to compute a signaling scheme π∗ = π∗(ur) that maximizes Sender’s expected utility: π∗ ∈ arg maxπ {u(π, ur)}. 
In our binary-action setting, computing the optimum π∗ is a well-understood problem. One general approach to tackle the 
problem is by first expressing us as a function of the posterior, then taking the concavification and evaluating it at the point 
representing the prior (Kamenica and Gentzkow, 2011).7

5 Otherwise, one can eliminate i from �.
6 Note that we assume here that Receiver brake ties in Sender’s favor. All our results are applicable for other tie-braking rules.
7 Note that us equals the indicator function 1p(s)∈A ; since A is a half-space, the concavification of us can be computed and characterized.
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2.1. Threshold signaling schemes

We now introduce a class of signaling schemes that can be used to optimally solve the setting with a binary-action 
Receiver in the standard model with Receiver’s utility function known to Sender. Interestingly, this class plays a key part 
in our results for the adversarial model with unknown utility. We begin by describing the knapsack method for solving a 
persuasion problem; then we formulate the class of signaling schemes that arise from this approach.

The knapsack method In the special case of binary actions for Receiver, an alternative to the general concavification method 
is a greedy approach that reduces the problem to a fractional knapsack instance.8

The states are treated as the knapsack items, and their prior probabilities according to μ are the weights. Recall that 
every state induces utility ur(i,1) to Receiver upon adoption. Sender’s goal is to add to the knapsack a maximum-weight 
set of states (possibly – their fractions), while keeping Receiver’s expected utility non-negative (the expectation is over 
a random state drawn with probability proportional to its weight in the knapsack). The knapsack instance can be solved 
greedily by sorting the states i ∈ � according to ur(i,1) in a non-increasing order, and then continuously adding probability 
masses of states to the knapsack as long as the expected Receiver’s utility stays non-negative. Such an approach has been 
adopted by Kolotilin (2015); Renault et al. (2017).

An equivalent way to present the knapsack approach is as follows. Let i1, ..., in be an ordering of the states s.t. ur(in,1) ≥
ur(in−1,1) ≥ ... ≥ ur(i1,1). One can interpret the state space equipped with the prior distribution as drawing uni-
formly a real number in [0,1] – called the real-valued state – s.t. for every m ∈ [n], all the realizations in the segment (∑

l<m μil ,
∑

l≤m μil

]
correspond to the state im .9 Now we define the notion of a threshold signaling scheme.

Definition 2.3. For every t ∈ [0,1], the t-threshold signaling scheme is a binary signaling scheme that reveals whether the 
real-valued state is below t or not.

Equivalently, for t ∈ (0,1], in the state space �, let j ∈ [n] be s.t. t ∈
(∑

l< j μil ,
∑

l≤ j μil

]
. Then the t-threshold signaling 

scheme is a binary-signal scheme with a high and a low signal, s.t. the high signal is sent with probability 1 if ω > i j , with 

probability 
∑

l≤ j μil
−t

μi j
if ω = i j , and with probability 0 if ω < i j . For t = 0, the 0-threshold signaling scheme is the scheme 

that reveals no information.

Given a threshold signaling scheme, we say of the states for which it sends the high (respectively, low) signal that they 
are pooled together. The knapsack approach is based on the following fact:

Fact 2.4 (See, e.g., Kolotilin, 2015; Renault et al., 2017). Every persuasion problem with a binary Receiver’s action space admits an 
optimal x-threshold signaling scheme for some x. Moreover, for every y ≥ x, Receiver adopts after observing the high signal in the 
y-threshold signaling scheme.

2.2. Robust approach

We depart from the standard model by assuming from now on that Receiver’s utility function ur is unknown to Sender. 
Besides Sender and Receiver, we introduce a third agent called Adversary. Given μ and π , Adversary aims to set Receiver’s 
utility ur in a way that makes the performance of π as bad as possible. Thus, Sender aims to design a signaling scheme 
with a worst-case guarantee – it should perform well for all possible Receiver’s utility functions ur .

Regret definition Here we formalize the (additive) regret minimization setting on which we mostly focus in this paper, as 
mentioned in Section 1. Fix a prior distribution μ. Consider π∗(ur), a signaling scheme that maximizes Sender’s expected 
utility in the standard persuasion setting in which Receiver’s utility ur is known; denote by u∗(ur) the expected Sender’s 
utility π∗(ur) yields. In our adversarial setting, given any signaling scheme π ignorant to ur , Adversary aims to set ur in 
a way that maximizes Sender’s regret – that is, maximizes the difference between what Sender could have gotten had she 
known ur and what she gets with π . In other words, Adversary tries to punish Sender for not choosing π∗(ur) as much as 
possible. The regret of π is, thus, defined as follows.

Definition 2.5. The regret of a signaling scheme π is Reg(π) := supur
{u∗(ur) − u(π, ur)}.

Sender aims to set π in a way that minimizes Reg(π); it yields the following definition of the regret of the given 
persuasion setting – that is, the optimal regret for the given prior distribution and Sender’s utility function.

8 In the knapsack problem, given are several items, each one having a weight and a value, and the goal is to pick a value-maximizing subset of the items 
subject to a weight capacity constraint; in the fractional knapsack problem, one is also allowed to pick fractions of items.

9 To demonstrate this, consider n = 4 states i1, i2, i3, i4 with prior μ(i1, i2, i3, i4) = (0.2,0.3,0.1,0.4). Then, e.g., if the real-valued state is 0.55, the 
corresponding state from � is i3.
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Definition 2.6. The regret of the setting is Reg := infπ Reg(π).

The scale of regret Note that we always have 0 ≤ Reg ≤ 1. Consider the following possibilities.

1. Reg = 0, i.e., Sender can ensure utility u∗(ur) without knowing ur . Such a result is “too good to be true”, as indicated by 
our results.

2. 0 
 Reg 
 1 even when the problem becomes large (the number of states grows to infinity), i.e., the additive loss from 
not knowing Receiver’s utility is strictly less than 1. Such a result can be viewed as positive.

3. Reg → 1 as the problem becomes large; that is, in the worst case, Sender might lose her entire utility from not knowing 
ur , as her expected utility might approach 0 while she could have gotten utility approaching 1 upon knowing ur . Such a 
result is negative. One can also study the rate of convergence of Reg to 1 as a measure of how negative the result is.

Zero-sum game perspective Our setting can be analyzed via the following two-player zero-sum game G . The players are 
Adversary and Sender. Adversary’s pure strategies are mixtures over the functions {ur}, while Sender’s pure strategies are 
the signaling schemes {π}.10 We remark that our proofs do not rely on the fact that G has a value. Indeed, to bound Reg
from below by some bound v , we either describe explicitly a mixed strategy of Adversary ensuring Reg(π) ≥ v for every π , 
or show that for every choice of π by Sender, Adversary can ensure a regret of v . To bound Reg from above by some bound 
v , we explicitly describe a signaling scheme π s.t. Reg(π) ≤ v . However, for completeness, we mention that Sion’s Minimax 
Theorem (Sion, 1958) holds in our setting, since the objective function is linear and lower semi-continuous as a function of 
π , and is linear and continuous as a function of the mixture over Receiver’s utility functions. Therefore, while we define Reg
as infπ supur

{u∗(ur) − u(π, ur)} = infπ sup�(ur)
{u∗(ur) − u(π, ur)}, it also equals sup�(ur)

infπ {u∗(ur) − u(π, ur)}. That is, if 
Sender can ensure a regret of at most v after observing Adversary’s strategy, then she has a signaling scheme that ensures 
v even without knowing Adversary’s strategy.

3. Regret minimization

We consider three cases as described in Section 1: first, the case in which Sender has no information at all about 
Receiver’s utility (Subsection 3.1); second, the case in which Sender knows that Receiver’s utility upon adoption is monotonic 
as a function of the state (Subsection 3.2); finally, a case with a multidimensional state space and a Sender who knows that 
Receiver’s utility is monotonic in each dimension (Subsection 3.3). As mentioned in Subsection 1.2, in the first case we 
obtain a negative asymptotic result, while in the second case we have a positive result; in the third case, we get a positive 
result for product priors; however, a negative asymptotic result similar to the one from the first case holds for general 
priors.

3.1. Arbitrary utilities

Denote by RegARB the regret for arbitrary utilities. That is, in Definition 2.5, the supremum is taken over all Receiver’s 
utilities. In the motivating example of selling a product from Section 1 – arbitrary utilities mean that the seller knows 
absolutely nothing about the buyer’s preferences among products. In this subsection, we start by characterizing the minimum 
regret for n = 2 states, as well as for n = 3 states with a uniform prior μ – in both cases, RegARB = 1

2 . Unfortunately, such 
constant regret cannot be expected in general for arbitrary utilities. Indeed, our main result of this section shows that for 
any n ≥ 2, the regret satisfies 1 − 2√

n
≤ RegARB ≤ 1 − 1

4n2 . In particular, RegARB →n→∞ 1. Intuitively, the more states there 
are, the less certainty about Receiver’s incentives Sender may have.

Observation 3.1. With arbitrary utilities, the set of all possible choices of A(ur) by Adversary coincides with the set of all the polytopes 
obtained by cutting �(�) by a hyperplane.

This observation follows from Equation (1), as for a fixed ur , the condition Eω′∼p(s)
[
ur
(
ω′,1

)]= 0 specifies a hyperplane 
in �(�) (see Fig. 1 for illustration).

For a binary state space we have the following result.

Proposition 3.2. For n = 2 and any prior μ: RegARB = 1
2 .

Proof. Let us show first that RegARB ≤ 1
2 . For simplicity of notation, we identify a prior/posterior with the probability it 

specifies for ω = 1. Assume w.l.o.g. that μ1 ≤ 1
2 . Consider a binary-signal scheme π that induces the posteriors 0 and 2μ1

with equal probability of 1
2 .11 If [0,2μ1] ∩ A �= ∅, then either 0 ∈ A or 2μ1 ∈ A (or both); thus, the adoption probability 

10 Note that a mixture over signaling schemes is a signaling scheme.
11 π is Bayes-plausible, as the expected posterior probability of ω = 1 equals μ1; therefore, by Remark 2.1, it indeed specifies a signaling scheme.
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A

Eω′∼p(s)
[
ur
(
ω′,1

)]= 0

ω = 1 ω = 2

ω = 3

Fig. 1. An illustration of the adoption region for arbitrary utilities and n = 3.

upon π is at least 1
2 , and Reg(π) ≤ 1 − 1

2 = 1
2 . Otherwise, A has the form [t,1] for some t > 2μ1. By Markov’s inequality 

applied to p(s), Prs∼π∗ [p(s) ∈ A] ≤ μ1
t < 1

2 , and again Reg(π) ≤ 1
2 , as desired. Therefore, the regret is at most 1

2 for every 
fixed ur ; thus, it also holds for every mixture over Receiver’s utilities.

Conversely, let us show that for every signaling scheme π , Adversary can pick a Receiver’s utility function ur – or, 
equivalently, an adoption region A – s.t. the regret would be at least 1

2 .
Indeed, fix π . If Prs∼π [p(s) ∈ [0,μ1]] ≤ 1

2 , then Adversary can set A = [0,μ1]: on the one hand, u∗ = 1 is achieved (if 
Sender knows A) by the no-information scheme in which p(s) = μ1 with probability 1, as μ1 ∈ A; on the other hand, 
u(π, ur) = Prs∼π [p(s) ∈ A] = Prs∼π [p(s) ∈ [0,μ1]] ≤ 1

2 . Hence, the regret is at least 1
2 , as desired.

It remains to consider the case in which Prs∼π [p(s) ∈ [0,μ1]] > 1
2 .

Set ε := 1
2 −Prs∼π [p(s) ∈ (μ1,1]] ∈ (

0, 1
2

]
and let Adversary take A =

[
μ1

1−ε ,1
]

; note that 0 < μ1 <
μ1

1−ε ≤ μ1

1− 1
2

= 2μ1 ≤ 1, 

as 0 < ε ≤ 1
2 and 0 < μ1 ≤ 1

2 . Then u∗ ≥ 1 − ε , as upon knowing A, Sender could have chosen a signaling scheme inducing 
p(s) = 0 with probability ε and p(s) = μ1

1−ε with probability 1 − ε (note that this scheme is, indeed, Bayes-plausible). Since 
u(π, ur) = Prs∼π [p(s) ∈ A] ≤ Prs∼π [p(s) ∈ (μ1,1]] = 1

2 − ε , the regret is at least (1 − ε) − ( 1
2 − ε

)= 1
2 , as needed. �

Remark 3.3. One can show that RegARB ≥ 1
2 for any n and any μ using similar construction to n = 2.

Indeed, for a given π , Receiver should pick a hyperplane H passing through μ that does not pass through any atom in 
π besides, possibly, μ. Let �1 be any of the two closed polytopes into which H divides �(�). If Prs∼π [p(s) ∈ �1] ≤ 1

2 , then 
by setting A = �1 Adversary ensures that Sender’s expected utility is at most 1

2 , while the no-information scheme could 
have achieved utility of 1; and if Prs∼π [p(s) ∈ �1] = 1

2 + ε for some ε ∈ (
0, 1

2

]
, then setting A to be a closed subset of 

�(�) \ �1 specified by a close enough hyperplane H ′ to H ensures that while u(π, ur) ≤ Prs∼π [p(s) /∈ �1] = 1
2 − ε , Sender 

could have achieved utility of 1 − ε had she known A by an appropriate binary-signal scheme.
Another case in which we characterize the optimal persuasion is that of ternary state space and uniform prior.

Proposition 3.4. For n = 3 and μ = ( 1
3 , 1

3 , 1
3

)
: RegARB = 1

2 .

Although Proposition 3.4 deals with a specific case, its proof is not trivial at all. The explicit characterizations of the regret 
in case of ternary state space with non-uniform prior and in case of any larger number of states remain open problems. The 
formal proof of Proposition 3.4 is relegated to Appendix A. We briefly describe here the main proof ideas.

Proof idea of Proposition 3.4. Note that �([3]) is a 2-dimensional object. Each of its points is uniquely representable as a 
convex combination of its extreme points; the weights in this representation – a.k.a. the Barycentric coordinates of the point 
– specify the probability masses the corresponding posterior assigns to the states.

By Remark 3.3, Adversary can ensure a regret of at least 1
2 . To achieve such a regret, Adversary partitions the simplex 

�([3]) into two regions by drawing a line through the prior μ (which is the centroid of the simplex). Thereafter, Adversary 
sets A to be the half-space that has a weight not above 1

2 according to π (for simplicity, here we ignore the possibility that 
π has an atom on μ).

The above argument can be applied for every line passing through μ which does not contain atoms of π . This hints at 
the desirable distributions of posteriors for a regret-minimizing π : it should assign an equal weight of 1

2 for every half-
space that contains μ on the boundary. Another useful intuition from Proposition 3.2 is that it is worthwhile for Sender to 
“push” the weight to the boundary. This brings us to the (somewhat educated) guess of considering the unique distribution 
that is supported on the boundary of �([3]), {(p1, p2, p3) ∈ �([3]) : p1 = 0 or p2 = 0 or p3 = 0}, which assigns probability 
weight of exactly 1

2 to every half-space containing μ as a boundary point. The complicated part of the proof is showing 
that this signaling scheme indeed guarantees a regret of 1

2 to Sender. Namely, to show that Adversary cannot get a regret 
greater than 1

2 by choosing the adoption region to be a half-space that does not contain μ. This follows from geometric 
arguments and direct computations using analytic geometry. �
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1
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1
μn

RegMON

0

1
e

Fig. 2. The regret as a function of the prior probability of the highest state.

The fact that the regret does not increase from binary to ternary state space is somewhat misleading. The following 
theorem provides a negative result for large state spaces and an arbitrary prior.

Theorem 3.5. For every number of states n and any prior μ: 1 − 2√
n

≤ RegARB ≤ 1 − 1
4n2 .

Theorem 3.5 indicates that not knowing Receiver’s utility in large state spaces might be very costly for Sender. For 
every signaling scheme, there are Receiver’s utilities for which adoption occurs with probability almost 0, while knowing 
Receiver’s utility allows Sender to get adoption probability of almost 1. This negative result is not very surprising, as we 
focus here on the most general setting and assume nothing on Receiver’s utility. Now we describe the proof idea; the full 
proof appears in Appendix B.

Proof idea of Theorem 3.5. We prove that RegARB ≤ 1 − 1
4n2 by describing an explicit signaling scheme ensuring such a 

regret bound. The more interesting part of the theorem is RegARB ≥ 1 − 2√
n

. To show this part, we consider a specific 
scenario in which Sender knows that most states, ∼ (

n − √
n
)
, are normal – they yield a constant negative Receiver’s utility 

upon adoption. Among the remaining ∼ √
n states, a single good state with very high utility is hidden, while the other 

states are bad; for clarity of exposition, assume that for bad states Receiver’s utility upon adoption is −∞. Had Sender 
known which state is the good one, she could have pooled it together with all the normal states; it would have been 
incentive-compatible for Receiver to adopt after receiving the signal that the state is not bad.

However, Adversary selects the state types uniformly at random; in particular, our ignorant Sender does not know which 
state is good. The support of any posterior distribution either with high probability contains a bad state or with high 
probability does not contain the good state, which would cause Receiver to reject. �
3.2. Monotonic utilities

Let RegMON be the regret for monotonic utilities. That is, in Definition 2.5, the supremum is over all Receiver’s utilities 
that are non-decreasing in the state upon adoption: ur(n,1) ≥ ur(n − 1,1) ≥ ... ≥ ur(1,1). In this setting, we prove a positive 
result that provides a full explicit characterization of the regret, for every number of states n and for every prior μ. We 
saw in the previous subsection that n plays a significant role for arbitrary utilities. In particular, as the number of states 
increases, so does the uncertainty of Sender in the arbitrary utility case. Hence, one might expect the regret to always 
increase with the number of states. Surprisingly, our result shows that this intuition is wrong: Sender’s partial knowledge 
on the monotonicity of Receiver’s utility turns out to be sufficient to have as good guarantees as for a binary state space.

Recall that μn is the prior probability of state n; for monotonic utilities, Receiver gets the (weakly) largest utility upon 
adoption in this state. The following theorem gives a full characterization of RegMON in terms of μn . In particular, RegMON
does not depend on n. The optimal regret as a function of μn is demonstrated in Fig. 2.

Theorem 3.6. For every number of states n and every prior μ = (μ1, ...,μn):

RegMON =
{

1
e if μn ≤ 1

e

−μn lnμn if μn > 1
e .

An intuition for why parameters other than μn turn out to be irrelevant appears in the proof sketch below; the relevance 
of μn is intuitively connected to the observation that Adversary must choose ur(n,1) ≥ 0 to achieve a regret greater than 
0 (as otherwise, Receiver would never adopt). Sender can utilize this observation in her favor: e.g., truthfully revealing that 
ω = n when it occurs yields her a utility of at least μn . As we shall see, she can utilize it in a more clever manner, which 
even further decreases the regret. A possible interpretation of Theorem 3.6 might be that unless the highest state is very 
likely (its prior probability is greater than 1/e), the regret equals 1/e regardless of the number of states and the prior. Below 
we present the proof idea; for the full proof, see Appendix C. That appendix also contains an explicit description of the optimal 
Sender’s and Adversary’s strategies (Lemma C.1).
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1 − 1/e 1
Sender’s threshold y

f

0

Fig. 3. The density function of Sender’s threshold when μn = 1/4.

Proof idea of Theorem 3.6. The proof relies on the knapsack characterization of optimal signaling schemes in the standard 
persuasion model. The characterization of optimal policies by Kolotilin (2015); Renault et al. (2017) states that every per-
suasion problem in the standard setting with binary-action Receiver has an optimal x-threshold scheme for some x (see 
Definition 2.3).

In our setting, Receiver’s utility function is unknown to Sender; hence, the optimal threshold x is unknown. Nevertheless, 
we make an educated guess that threshold policies remain useful – and in fact, regret-minimizing – also in our setting. More 
concretely, we consider signaling schemes in which the threshold y is drawn at random, and thereafter the y-threshold 
scheme is implemented. After restricting Sender’s strategies to the class of (mixed) threshold schemes, we can also view 
Adversary’s choice of utility ur simply as a choice of an optimal threshold x ∈ [0,1] (see Fact 2.4). Namely, instead of 
choosing a utility for Receiver, Adversary chooses the threshold x that is optimal in the standard persuasion model. This 
reduces the complicated original zero-sum game G (see Subsection 2.2), in which Sender chooses a signaling scheme and 
adversary chooses a distribution over possible functions ur , to a much simpler zero-sum game Gμn , with both players simply 
choosing thresholds x, y ∈ [0,1].

The utility in Gμn is given by:

g(x, y) := (1 − x) − (1 − y)1y≥x,

where 1 − x is u∗ (i.e., the optimal utility in the standard persuasion model) and (1 − y)1y≥x is the utility of our ignorant 
Sender: if y ≥ x, then Receiver adopts after observing the high signal and Sender gets utility of 1 − y; if y < x, then Receiver 
rejects after observing the high signal (recall that y is Receiver’s indifference point) and Sender gets a utility of 0; anyway, 
Receiver rejects when observing the low signal.

In fact, not all thresholds x ∈ [0,1] might be optimal for some utility, but only x ∈ [0,1 − μn]. Indeed, the highest-utility 
state should be included entirely in the knapsack, as otherwise adoption would never occur and the regret would be zero. 
As Sender’s utility is decreasing in y for y ≥ x, and we know that the optimal threshold is in [0,1 − μn], we can restrict 
ourselves to considering Sender’s and Adversary’s thresholds x, y from [0,1 − μn].

The analysis of Gμn (see Lemma C.1 in Appendix C) leads to the game value that appears in the theorem, and also 
provides the optimal strategies for Sender and Adversary.

After having the (allegedly) optimal strategies of both players in hand, we still have to verify that Sender cannot ensure 
a smaller regret than the value of Gμn . To this end, we show that for a simple, yet optimal strategy of Adversary, Sender 
cannot gain more than the value of Gμn even by choosing arbitrary (not necessarily threshold) schemes. �

It is interesting to note that the regret-minimizing signaling scheme randomizes the threshold over a continuum-sized 
support [0,min{1 − μn,1 − 1/e}], and, in particular, uses a continuum of signals; this stands in a sharp contrast to standard 
persuasion in which binary signals suffice to get the optimal utility. Inside the continuum-sized support, the density function 
is given by f (y) := 1

1−y and, in particular, lower thresholds (closer to no-information) are chosen with lower probability.12

Fig. 3 demonstrates the density function of Sender’s thresholds for μn = 1/4. Note that our optimal robust signaling scheme 
is constructive and has a closed-form description, and thus is polynomial-time computable. For example, for μn ≤ 1/e, 
one can implement the optimal robust scheme – characterized in Lemma C.1 – by sampling z ∼ U [0,1] and adopting the 
F −1(z)-threshold scheme, where F (y) = − ln(1 − y) for y ∈ [0,1 − 1/e].

3.3. Multidimensional monotonic utilities

In the setting studied in this subsection, we denote the regret by RegMON−MD. We assume that � = × j∈[k]� j , where 
� j = [

n j
]
. We require Receiver’s utility upon adoption to be monotonic in every dimension j ∈ [k]. Namely, ∀1 ≤ j ≤

12 To be precise, the threshold distribution also has an atom of weight 1 + lnμn on 1 − μn (i.e., Sender reveals whether ω is the highest-utility state n or 
not) if μn > 1/e.
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k ∀ω′
j ≤ ω′′

j ∀ω′
− j : ur

(
ω′

jω
′
− j,1

)
≤ ur

(
ω′′

j ω
′
− j,1

)
. We refer to the dimension k as a constant. Indeed, for the interpretation 

of the dimension as the number of product attributes, it is natural to assume that k is not too large. The parameters 
that determine the size of the problem are n1, ..., nk (i.e., the numbers of quality levels of each attribute/dimension). We 
show that the prior plays a significant role in determining whether a constant regret (i.e., bounded away from one) can be 
guaranteed: on the one hand, for arbitrary priors, the minimal regret might not be bounded away from 1 even for k = 2; 
on the other hand, for product priors, a constant regret can be guaranteed.

For general priors, we have the following corollary from the arbitrary utility case.

Corollary 3.7. For k = 2 and n1 = n2 = m (for any m ≥ 1), there exists a prior μm ∈ �
(

[m]2
)

for which RegMON−MD(m) = 1 −
O
(

1√
m

)
.

Corollary 3.7 follows from Theorem 3.5 and the fact that one can assign arbitrarily small probability weights in the 
prior to all the states except for the m states 

{
(i, j) ∈ �

(
[m]2

)
: i + j = m + 1

}
. On these m states, the monotonicity in each 

dimension imposes no restriction, while the remaining states have tiny weights; thus, their effect on the regret is negligible.
Therefore, to obtain positive results, one must restrict attention to particular classes of priors. One natural class is product 

priors: μ = × j∈[k]μ j for some μ j ∈ �(
[
n j
]
). For this class of priors, we have the following result, which might be viewed 

as positive for small values of k.

Proposition 3.8. For every k, every sequence of attribute quality level amounts n1, ..., nk and every product prior μ = × j∈[k]μ j : 
RegMON−MD ≤ 1 − 2−k.

The full proof appears in Appendix D; here we only sketch the main ideas. We conjecture that a similar positive result 
can be obtained not only for product priors, but also for positively-correlated priors.

Proof idea of Proposition 3.8. We present a simple signaling scheme that achieves the desired regret: Sender reveals 
whether the product quality in all the attributes is above median, where the median is calculated according to the prior μ j . 
Depending on ur , for such a scheme one of the following holds:

1. Whenever all the attribute qualities are above median, adoption occurs – yielding expected Sender’s utility of at least 
2−k .

2. Whenever all the attribute qualities are below median, adoption does not occur – implying that even had Sender known 
ur , her expected utility could not have exceeded 1 − 2−k . �

4. Discussion and future work

So far, we have adopted the adversarial regret minimization approach to Bayesian persuasion. In Section 3, we prove 
that while in the most general case the regret approaches 1 as the number of states grows large, Sender’s knowledge of 
Receiver’s ordinal preferences upon adoption ensures that the regret is at most 1/e. We further provide an explicit formula 
for the regret, and describe the optimal Sender’s and Adversary’s strategies. We also study multidimensional monotonic 
utilities and upper bound the regret in this setting for product priors, while showing that for general priors the regret 
might be close to 1. In the next subsection, we discuss how our main results change when considering the adversarial 
approximation ratio instead of regret.

4.1. Adversarial approximation

In this subsection, the performance of a signaling scheme π is measured by u(π,ur)
u∗(ur)

, i.e., the ratio between the utility 
Sender achieves with the scheme π and the optimal utility Sender can get upon knowing ur . If u∗(ur) = 0 (i.e., even the 
knowledgeable Sender cannot achieve any positive utility), we define the ratio to be 1.

Analogously to Definitions 2.5 and 2.6 of the additive regret, define the adversarial approximation guarantee via:

Apr(π) := inf
ur

{
u(π, ur)

u∗(ur)

}
and

Apr := sup
π

Apr(π).

Similarly to the regret, we extend the definition of Apr to AprARB, AprMON and AprMON−MD according to the class of consid-
ered Receiver’s utility functions.
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Note that 0 ≤ Apr ≤ 1, where Apr ≈ 0 means that only a negligible fraction of the potential Sender’s utility (i.e., with 
the knowledge of ur ) can be guaranteed. Our results in this section are largely negative, motivating our focus on regret 
minimization.

We start with the general Proposition 4.1 that connects the notions of regret (Reg) and adversarial approximation guar-
antee (Apr).

Proposition 4.1. Apr ≤ 1
Reg − 1.

This fact holds in any adversarial setting with utilities in [0,1] and not only in our context of persuasion.

Proof of Proposition 4.1. By Definitions 2.5 and 2.6, for every signaling scheme π and every ε > 0, there exists uε
r

s.t. u∗(uε
r

)−u
(
π, uε

r

)≥ Reg−ε . In particular, u∗(uε
r

)≥ Reg−ε and u
(
π, uε

r

)≤ 1 −Reg+ε . Furthermore, Apr(π) ≤ u
(
π,uε

r

)
u∗(uε

r
) ≤

1−Reg+ε
Reg−ε . Taking ε → 0 yields that Apr(π) ≤ 1−Reg

Reg = 1
Reg − 1. As it holds for every π , the proposition follows. �

Proposition 4.1 allows to translate all the negative results on the regret into negative results on adversarial approxi-
mation: if Reg → 1, then Apr → 0, with at least the same convergence rate. Concretely, the negative results for arbitrary 
utilities (Theorem 3.5) and multidimensional monotonic utilities (Corollary 3.7) have analogues in the adversarial approxi-
mation approach. It suggests that the adversarial ratio approach might be more pessimistic than regret minimization.

A natural question is whether our main positive result (Theorem 3.6) remains valid for the adversarial approximation set-
ting. Namely, can a constant fraction of the optimal Sender’s utility be guaranteed without knowing the cardinal Receiver’s 
preferences, but only the ordinal ones (i.e., monotonicity)? Our next result shows that the answer is negative. Furthermore, 
we provide an exact characterization for the value in this case, for every number of states n and every prior μ.

Theorem 4.2. For every number of states n and every prior μ = (μ1, ...,μn): AprMON = 1
1+ln 1

μn

.

This result indicates that for large state spaces (under the natural assumption that μn →n→∞ 0), a constant fraction of 
the optimal utility cannot be guaranteed. Namely, unlike the regret approach in which Sender can ensure a regret bounded 
away from 1, Sender cannot guarantee a constant approximation ratio. The proof idea is similar to Theorem 3.6, but the 
simpler zero-sum game in which both players choose thresholds (real numbers in [0,1 − μn]) has a different value. For the 
proof, see Appendix E.

4.2. Future work

Some problems remain open for the setting that we study. In particular, the exact regret value in the arbitrary utility 
case for more than two states is unknown – the only exception is the case of uniform prior with ternary state space. The 
precise asymptotic convergence rate of RegARB to 1 is also unknown to us – we only bound it between θ

(
1√
n

)
and θ

(
1

n2

)
. 

Furthermore, our setting has several natural extensions – e.g., to more than one Receiver.
Moreover, the minimax robust approach has not been discussed in this paper. Recall that in the minimax approach, 

Sender aims to maximize her expected utility over the signaling scheme and the unknown Adversary’s strategy – that is, 
there is no benchmark for the performance of the signaling scheme. Unfortunately, in the absence of any Sender’s knowledge 
about Receiver’s utility, the minimax approach is meaningless: Adversary can choose ur s.t. Receiver never adopts, yielding 
the minimax value of 0. An interesting question we leave for future research is to find a well-motivated Sender’s partial 
knowledge about ur , which would make the minimax approach meaningful. Similarly, it is interesting to understand whether 
extra assumptions on Receiver’s utility, rather than just monotonicity, may yield a constant adversarial approximation ratio. 
One such setting might consider Sender ignorant of Receiver’s private exogenous information (Hurwicz and Shapiro, 1978; 
Emek et al., 2012; Li et al., 2020; Dworczak and Pavan, 2020; Hu and Weng, 2021). Extending the results to adversarial 
choice of the prior distribution (Kosterina, 2022) is another possible research direction.
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A

ω1 = (0,0) ω2 = (1,0)

ω3 = ( 1
2 ,

√
3

2 )

E = (e,0)

D = (d,
√

3d) μ = ( 1
2 ,

√
3

6 )

Fig. 4. Parameterization of the points.

Appendix A. Proof of Proposition 3.4

Proof of Proposition 3.4. By Remark 3.3, it is enough to show that RegARB(π) ≤ 1
2 . Consider π supported on the boundary 

of �(�) that assigns to every line segment on the boundary probability proportional to the angle upon which this segment 
is seen from μ. We shall prove, using analytic geometry, that for this π , RegARB(π) = 1

2 . Let at : (−∞,∞] → [0,π) be 
defined as at(x) := arctan(x) + π for x ∈ (−∞,0), at(x) := arctan(x) for x ∈ [0,∞) and at(∞) := π

2 .
Fix A, and let l be the line (single-dimensional hyperplane) separating A from �(�) \ A. Note that �(�) is contained 

in a two-dimensional plane. Represent the elements of �(�) by Cartesian coordinates (rather than the probabilities they 
assign to elements of �). Parameterize its extreme points by ω1 = (0,0), ω2 = (1,0), ω3 =

(
1
2 ,

√
3

2

)
.13 Then μ =

(
1
2 ,

√
3

6

)
. 

If the separating line l is disjoint to �(�) – the regret is 0. Therefore, assume that it cuts at least two line segments from 
the boundary of �(�) (possibly at the same point). Assume w.l.o.g. that l cuts ω1ω2 (the line connecting ω1 and ω2) and 
ω1ω3. Then l contains the points D :=

(
d,

√
3d
)

and E := (e,0) for some 0 ≤ d ≤ 1
2 and 0 ≤ e ≤ 1. Assume that μ /∈ A – 

otherwise, the adoption probability assured by π is at least 1
2 and the regret is at most 1

2 .
Consider now π∗ , an optimal signaling scheme for a Sender who knows A. By pooling together all the probability mass 

in A and all the probability mass in �(�) \ A (separately), assume w.l.o.g. that |supp(π∗)| = 2.14

Let s be the line segment connecting the two support elements of π∗ . By Bayes-plausibility, it must pass through μ. As 
π∗ is optimal, one can assume w.l.o.g. that one support element is on l, while the other is on the boundary of �(�) (outside 
A); furthermore, μ should divide s in the maximal possible ratio. A straightforward (and a well-known) trigonometric 
exercise shows that the ratio in which a variable line segment s passing through a fixed point, with endpoints on two fixed 
line segments s1, s2, is divided, is maximized when one of the endpoints of s coincides with one of the endpoints of s1, s2. 
Therefore, one of the endpoints of s is either an intersection point of l with the boundary of �(�) or a vertex of �(�).

Assume first that exactly one extreme point of �(�) is in A, and assume w.l.o.g. that ω1 ∈ A (that is, A is set by l as in 
Fig. 4). Qualitatively, we have 2 different cases to check: either E ∈ supp(π∗) or ω2 ∈ supp(π∗). Denote the second endpoint 
of s (that is, the support element of supp(π∗) different from E, ω2) by F . Note that if E ∈ supp(π∗), then either F ∈ ω2ω3
or F ∈ ω1ω3.15

Consider first the case E = (e,0) ∈ supp(π∗) and F ∈ ω2ω3 (see Fig. 5). That is, F =
(

f ,
√

3(1 − f )
)

, for f = 3−5e
4−6e ; note 

that as F ∈ ω2ω3 and μ /∈ A, we have 0 ≤ e ≤ 1
2 . The regret of π for our fixed A is:

|μF |
|E F | − �DμE

2π
= 1

3 − 3e
− 1

2π
at

⎛
⎝

√
3/6

1/2−e −
√

3/6−√
3d

1/2−d

1 +
√

3/6
1/2−e ·

√
3/6−√

3d
1/2−d

⎞
⎠.

For a fixed e, the above expression is maximal for d = 0.16 Therefore (upon algebraic simplifications), it is enough to 
check that:

1

3 − 3e
− 1

2π
at

(√
3

e

2 − 3e

)
≤ 1

2
⇐⇒ at

(√
3

e

2 − 3e

)
− 3e − 1

3 − 3e
π ≥ 0.

13 We assume that the sides of the triangle �(�) are of length 1 when in fact they are of length 
√

2; however, homothety (scratch) on �(�) does not 
affect the regret.
14 |supp(π∗)| > 1 since we assume that μ /∈ A.
15 F cannot be on ω1ω2, as s passes through μ.
16 One can obtain this step geometrically: setting D = ω1 does not affect the first term and does not increase the subtracted term.
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A

ω1 ω2

ω3

E

D
μ

F =
(

f ,
√

3(1 − f )
)

s

Fig. 5. An illustration of the case E ∈ supp(π∗), F ∈ ω2ω3.

A

ω1 ω2

ω3

E

D
μ

F =
(

f ,
√

3 f
)

s

Fig. 6. An illustration of the case E ∈ supp(π∗), F ∈ ω1ω3.

Note that the above expression is continuously differentiable for e ∈ [
0, 1

2

]
, and its derivative is17:

√
3

1 · (2 − 3e) − e · (−3)

(2 − 3e)2
· 1

1 +
(√

3 e
2−3e

)2
− 3(3 − 3e) − (3e − 1) · (−3)

(3 − 3e)2
π =

2
√

3

3e2 + (2 − 3e)2
− 6π

(3 − 3e)2
< 0,

where the last transition follows from: 2
√

3(3 − 3e)2 − 6π
(
3e2 + (2 − 3e)2

)= (18
√

3 − 72π)e2 + e(72π − 36
√

3) + (18
√

3 −
24π) = (18

√
3 − 24π)(1 − e)2 + 24πe(1 − 2e) ≤

eOPT= 2π−√
3

4π−√
3

4π2(18
√

3−24π)

(4π−√
3)2 + 24π 2π

√
3−3

(4π−√
3)2 < 0.

Thus:

at

(√
3

e

2 − 3e

)
− 3e − 1

3 − 3e
π ≥eOPT= 1

2
at

(√
3

0.5

2 − 1.5

)
− 1.5 − 1

3 − 1.5
π = at

(√
3
)

− π

3
= 0,

as needed.
Now, let us still assume that E = (e,0) ∈ supp(π∗), but F ∈ ω1ω3 (see Fig. 6). That is, F =

(
f ,

√
3 · f

)
for f = e

6e−2 . 

Note that 1
2 ≤ e ≤ 1 (otherwise, F is outside the line segment ω1ω3, a contradiction). Just as in the previous case, we 

obtain that for a fixed e, the regret is maximized when d = 0. The regret equals for d = 0 (here we assume that e �= 1; for 
e = 1 =⇒ E = ω2, the adoption probability according to π∗ is 1

3 ; thus, the regret is smaller than 1
2 ):

|μF |
|E F | − �DμE

2π
= 1

3e
− 1

2π
at

⎛
⎝

√
3/6

1/2−e −
√

3/6−√
3d

1/2−d

1 +
√

3/6
1/2−e ·

√
3/6−√

3d
1/2−d

⎞
⎠=d=0

1

3e
− 1

2π
at

(√
3

e

2 − 3e

)
.

To prove that this expression is at most 1
2 , it is enough to show that:

at

(√
3

e

2 − 3e

)
− 2 − 3e

3e
π ≥ 0.

17 For e ∈ [
0, 1

2

]
, the angle �DμE = �ω1μE is acute; thus, at

(√
3 e

2−3e

)
= arctan

(√
3 e

2−3e

)
.
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A

ω1 ω2

ω3

E

D

μ

F = ( f , 1− f√
3

)

s

Fig. 7. An illustration of the case E /∈ supp(π∗).

The last expression is increasing in e. Therefore, the minimum is attained for e = 1
2 , for which the condition holds:

at

(√
3

0.5

2 − 1.5

)
− 2 − 1.5

1.5
π = at

(√
3
)

− π

3
= 0.

Now we should consider the case in which E /∈ supp(π∗) (see Fig. 7). Then ω2 = (1,0) ∈ supp(π∗) and E �= ω2 (i.e., e �= 1). 
As E ∈ l, ω1 ∈ A and l separates A from �(�) \ A, we must have ω2 /∈ A. Since the second endpoint of s, F , must belong to 
A – it must be on l. That is, F =

(
f , 1− f√

3

)
for f = e−d−3de

e−4d . Note that one must have 1
4 ≤ d ≤ 1

2 (otherwise, F cannot be on 

the segment D E) and 0 ≤ e ≤ 2d
6d−1 (as f ≤ 1

2 , since μ /∈ A). The regret is:

|μω2|
|Fω2| − �DμE

2π
.

Fix F and let D, E vary so that D E passes through F , while keeping 1
4 ≤ d ≤ 1

2 and 0 ≤ e ≤ 2d
6d−1 . Consider the regret as 

a function of d. Note that e = d(4 f −1)
f +3d−1 . The regret equals:

|μω2|
|Fω2| − �DμE

2π
= 1

2(1 − f )
− 1

2π
at

⎛
⎝

√
3/6

1/2−e −
√

3/6−√
3d

1/2−d

1 +
√

3/6
1/2−e ·

√
3/6−√

3d
1/2−d

⎞
⎠=

1

2(1 − f )
− 1

2π
at

(√
3 · d(e − 1/3) − e/6

d(1 − e) + e/2 − 1/3

)
=

1

2(1 − f )
− 1

2π
at

⎡
⎣√

3 ·
d
(

d(4 f − 1) − f +3d−1
3

)
− d(4 f −1)

6

d( f + 3d − 1 − d(4 f − 1)) + d(4 f −1)
2 − f +3d−1

3

⎤
⎦=

1

2(1 − f )
− 1

2π
at

[
2
√

3(2 f − 1)
d2 − d

4

d2(4(1 − f )) + d
(
3 f − 5

2

)+ 1− f
3

]
.

The regret is continuous as a function of d; its derivative w.r.t. d has the same sign as (apart from finitely many values of d
for which the derivative of the regret is not defined):

−
(

2d − 1

4

)[
d2(4(1 − f )) + d

(
3 f − 5

2

)
+ 1 − f

3

]
+
(

d2 − d

4

)[
8d(1 − f ) +

(
3 f − 5

2

)]
=

d2
(

3

2
− 2 f

)
− d

(
2

3
(1 − f )

)
+ 1 − f

12
.

Recall that 1
4 ≤ d ≤ 1

2 and 1
4 ≤ f ≤ 1

2 (because ω2 F contains μ and F is inside �(�)). The above function is decreasing for 
1
4 ≤ d ≤ 2(1− f )

3(3−4 f ) and is increasing for 2(1− f )
3(3−4 f ) ≤ d ≤ 1

2 .18 Furthermore, its value at d = 1
4 is:

1

16

(
3

2
− 2 f

)
− 1

4
· 2

3
(1 − f ) + 1 − f

12
= 1 − 4 f

96
≤ 0.

18 Note that 1
4 ≤ 2(1− f )

3(3−4 f ) ≤ 1
2 for 1

4 ≤ f ≤ 1
2 .
239



Y. Babichenko, I. Talgam-Cohen, H. Xu and K. Zabarnyi Games and Economic Behavior 136 (2022) 226–248
A

ω1 ω2

ω3

E

D

μ

F =
(

f , f√
3

)
s

Fig. 8. An illustration of the case ω2,ω3 ∈ A.

Therefore, for a fixed f , the regret is maximized for a boundary value of d: either for d = 1
4 or for d = 1

2 . If d = 1
4 , then 

necessarily F = D and the regret is:

|μω2|
|Dω2| − �DμE

2π
= 2

3
− �DμE

2π
≤ 2

3
− π/3

2π
= 1

2
,

as needed. If d = 1
2 , then the value of the regret (after algebraic simplifications) is:

1

2(1 − f )
− 1

2π
at

(
3
√

3(2 f − 1)

2 f + 1

)

The derivative of this expression is (note that it is well-defined for every 1
4 ≤ f ≤ 1

2 ):

1

2(1 − f )2
− 3

√
3

2π
· 1

1 +
(

3
√

3(2 f −1)
2 f +1

)2
· 2(2 f + 1) − 2(2 f − 1)

(2 f + 1)2
=

1

2(1 − f )2
− 6

√
3

π
(
(2 f + 1)2 + 27(2 f − 1)2

) = 1

2(1 − f )2
− 3

√
3

2π
(
28 f 2 − 26 f + 7

) =
(

28π − 3
√

3
)

f 2 −
(

26π − 6
√

3
)

f +
(

7π − 3
√

3
)

2π(1 − f )2(28 f 2 − 26 f + 7
) > 0,

where the last transition holds as both the numerator and the denominator are positive for every f ∈ R. Thus, given that 
d = 1

2 , the regret is maximal for f = 1
2 , for which the regret is exactly 1

2 , as desired.
To finish the proof, it remains to consider the case in which A contains two different extreme points of �(�).19 If s

intersects l at a boundary point of �(�), then Adversary can increase the regret by rotating l around that point in a way 
which decreases the area of A; this way u∗ cannot decrease, while u(π, ur) decreases. Therefore, it is enough to consider the 
case in which s contains the unique extreme point of �(�) that is not in A. Assume w.l.o.g. that ω2, ω3 ∈ A, while ω1 /∈ A

is an endpoint of s. Then the second element of supp(π), which belongs to l, is of the form F =
(

f , f√
3

)
for f = 3de

2d+e (see 

Fig. 8). We must have 1
2 ≤ f ≤ 3

4 , as the segment ω1 F contains μ and F ∈ �(�). The regret is:

|μω1|
|Fω1| − �DμE

2π
= 2d + e

6de
− 1

2π
at

⎛
⎝

√
3/6

1/2−e −
√

3/6−√
3d

1/2−d

1 +
√

3/6
1/2−e ·

√
3/6−√

3d
1/2−d

⎞
⎠= 2d + e

6de
− 1

2π
at

(√
3 · d(e − 1/3) − e/6

d(1 − e) + e/2 − 1/3

)
.

Set x := de and y := 2d + e. Then the above expression equals (note that y = 3x
f ):

y

6x
− 1

2π
at

(√
3 · x − y/6

y/2 − x − 1/3

)
= 1

2 f
− 1

2π
at

(√
3 · x − x/(2 f )

(3x)/(2 f ) − x − 1/3

)
=

1

2 f
− 1

2π
at

(√
3 · x(2 f − 1)

x(3 − 2 f ) − 2 f /3

)
.

19 If A contains no extreme points or all the extreme points of �(�) – the regret is 0.
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Note that the angle �DμE is obtuse for all feasible choices of x, f ; thus, for a fixed f , the above expression is continuously 
differentiable w.r.t. x. The derivative of the expression inside at(·) w.r.t. x is:

√
3

(2 f − 1) · (−2 f /3)

(x(3 − 2 f ) − 2 f /3)2
< 0,

as f > 1
2 . Therefore, for a fixed f , the regret is maximal for the largest possible x. As f = 3x

y , maximizing x for a fixed f

is equivalent to maximizing x for a fixed y. By the AM-GM inequality, x ≤ y2

8 , with equality if and only if 2d = e.20 When 
2d = e, we have f = 3x

y = 3y
8 = 3e

4 and x = e2

2 ; furthermore, we must have 1
2 ≤ e ≤ 1, as μ /∈ A. Assuming 2d = e, the regret 

as a function of e is:

ρ(e) := 2

3e
− 1

2π
at

(√
3 · e2(3e/4 − 1/2)

e2(3/2 − 3e/4) − e/2

)
= 2

3e
− 1

2π
at

(√
3 · e(3e/4 − 1/2)

e(3/2 − 3e/4) − 1/2

)
.

We have:

ρ ′(e) = − 2

3e2
−

√
3

2π

1

1 + 3
(

e(3e/4−1/2)
e(3/2−3e/4)−1/2

)2
·

(3e/2 − 1/2)(e(3/2 − 3e/4) − 1/2) − e(3e/4 − 1/2)(3/2 − 3e/2)

(e(3/2 − 3e/4) − 1/2)2
=

− 2

3e2
−

√
3

2π

3e2 − 3e + 1(
3e2/2 − 3e + 1

)2 + 3
(
3e2/2 − e

)2
< 0.

Hence, the maximum of ρ(e) on 
[ 1

2 ,1
]

is obtained for e = 1
2 . Since ρ

( 1
2

) = 1
2 , the regret is always at most 1

2 , which 
completes our proof. �
Appendix B. Proof of Theorem 3.5

Proof of Theorem 3.5. We start by proving the lower bound. Assume n ≥ 16 (otherwise the result follows from Remark 3.3). 
Our proof constructs a difficult instance under which any algorithm suffers a regret of at least 1 − 2√

n
. Fix 0 < δ <

mini∈� μi
2n . 

Set suppδ(p) := {
i ∈ � : Prω′∼p

[
ω′ = i

]
> δ

}
. Depending on what Receiver’s utility a state leads to, we divide the n states 

in our instance into three kinds: a single good state, n − �√n� − 1 normal states and �√n� bad states. Sender’s uncertainty 
about Receiver’s utilities is captured by her uncertainty on the type of the true state ω.

Suppose that Adversary chooses a uniform permutation on �; then she sets the first state in the permutation to be good, 
the next n − �√n� − 1 states to be normal and the rest to be bad. Denote by μgood the prior probability of the good state 
and by μnormal – the sum of the prior probabilities of the normal states. Suppose that for i ∈ �, ur(i,1) equals 1

μgood
if i is 

good, − 1
μnormal

if i is normal and − 1
δ·μgood

if i is bad. The utility choices ensure that:

1. The expected Receiver’s utility knowing that the state is not bad is 0.
2. A posterior p with a bad state in suppδ(p) leads to rejection.
3. A posterior p s.t. the good state is not in suppδ(p) leads to rejection, as then p must assign a probability of at least 1−δ

n−1
to a certain not good state, resulting in Receiver’s utility being smaller than:

δ

μgood
− 1 − δ

n − 1
· 1

max
{
δ · μgood,μnormal

} = δ

μgood
− 1 − δ

μnormal(n − 1)
<

1

2nμnormal
− 1

μnormal(n − 1)
+ 1

2μnormal(n − 1)
< 0.

Had Sender known the type of each state, she could have used a signaling scheme revealing whether the true state ω was 
bad or not. This scheme would have made Receiver adopt exactly for not bad values of ω. Thus, u∗ ≥ 1 − �√n�

n ≥ 1 − 1√
n

.

We shall prove that our ignorant Sender cannot get a utility above 1√
n

; it would imply RegARB ≥
(

1 − 1√
n

)
− 1√

n
≥ 1 − 2√

n
, 

completing the proof. In fact, we shall show a stronger result: for every Receiver’s posterior p ∈ �(�), the probability of 
adoption, under Adversary’s strategy, is at most 1√

n
.

Indeed, fix some posterior p ∈ �(�). We have the following cases:

20 The geometric interpretation of this case is – D E is parallel to ω3ω2.
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• If 
∣∣suppδ(p)

∣∣≤ �√n�, then the probability of having the good state in suppδ(p) is:∣∣suppδ(p)
∣∣

n ≤
√

n
n = 1√

n
.

• Otherwise (
∣∣suppδ(p)

∣∣ > �√n�), the probability of not having a bad state – and meanwhile, having the good state – in 
suppδ(p) is:

(
1 − �√n�

n

)(
1 − �√n�

n − 1

)
...

(
1 − �√n�

n + 1 − ∣∣suppδ(p)
∣∣
)

·
∣∣suppδ(p)

∣∣
n − �√n� ≤

(
1 − �√n�

n

)∣∣suppδ(p)
∣∣
·
∣∣suppδ(p)

∣∣
n − �√n� ≤

(
1 − �√n�

n

)�√n�+1

· �√n� + 1

n − �√n� ≤

e− �√n�(�√n�+1
)

n · �√n� + 1

n − �√n� ≤ 1

e1−1/
√

n
·
√

n + 1

n − √
n

≤n≥16
1√
n
,

where the second inequality holds since 
(

1 − �√n�
n

)x · x is non-increasing as a function of the integer variable x for 

x ≥ �√n� + 1, because 1 − �√n�
n ≤ x

x+1 for x ≥ �√n� + 1.

Therefore, the expected adoption probability over Adversary’s strategy at every posterior is at most 1√
n

, which completes 
the proof of the lower bound.

Let us prove now the upper bound. Note that the full revelation scheme fails to provide any regret guarantee for priors 
that have tiny masses on some of the states. The regret guarantee of full revelation is as high as 1 − mini∈[n] μi .21 We shall 
prove that a modification of the full-revelation scheme s.t. every signal realization pools at most two states has a regret 
guarantee of 1 − 1

4n2 for every prior.

Define U := {
i ∈ � : μi ≥ 1

2n

}
. Note that 

∑
i∈U μi = 1 −∑

i /∈U μi ≥ 1 − n
2n = 1

2 (in particular, U �= ∅).
Consider the signaling scheme π with the set of signals S = {si : i ∈ �} ∪ {

si, j : i ∈ U , j ∈ � \ U
}

, s.t.:

• For every i ∈ U , the signal si is assigned a probability mass of 
(
1 − 1

2n

)
μi out of the prior probability of μi for ω = i.

• For every i ∈ � \ U , the signal si is assigned a probability mass of μi
2 out of the prior probability for ω = i.

• For every i ∈ U , j ∈ � \ U , the signal si, j is assigned a probability mass of μi
2n(n−|U |) out of the prior probability for ω = i

and a probability mass of μ j
2|U | out of the prior probability for ω = j.

We claim that RegARB(π) ≤ 1 − 1
4n2 . Indeed, fix ur .22 Define T := {i ∈ � : ur(i,1) ≥ 0}. Consider the following cases:

• T ∩ U �= ∅. Since si leads to adoption for every i ∈ T , in this case u(π, ur) ≥ 1
2n · (1 − 1

2n

) ≥ 1
4n2 ; thus, RegARB(π) =

u∗(ur) − u(π, ur) ≤ 1 − 1
4n2 .

• T ∩ U = ∅, and for every i ∈ U there exists ji ∈ � \ U s.t. μi
2n(n−|U |) · ur(i,1) + μ ji

2|U | · ur( ji,1) ≥ 0. Then si, ji yields to 
adoption for every i ∈ U . We saw that 

∑
i∈U μi ≥ 1

2 ; thus, adoption occurs with probability at least 
∑

i∈U
μi

2n(n−|U |) =∑
i∈U μi

2n(n−|U |) ≥ 1
4n2 , and again the regret is at most 1 − 1

4n2 .

• T ∩ U = ∅, and there exists i ∈ U s.t. for every j ∈ � \ U : μi
2n(n−|U |) · ur(i,1) + μ j

2|U | · ur( j,1) < 0. Summing over j ∈ � \ U

and multiplying by 2|U | yields: |U |
n · μi · ur(i,1) + ∑

j∈�\U μ j · ur( j,1) < 0. If U = �, then adoption never occurs for 
any signaling scheme and the regret is 0. Otherwise, as T ⊆ � \ U , we get that even upon the knowledge of ur , a 
probability mass greater than 

(
1 − |U |

n

)
· μi ≥ μi

n ≥ 1
2n2 from the prior probability of μi for ω = i does not lead to 

adoption. Therefore, u∗ ≤ 1 − 1
2n2 ≤ 1 − 1

4n2 , and RegARB(π) = u∗(ur) − u(π, ur) ≤ 1 − 1
4n2 .

In all the cases, RegARB(π) ≤ 1 − 1
4n2 , as desired. �

Appendix C. Proof of Theorem 3.6

We start with the following lemma.

21 Indeed, if for some i ∈ [n] we have ur(i,1) = 1
μi

and ur( j,1) = − 1
1−μi

for j �= i, then the no-information scheme leads to adoption with probability 1, 
while the full-revelation scheme leads to adoption with probability μi ; therefore, the regret is 1 − μi .
22 The result for a mixture over possible functions ur would follow by taking the expectation over Adversary’s strategy.
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Lemma C.1. Let α ∈ (0,1) be a constant. Let Gα be a two-player zero-sum game with continuum action sets X = Y = [0,1 − α] of 
the x- (maximizing) and the y- (minimizing) players, respectively, and utility:

g(x, y) := (1 − x) − (1 − y)1y≥x.

Denote by v = Val(Gα) the value of Gα .

• For α ≥ 1
e we have v = −α lnα. Furthermore, there exists an optimal strategy o∗

x ∈ �([0,1 − α]) of the x-player that has an atom 
of weight α on x = 0 and otherwise has the density function f X(x) := α

(1−x)2 over the entire segment [0,1 − α]. Moreover, there 
exists an optimal strategy o∗

y ∈ �([0,1 − α]) of the y-player that has an atom of weight 1 + lnα on y = 1 − α and otherwise has 
the density function fY (y) := 1

1−y over the entire segment [0,1 − α].

• For α < 1
e we have v = 1

e . Furthermore, there exists an optimal strategy o∗
x ∈ �([0,1 − α]) of the x-player that has an atom of 

weight 1
e on x = 0 and otherwise has the density function f X(x) := 1

e(1−x)2 over the segment 
[
0,1 − 1

e

]
. Moreover, there exists an 

optimal strategy o∗
y ∈ �([0,1 − α]) of the y-player that has the density function fY (y) := 1

1−y over the segment 
[
0,1 − 1

e

]
.

Proof of Lemma C.1. Assume first that α ≥ 1
e . We shall show that for the strategy couple 

(
o∗

x ,o∗
y

)
, both players are indiffer-

ent between all actions in [0,1 − α] and the payoff is −α lnα; therefore, 
(
o∗

x ,o∗
y

)
is an equilibrium and v = −α lnα. Indeed, 

every fixed x ∈ [0,1 − α] yields expected (over y) payoff of:

1−α∫
0

fY (y)g(x, y)dy + Pr[y = 1 − α]g(x,1 − α) =
1−α∫
0

1

1 − y
· (1 − x)dy−

1−α∫
x

1

1 − y
· (1 − y)dy + (1 + lnα) · (1 − x − α) = −(1 − x) lnα − (1 − α − x)+

(1 + lnα)(1 − x − α) = −α lnα.

Furthermore, every fixed y ∈ [0,1 − α] yields expected (over x) payoff of:

1−α∫
0

f X (x)g(x, y)dx + Pr[x = 0]g(0, y) =
1−α∫
0

α

(1 − x)2
· (1 − x)dx−

y∫
0

α

(1 − x)2
· (1 − y)dx + α · y = −α lnα − (1 − y) ·

(
α

1 − y
− α

)
+ α · y = −α lnα,

as desired.
Assume now that α < 1

e . We shall show that for the strategy couple 
(
o∗

x ,o∗
y

)
, both players are indifferent between the 

actions in 
[
0,1 − 1

e

]
– resulting in payoff of 1

e – and worse off by taking other actions. Indeed, every fixed x ∈ [
0,1 − 1

e

]
yields expected payoff of:

1−1/e∫
0

fY (y)g(x, y)dy =
1−1/e∫

0

1

1 − y
· (1 − x)dy −

1−1/e∫
x

1

1 − y
· (1 − y)dy =

(1 − x) · 1 −
(

1 − 1

e
− x

)
= 1

e
,

while for a fixed x ∈ (
1 − 1

e ,1 − α
]
, the expected payoff is:

1−α∫
1−1/e

fY dy(y)g(x, y)dy =
1−α∫

1−1/e

1

1 − y
· (1 − x)dy = −(1 + lnα)(1 − x) <

− (1 + lnα)

(
1 −

(
1 − 1

e

))
<

1

e
,

as desired. Moreover, every fixed y ∈ [
0,1 − 1 ] yields expected payoff of:
e

243



Y. Babichenko, I. Talgam-Cohen, H. Xu and K. Zabarnyi Games and Economic Behavior 136 (2022) 226–248
1−1/e∫
0

f X (x)g(x, y)dx + Pr[x = 0]g(0, y) =
1−1/e∫

0

1

e(1 − x)2
· (1 − x)dx−

y∫
0

1

e(1 − x)2
· (1 − y)dx + 1

e
· y = 1

e
· 1 − 1 − y

e
·
(

1

1 − y
− 1

)
+ 1

e
· y = 1

e
,

while for a fixed y ∈ (
1 − 1

e ,1 − α
]

we have:

1−1/e∫
0

f X (x)g(x, y)dx + Pr[x = 0]g(0, y) =
1−1/e∫

0

1

e(1 − x)2
· ((1 − x) − (1 − y))dx+

1

e
· y = 1

e
· (1 − (1 − y) · (e − 1)) + 1

e
· y = 2

e
− 1 + y >

1

e
,

as desired. �
Proof of Theorem 3.6. Consider the two-player zero-sum game Gμn as described in Lemma C.1 and let v be its value. We 
shall prove that G (the zero-sum game interpretation of regret minimization; see Subsection 2.2) also has value equal to v .

First, let us show that Sender can ensure regret of at most v by using the signaling scheme πy defined as follows: Sender 
picks a random y ∼ o∗

y (where o∗
y is defined in Lemma C.1); then she uses the y-threshold scheme (see Definition 2.3).

Indeed, fix ur . By Fact 2.4, it defines an optimal threshold x = x(ur) (in the standard persuasion model with the knowl-
edge of Receiver’s utility). Note that not all the values x ∈ [0,1] might be the optimal threshold for some ur , but only 
x ∈ [0,1 − μn]. Indeed, the highest-utility state n should be included entirely in the knapsack, as otherwise adoption never 
occurs and the regret is 0. Assume, therefore, that x ∈ [0,1 − μn].

We have u∗ = 1 − x, and for every y ∈ [0,1 − μn]: u
(
πy, ur

) = 1y≥x , as Receiver adopts if and only if y ≥ x. Therefore, 
the regret for πy and ur is (where g is as defined in Lemma C.1):

u∗(ur) − u
(
πy, ur

)= Ey∼o∗
y

[
(1 − x) − (1 − y)1y≥x

]= Ey∼o∗
y
[g(x, y)].

By Lemma C.1, the last expression is at most v . Therefore, Sender can ensure that the regret is at most v for any fixed ur ; 
thus, it holds also for any mixture over ur , as needed.

It remains to prove that Adversary can ensure a regret of at least v . Consider the following strategy of Adversary: she 
deterministically sets ur(i,1) := −μn for all 1 ≤ i ≤ n − 1; then she chooses a random t ∼ o∗

x (with o∗
x from Lemma C.1) 

and sets ur(n,1) := 1 − μn − t . For this Adversary’s strategy, the optimal threshold x is distributed according to o∗
x . To 

bound the regret that Sender can guarantee against this Adversary’s strategy, fix a signaling scheme π . As ur(i,1) is the 
same for 1 ≤ i ≤ n − 1, one can refer to the states 1, 2, ..., n − 1 as a single state that we call state 0. Concretely, π
induces a signaling scheme π ′ in a persuasion scenario with a binary-state space {0,n} s.t. μ0 := 1 − μn; a posterior p(s) ∈
�([n]) is mapped to the posterior 

(∑
1≤i≤n−1 pi, pn

)
. Therefore, computing RegMON(π) in our original setting is reduced to 

computing RegMON(π) in this binary-state setting, with Adversary’s strategy being setting ur(0,1) := −μn deterministically 
and choosing ur(n,1) = 1 − μn − t , where t ∼ o∗

x .
From now on, we shall refer to a posterior p ∈ �({0,n}) as a real number q ∈ [0,1], where q := p0. To understand 

the optimal Sender’s utility in this binary-state persuasion problem, we compute her expected utility u′(q) (when the 
expectation is over Adversary’s mixed strategy) for each possible posterior q ∈ [0,1]; then we evaluate the concavification 
of u′ at the prior 1 − μn .

We shall prove that there exists Sender’s best-reply signaling scheme that is a threshold signaling scheme. It would 
complete the proof, as the optimal threshold x is distributed according to o∗

x , which gives for a Sender’s y-threshold scheme 
expected regret of:

Ex∼o∗
x

[
(1 − x) − (1 − y)1y≥x

]=Ex∼o∗
x
[g(x, y)],

(with g defined in Lemma C.1) which is, by Lemma C.1, at least v for every y ∈ [0,1 − μn].23

Indeed, to understand Sender’s best-reply we shall consider a standard Bayesian persuasion instance in which Sender’s 
utility is the expected (over Adversary’s strategy) adoption probability. Sender’s expected utility, as a function of Receiver’s 
posterior q, is:

u′(q) := Pr
t∼o∗

x

[−μnq + (1 − μn − t)(1 − q) ≥ 0] = Pr
t∼o∗

x

[
t ≤ 1 − μn

1 − q

]
.

23 We can assume w.l.o.g. that y ∈ [0,1 − μn], as the optimal threshold x is at most 1 −μn; thus, choosing y > 1 −μn gives a greater regret than choosing 
y = 1 − μn .
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Fig. 9. The function u′(q) and its concavification. The function appears in blue; its concavification appears in red.

Straightforward calculations show that for μn ≥ 1
e :

u′(q) =
{

1 − q if 0 ≤ q ≤ μ0

0 if μ0 < q ≤ 1,

while for μn < 1
e :

u′(q) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ q < 1 − μne
1−q
μne if 1 − μne ≤ q ≤ μ0

0 if μ0 < q ≤ 1.

In both cases, u′(q) = 0 for q > μ0 and u′(q) > 0 otherwise. Therefore, the graph of the concavification of u′ (see Fig. 9) 
includes a line segment connecting the point 

(
q = 1, u′(q) = 0

)
with a point having a value of q smaller than μ0. Thus, there 

exists an optimal Sender’s signaling scheme with binary signals s.t. one of them leads to the posterior q = 1 (i.e., certainty 
that ω = 0); this scheme is a threshold scheme (see Definition 2.3), as desired. �
Appendix D. Proof of Proposition 3.8

Proof of Proposition 3.8. To describe the proof, we use the fractional multidimensional knapsack approach. Consider the 
k-dimensional cube P := × j∈[k]

[
1,n j

]
, with integer points representing the elements of �. A knapsack K is a closed 

subset of P s.t. for every p ∈ K , all the points that Pareto-dominate p are also in K .24 We define a knapsack sig-
naling scheme – the multidimensional variant of a threshold scheme (see Definition 2.3) – as follows. Interpret �, 
equipped with the prior μ, as drawing uniformly p ∈ P – called the continuous state – s.t. all the realizations in 
× j∈[k]

(∑
l j<m j

Prω′
j∼μ j

[
ω′

j = l j

]
,
∑

l j≤m j
Prω′

j∼μ j

[
ω′

j = l j

]]
correspond to the state (m1, ...,mk) (when 1 ≤ m j ≤ n j for every 

1 ≤ j ≤ k). For a knapsack K , the K -knapsack signaling scheme is a binary-signal scheme revealing whether p ∈ K or not.25

Consider the signaling scheme π specified by the knapsack:

Kπ :=
{(

p1, ..., pk
) ∈ P : p j ≥ n j+1

2 ∀1 ≤ j ≤ k
}

. We claim that π ensures a regret of at most 1 − 2−k .

Indeed, if Adversary chooses A s.t. every continuous state realization in Kπ leads to adoption – Sender earns exactly 2−k . 
Since always u∗(ur) ≤ 1, the regret is at most 1 − 2−k , as desired.

Otherwise, there exists some continuous state realization p = (
p1, ..., pk

) ∈ K leading to rejection. As 
(

p1, ..., pk
) ∈ K , 

we have p j ≥ n j+1
2 for every 1 ≤ j ≤ k. Thus, no realization with the j-th coordinate being at most n j+1

2 for every j
leads to adoption. Similarly to the single-dimensional setting, for a given ur , there exists an optimal knapsack signaling 
scheme. Had Sender known A, her optimal knapsack strategy would have been specified by a knapsack K ∗ disjoint to 
S :=

{(
q1, ...,qk

) ∈ P : q j ≤ n j+1
2 ∀1 ≤ j ≤ k

}
. Such a strategy yields adoption probability of at most 1 − Vol(S)

Vol(P )
= 1 − 2−k . 

Therefore, the regret is at most u∗ ≤ 1 − 2−k , as desired. �
Appendix E. Proof of Theorem 4.2

We start with the following lemma.

24 A point q = (
q1, ...,qk

)
Pareto-dominates p = (

p1, ..., pk
)

if q j ≥ p j for every 1 ≤ j ≤ k.
25 The knapsack scheme specified by a knapsack with zero volume is the no-information signaling scheme.
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Lemma E.1. Let α ∈ (0,1) be a constant. Denote β = β(α) := 1
1+ln 1

α

. Let G ′
α be a two-player zero-sum game with continuum action 

sets X = Y = [0,1 − α] of the x- (minimizing) and the y- (maximizing) players, respectively, and utility:

h(x, y) := (1 − y)1y≥x

1 − x
.

Then the value of G ′
α is β . Furthermore, there exists an optimal strategy o∗

x
′ ∈ �([0,1 − α]) of the x-player that has an atom of weight 

β on x = 0 and otherwise has the density function f X(x) := β
1−x over the entire segment [0,1 − α]. Moreover, there exists an optimal 

strategy o∗
y
′ ∈ �([0,1 − α]) of the y-player that has an atom of weight β on y = 1 − α and otherwise has the density function 

fY (y) := β
1−y over the entire segment [0,1 − α].

Proof of Lemma E.1. We shall show that for the strategy couple 
(
o∗

x
′,o∗

y
′), both players are indifferent between all actions 

in [0,1 − α] and the payoff is β; therefore, 
(
o∗

x
′,o∗

y
′) is an equilibrium and the game value is β . Indeed, every fixed x ∈

[0,1 − α] yields expected (over y) payoff of:

1−α∫
0

fY (y)h(x, y)dy + Pr[y = 1 − α]h(x,1 − α) =
1−α∫
x

β

1 − y
· 1 − y

1 − x
dy + β · 1 − (1 − α)

1 − x
=

β(1 − α − x)

1 − x
+ αβ

1 − x
= β,

as needed. Furthermore, every fixed y ∈ [0,1 − α] yields expected (over x) payoff of:

1−α∫
0

f X (x)h(x, y)dx + Pr[x = 0]h(0, y) =
y∫

0

β

1 − x
· 1 − y

1 − x
dx + β · 1 − y

1 − 0
=

β(1 − y)

(
1

1 − y
− 1

)
+ β(1 − y) = β,

as desired. �
Proof of Theorem 4.2. Using the notations of Lemma E.1, consider the two-player zero-sum game G ′

μn
; by the lemma, it 

has value of β := β(μn) = 1
1+ln 1

μn

. We claim that the two-player zero-sum game interpretation of adversarial approximation 

ratio maximization, in which Sender is the maximizing player and her possible strategies are the signaling schemes, and 
Adversary is the minimizing player and her possible strategies are the mixtures over Receiver’s utility functions, has value 
of β .

Using similar arguments to Theorem 3.6 proof, Sender can ensure adversarial approximation of at least β by using the 
signaling scheme πy defined as follows: Sender picks a random y ∼ o∗

y
′; then she uses the y-threshold scheme. The only 

difference from Theorem 3.6 proof is that in the current proof, for a fixed ur and the corresponding optimal threshold x, 
the expected adversarial approximation over πy is Ey∼o∗

y
[h(x, y)] (for h from Lemma E.1).

It remains to prove that Adversary can ensure an adversarial approximation of at most β . As in Theorem 3.6 proof, it 
is enough to prove that Adversary is guaranteed an adversarial approximation of at most β in a persuasion scenario with 
a binary-state space {0,n}, s.t. μ0 := 1 − μn , by using the following strategy: ur(0,1) := −μn deterministically; ur(n,1) :=
1 − μn − t , where t ∼ o∗

x .
We shall refer to a posterior p ∈ �({0,n}) as a real number q ∈ [0,1], where q := p0. As in Theorem 3.6 proof, we 

compute Sender’s expected utility u′(q) (the expectation is over Adversary’s mixed strategy) for each possible posterior 
q ∈ [0,1], and then we evaluate the concavification of u′ at the prior 1 − μn . Again, it is enough to prove that there exists 
Sender’s best-reply signaling scheme that is a threshold scheme.

Indeed, to understand Sender’s best-reply we can consider a standard Bayesian persuasion instance in which Sender’s 
utility is the expected – over Adversary’s strategy – ratio of the indicator whether adoption occurs at the posterior q to the 
optimal adoption probability upon knowing t . Sender’s expected utility, as a function of the posterior q, is:

u′(q) := Et∼o∗
x

[
1−μnq+(1−μn−t)(1−q)≥0

1 − t

]
=Et∼o∗

x

[
1t≤1− μn

1−q

1 − t

]
.

Straightforward calculations show that (see Fig. 10):

u′(q) =
{

β(1−q)
μn

if 0 ≤ q ≤ μ0

0 if μ0 < q ≤ 1.
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Fig. 10. The function u′ (appears in blue) and its concavification (appears in red).

Therefore, there exists an optimal signaling scheme at the prior that uses the posterior q = 1, which is, in particular, a 
threshold scheme, as needed. �
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