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Storage-Based Logic Built-In Self-Test with Cyclic Tests

Irith Pomeranz

Abstract—Logic built-in self-test (LBIST ) eliminates the need for
external test data, and thus facilitates in-field testing. Instead of pseudo-
random tests that are typically produced by on-chip test generation
logic, storage-based LBIST uses deterministic test data entries, which
are stored on-chip, for applying tests that are closer to deterministic
tests. This article describes a storage-based LBIST approach that uses
a unique type of scan-based tests referred to as cyclic tests. Cyclic
tests have cyclic scan enable and scan in sequences, with a higher
proportion of functional capture cycles compared with conventional scan-
based tests. This results in more clock cycles where fault effects can
be captured in the flip-flops. The improved fault detection capabilities
this provides helps balance the number of applied tests and the storage
requirements. Experimental results for benchmark circuits demonstrate
the effectiveness of cyclic tests.

Index Terms—Cyclic tests, full-scan, logic built-in self-test (LBIST ),
on-chip test generation.

I. INTRODUCTION

Logic built-in self-test (LBIST ) eliminates the need for external
test data, and thus facilitates in-field testing [1]-[16]. The elimination
of external test data also enhances security [5], and allows test
application to be carried out at-speed.

On-chip test generation logic under LBIST is typically based
on producing pseudo-random tests [1]. This is motivated by the
simplicity of the hardware needed for generating pseudo-random
test data. To improve the fault coverage, one of several approaches
may be used. (1) Test-points may be inserted into the circuit. (2)
Pseudo-random tests may be modified, e.g., by using weights, bit-
flipping or bit-fixing logic, to improve the fault coverage. (3) The
on-chip test generator may be initialized multiple times using multiple
seeds that are stored on chip or derived from seeds that are stored
on chip by bit complementation. (4) Pseudo-random tests may be
supplemented by deterministic tests. The universal use of test data
compression supports solutions where compressed tests are stored
on-chip and decompressed by the on-chip decompression logic to
produce deterministic tests and tests that are derived from them by
bit or scan slice complementation.

The storage-based LBIST solutions described in [4], [14] and
[15] store uncompressed deterministic test data entries, e.g., scan
vectors, on-chip. They combine stored test data entries on-chip to
form tests that are close (but not necessarily equal) to deterministic
tests. Every stored test data entry may be used multiple times as
part of different tests to create a large number of substantially
different tests, all consisting of deterministic test data, from which
a subset can be selected. This allows the volume of stored test data
to be reduced while achieving complete fault coverage. In [14] and
[15], complete fault coverage is achieved for stuck-at and single-
cycle gate-exhaustive faults. Combining of test data entries may be
performed pseudo-randomly (using linear-feedback shift-registers) or
deterministically (by storing additional data indicating how to com-
bine test data entries to form tests). With deterministic combinations
the number of tests is smaller than with random combinations, but
the storage requirements are higher.

This article describes a storage-based LBIST approach that uses
a unique type of scan-based tests, referred to as cyclic tests, with the
objective of balancing the number of tests that need to be applied
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and the storage requirements. A cyclic test has cyclic scan enable
and scan in sequences. With a cyclic scan enable sequence, a cyclic
test has more functional capture cycles than a conventional scan-
based test. This results in more clock cycles where fault effects can
be captured in the flip-flops, and more opportunities for faults to be
detected. Specifically, if a fault f is activated during a scan shift
cycle, the fault effects disappear without detecting the fault. In [17]-
[19], such a fault f is detected by inserting observation points on
next-state variables. With cyclic tests, instead of observation points,
an increased number of functional capture cycles is used for capturing
fault effects in the flip-flops, and allowing faults to be detected.
In general, the use of cyclic tests allows sequences of scan shift

cycles and functional capture cycles that are not used by conventional
scan-based tests. This is also the case with the approach referred to as
transparent-scan [20]. An alternative to cyclic tests is to use random
tests with random scan enable sequences. In [6], such an LBIST
approach is described for circuits with multiple scan chains, and
multiple scan enable inputs. The scan enable inputs are controlled
independently in [6] to allow different scan chains to operate in
different modes.
In this article, a single scan enable input ensures that all the scan

flip-flops operate together in scan shift or functional capture mode.
Cyclic tests are formed from deterministic test data to control the
number of tests. The use of cyclic tests, instead of general transparent-
scan tests, limits the storage requirements by avoiding the storage of
scan enable sequences. A software procedure is described that accepts
a conventional scan-based test set C, and determines which parts of
C will be stored on-chip and used for generation of cyclic tests.
Experimental results for single stuck-at faults in benchmark circuits

demonstrate that the use of cyclic tests allows complete single
stuck-at fault coverage to be achieved using smaller numbers of
applied tests and storage requirements similar to [15]. In [15],
pseudo-random combinations of deterministic test data are used for
forming conventional scan-based tests. The smaller number of cyclic
tests is important when test application under LBIST occurs at
system startup or during intervals where the system is idle. These
scenarios occur during in-field testing of systems with high reliability
requirements.
The use of cyclic tests has a computational cost similar to

transparent-scan [20] since it requires fault simulation to consider
all the clock cycles of a test. Considering a circuit with K flip-
flops in its longest scan chain, a single-cycle scan-based test has
2K + 1 clock cycles: K scan shift cycles for a scan-in operation,
a functional capture cycle, and K scan shift cycles for a scan-out
operation. Of these clock cycles, only the functional capture cycle
needs to be simulated. A cyclic test with 2K + 1 clock cycles does
not rely on K scan shift cycles to bring the circuit to a known state
or observe a known state. This allows it to use a higher proportion
of functional capture cycles and detect more faults with every test.
The computational cost is that all the clock cycles of the test (both
scan shift and functional capture cycles) need to be simulated. In
addition, fault simulation is carried out for the circuit with the scan
logic to ensure correct fault simulation of both types of clock cycles.
The LBIST approach with cyclic tests is applied to logic blocks for
which the fault simulation effort of cyclic tests is manageable using
available academic fault simulation tools. Commercial tools are able
to simulate arbitrary sequences of functional capture and scan shift
cycles [21]. This capability can potentially be extended to consider
transparent-scan sequences and cyclic tests.
By simulating all the clock cycles of a test, including both scan

shift and functional capture cycles, and using the circuit with the scan
logic, fault simulation yields well-defined output responses that can
be used for fault detection as well as diagnosis.
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TABLE I
CYCLIC TEST CORRESPONDING TO ci

(a) (b)
m = 6, l = 5 m = 3, l = 2

u A aen ain A aen ain

0 01 1 0 01 1 0
1 01 1 1 01 1 1
2 01 1 1 01 0 0
3 01 1 0 01 1 1
4 01 1 1 01 1 0
5 01 0 0 01 0 1
6 01 1 1 01 1 0
7 01 1 1 01 1 1
8 01 1 0 01 0 0
9 01 1 1 01 1 1
10 01 1 0 01 1 0

The article is organized as follows. The on-chip test generation pro-
cess is described in Section II. A software procedure for determining
the test data stored on-chip is described in Section III. Experimental
results for benchmark circuits are presented in Section IV.

II. ON-CHIP TEST GENERATION

This section describes the on-chip test generation process and the
hardware required for implementing it.

A. Preliminaries

The main part of the on-chip test generation logic is a memory for
storing deterministic test data, which are obtained from a scan-based
test set denoted by C. For simplicity of discussion, C is assumed
to contain single-cycle tests. A single-cycle test ci = 〈si, vi〉 ∈ C
consists of a scan-in state si, and a primary input vector vi.

For a circuit with K flip-flops in its longest scan chain, application
of ci to the circuit starts with K scan shift cycles where si is scanned
in. A functional capture cycle follows the scan-in operation. During
this clock cycle, vi is applied to the primary inputs. The test ends
with K scan shift cycles for a scan-out operation. Thus, application
of ci to the circuit takes 2K + 1 clock cycles.

The cyclic test ti corresponding to ci, which is the cyclic test
that duplicates ci, also has 2K + 1 clock cycles. Denoting the scan
enable input by aen, a scan shift cycle has aen = 1, and a functional
capture cycle has aen = 0. The sequence applied to aen under ti is
1...101...1, with two subsequences of K consecutive 1’s.

Let the set of scan chain inputs be ain. During the first K clock
cycles of ti, si appears on ain, one scan vector per clock cycle.
Additional scan vectors are not specified by ci. To obtain a cyclic
test with 2K + 1 clock cycles, the sequence of scan vectors on ain

is repeated. In addition, the primary input vector vi is applied to the
primary inputs during all the clock cycles of ti.

For illustration, let ci = 〈01101, 01〉 be a scan-based test for a
circuit with two primary inputs and K = 5 flip-flops in a single
scan chain. The cyclic test ti corresponding to ci has 2K + 1 = 11
clock cycles. For every clock cycle 0 ≤ u < 11, Table I(a) shows the
primary input vector, the value of the scan enable input, and the value
of the scan chain input under columns A, aen, and ain, respectively.

All the cyclic tests considered in this article consist of 2K + 1
clock cycles. This is the minimum number of clock cycles required
to guarantee that every scan-based test ci can be duplicated on-
chip. In addition, all the choices made with respect to the on-chip
generation of cyclic tests ensure that the on-chip logic is simple, and
can duplicate ci if necessary. These choices are described next.

B. Scan Enable Sequences

All the scan enable sequences are obtained using the same logic
consisting of a down-counter. By initializing the down-counter to

TABLE II
SCAN ENABLE SEQUENCES

m (1)m−10 SEm

1 0 0 0 0 0 0 0 0 0 0 0 0
2 10 1 0 1 0 1 0 1 0 1 0 1
3 110 1 1 0 1 1 0 1 1 0 1 1
4 1110 1 1 1 0 1 1 1 0 1 1 1
5 11110 1 1 1 1 0 1 1 1 1 0 1
6 111110 1 1 1 1 1 0 1 1 1 1 1

TABLE III
SCAN IN SEQUENCES

l pi,l SIi,l
1 0 0 0 0 0 0 0 0 0 0 0 0
2 01 0 1 0 1 0 1 0 1 0 1 0
3 011 0 1 1 0 1 1 0 1 1 0 1
4 0110 0 1 1 0 0 1 1 0 0 1 1
5 01101 0 1 1 0 1 0 1 1 0 1 0

different values, the scan enable sequences differ in the number
of functional capture cycles they contain. This is important since
additional functional capture cycles allow additional faults to be
detected using cyclic tests.
To describe the scan enable sequences produced by the on-chip

test generation logic, the sequence aa...a, with M repetitions of a,
is denoted by (a)M . A sequence of length 2K + 1 with a cycle of
length m is specified by providing only one copy of its cycle. The
cycle is repeated to form a sequence of length 2K + 1.
Using this notation, the scan enable sequence of a scan-base test ci

has cycle (1)K0. Repeating the cycle to obtain a sequence of length
2K + 1 yields the sequence (1)K0(1)K . A down-counter needs to
be initialized to K, and produce the value 0 when the count reaches
zero. Initialization is repeated twice.
Up to K + 1 different scan enable sequences are obtained by

initializing the counter with a value m− 1, where 1 ≤ m ≤ K + 1.
The scan enable sequence for m has cycle (1)m−10. This scan enable
sequence is denoted by SEm. It requires the counter to be initialized
tom−1 repeatedly �(2K+1)/m� times after the count reaches zero.
The number of functional capture cycles for SEm is �(2K+1)/m	.
For illustration, the scan enable sequences of length 2K +1 = 11

obtained with K = 5 and 1 ≤ m ≤ K + 1 are shown in Table II.

C. Scan In and Primary Input Sequences

Similar to the scan enable sequences, the scan in sequences
produced by the on-chip test generation logic are also cyclic. The
cycle is denoted by 1 ≤ l ≤ K. The sequences are obtained from
a scan-based test ci = 〈si, vi〉 ∈ C. A scan in sequence SIi,l, for
1 ≤ l ≤ K, is obtained from ci as follows.
Let the prefix pi,l of si consist of the first l scan vectors of si.

The scan in sequence SIi,l = pi,l is obtained by repeating pi,l to
obtain a sequence of length 2K + 1.
For illustration, suppose that the circuit has a single scan chain of

length K = 5, and si = 01101. Table III shows the cyclic scan in
sequences obtained with 1 ≤ l ≤ K.
For a parameter denoted by li, the on-chip memory will contain a

prefix pi of length li of si. A down-counter initialized to l − 1 for
l ≤ li, and initialized again after it reaches zero, produces the scan
in sequence SIi,l = pi,l of length 2K + 1.
In addition, the primary input vector vi of ci is stored on-chip.

When a cyclic test based on ci is generated on-chip, the primary
input vector vi is held constant for the duration of the test.

D. Cyclic Tests

Based on the discussion thus far, a scan-based test ci = 〈si, vi〉 ∈
C is associated with several parameters to determine which cyclic
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TABLE IV
PARAMETERS FOR CYCLIC TESTS

parameter meaning
1 ≤ li ≤ K length of cycle of scan in sequence

1 ≤ mi ≤ K + 1 length of cycle of scan enable sequence
vi primary input vector
pi prefix of length li of scan-in state si

l0 m0 v0 p0
l1 m1 v1 p1
l2 m2 v2 p2
l3 m3 v3 p3

Fig. 1. On-chip memory.

tests will be applied to the circuit The parameters are shown in Table
IV. They are stored on-chip as a single entry ei = 〈li,mi, vi, pi〉. To
ensure that every entry is as effective as possible in detecting faults,
and as few entries as possible are needed, an entry ei is used for
applying li · mi tests, with 1 ≤ l ≤ li and 1 ≤ m ≤ mi. The test
ti,l,m uses SEm, SIi,l and vi.

For illustration, let ci = 〈01101, 01〉 be associated with mi = 3
and li = 2. Cyclic tests are formed by using every SEm with 1 ≤
m ≤ 3 from Table II, every SIi,l with 1 ≤ l ≤ 2 from Table III,
and vi = 01. The test with m = 3 and l = 2 is shown in Table I(b).

The test from Table I(a) is obtained from ci using m = mi = 6
and l = li = 5. In general, the option of using mi = K + 1 and
li = K ensures that a cyclic test ti corresponding to a scan-based test
ci can be applied by the on-chip test generation logic. This ensures
that complete fault coverage can be achieved.

E. On-Chip Storage of Test Data and Applied Tests

The on-chip memory required for storage of test data is illustrated
by Figure 1. Four scan-based tests from C contribute test data that
are used for generating cyclic tests in Figure 1.

In general, a subset of scan-based tests from C contributes test
data for on-chip test generation. The subset is denoted by Ctg . The
size of the memory is determined as follows.

Let lmax = max{li : ci ∈ Ctg}, and mmax = max{mi : ci ∈
Ctg}. For a circuit with N primary inputs, and H scan chains, the
number of bits required for storing test data is

∑{�log2(lmax)� +
�log2(mmax)�+N +Hli : ci ∈ Ctg}.

In addition to the memory, the on-chip test generation logic
requires two down-counters, and an LFSR as discussed next.

For an entry ei = 〈li,mi, vi, pi〉 of the memory from Figure 1,
the subset of tests applied to the circuit consists of the test ti,l,m for
every pair of values 1 ≤ l ≤ li and 1 ≤ m ≤ mi. The cyclic test
ti,l,m is applied as follows.

A random initial state is scanned in to ensure that the state of
the circuit is known before applying the test. This is important
for initializing the circuit. The generation of a random initial state
requires an LFSR to drive the scan chains. Starting from the second
test, instead of a random initial state, it is possible to use the final
state of the previous test.

After initialization, the sequence SEm is applied to the scan enable
input, the sequence SIi,l is applied to the scan chain inputs, and vi
is applied to the primary inputs. The values of the primary outputs
and scan chain outputs are captured in a MISR.

The number of applied tests is
∑{li ·mi : ci ∈ Ctg}. The number

of clock cycles for the application of every test is 3K + 1 (K clock
cycles for scanning in a random initial state, and 2K+1 clock cycles

for a cyclic test). For L tests, the number of clock cycles is L(3K+
1) ≈ 3LK. This can be reduced to L(2K + 1) ≈ 2LK without the
random initialization. For a conventional scan-based test set with L
tests, the number of clock cycles is K + L(K + 1) ≈ LK.

III. SOFTWARE PROCEDURE FOR SELECTING TEST DATA

The software procedure described in this section accepts a scan-
based test set C, and a set of target faults F detected by C. The
procedure selects a subset Ctg ⊆ C for which test data will be
stored on-chip, and the parameters li and mi for every test ci ∈ Ctg .
The procedure has two subprocedures described next. Both sub-

procedures consider lower bounds lmin and mmin on l and m,
respectively. This is important since small values of l and m are
not likely to produce effective cyclic tests.

A. Forming Ctg

The first subprocedure forms a subset Ctg ⊆ C, and selects an
entry ei = 〈li,mi, vi, pi〉 for every test ci ∈ Ctg. The goal of the
first subprocedure is to ensure that lmax = max{li : ci ∈ Ctg} and
mmax = max{mi : ci ∈ Ctg} are as small as possible to control
the storage requirements and the number of applied tests.
The first subprocedure also forms a cyclic test set denoted by Ttg .

The tests in Ttg are the ones based on Ctg that are effective in
detecting target faults. The set Ttg is not stored on-chip. It is used
only by the software procedure to keep track of cyclic tests that
increase the fault coverage. Initially, Ctg = ∅ and Ttg = ∅.
The procedure considers values of l and m in an order based on

their product. Let the product be q = l ·m. The procedure considers
q = lmin ·mmin, lmin ·mmin+1, lmin ·mmin+2, ..., K · (K+1),
l = lmin, lmin + 1, ..., K, and m = mmin, mmin + 1, ..., K + 1,
such that l ·m = q.
For every combination of q, l andm, the procedure considers every

test ci ∈ C. Based on l, m and ci, it forms the cyclic test ti,l,m. It
performs fault simulation with fault dropping of F under ti,l,m. If
the test detects any faults, it is added to Ttg .
After Ttg detects all the faults in F , the procedure performs

forward-looking reverse order fault simulation to remove unnecessary
tests from Ttg . Considering the tests that remain in Ttg , the procedure
constructs Ctg , and the entry ei for every ci ∈ Ctg , as follows.
A test ci is included in Ctg only if Ttg contains a test of the form

ti,l,m. Considering all the tests of the form ti,l,m in Ttg , the maxi-
mum value of l determines li. The maximum value of m determines
mi. Thus, Ctg = {ci ∈ C : ti,l,m ∈ Ttg for some l and m},
li = max{l : ti,l,m ∈ Ttg}, and mi = max{m : ti,l,m ∈ Ttg}.

B. Reducing the Number of Tests in Ctg

The goal of the second subprocedure is to reduce the number of
tests in Ctg without increasing lmax or mmax. A secondary objective
is to reduce the values of li and mi when possible. The second
subprocedure uses the tests in Ctg to construct a new test set Ttg .
Initially, Ttg = ∅. The procedure considers the tests from Ctg one
by one from high to low value of li ·mi. For a test ci ∈ Ctg with
ei = 〈li,mi, vi, pi〉, the procedure considers all the tests based on ei.
Thus, for l = lmin, lmin +1, ..., li, and for m = mmin, mmin +1,
..., mi, the procedure forms the cyclic test ti,l,m. It performs fault
simulation with fault dropping of F under ti,l,m. If the test detects
any faults, it is added to Ttg .
Similar to the first subprocedure, the second subprocedure performs

forward-looking reverse order fault simulation to remove unnecessary
tests from Ttg . Considering the tests that remain in Ttg , the procedure
reconstructs Ctg , and the entry ei for every ci ∈ Ctg .
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The second subprocedure simulates all the cyclic tests based on a
scan-based test ci ∈ Ctg before another test from Ctg is considered.
In addition, scan-based tests with lower values of li and mi are less
likely to contribute cyclic tests to Ttg . When a test ci ∈ Ctg does not
contribute any cyclic tests to Ttg , it is excluded from Ctg. If a test ci
with lower values of li and mi is not removed from Ctg , the values
of li and mi may be reduced to reduce the storage requirements and
the number of cyclic tests that will be applied.

IV. EXPERIMENTAL RESULTS

The results of the software procedure for benchmark circuits that
can be simulated under cyclic tests using available academic tools
are presented in this section.

The scan-based test set C is a compact test set for single stuck-at
faults. The set of target faults F consists of single stuck-at faults that
are detected by C.

Experimental results indicate that lmin = 1 and mmin = 1
result in the lowest number of applied tests and the highest storage
requirements. Increasing lmin and mmin increases the number of
tests and decreases the storage requirements. For a circuit with K
flip-flops, lmin = K/16 and mmin = K/16 balance the number of
tests and storage requirements. The value of K/16 is increased to
the next power of two. This value is denoted by QMIN .

For most of the circuits considered, the first subprocedure is applied
only with lmin = mmin = QMIN . The second subprocedure is
applied several times with lmin = mmin = QMIN , QMIN/2, ...,
1. As lmin and mmin are decreased, each scan-based test in Ctg is
utilized for applying additional cyclic tests, and the number of scan-
based tests that remain in Ctg is decreased. For several circuits, both
subprocedures are also applied with lmin = mmin = 1 to illustrate
the possibility of reducing the number of applied tests. The name of
the circuit is followed by ”.1” in this case.

For comparison, the approach from [15] was applied to single
stuck-at faults using the same scan-based test set C. The approach
from [15] stores deterministic scan vectors from C in multiple
subsets. It uses each subset to produce a fixed number of scan-
based tests by selecting scan vectors randomly from the subset for
each test. The number of subsets, the number of scan vectors in
each subset, and the number of scan-based tests applied for every
subset, are increased gradually to find a solution that minimizes the
storage requirements and the number of applied tests, while achieving
complete fault coverage.

In Table V, after the circuit name, column [15] describes the results
of the approach from [15]. Subcolumn bits shows the number of
storage bits. Subcolumn app shows the number of tests that need to
be applied to achieve complete single stuck-at fault coverage. Column
cyclic describes the results using cyclic tests as suggested in this
article. Subcolumn bits shows the number of storage bits. Subcolumn
inc(x) shows the increase in the number of bits relative to [15].
Subcolumn app shows the number of tests that need to be applied to
achieve complete single stuck-at fault coverage. Subcolumn red(x)
shows the reduction in the number of applied tests relative to [15]. A
reduction higher than 2x (or 3x with random initialization) implies a
reduction in the number of clock cycles required for test application.

For further comparison, the number of bits for two additional
approaches are shown in Table V. Both approaches apply conventional
scan-based tests and require small numbers of tests. The approach
from [22] stores scan vectors as well as permutations of scan vectors
that are needed for achieving complete fault coverage. In [23], LFSR
seeds are computed for the application of a deterministic test set. Each
seed is used for producing several tests by complementing bits of the
seed and using the same seed with different LFSRs. This approach
is closer to the approaches described in earlier works.

TABLE V
COMPARISON

[15] cyclic [22] [23]
circuit bits app bits inc(x) app red(x) bits bits
systemcdes 216 768 1755 8.12 19 40.42 3762 672
sasc 144 384 109 0.76 53 7.25 1104 310
des area 720 1152 26182 36.36 283 4.07 4320 990
b05 120 20480 204 1.70 284 72.11 1188 -
s1423 320 8192 326 1.02 410 19.98 1380 684
b04 108 49152 359 3.32 524 93.80 1305 636
usb phy 176 1024 156 0.89 536 1.91 1100 445
i2c 624 24576 756 1.21 920 26.71 4464 1497
spi 1088 32768 2203 2.02 1882 17.41 11322 5300
simple spi 364 28672 655 1.80 1886 15.20 2580 1204
b07 192 98304 236 1.23 4227 23.26 1162 819
systemcaes 992 4096 2751 2.77 5783 0.71 16833 1811
s5378 1920 16384 2272 1.18 27897 0.59 4998 2840
s13207 5616 53248 1481 0.26 31050 1.71 4224 6147
pci spoci ctrl 1040 425984 3477 3.34 84570 5.04 6066 5237
sasc.1 144 384 240 1.67 24 16.00 1104 310
usb phy.1 176 1024 292 1.66 117 8.75 1100 445
s5378.1 1920 16384 2733 1.42 15140 1.08 4998 2840

Detailed results using cyclic tests are given in Table VI. There are
two rows for every circuit in Table VI, corresponding to the first
and second subprocedures. For the second subprocedure, the results
are shown for the lowest values of lmin and mmin that reduced the
storage requirements or number of applied tests.
After the circuit name, column sv of Table VI shows the number

of state variables. Column pi shows the number of primary inputs.
Column C shows the number of tests in C. Column pr shows
the subprocedure applied. Columns lmin , lmax and mmax show
the values of the corresponding parameters. Column Ctg shows the
number of tests in Ctg. Column bits shows the number of storage
bits. Column frac shows the number of storage bits as a fraction
of the number of bits required for storing C. Column app shows
the number of tests that need to be applied. The circuits in Table
VI are ordered from low to high number of applied tests. Column
f.c. shows the single stuck-at fault coverage. Column ntime shows
the normalized runtime for each subprocedure separately. This is the
total runtime for the subprocedure, divided by the runtime for fault
simulation of cyclic tests based on C.
The following points can be seen from Tables V and VI. The

parameters selected by the software procedure result in storage
requirements that are similar to the ones produced by the procedure
from [15]. Compared with the scan-based test set C, the number
of bits is reduced significantly. The number of bits is typically also
reduced compared with [22] and [23].
With cyclic tests, the number of applied tests is typically smaller

than in [15]. This is made possible by using scan enable sequences
with more functional capture cycles.
Whereas the first subprocedure is important for limiting the values

of lmax and mmax, the second subprocedure is important for
reducing the number of stored entries, the storage requirements and
the number of applied tests.
The normalized runtime of the software procedure is similar for

circuits of different sizes. Thus, the procedure scales similar to a
fault simulation procedure for cyclic tests. With an efficient fault
simulation tool, the procedure is expected to be applicable to larger
circuits than the ones in Table VI. The normalized runtime is a
stronger function of the difficulty of testing the circuit than its size.
The difficulty is higher for higher values of lmax, mmax, and number
of applied tests.

V. CONCLUDING REMARKS

This article described a storage-based LBIST approach that uses
a unique type of scan-based tests referred to as cyclic tests, with
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TABLE VI
EXPERIMENTAL RESULTS

circuit sv pi C pr lmin lmax mmax Ctg bits frac app f.c. ntime
systemcdes 190 130 79 1 16 16 17 16 2496 0.099 4112 100.000 0.86
systemcdes 190 130 79 2 1 1 5 13 1755 0.069 19 100.000 7.03
sasc 117 15 22 1 8 8 9 11 341 0.117 744 100.000 2.70
sasc 117 15 22 2 1 3 7 5 109 0.038 53 100.000 15.90
des area 128 239 118 1 8 8 62 106 27242 0.629 8024 100.000 83.52
des area 128 239 118 2 1 1 62 106 26182 0.605 283 100.000 144.04
b05 34 2 61 1 2 8 12 23 307 0.140 384 95.209 15.71
b05 34 2 61 2 1 8 12 15 204 0.093 284 95.209 4.79
s1423 74 17 26 1 4 13 34 15 496 0.210 737 99.076 50.49
s1423 74 17 26 2 1 13 34 10 326 0.138 410 99.076 44.58
b04 66 12 44 1 4 18 18 20 544 0.159 1015 99.851 32.44
b04 66 12 44 2 1 18 16 14 359 0.105 524 99.851 50.11
usb phy 98 14 32 1 8 13 18 19 618 0.172 1963 100.000 31.48
usb phy 98 14 32 2 1 12 18 5 156 0.044 536 100.000 27.58
i2c 128 17 45 1 8 31 60 31 1181 0.181 3612 100.000 83.71
i2c 128 17 45 2 1 31 60 24 756 0.116 920 100.000 142.01
spi 229 45 406 1 16 41 30 99 7207 0.065 28080 99.985 20.97
spi 229 45 406 2 1 41 21 37 2203 0.020 1882 99.985 50.33
simple spi 131 15 36 1 8 122 13 24 1141 0.217 5984 100.000 90.59
simple spi 131 15 36 2 1 122 13 18 655 0.125 1886 100.000 331.07
b07 51 2 52 1 4 33 52 21 495 0.180 5016 99.915 128.47
b07 51 2 52 2 1 33 52 8 236 0.086 4227 99.915 187.53
systemcaes 670 258 121 1 64 70 66 44 14798 0.132 181700 99.995 6.52
systemcaes 670 258 121 2 16 47 60 8 2320 0.021 5783 99.995 199.37
s5378 179 35 100 1 16 76 128 69 4761 0.222 54857 99.131 363.65
s5378 179 35 100 2 1 76 128 38 2272 0.106 27897 99.131 3089.47
s13207 669 31 235 1 64 80 98 103 11340 0.069 459300 98.462 53.19
s13207 669 31 235 2 8 80 98 17 1212 0.007 31050 98.462 73.91
pci spoci ctrl 60 23 146 1 4 54 61 78 5210 0.430 95844 99.942 3970.07
pci spoci ctrl 60 23 146 2 2 54 61 47 3477 0.287 84570 99.942 888.01

cyclic scan enable and scan in sequences. Cyclic tests provide im-
proved fault detection capabilities since their scan enable sequences
have higher proportions of functional capture cycles compared with
conventional scan-based tests. Experimental results for benchmark
circuits demonstrated that the improved fault detection capabilities
help balance the number of applied tests and the storage requirements.
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