
1

Storage-Based Logic Built-In Self-Test with
Partitioned Deterministic Compressed Tests

Irith Pomeranz

Abstract—Logic built-in self-test (LBIST) is important for in-
field testing. In a storage-based LBIST approach, deterministic
test data are stored on-chip and used for applying tests that
are closer to deterministic tests than pseudo-random tests. Using
the same stored test data for applying several different tests
allows the volume of test data stored on-chip to be reduced,
and the fault coverage to be increased. This observation was
applied earlier in two ways: (1) by complementing bits of stored
test data or applied tests to form additional tests, or (2) by
forming different tests from different combinations of stored test
data entries that are obtained by partitioning deterministic tests.
Partitioning was applied earlier to uncompressed deterministic
tests. In this article, partitioning is applied for the first time
to compressed deterministic tests. Under the resulting LBIST
approach, tests are formed on-chip using pseudo-random combi-
nations of partitioned compressed tests. A software procedure is
described for deriving a reduced set of test data entries for on-
chip storage. With compressed tests, the storage requirements are
already reduced, and they are reduced further by the software
procedure. Experimental results demonstrate the effectiveness
of this LBIST approach considering both single stuck-at and
single-cycle gate-exhaustive faults in benchmark circuits.

Index Terms—Full-scan, linear-feedback shift-register
(LFSR), logic built-in self-test (LBIST), on-chip test
generation, test data compression.

I. INTRODUCTION

Logic built-in self-test (LBIST) is effective for in-field
testing to address defects that escape manufacturing testing or
occur during the lifetime of a chip [1]-[19]. In a storage-based
LBIST approach, deterministic test data are stored on-chip
and used for test application [4], [14], [15], [17], [18]. The test
data may be uncompressed [4], [17], [18] or compressed [14],
[15]. With compressed test data the LBIST approach uses the
on-chip decompression logic for test application. In both cases,
storage of deterministic test data results in applied tests that
are closer to deterministic tests than the pseudo-random tests
that are typically used for LBIST [1]. With more effective
tests, the fault coverage is increased, or the number of tests is
reduced, allowing LBIST to be used during system startup
or idle intervals.
Using the same stored test data for applying several different

tests allows the volume of test data stored on-chip to be re-
duced, and the fault coverage to be increased. This observation
was used earlier in two ways, as discussed next.
The first approach was considered in [2], [3], [10], [14],

[15], [20], [21], and consists of complementing one or more
bits in the stored test data or applied tests. Complementation

Irith Pomeranz is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomer-
anz@ecn.purdue.edu).

The work was supported in part by NSF Grant No. CCF-2041649.

test
gen

decom
press

func
logic

Fig. 1. On-chip test generation logic.

of bits allows a larger number of more effective tests to
be formed. Complementation was shown to be effective for
LBIST as well as test data compression.
The second approach was applied to uncompressed deter-

ministic tests, and described in [4], [17], [18]. Under this
approach, uncompressed deterministic tests are partitioned,
e.g., into scan vectors, and the partitioned test data entries
are stored on-chip. Tests are formed on-chip using different
combinations of the stored test data entries. Three options
were considered for the combination of test data entries: using
all the possible combinations, storing effective combinations
on-chip, or using linear-feedback shift-registers (LFSRs) for
forming pseudo-random combinations. With storage of parti-
tioned deterministic test data entries, and combinations formed
on-chip, the extent of the variations possible in applied tests is
significant. This allows significant reductions in the volume of
stored test data, and a significant increase in the fault coverage
to be achieved. The use of pseudo-random combinations fits
well with LBIST . Although a lower number of tests is needed
if the combinations are stored, the storage requirements are
also higher in this case. Adding deterministic combinations to
pseudo-random combinations can help reduce the number of
tests that need to be applied, and increase the fault coverage,
at the cost of a limited increase in the storage requirements.
In this article, partitioning of test data, and the use of

combinations for forming tests, are applied for the first time
to compressed deterministic tests. The resulting LBIST ap-
proach is illustrated by Figure 1. An on-chip test generation
logic, shown on the left in Figure 1, produces compressed
tests from partitioned test data. The compressed tests are used
as input to the on-chip decompression logic. The on-chip
decompression logic uses the tests to produce scan vectors
that are shifted into the scan chains of the functional logic
of the circuit, shown on the right in Figure 1. Partitioning
as suggested in this article allows significant reductions in
the stored test data to be achieved compared with an already
compressed deterministic test set.
For the discussion in this article, the test data compression

logic includes an LFSR, and tests are compressed into seeds
for the LFSR. Considering a seed as a vector, the seeds are

2

TABLE I
EXAMPLE SET OF SUBVECTORS

i vi
0 10110
1 10010
2 00000
3 10011
4 11010
5 00011
6 00001
7 11101
8 11111
9 10000
10 01010
11 01111

partitioned into subvectors of equal length. Subvectors are
stored and combined on-chip to form seeds for the decom-
pression logic, and apply tests to the circuit. For simplicity the
following assumptions are made. (1) A test is compressed into
a single seed. (2) Subvectors are combined pseudo-randomly
only. It should be noted that deterministic compressed tests are
partitioned deterministically into subvectors. Only the combi-
nation of subvectors on-chip is performed pseudo-randomly.
A software procedure is described for deriving a reduced

set of subvectors, V , from a compressed deterministic test
set, Ssa, for single stuck-at faults. The software procedure is
run a-priori to compute the stored test data entries. The test
data compression logic is that for which Ssa was computed.
Tests applied on-chip use pseudo-random combinations of
subvectors from V to form seeds for the decompression logic.
The tests target both single stuck-at faults and single-cycle
gate-exhaustive faults. This demonstrates the ability to increase
the fault coverage beyond that achieved by Ssa. Experimental
results for benchmark circuits demonstrate significant reduc-
tions in the storage requirements of V compared with Ssa,
and significant increases in the coverage of single-cycle gate-
exhaustive faults. As with other LBIST approaches, and to
simplify the discussion in this article, it is assumed that a small
loss of single stuck-at fault coverage is acceptable. This can be
addressed in one of several ways discussed later. In addition
it is assumed that it is acceptable to apply a large number of
tests that are produced by the LBIST logic through pseudo-
random combinations of subvectors to cover both single stuck-
at and single-cycle gate-exhaustive faults.
The article is organized as follows. Section II describes the

on-chip storage of subvectors and the test application process.
Section III describes the software procedure for computing
the stored set of subvectors. Section IV presents experimental
results for benchmark circuits. Section V concludes the article.

II. ON-CHIP STORAGE AND TEST APPLICATION

The on-chip storage of subvectors and test application pro-
cess are illustrated in this section by considering benchmark
circuit s1423.
The circuit has a compressed deterministic test set Ssa for

single stuck-at faults that consists of 55 seeds. The decom-
pression logic for which Ssa is computed includes an LFSR
of length L = 18. The test set achieves complete coverage of

TABLE II
EXAMPLE SEEDS FOR APPLIED TESTS

i i0 i1 i2 i3 si,0 si,1 si,2 si,3
0 8 10 9 6 11111 01010 10000 000[01]
1 3 1 4 5 10011 10010 11010 000[11]
2 11 9 7 6 01111 10000 11101 000[01]
3 6 2 1 2 00001 00000 10010 000[00]
4 11 11 2 5 01111 01111 00000 000[11]
5 0 8 5 11 10110 11111 00011 011[11]
6 10 1 1 2 01010 10010 10010 000[00]
7 7 9 2 11 11101 10000 00000 011[11]
8 11 5 9 6 01111 00011 10000 000[01]
9 2 2 8 1 00000 00000 11111 100[10]

single stuck-at faults, and a coverage of 90.381% for single-
cycle gate-exhaustive faults. For this example, an 18-bit seed
is partitioned into p = 4 subvectors of length l = 5. The last
subvector obtained by partitioning a seed has three bits. It is
padded as discussed later to obtain a 5-bit subvector, and only
5-bit subvectors are considered.
The software procedure described in Section III yields the

set of subvectors V = {v0, v1, ..., v11} shown in Table I. With
l = 5, the number of subvectors is bounded by 2l = 32. Only
12 subvectors need to be stored to form seeds that achieve
complete single stuck-at fault coverage.
The set V is stored in an on-chip memory. To apply tests

to the circuit, four indices of subvectors are selected pseudo-
randomly, and the subvectors are used for forming seeds that
initialize the LFSR in the decompression logic. A total of 138
tests are needed for s1423 to detect all the detectable single
stuck-at faults, and achieve a fault coverage of 99.214% for
single-cycle gate-exhaustive faults. The seeds for the first ten
tests are shown in Table II. A seed si = 〈si,0, si,1, si,2, si,3〉
is formed from the subvectors with indices i0, i1, i2 and i3.
Only the first three bits of si,3 are used for test application.
The remaining two bits, shown in square brackets in Table II,
are discarded.
Figure 2 shows the on-chip test generation logic for s1423

on the left. The on-chip test generation logic drives the
decompression logic on the right, which in turn drives the
scan chains of the circuit (not shown in Figure 2).
The memory that stores the set V of subvectors is shown

at the top of Figure 2. With p = 4, four multiplexers are
used for selecting four subvectors that are loaded into the
decompression logic to form a seed si. An LSFR, shown
on the left in Figure 2, selects which subvectors will be used.
In general, let an LFSR of length L be included in the

decompression logic. Suppose that a seed is partitioned into p
subvectors of length l. Using p = �L/l� ensures that l ·p ≥ L,
and neither l nor p is larger than necessary. The on-chip test
generation logic consists of the following components.
(1) A memory for |V | l-bit subvectors.
(2) p l-bit multiplexers with |V | data inputs and �log2(|V |)�
select inputs.
(3) An LFSR for p �log2(|V |)�-bit random numbers.
In Figure 2, the memory consists of |V | = 12 l-bit

subvectors with l = 5. There are p = 4 multiplexers with
|V | = 12 data inputs and �log2(|V |)� = 4 select inputs. Each
data input has l = 5 bits. The LFSR on the left in Figure 2
produces p = 4 numbers each with �log2(|V |)� = 4 bits.

3

test
gen

L
F
S
R

4

4

4

4

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

mux0

mux1

mux2

mux3

5 5 5 5 5 5 5 5 5 5 5 5
si0

si1

si2

si3

5

5

5

3

decom
press

Fig. 2. On-chip test generation logic for s1423.

TABLE III
EXAMPLE OF INITIAL SET OF SUBVECTORS

i si,0 si,1 si,2 si,3 v0 v1 v2 v3 v4 v5 v6 v7 v8
0 01110 11100 00110 010xx 01110 11100 00110 010xx
1 10001 10110 01001 110xx 01110 11100 00110 01001 10001 10110 110xx
2 10010 11001 01101 111xx 01110 11100 00110 01001 10001 10110 11001 10010 01101

Given l and p = �L/l�, the software procedure described
in Section III attempts to minimize the hardware overhead
by minimizing |V |. The selection of l and p is discussed in
Section IV.
If the on-chip decompression logic requires m > 1 seeds

to form a test, the on-chip test generation logic can be used
for forming m seeds for every test. For each seed, the on-chip
test generation logic needs to select p l-bit subvectors as in
Figure 2, and this needs to be repeated m times for every test.
The software procedure can be extended to address this case
as discussed at the end of Section III.

III. SOFTWARE PROCEDURE FOR COMPUTING STORED
SET OF SUBVECTORS

This section describes the software procedure for computing
the stored set of subvectors with given parameters l and p =
�L/l�. The software procedure is run a-priori to compute the
stored test data entries for on-chip test generation under the
LBIST approach.
The software procedure accepts a set of deterministic seeds

Ssa computed for single stuck-at faults without considering
the on-chip test generation logic. From Ssa the decompression
logic alone, without the on-chip test generation logic, produces
a set of tests denoted by Tsa. The test set Tsa targets single
stuck-at faults, and achieves complete single stuck-at fault
coverage. Let Ssa = {s0, s1, ..., sn−1}. Based on Ssa, the
software procedure computes an initial set V of subvectors.
It uses V to compute the test set T that will be applied to
the circuit by the LBIST approach. The software procedure
then reduces V without reducing the fault coverage of T . The
various parts of the software procedure are described next.
For the computation of T , the on-chip test generation logic is
simulated to compute seeds, and the decompression logic is
simulated to produce tests from the seeds.

A. Initial Set of Subvectors

To initialize the set V , the procedure partitions every seed
si ∈ Ssa into p l-bit subvectors. If l ·p > L, the last subvector
of si is padded with unspecified values. After padding, let
si = 〈si,0, si,1, ..., si,p−1〉. For 0 ≤ j < p, the procedure adds
si,j to V as follows.
The procedure checks if V already contains a subvector vk

that is compatible with si,j . If V does not contain any such
subvector, the procedure adds si,j to V . If it finds a subvector
vk ∈ V that is compatible with si,j , it checks whether vk has
any unspecified values that are specified in si,j . The procedure
copies such values from si,j to vk. In this case, si,j is not
added to V as a separate subvector.
After considering all the seeds in Ssa, if V contains any

unspecified values, the procedure specifies them randomly.
In the example of s1423, with L = 18, l = 5 and p = 4,

the first seeds in Ssa are shown in Table III. The seed s0
contributes to V the subvectors v0 = s0,0, v1 = s0,1, v2 =
s0,2, and v3 = s0,3.
The seed s1 contributes to V the subvectors v4 = s1,0,

v5 = s1,1, and v6 = s1,3. The subvector s1,2 is compatible
with v3, causing the unspecified values of v3 to be specified
based on s1,2.

The seed s2 contributes to V the subvectors v7 = s2,0 and
v8 = s2,2. The subvector s2,1 is compatible with v6, causing
the unspecified values of v6 to be specified based on s2,1. The
subvector s2,3 is compatible with v1, which is already fully
specified.
Additional subvectors are added to the initial set V in a

similar manner.

B. Set of Applied Tests

With a set V of subvectors and parameters l and p, a test
set T is constructed by the LBIST approach as follows.

4

The number of tests in T is a constant denoted by NT .
For i = 0, 1, ..., NT − 1, a seed si is formed by selecting p
subvectors from V pseudo-randomly. With subvector indices
〈i0, i1, ..., ip−1〉, si = 〈si,0, si,1, ..., si,p−1〉 such that si,0 =
vi0 , ..., si,p−2 = vip−2 , and si,p−1 = vip−1 is truncated to
form an L-bit seed.
The test produced by the decompression logic from si is

denoted by ti. The test ti is included in T together with the
indices 〈i0, i1, ..., ip−1〉.
Two sets of target faults are considered in this article. The

set F0 is the set of single stuck-at faults that are also targeted
by the set of seeds Ssa. The set F1 consists of single-cycle
gate-exhaustive faults. The set F1 is used for demonstrating
that extra coverage is achieved when T is applied to the circuit
instead of Tsa.
Fault simulation is carried out for F0 and F1 under T . Tests

that are effective in detecting target faults are included in a
subset of tests denoted by Teff ⊆ T . Forward-looking reverse
order fault simulation is applied to Teff to remove unnecessary
tests. The test set Teff is used by the software procedure to
identify subvectors that contribute to the fault coverage. The
test set used for on-chip test generation is T , and not Teff .
For T and Teff , the sets of detected faults are denoted by

D0(T) ⊆ F0 and D1(T) ⊆ F1. In addition, fault simulation
of F0 and F1 under the test set Tsa produced by the seeds
in Ssa yields subsets of detected faults D0(Tsa) ⊆ F0 and
D1(Tsa) ⊆ F1.

C. Reducing the Set of Subvectors

The procedure described in this section removes subvectors
from V without losing fault coverage.
The procedure considers the subvectors from V one by one.

When a subvector vrem ∈ V is considered, it is removed
from V temporarily. With the reduced set V the procedure
recomputes the test set T , and checks the effect on the
fault coverage. To accept the removal of vrem, the procedure
requires the following two conditions to be satisfied.
(1) |D0(T)| should not decrease below its value before the
removal of vrem. This ensures that the stuck-at fault coverage
would not decrease when a subvector is removed from V .
(2) |D1(T)| should not decrease below |D1(Tsa)|. Experi-
mental results indicate that the single-cycle gate-exhaustive
fault coverage of T is significantly higher than that of Tsa.
Moreover, the removal of subvectors that satisfy the first
condition has a small effect on D1(T). A weak condition on
D1(T) is thus sufficient, and it allows more subvectors to be
removed. The condition used ensures that T continues to detect
at least as many single-cycle gate-exhaustive faults as Tsa.
If these conditions are satisfied, vrem is removed from V

permanently. Otherwise, the procedure restores vrem into V .
The order by which the subvectors from V are considered

for removal is discussed next. The order attempts to ensure
that subvectors, which are more likely to be removed, will be
considered earlier. This reduces the computational effort of the
software procedure.
The likelihood that a subvector will be removed is measured

based on the test set Teff obtained for V before any subvectors

TABLE IV
EXAMPLE 1 OF REMOVAL OF SUBVECTORS

iter used(vi) for vi ∈ V vrem
1 18 20 10 23 25 16 17 17 17 17 25 13 22 17 18 19 v2(10)

27 14 13 15 16 15 13 21 19 15 11 22 16 17 19 17
2 12 22 16 10 15 16 18 17 15 17 22 16 16 15 16 22 v3(10)

28 20 24 24 22 20 17 17 10 19 16 22 20 18 10
3 25 27 17 15 20 18 11 13 17 20 17 18 16 10 13 15 v13(10), v6(11)

19 26 23 13 21 12 16 15 21 16 20 15 29 22
4 16 17 18 11 32 19 21 17 25 20 20 17 16 17 18 15 v3(11), v15(15)

18 26 17 27 22 21 21 22 18 27 16 22 20
5 14 23 18 16 26 25 19 22 21 19 18 17 11 20 22 27 v12(11)

16 15 16 25 17 25 15 18 18 32 21 20
6 22 14 16 24 16 18 24 17 20 24 16 17 30 17 20 22 v1(14)

15 24 22 16 22 21 15 21 29 24 22
7 23 20 12 23 21 13 32 28 14 19 23 19 24 13 17 26 v2(12), v24(12),

19 23 23 21 24 26 29 19 12 25 v5(13)

8 19 20 18 21 21 28 26 19 24 19 24 23 22 16 22 25 v24(14), v13(16)
17 18 17 26 20 32 16 21 14

9 27 19 21 29 21 21 32 25 26 21 20 21 26 22 17 15 v22(14)

19 31 27 18 28 20 14 24
10 25 23 29 24 32 21 29 21 30 26 14 23 26 24 29 14 v10(14)

22 23 29 18 26 22 22
· · ·
19 34 44 33 38 35 31 37 48 39 43 43 49 51 43 v5(31), v2(33)
20 38 42 41 33 34 44 42 45 54 40 41 46 36 v3(33)

21 50 42 42 40 39 49 44 59 36 47 56 48

are removed from it. Using Teff , the procedure associates with
every subvector vi ∈ V a variable denoted by used(vi). The
value of used(vi) is equal to the number of times vi appears
in a seed sj whose test tj is included in Teff .

Since Teff changes every time a subvector is removed from
V , the procedure is iterative. At the beginning of an iteration,
V is used for computing Teff , and the variables used(vi) are
updated. The procedure considers the subvectors in V from
low to high value of used(vrem). An iteration terminates if a
subvector is removed from V permanently. In this case, a new
iteration starts. The procedure terminates if an iteration ends
without removing any subvectors from V .
In the example of s1423, iteration 1 starts with an initial

set V consisting of 32 subvectors. After computing Teff , the
values of used(vi) are as shown in Table IV in the rows with
a 1 under column iter. The values are shown in the order
used(v0), used(v1), Based on the values of used(vi), the
procedure considers vrem = v2 with used(vrem) = 10 first. It
finds that the subvector can be removed without reducing the
fault coverage. This is shown under column vrem of Table IV.
The number in parentheses is the value of used(vrem).
In iteration 2, V consists of 31 subvectors. Based on Teff ,

the values of used(vi) are as shown in Table IV in the rows
with a 2 under column iter. With these values of used(vi),
the procedure considers vrem = v3 that has used(vrem) =
10 first. It finds that the subvector can be removed without
reducing the fault coverage.
In iteration 3, the procedure considers vrem = v13 with

used(vrem) = 10 first. It finds that the subvector cannot be
removed. It considers vrem = v6 with used(vrem) = 11
second. This subvector can be removed without reducing the
fault coverage.
In iteration 4, the subvectors considered for removal are

vrem = v3 with used(vrem) = 11, followed by vrem = v15
with used(vrem) = 15. The second subvector is removed.

5

TABLE V
EXAMPLE 2 OF REMOVAL OF SUBVECTORS

iter subv s.a. g.exh
0 32 99.155 98.805
1 31 99.324 98.753
2 30 99.324 99.116
3 29 99.831 99.584
4 28 99.915 99.532
5 27 99.915 99.844
6 26 99.915 100.000
7 25 99.915 99.896
8 24 99.915 99.792
9 23 99.915 99.792
10 22 99.915 99.636

The procedure continues in the same manner. Even in later
iterations, it finds a subvector it can remove after trying a small
number of subvectors with the lowest values of used(vi). It
terminates in iteration 21 with 12 subvectors in V and the
values of used(vi) shown in the last row of Table IV.

Although the main purpose of the procedure is to reduce the
number of subvectors in V , it also increases the single stuck-at
fault coverage when the test set T based on the initial set V
does not detect all the single stuck-at faults detected by Tsa.
The single-cycle gate-exhaustive fault coverage is typically
significantly higher than that of Tsa. To maximize the increase
in the single stuck-at fault coverage, it is important to remove
subvectors from V gradually. This is achieved by removing
subvectors one by one.

An example of the increase in the single stuck-at fault
coverage is given in Table V considering benchmark circuit
b07. The circuit has a compressed deterministic test set Ssa

for single stuck-at faults that consists of 41 seeds for an LFSR
of length L = 36. The test set Tsa achieves complete single
stuck-at fault coverage equal to 99.915%. The single-cycle
gate-exhaustive fault coverage of Tsa is 59.459%. A seed
is partitioned into p = 8 subvectors of length l = 5. The
initial set V contains 32 subvectors. The procedure removes
subvectors from V one by one as shown in Table V. For
every iteration, Table V shows the index of the iteration, the
number of subvectors in V , the single stuck-at fault coverage,
and the single-cycle gate-exhaustive fault coverage. Table V
demonstrates the following points. (1) The single stuck-at
fault coverage increases as the procedure removes subvectors
from V , and reaches complete fault coverage in iteration 4.
(2) The single-cycle gate-exhaustive fault coverage increases
significantly when T is used instead of Tsa. As subvectors
are removed from V , the single-cycle gate-exhaustive fault
coverage changes such that it remains significantly higher than
that of Tsa.

If the on-chip decompression logic requires m > 1 seeds to
form a test, the software procedure needs to be extended as fol-
lows. (1) When constructing an initial set V of subvectors, the
procedure needs to partition every seed of every compressed
test into l-bit subvectors, obtaining m · p subvectors per test.
(2) When constructing a set of applied tests T , the procedure
needs to consider m consecutive seeds for every test.

IV. EXPERIMENTAL RESULTS

The results of the software procedure for single stuck-at
faults and single-cycle gate-exhaustive faults in benchmark
circuits are presented in this section.

A. setup

The software procedure was applied with the following
parameter values. The set Ssa is a compact deterministic set
of seeds for single stuck-at faults. The LFSR used for Ssa is
the smallest primitive LFSR from [1] that allows complete or
almost complete fault coverage to be achieved for single stuck-
at faults. The set F1 of single-cycle gate-exhaustive faults is
the set of detectable faults from [22].
The number of tests in T is NT = 1, 000, 000. With an

LFSR of length L, this implies that all the seeds can be
considered when 2L ≤ 1, 000, 000, or L < 20, and most of
the seeds can be considered when L = 20. The results are
interesting for circuits with L > 20, where 2L
 1, 000, 000.
The number of tests applied until the fault coverages reach
their final values is denoted by neff .

The software procedure is applied with 1 ≤ l ≤ L − 1.
For every value of l, p = �L/l�. With l = 1 and p = L,
V = {0, 1}, and the on-chip test generation logic produces
pseudo-random seeds by selecting bits pseudo-randomly from
V . This case does not require any storage. In general, as l
is increased and p is decreased, the number of subvectors in
V increases, causing the storage requirements to increase. At
the same time, the longer subvectors allow the single stuck-at
fault coverage to increase, becoming closer to that of Tsa. The
fault coverage of single-cycle gate-exhaustive faults is high for
all the values of l and p. Based on this discussion, the results
are reported for the lowest value of l for which the highest
single stuck-at fault coverage is achieved. This value of l is
denoted by lsel. In addition, the case of l = 1 is reported for
all the circuits to allow a comparison with the case where NT

pseudo-random seeds are used.
Typically with lsel, the storage requirements for V are

significantly lower than for Ssa. Results for values of l
that are lower than lsel are reported only when the storage
requirements for V with l = lsel are close to the storage
requirements for Ssa.
When the single stuck-at fault coverage for lsel is lower

than that of Tsa, several options exist for increasing the fault
coverage: (1) increasing the number of tests, NT , (2) adding
test points, (3) complementing bits of seeds or applied tests as
in earlier approaches, (4) storing combinations of subvectors
that form compressed tests for the undetected faults, or (5)
storing unpartitioned seeds for topping off the seeds produced
by the on-chip test generation logic through pseudo-random
combinations of subvectors. The use of unpartitioned seeds is
demonstrated at the end of this section. As with other LBIST
approaches, it is assumed that a small loss of fault coverage is
acceptable, and that it is acceptable to apply a large number of
tests produced by the LBIST logic through pseudo-random
combinations to cover both single stuck-at and single-cycle
gate-exhaustive faults.

6

TABLE VI
EXPERIMENTAL RESULTS (COMPLETE SINGLE STUCK-AT FAULT COVERAGE WITH lsel = 1)

circuit inp L l p iter subv bits frac tests eff s.a. diff g.exh diff ntime
s35932 1763 13 13 1 0 57 741 1.000 57 57 89.809 0.000 98.509 0.000 1.00
s35932 1763 13 1 13 0 2 2 0.003 232 81 89.809 0.000 99.996 1.488 3.71
sasc 132 13 13 1 0 41 533 1.000 41 41 100.000 0.000 67.374 0.000 1.00
sasc 132 13 1 13 0 2 2 0.004 416 167 100.000 0.000 93.923 26.550 4.83
des area 367 14 14 1 0 158 2212 1.000 158 158 100.000 0.000 72.424 0.000 1.00
des area 367 14 1 14 0 2 2 0.001 739 538 100.000 0.000 93.432 21.008 4.06
systemcdes 320 14 14 1 0 102 1428 1.000 102 102 100.000 0.000 93.391 0.000 1.00
systemcdes 320 14 1 14 0 2 2 0.001 1297 184 100.000 0.000 99.646 6.255 4.48
s1423 91 18 18 1 0 55 990 1.000 55 55 99.076 0.000 90.381 0.000 1.00
s1423 91 18 1 18 0 2 2 0.002 25579 137 99.076 0.000 99.758 9.377 54.11
usb phy 112 18 18 1 0 36 648 1.000 36 36 100.000 0.000 82.536 0.000 1.00
usb phy 112 18 1 18 0 2 2 0.003 2913 114 100.000 0.000 99.677 17.141 18.00
b04 78 28 28 1 0 34 952 1.000 34 34 99.851 0.000 79.263 0.000 1.00
b04 78 28 1 28 0 2 2 0.002 46318 239 99.851 0.000 98.560 19.297 136.00
aes core 788 28 28 1 0 380 10640 1.000 380 380 100.000 0.000 98.259 0.000 1.00
aes core 788 28 1 28 0 2 2 0.000 3548 695 100.000 0.000 99.997 1.738 3.76
systemcaes 928 29 29 1 0 109 3161 1.000 109 109 99.995 0.000 79.613 0.000 1.00
systemcaes 928 29 1 29 0 2 2 0.001 39418 1047 99.995 0.000 99.989 20.376 14.78
s5378 214 36 36 1 0 133 4788 1.000 133 133 99.131 0.000 67.605 0.000 1.00
s5378 214 36 1 36 0 2 2 0.000 53432 898 99.131 0.000 99.533 31.928 43.62
s13207 700 47 47 1 0 251 11797 1.000 251 251 98.462 0.000 62.259 0.000 1.00
s13207 700 47 1 47 0 2 2 0.000 190271 1905 98.462 0.000 97.623 35.364 181.57

TABLE VII
EXPERIMENTAL RESULTS (COMPLETE SINGLE STUCK-AT FAULT COVERAGE WITH lsel > 1)

circuit inp L l p iter subv bits frac tests eff s.a. diff g.exh diff ntime
b07 53 36 36 1 0 41 1476 1.000 41 41 99.915 0.000 59.459 0.000 1.00
b07 53 36 1 36 0 2 2 0.001 37994 388 97.041 -2.874 96.674 37.214 3168.50
b07 53 36 5 8 10 22 110 0.075 963258 404 99.915 0.000 99.636 40.177 81965.01
simple spi 146 38 38 1 0 46 1748 1.000 46 46 100.000 0.000 55.066 0.000 1.00
simple spi 146 38 1 38 0 2 2 0.001 129112 453 98.620 -1.380 97.568 42.503 2078.71
simple spi 146 38 2 19 1 3 6 0.003 620445 511 100.000 0.000 99.873 44.807 2712.29
i2c 145 43 43 1 0 58 2494 1.000 58 58 100.000 0.000 73.974 0.000 1.00
i2c 145 43 1 43 0 2 2 0.001 261195 278 96.577 -3.423 93.748 19.774 2086.92
i2c 145 43 15 3 138 35 525 0.211 158072 332 100.000 0.000 97.797 23.823 142832.39
spi 274 44 44 1 0 360 15840 1.000 360 360 99.985 0.000 67.073 0.000 1.00
spi 274 44 1 44 0 2 2 0.000 65510 2432 99.354 -0.631 97.956 30.883 162.45
spi 274 44 6 8 13 51 306 0.019 683691 2536 99.985 0.000 99.931 32.858 1213.15

B. Results

The results of the software procedure are presented in Tables
VI, VII and VIII. For the circuits in Table VI, lsel = 1. For
the circuits in Tables VII and VIII, lsel > 1. For the circuits
in Tables VI and VII, complete single stuck-at fault coverage
is achieved with lsel. For the circuits in Table VIII, the single
stuck-at fault coverage is incomplete.
The circuits in each table are arranged from low to high

value of L. The first row for every circuit provides a baseline
where the compressed compact deterministic test set Ssa

is stored on-chip, and the test set Tsa is applied. This is
represented by l = L, p = 1 and V = Ssa. Additional
rows show the final results of the software procedure with
1 ≤ l ≤ lsel.
In each row, after the circuit name, column inp shows the

number of inputs, and column L shows the length of the
LFSR. Columns l and p show the values of the corresponding
parameters. Column iter shows the iteration of the software
procedure, where iteration 0 corresponds to the initial set
V , and every additional iteration reduces the number of
subvectors in V by one. Column subv shows the number
of subvectors in V . Column bits shows the number of bits
required for V , equal to l·|V |. Column frac shows the number

of bits required for V divided by the number of bits required
for Ssa, (l · |V |)/(L · |Ssa|). Column tests shows the number
of tests from T that need to be applied until the last test that is
effective in detecting target faults. This number of tests can be
used instead of NT , and was denoted earlier by neff . Column
eff shows the number of tests in Teff . These are the tests that
increase the fault coverages of target faults. Column s.a. shows
the single stuck-at fault coverage. Column diff that follows is
the increase or reduction in the single stuck-at fault coverage
relative to Ssa. Column g.exh shows the single-cycle gate-
exhaustive fault coverage. Column diff that follows is the
increase or reduction in the single-cycle gate-exhaustive fault
coverage relative to Ssa. Column ntime shows the runtime
of the software procedure divided by the runtime required for
fault simulation of Tsa. This is referred to as the normalized
runtime.

C. Discussion

The following points can be seen from Tables VI-VIII.
The set Ssa represents the conventional approach to test data
compression where deterministic tests are compressed into
seeds for an LFSR. Considering columns bits and frac, the
storage requirements of V produced by the software procedure

7

TABLE VIII
EXPERIMENTAL RESULTS (INCOMPLETE SINGLE STUCK-AT FAULT COVERAGE)

circuit inp L l p iter subv bits frac tests eff s.a. diff g.exh diff ntime
wb dma 738 47 47 1 0 84 3948 1.000 84 84 100.000 0.000 73.840 0.000 1.00
wb dma 738 47 1 47 0 2 2 0.001 252167 771 99.615 -0.385 99.077 25.237 577.39
wb dma 738 47 5 10 4 28 140 0.035 838936 767 99.978 -0.022 99.532 25.692 6023.19
wb dma 738 47 10 5 0 277 2770 0.702 986814 792 99.989 -0.011 99.577 25.737 472.61
s15850 611 57 57 1 0 197 11229 1.000 197 197 96.682 0.000 73.285 0.000 1.00
s15850 611 57 1 57 0 2 2 0.000 261955 1788 94.559 -2.124 87.761 14.475 2007.22
s15850 611 57 4 15 1 15 60 0.005 999797 2267 96.119 -0.563 92.853 19.567 3443.86
s9234 247 75 75 1 0 134 10050 1.000 134 134 93.475 0.000 70.825 0.000 1.00
s9234 247 75 1 75 0 2 2 0.000 261492 921 90.761 -2.714 91.300 20.475 2836.36
s9234 247 75 3 25 0 8 24 0.002 996368 1093 92.796 -0.679 96.131 25.306 2512.70
s38584 1464 98 98 1 0 218 21364 1.000 218 218 95.852 0.000 88.313 0.000 1.00
s38584 1464 98 1 98 0 2 2 0.000 130393 1687 95.648 -0.204 99.513 11.201 1061.35
s38584 1464 98 5 20 4 28 140 0.007 995504 1724 95.796 -0.055 99.766 11.453 62243.02
tv80 372 109 109 1 0 370 40330 1.000 370 370 99.527 0.000 77.264 0.000 1.00
tv80 372 109 1 109 0 2 2 0.000 261397 2106 97.947 -1.579 94.625 17.361 421.39
tv80 372 109 7 16 4 124 868 0.022 998072 2320 98.919 -0.607 97.424 20.159 33913.94
s38417 1664 111 111 1 0 283 31413 1.000 283 283 99.471 0.000 70.723 0.000 1.00
s38417 1664 111 1 111 0 2 2 0.000 261979 4395 98.406 -1.065 89.715 18.993 760.24
s38417 1664 111 4 28 2 14 56 0.002 998535 5410 99.343 -0.128 95.892 25.169 1973.63
b15 483 113 113 1 0 266 30058 1.000 266 266 98.580 0.000 59.444 0.000 1.00
b15 483 113 1 113 0 2 2 0.000 261591 1387 95.186 -3.393 71.993 12.549 1297.76
b15 483 113 5 23 0 32 160 0.005 999779 1635 97.708 -0.872 83.513 24.069 1104.02
b20 527 119 119 1 0 238 28322 1.000 238 238 93.304 0.000 64.250 0.000 1.00
b20 527 119 1 119 0 2 2 0.000 260752 1355 87.714 -5.589 84.857 20.606 2647.18
b20 527 119 5 24 3 29 145 0.005 997430 1525 88.861 -4.442 86.057 21.807 13758.22
b14 280 128 128 1 0 290 37120 1.000 290 290 94.960 0.000 72.068 0.000 1.00
b14 280 128 1 128 0 2 2 0.000 2040 278 79.020 -15.940 67.510 -4.558 4204.46
b14 280 128 3 43 3 5 15 0.000 973582 790 85.883 -9.077 78.680 6.612 36678.39

are significantly smaller than the storage requirements of Ssa

for most of the circuits considered. Thus, the use of the on-
chip test generation logic reduces the storage requirements
compared with the conventional approach to test data com-
pression represented by Ssa.
For the circuits with the lower values of L, lsel = 1 is

typically sufficient for achieving complete fault coverage of
single stuck-at faults. The circuit with the largest value of L
for which lsel = 1 is s13207, with L = 47. In this case,
2L
 NT .
For the circuits with the higher values of L, lsel > 1

is typically needed, and using l = 1 that produces pseudo-
random seeds results in a lower single stuck-at fault coverage
than lsel. Storage of V is important in this case for increasing
the single stuck-at fault coverage. Moreover, the software
procedure reduces V to reduce the storage requirements and
increase the single stuck-at fault coverage. The software pro-
cedure does not allow the single stuck-at fault coverage to
decrease as it removes subvectors from V , and it keeps track
of cases where the fault coverage is increased. This allows
it to identify cases where removing subvectors increases the
single stuck-at fault coverage.
The improvement in the fault coverage of single-cycle gate-

exhaustive faults is significant in all the cases when V is
used for on-chip test generation instead of applying Tsa. The
single-cycle gate-exhaustive fault coverage does not increase
monotonically with the iterations of the software procedure
since the procedure only requires that the fault coverage would
be at least as high as that of Tsa. For the circuits with lsel > 1,
if l = 1 is used for producing pseudo-random seeds, the fault
coverage for single-cycle gate-exhaustive faults is significantly
lower than that achieved with lsel.

The increase in the fault coverage of single-cycle gate-
exhaustive faults requires an increase in the number of applied
tests. Columns tests and eff describe this increase. Even
if only tests that increase the fault coverage are considered
(column eff), the number of tests required for detecting
single-cycle gate-exhaustive faults is significantly larger than
the number of tests in Tsa that are required for detecting single
stuck-at faults. With on-chip test generation that combines
subvectors pseudo-randomly, not every applied test is effective
in increasing the fault coverage, and the number of applied
tests (shown under column tests) must be allowed to be
significantly higher than the number of tests in Tsa.

The normalized runtime has a strong dependence on the
number of subvectors in V , and the number of subvectors
increases with lsel. The normalized runtime does not increase
with the size of the circuit, implying that the software proce-
dure scales similar to a fault simulation procedure. The part
of the procedure that reduces the number of subvectors in V
can be terminated earlier to reduce the normalized runtime for
the larger values of lsel.

Other parameters also do not deteriorate for larger circuits.
Considering the loss in single stuck-at fault coverage, a larger
circuit may have a lower fault coverage loss than a smaller
circuit. For example, the loss in single stuck-at fault coverage
is 0.872 for b15, and 0.128 for s38417 that is a larger circuit.
Comparing the number of applied tests to the number of tests
in Tsa, the increase for a larger circuit may be smaller than the
increase for a larger circuit. For example, for b07 the increase
is 963258/41=23494.1, and for b15 that is larger the increase
is 999779/266=3758.6. Overall, the results do not deteriorate
with the size of the circuit.

8

TABLE IX
EXPERIMENTAL RESULTS (WITH UNPARTITIONED SEEDS)

circuit inp L l p iter subv unpart bits frac tests eff s.a. diff g.exh diff ntime
b07 53 36 36 1 0 41 0 1476 1.000 41 41 99.915 0.000 59.459 0.000 1.00
b07 53 36 3 12 2 6 0 18 0.012 9884 280 97.295 -2.620 85.603 26.143 277.00
b07 53 36 3 12 4 6 0 18 0.012 97081 303 98.732 -1.183 88.202 28.742 1040.50
b07 53 36 3 12 4 6 0 18 0.012 921022 304 99.408 -0.507 89.449 29.990 3482.50
b07 53 36 3 12 4 6 3 126 0.085 921025 307 99.915 0.000 89.813 30.353 3483.00
i2c 145 43 43 1 0 58 0 2494 1.000 58 58 100.000 0.000 73.974 0.000 1.00
i2c 145 43 4 11 8 8 0 32 0.013 9659 238 94.737 -5.263 89.975 16.001 1440.78
i2c 145 43 4 11 10 8 0 32 0.013 99783 295 97.261 -2.739 94.492 20.518 2522.89
i2c 145 43 4 11 10 8 0 32 0.013 941774 347 99.529 -0.471 98.568 24.594 4495.89
i2c 145 43 4 11 10 8 6 290 0.116 941780 353 99.914 -0.086 98.981 25.007 4496.44
wb dma 738 47 47 1 0 84 0 3948 1.000 84 84 100.000 0.000 73.840 0.000 1.00
wb dma 738 47 4 12 5 11 0 44 0.011 9941 643 98.769 -1.231 92.974 19.135 267.00
wb dma 738 47 4 12 7 11 0 44 0.011 99504 763 99.626 -0.374 98.962 25.122 623.56
wb dma 738 47 4 12 7 11 0 44 0.011 911910 789 99.967 -0.033 99.526 25.686 1058.65
wb dma 738 47 4 12 7 11 3 185 0.047 911913 792 100.000 0.000 99.545 25.705 1058.79
s15850 611 57 57 1 0 197 0 11229 1.000 197 197 96.682 0.000 73.285 0.000 1.00
s15850 611 57 4 15 4 12 0 48 0.004 9992 802 91.761 -4.921 76.307 3.022 301.97
s15850 611 57 4 15 6 12 0 48 0.004 99928 1496 94.064 -2.618 84.803 11.518 1006.07
s15850 611 57 4 15 6 12 0 48 0.004 999247 2244 95.787 -0.896 92.434 19.149 2745.35
s15850 611 57 4 15 6 12 19 1131 0.101 999266 2263 96.324 -0.358 92.816 19.531 2749.48
s9234 247 75 75 1 0 134 0 10050 1.000 134 134 93.475 0.000 70.825 0.000 1.00
s9234 247 75 4 19 0 16 0 64 0.006 9967 640 84.900 -8.575 74.861 4.036 72.44
s9234 247 75 4 19 2 16 0 64 0.006 99554 826 89.476 -3.999 87.228 16.404 1406.86
s9234 247 75 4 19 2 16 0 64 0.006 997175 1109 92.031 -1.444 95.869 25.045 3959.54
s9234 247 75 4 19 2 16 13 1039 0.103 997188 1122 93.316 -0.159 96.499 25.674 3962.95
s38584 1464 98 98 1 0 218 0 21364 1.000 218 218 95.852 0.000 88.313 0.000 1.00
s38584 1464 98 3 33 0 8 0 24 0.001 9993 1388 94.485 -1.366 96.348 8.036 29.34
s38584 1464 98 3 33 2 8 0 24 0.001 99110 1655 95.681 -0.171 99.456 11.143 346.18
s38584 1464 98 3 33 2 8 0 24 0.001 991660 1710 95.733 -0.118 99.770 11.457 1403.72
s38584 1464 98 3 33 2 8 14 1396 0.065 991674 1724 95.852 0.000 99.852 11.539 1406.58
tv80 372 109 109 1 0 370 0 40330 1.000 370 370 99.527 0.000 77.264 0.000 1.00
tv80 372 109 6 19 1 63 0 378 0.009 9990 1241 91.041 -8.486 78.596 1.332 108.97
tv80 372 109 6 19 3 63 0 378 0.009 99986 1882 96.911 -2.615 90.892 13.628 2163.75
tv80 372 109 6 19 3 63 0 378 0.009 999575 2299 98.747 -0.780 97.158 19.894 2554.36
tv80 372 109 6 19 3 63 34 4084 0.101 999609 2333 99.437 -0.090 97.606 20.341 2556.29
s38417 1664 111 111 1 0 283 0 31413 1.000 283 283 99.471 0.000 70.723 0.000 1.00
s38417 1664 111 3 37 3 5 0 15 0.000 9996 2027 93.679 -5.792 75.511 4.788 367.47
s38417 1664 111 3 37 5 5 0 15 0.000 99955 3768 97.742 -1.729 87.013 16.290 692.07
s38417 1664 111 3 37 5 5 0 15 0.000 994091 5552 99.304 -0.167 96.303 25.580 1155.05
s38417 1664 111 3 37 5 5 29 3234 0.103 994120 5581 99.452 -0.019 96.467 25.745 1156.87
b15 483 113 113 1 0 266 0 30058 1.000 266 266 98.580 0.000 59.444 0.000 1.00
b15 483 113 5 23 0 32 0 160 0.005 9975 1179 77.546 -21.033 51.187 -8.257 93.75
b15 483 113 5 23 2 32 0 160 0.005 99982 1367 91.300 -7.280 64.795 5.351 2673.95
b15 483 113 5 23 2 32 0 160 0.005 999779 1635 97.708 -0.872 83.513 24.069 3760.90
b15 483 113 5 23 2 32 26 3098 0.103 999805 1661 98.430 -0.149 84.341 24.897 3763.23
b20 527 119 119 1 0 238 0 28322 1.000 238 238 93.304 0.000 64.250 0.000 1.00
b20 527 119 3 40 3 5 0 15 0.001 9991 877 86.372 -6.931 77.874 13.624 384.14
b20 527 119 3 40 5 5 0 15 0.001 99695 1275 87.369 -5.935 83.874 19.624 864.00
b20 527 119 3 40 5 5 0 15 0.001 993897 1506 88.618 -4.686 85.832 21.582 3490.66
b20 527 119 3 40 5 5 24 2871 0.101 993921 1530 91.944 -1.360 87.038 22.788 3500.70
b14 280 128 128 1 0 290 0 37120 1.000 290 290 94.960 0.000 72.068 0.000 1.00
b14 280 128 4 32 4 12 0 48 0.001 9811 455 82.647 -12.313 74.430 2.362 489.94
b14 280 128 4 32 6 12 0 48 0.001 98718 561 83.829 -11.131 76.485 4.417 1288.84
b14 280 128 4 32 6 12 0 48 0.001 944346 708 85.462 -9.498 78.866 6.798 4241.08
b14 280 128 4 32 6 12 29 3760 0.101 944375 737 92.696 -2.264 82.404 10.336 4253.62

D. Using Unpartitioned Seeds and Lower Values of NT

This section explores two options. The first option is to
increase the fault coverage by storing a small number of
unpartitioned seeds from Ssa. Unpartitioned seeds are used for
topping off the tests produced by the on-chip test generation
logic through pseudo-random combinations of subvectors from
V . By storing a sufficient number of unpartitioned seeds
from Ssa it is possible to achieve complete single stuck-
at fault coverage for every value of l. However, the storage
requirements may be high. For the experiment in this section,
the storage requirements for V and the unpartitioned seeds is
limited to approximately a tenth of the storage requirements

of Ssa.
As l is increased, the single stuck-at fault coverage achieved

based on the subvectors in V increases, and fewer unpar-
titioned seeds need to be stored. As before, the results are
reported for the lowest value of l for which the highest single
stuck-at fault coverage is achieved. This value of l is denoted
by lsel.

The second option explored in this section is to reduce the
number of tests NT produced from pseudo-random combi-
nations of stored subvectors. Earlier, NT = 1, 000, 000 was
used. Experimental results with NT = 10, 000 show that
reducing NT reduces the runtime of the software procedure.

9

However, it also reduces the single stuck-at and single-cycle
gate-exhaustive fault coverages. Whereas the single stuck-at
fault coverage can be recovered by adding unpartitioned seeds,
the single-cycle gate-exhaustive fault coverage remains signifi-
cantly lower even after adding unpartitioned seeds. Therefore,
after applying the software procedure using NT = 10, 000,
tests are computed using NT = 100, 000, and then using
NT = 1, 000, 000 as before, to demonstrate the effects on
the fault coverages. Unpartitioned seeds are added to the tests
produced with NT = 1, 000, 000.
The results in Tables VI, VII and VIII demonstrate that

lsel ≤ 5 is typically obtained. The value of l is limited to
eight in this section.
The results for several circuits from Tables VII and VIII are

presented in Table IX. The format is similar to Tables VII and
VIII, with the addition of the number of unpartitioned seeds
under column unpart. The storage requirements and number
of applied tests take into consideration the unpartitioned seeds.
The first row for every circuit in Table IX describes Ssa.

The second row shows the results of the software procedure
using NT = 10, 000. The third and fourth rows show the
results obtained when the set of subvectors produced by the
software procedure is used for producing NT = 100, 000 and
NT = 1, 000, 000 tests, respectively. The fifth row shows the
results obtained by adding unpartitioned seeds with a limit on
the storage requirements as discussed above.
The following points can be seen from Table IX. The

normalized runtime of the software procedure is reduced
significantly when NT is reduced from NT = 1, 000, 000 to
NT = 10, 000.

Without the topoff seeds the storage requirements are sim-
ilar for different values of NT , and they are significantly
lower than the storage requirements for Ssa, which represents
the conventional approach to test data compression. With the
topoff seeds the limit on the storage requirements ensures that
they are still significantly lower than those of Ssa.

The single stuck-at fault coverage as well as the single-
cycle gate-exhaustive fault coverage are significantly lower
when NT is lower. This makes it important to use a higher
value of NT for test application. In particular, the higher
value of NT ensures that the single stuck-at fault coverage
is higher, requiring fewer topoff seeds. It is also important for
the single-cycle gate-exhaustive fault coverage, which cannot
be recovered by topoff seeds targeting single stuck-at faults.

V. CONCLUDING REMARKS

A class of storage-based logic built-in self-test (LBIST)
approaches is based on storage of test data entries obtained
by partitioning deterministic tests, and forming tests from
different combinations of stored test data entries. In this article,
partitioning was applied for the first time to compressed de-
terministic tests. Tests were formed on-chip by using pseudo-
random combinations of subvectors of compressed determin-
istic tests to form seeds for the on-chip decompression logic,
which produces tests for the circuit. A software procedure
was described for deriving and reducing the stored test data.
Experimental results demonstrated the effectiveness of this

approach in reducing the volume of stored test data relative to
compressed deterministic test sets for benchmark circuits. Both
single stuck-at and single-cycle gate-exhaustive faults were
considered to demonstrate the ability to achieve comprehensive
fault coverage.

REFERENCES

[1] P. H. Bardell, W. H. McAnney and J. Savir, Built − In Test for
V LSI Pseudorandom Techniques, Wiley Interscience, 1987.

[2] N. A. Touba and E. J. McCluskey, ”Bit-fixing in Pseudorandom Se-
quences for Scan BIST”, in IEEE Trans. on Computer-Aided Design,
April 2001, Vol. 20, No. 4, pp. 545-555.

[3] S. Hellebrand, H.-G. Liang and H.-J. Wunderlich, ”A Mixed Mode BIST
Scheme Based on Reseeding of Folding Counters”, Journal of Electronic
Testing, 2001, Vol. 17, pp. 341–349.

[4] I. Pomeranz and S. M. Reddy, ”A Storage Based Built-In Test Pattern
Generation Method for Scan Circuits Based on Partitioning and Reduc-
tion of a Precomputed Test Set”, in IEEE Trans. on Computers, Nov.
2002, pp. 1282-1993.

[5] S. Pateras, ”Security vs. Test Quality: Fully Embedded Test Approaches
are the Key to Having Both”, in Proc. Intl. Test Conf., 2004, Panel P2.2,
p. 1413.

[6] D. Xiang, M. Chen and H. Fujiwara, ”Using Weighted Scan Enable
Signals to Improve Test Effectiveness of Scan-Based BIST”, in IEEE
Trans. on Computers, Dec. 2007, vol. 56, no. 12, pp. 1619-1628.

[7] L.-T. Wang, X. Wen, S. Wu, H. Furukawa, H.-J. Chao, B. Sheu, J. Guo
and W.-B. Jone, ”Using Launch-on-Capture for Testing BIST Designs
Containing Synchronous and Asynchronous Clock Domains”, in IEEE
Trans. on Computer-Aided Design, Feb. 2010, Vol. 29, No. 2, pp. 299-
312.

[8] R. S. Oliveira, J. Semiao, I. C. Teixeira, M. B. Santos and J. P. Teixeira,
”On-line BIST for Performance Failure Prediction under Aging Effects
in Automotive Safety-critical Applications”, in Proc. Latin American
Test Workshop, 2011, pp. 1-6.

[9] Y. Sato, H. Yamaguchi, M. Matsuzono and S. Kajihara, ”Multi-Cycle
Test with Partial Observation on Scan-Based BIST Structure”, in Proc.
Asian Test Symp., 2011, pp. 54-59.

[10] M. E. Imhof and H. Wunderlich, ”Bit-Flipping Scan - A Unified
Architecture for Fault Tolerance and Offline Test”, in Proc. Design,
Automation & Test in Europe Conf., 2014, pp. 1-6.

[11] F. Reimann, M. Glas, J. Teich, A. Cook, L. Rodrı́guez Gomez, D. Ull,
H.-J. Wunderlich, P. Engelke and U. Abelein, ”Advanced Diagnosis:
SBST and BIST Integration in Automotive E/E Architectures”, in Proc.
Design Autom. Conf., 2014, pp. 1-9.

[12] G. Contreras, N. Ahmed, L. Winemberg and M. Tehranipoor, ”Predictive
LBIST Model and Partial ATPG for Seed Extraction”, in Proc. Intl.
Symp. on Defect and Fault Tolerance, 2015, pp. 139-146.

[13] C. Shiao, W. Lien and K. Lee, ”A Test-per-cycle BIST Architecture with
Low Area Overhead and no Storage Requirement”, in Proc. Intl. Symp.
on VLSI Design, Automation and Test, 2016, pp. 1-4.

[14] Y. Liu, N. Mukherjee, J. Rajski, S. M. Reddy and J. Tyszer, ”Determin-
istic Stellar BIST for In-System Automotive Test”, in Proc. Intl. Test
Conf., 2018, pp. 1-9.

[15] B. Kaczmarek, G. Mrugalski, N. Mukherjee, J. Rajski, Ł. Rybak and J.
Tyszer, ”Test Sequence-Optimized BIST for Automotive Applications”,
in Proc. European Test Symp., 2020, pp. 1-6.

[16] A. Koneru and K. Chakrabarty, ”An Interlayer Interconnect BIST
and Diagnosis Solution for Monolithic 3-D ICs”, in IEEE Trans. on
Computer-Aided Design, Oct. 2020, Vol. 39, No. 10, pp. 3056-3066.

[17] I. Pomeranz, ”Storage-Based Built-In Self-Test for Gate-Exhaustive
Faults”, in IEEE Trans. on Computer-Aided Design, Oct. 2021, Vol.
40, No. 10, pp. 2189-2193.

[18] I. Pomeranz, ”Zoom-In Feature for Storage-Based Logic Built-In Self-
Test”, in Proc. Intl. Symp. on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, 2021.

[19] M. B. G. Remadevi and R. Bakthavatchalu, ”Design of a Programmable
Low Power Linear Feedback Shift Register for BIST Applications”, in
Proc. Intl. Test Conf. India, 2022, pp. 1-4

[20] I. Pomeranz and S. M. Reddy, ”Static Test Data Volume Reduction
Using Complementation or Modulo-M Addition”, in IEEE Trans. on
VLSI Systems, June 2011, pp. 1108-1112.

[21] I. Pomeranz, ”Input Test Data Volume Reduction Using Seed Comple-
mentation and Multiple LFSRs”, in Proc. VLSI Test Symp., 2020, pp.
1-6.

10

[22] I. Pomeranz, ”Maximal Independent Fault Set for Gate-Exhaustive
Faults”, in IEEE Trans. on Computer-Aided Design, March 2021, Vol.
40, No. 3, pp. 598-602.

PLACE
PHOTO
HERE

Irith Pomeranz (M’89-SM’96-F’99) received the
B.Sc degree (Summa cum Laude) in Computer En-
gineering and the D.Sc degree from the Department
of Electrical Engineering at the Technion - Israel
Institute of Technology in 1985 and 1989, respec-
tively. From 1989 to 1990 she was a Lecturer in the
Department of Computer Science at the Technion.
From 1990 to 2000 she was a faculty member in the
Department of Electrical and Computer Engineering
at the University of Iowa. In 2000 she joined Purdue
University in West Lafayette IN where she is the

Cadence Professor in the Elmore Family School of Electrical and Computer
Engineering. Her research interests include testing of VLSI circuits, design for
testability, and defect diagnosis. Dr. Pomeranz is a recipient of the NSF Young
Investigator Award in 1993, and of the University of Iowa Faculty Scholar
Award in 1997. Three of her conference papers won best paper awards, and
four other papers were nominated for best paper awards. One of the papers
she co-authored was selected by the 2016 International Test Conference as
the most significant paper published ten years before. She delivered a keynote
speech at the 2006 Asian Test Symposium. She was one of the very first three
featured authors on IEEE Xplore, posted February 11-25, 2020. She served as
associate editor of the ACM Transactions on Design Automation, the IEEE
Transactions on Computers, and the IEEE Transactions on VLSI Systems.
She served as guest editor of the IEEE Transactions on Computers January
1998 special issue on Dependability of Computing Systems, and as program
co-chair of the 1999 Fault-Tolerant Computing Symposium. She served as
program chair of the 2004 and 2005 VLSI Test Symposium, and as general
chair of the 2006 VLSI Test Symposium. She is a Golden Core Member of
the IEEE Computer Society.

