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Abstract— Logic built-in self-test (L B1.ST) is important for in-
field testing. In a storage-based L BIST approach, deterministic
test data are stored on-chip and used for applying tests that
are closer to deterministic tests than pseudo-random tests. Using
the same stored test data for applying several different tests
allows the volume of test data stored on-chip to be reduced,
and the fault coverage to be increased. This observation was
applied earlier in two ways: (1) by complementing bits of stored
test data or applied tests to form additional tests, or (2) by
forming different tests from different combinations of stored test
data entries that are obtained by partitioning deterministic tests.
Partitioning was applied earlier to uncompressed deterministic
tests. In this article, partitioning is applied for the first time
to compressed deterministic tests. Under the resulting LBIST
approach, tests are formed on-chip using pseudo-random combi-
nations of partitioned compressed tests. A software procedure is
described for deriving a reduced set of test data entries for on-
chip storage. With compressed tests, the storage requirements are
already reduced, and they are reduced further by the software
procedure. Experimental results demonstrate the effectiveness
of this LBIST approach considering both single stuck-at and
single-cycle gate-exhaustive faults in benchmark circuits.

linear-feedback
(LBIST),

Index  Terms— Full-scan,
(LFSR), logic built-in self-test
generation, test data compression.

shift-register
on-chip test

I. INTRODUCTION

Logic built-in self-test (LBIST) is effective for in-field
testing to address defects that escape manufacturing testing or
occur during the lifetime of a chip [1]-[19]. In a storage-based
LBIST approach, deterministic test data are stored on-chip
and used for test application [4], [14], [15], [17], [18]. The test
data may be uncompressed [4], [17], [18] or compressed [14],
[15]. With compressed test data the L BI ST approach uses the
on-chip decompression logic for test application. In both cases,
storage of deterministic test data results in applied tests that
are closer to deterministic tests than the pseudo-random tests
that are typically used for LBIST [1]. With more effective
tests, the fault coverage is increased, or the number of tests is
reduced, allowing LBIST to be used during system startup
or idle intervals.

Using the same stored test data for applying several different
tests allows the volume of test data stored on-chip to be re-
duced, and the fault coverage to be increased. This observation
was used earlier in two ways, as discussed next.

The first approach was considered in [2], [3], [10], [14],
[15], [20], [21], and consists of complementing one or more
bits in the stored test data or applied tests. Complementation
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Fig. 1. On-chip test generation logic.

of bits allows a larger number of more effective tests to
be formed. Complementation was shown to be effective for
LBIST as well as test data compression.

The second approach was applied to uncompressed deter-
ministic tests, and described in [4], [17], [18]. Under this
approach, uncompressed deterministic tests are partitioned,
e.g., into scan vectors, and the partitioned test data entries
are stored on-chip. Tests are formed on-chip using different
combinations of the stored test data entries. Three options
were considered for the combination of test data entries: using
all the possible combinations, storing effective combinations
on-chip, or using linear-feedback shift-registers (LF'SRs) for
forming pseudo-random combinations. With storage of parti-
tioned deterministic test data entries, and combinations formed
on-chip, the extent of the variations possible in applied tests is
significant. This allows significant reductions in the volume of
stored test data, and a significant increase in the fault coverage
to be achieved. The use of pseudo-random combinations fits
well with LBIST. Although a lower number of tests is needed
if the combinations are stored, the storage requirements are
also higher in this case. Adding deterministic combinations to
pseudo-random combinations can help reduce the number of
tests that need to be applied, and increase the fault coverage,
at the cost of a limited increase in the storage requirements.

In this article, partitioning of test data, and the use of
combinations for forming tests, are applied for the first time
to compressed deterministic tests. The resulting LBIST ap-
proach is illustrated by Figure 1. An on-chip test generation
logic, shown on the left in Figure 1, produces compressed
tests from partitioned test data. The compressed tests are used
as input to the on-chip decompression logic. The on-chip
decompression logic uses the tests to produce scan vectors
that are shifted into the scan chains of the functional logic
of the circuit, shown on the right in Figure 1. Partitioning
as suggested in this article allows significant reductions in
the stored test data to be achieved compared with an already
compressed deterministic test set.

For the discussion in this article, the test data compression
logic includes an LF'SR, and tests are compressed into seeds
for the LFSR. Considering a seed as a vector, the seeds are
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EXAMPLE SET OF SUBVECTORS
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partitioned into subvectors of equal length. Subvectors are
stored and combined on-chip to form seeds for the decom-
pression logic, and apply tests to the circuit. For simplicity the
following assumptions are made. (1) A test is compressed into
a single seed. (2) Subvectors are combined pseudo-randomly
only. It should be noted that deterministic compressed tests are
partitioned deterministically into subvectors. Only the combi-
nation of subvectors on-chip is performed pseudo-randomly.

A software procedure is described for deriving a reduced
set of subvectors, V, from a compressed deterministic test
set, Ss,, for single stuck-at faults. The software procedure is
run a-priori to compute the stored test data entries. The test
data compression logic is that for which S, was computed.
Tests applied on-chip use pseudo-random combinations of
subvectors from V' to form seeds for the decompression logic.
The tests target both single stuck-at faults and single-cycle
gate-exhaustive faults. This demonstrates the ability to increase
the fault coverage beyond that achieved by Ss,. Experimental
results for benchmark circuits demonstrate significant reduc-
tions in the storage requirements of V' compared with S,,
and significant increases in the coverage of single-cycle gate-
exhaustive faults. As with other LBIST approaches, and to
simplify the discussion in this article, it is assumed that a small
loss of single stuck-at fault coverage is acceptable. This can be
addressed in one of several ways discussed later. In addition
it is assumed that it is acceptable to apply a large number of
tests that are produced by the LBIST logic through pseudo-
random combinations of subvectors to cover both single stuck-
at and single-cycle gate-exhaustive faults.

The article is organized as follows. Section II describes the
on-chip storage of subvectors and the test application process.
Section III describes the software procedure for computing
the stored set of subvectors. Section IV presents experimental
results for benchmark circuits. Section V concludes the article.

II. ON-CHIP STORAGE AND TEST APPLICATION

The on-chip storage of subvectors and test application pro-
cess are illustrated in this section by considering benchmark
circuit s1423.

The circuit has a compressed deterministic test set S, for
single stuck-at faults that consists of 55 seeds. The decom-
pression logic for which Sy, is computed includes an LF'SR
of length L = 18. The test set achieves complete coverage of

TABLE II
EXAMPLE SEEDS FOR APPLIED TESTS

i | do i1 i2 i3 84,0 Si1 Si,2 84,3

0 8 10 9 6 11111 01010 10000 000[01]
1 3 1 4 5 10011 10010 11010 000[11]
2 11 7 6 01111 10000 11101 000[01]
3 6 2 1 2 00001 00000 10010 000[00]
4 11 11 2 5 01111 01111 00000 000[11]
5 0 8 5 11 10110 11111 00011 O11[11]
6 10 1 1 2 01010 10010 10010 000[00]
7 7 9 2 11 11101 10000 00000 O11[11]
8 11 5 9 6 01111 00011 10000 000[01]
9 2 2 8 1 00000 00000 11111 100[10]

single stuck-at faults, and a coverage of 90.381% for single-
cycle gate-exhaustive faults. For this example, an 18-bit seed
is partitioned into p = 4 subvectors of length | = 5. The last
subvector obtained by partitioning a seed has three bits. It is
padded as discussed later to obtain a 5-bit subvector, and only
5-bit subvectors are considered.

The software procedure described in Section III yields the
set of subvectors V' = {vg, v1, ..., v11 } shown in Table I. With
[ = 5, the number of subvectors is bounded by 2! = 32. Only
12 subvectors need to be stored to form seeds that achieve
complete single stuck-at fault coverage.

The set V' is stored in an on-chip memory. To apply tests
to the circuit, four indices of subvectors are selected pseudo-
randomly, and the subvectors are used for forming seeds that
initialize the LF'S R in the decompression logic. A total of 138
tests are needed for 51423 to detect all the detectable single
stuck-at faults, and achieve a fault coverage of 99.214% for
single-cycle gate-exhaustive faults. The seeds for the first ten
tests are shown in Table II. A seed s; = (s;,0,5i,1, Si,2, 5i.3)
is formed from the subvectors with indices ig, 71, i and 3.
Only the first three bits of s; 3 are used for test application.
The remaining two bits, shown in square brackets in Table II,
are discarded.

Figure 2 shows the on-chip test generation logic for s1423
on the left. The on-chip test generation logic drives the
decompression logic on the right, which in turn drives the
scan chains of the circuit (not shown in Figure 2).

The memory that stores the set V' of subvectors is shown
at the top of Figure 2. With p = 4, four multiplexers are
used for selecting four subvectors that are loaded into the
decompression logic to form a seed s;. An LSFR, shown
on the left in Figure 2, selects which subvectors will be used.

In general, let an LF'SR of length L be included in the
decompression logic. Suppose that a seed is partitioned into p
subvectors of length [. Using p = [L/l] ensures that [-p > L,
and neither [ nor p is larger than necessary. The on-chip test
generation logic consists of the following components.

(1) A memory for |V| I-bit subvectors.

(2) p I-bit multiplexers with |V| data inputs and [log2(]V])]
select inputs.

(3) An LFSR for p [loga2(|V])]-bit random numbers.

In Figure 2, the memory consists of |V| = 12 [-bit
subvectors with [ = 5. There are p = 4 multiplexers with
|V| = 12 data inputs and [loga(|V|)] = 4 select inputs. Each
data input has | = 5 bits. The LF'SR on the left in Figure 2
produces p = 4 numbers each with [log2(|]V])] = 4 bits.
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Fig. 2. On-chip test generation logic for s1423.
TABLE III
EXAMPLE OF INITIAL SET OF SUBVECTORS
1 | 57,0 Si,1 57,2 Si,3 | Vo V1 V2 V3 V4 Vs Ve kg U8
0 | 01110 11100 00110  010xx | OI110 11100 00110  010xx
1 10001 10110 01001 110xx 01110 11100 00110 01001 10001 10110 110xx
2 | 10010 11001 01101  1llxx | O1110 11100 00110 01001 10001 10110 11001 10010 01101

Given [ and p = [L/l], the software procedure described
in Section III attempts to minimize the hardware overhead
by minimizing |V|. The selection of [ and p is discussed in
Section IV.

If the on-chip decompression logic requires m > 1 seeds
to form a test, the on-chip test generation logic can be used
for forming m seeds for every test. For each seed, the on-chip
test generation logic needs to select p [-bit subvectors as in
Figure 2, and this needs to be repeated m times for every test.
The software procedure can be extended to address this case
as discussed at the end of Section III.

III. SOFTWARE PROCEDURE FOR COMPUTING STORED
SET OF SUBVECTORS

This section describes the software procedure for computing
the stored set of subvectors with given parameters [ and p =
[L/l]. The software procedure is run a-priori to compute the
stored test data entries for on-chip test generation under the
LBIST approach.

The software procedure accepts a set of deterministic seeds
Ssq computed for single stuck-at faults without considering
the on-chip test generation logic. From Sy, the decompression
logic alone, without the on-chip test generation logic, produces
a set of tests denoted by Ty,. The test set Ty, targets single
stuck-at faults, and achieves complete single stuck-at fault
coverage. Let S5, = {so,$1,...,5n—1}. Based on Sy,, the
software procedure computes an initial set V' of subvectors.
It uses V' to compute the test set 7' that will be applied to
the circuit by the LBIST approach. The software procedure
then reduces V' without reducing the fault coverage of T'. The
various parts of the software procedure are described next.
For the computation of 7', the on-chip test generation logic is
simulated to compute seeds, and the decompression logic is
simulated to produce tests from the seeds.

A. Initial Set of Subvectors

To initialize the set V/, the procedure partitions every seed
s; € Ssq into p [-bit subvectors. If [-p > L, the last subvector
of s; is padded with unspecified values. After padding, let
$i = (84,0, 8i,1, - Si,p—1). For 0 < j < p, the procedure adds
84,5 to V as follows.

The procedure checks if V' already contains a subvector vy
that is compatible with s; ;. If V' does not contain any such
subvector, the procedure adds s; ; to V. If it finds a subvector
v, € V that is compatible with s; j, it checks whether vy, has
any unspecified values that are specified in s; ;. The procedure
copies such values from s; ; to vg. In this case, s; ; is not
added to V' as a separate subvector.

After considering all the seeds in Ss,, if V' contains any
unspecified values, the procedure specifies them randomly.

In the example of s1423, with L = 18, ] =5 and p = 4,
the first seeds in Ss, are shown in Table III. The seed sg
contributes to V' the subvectors vg = s, v1 = 50,1, V2 =
50,2, and V3 = S0,3-

The seed s; contributes to V' the subvectors vy = 519,
vs = 51,1, and vg = s1,3. The subvector s; o is compatible
with vs, causing the unspecified values of v3 to be specified
based on s 2.

The seed s, contributes to V' the subvectors vz = s2 ¢ and
vg = S2.9. The subvector s 1 is compatible with vg, causing
the unspecified values of vg to be specified based on sz 1. The
subvector sp 3 is compatible with v, which is already fully
specified.

Additional subvectors are added to the initial set V in a
similar manner.

B. Set of Applied Tests

With a set V' of subvectors and parameters [ and p, a test
set 1" is constructed by the LBIST approach as follows.



The number of tests in 7" is a constant denoted by Nr.
Fori=0, 1, ..., Ny — 1, a seed s; is formed by selecting p
subvectors from V' pseudo-randomly. With subvector indices
(00, 81y -y Gp—1)s Si = (84,0, 4,15 -+, Si,p—1) such that s; ¢ =
Vg «ens Sip—2 = Ui,_,, a0 8551 = v;,_, is truncated to
form an L-bit seed.

The test produced by the decompression logic from s; is
denoted by ¢;. The test ¢; is included in T together with the
indices (g, @1, ..., ip—1).

Two sets of target faults are considered in this article. The
set F{ is the set of single stuck-at faults that are also targeted
by the set of seeds Ss,. The set F consists of single-cycle
gate-exhaustive faults. The set Fj is used for demonstrating
that extra coverage is achieved when 7' is applied to the circuit
instead of T%,.

Fault simulation is carried out for Fy and F; under T'. Tests
that are effective in detecting target faults are included in a
subset of tests denoted by Ty C T'. Forward-looking reverse
order fault simulation is applied to Tty to remove unnecessary
tests. The test set T.zs is used by the software procedure to
identify subvectors that contribute to the fault coverage. The
test set used for on-chip test generation is 7', and not Tz .

For T and T,y y, the sets of detected faults are denoted by
Do(T) C Fy and D1(T) C Fj. In addition, fault simulation
of Fy and Fj under the test set T, produced by the seeds
in Sy, yields subsets of detected faults Do(Ts,) € Fy and
Dl(T@a) c Fl'

C. Reducing the Set of Subvectors

The procedure described in this section removes subvectors
from V' without losing fault coverage.

The procedure considers the subvectors from V' one by one.
When a subvector v,., € V is considered, it is removed
from V' temporarily. With the reduced set V' the procedure
recomputes the test set 7', and checks the effect on the
fault coverage. To accept the removal of v,..,, the procedure
requires the following two conditions to be satisfied.

(1) |Do(T")| should not decrease below its value before the
removal of v,.¢,,. This ensures that the stuck-at fault coverage
would not decrease when a subvector is removed from V.

(2) |D1(T)| should not decrease below |D1(Ts,)|. Experi-
mental results indicate that the single-cycle gate-exhaustive
fault coverage of T is significantly higher than that of T,.
Moreover, the removal of subvectors that satisfy the first
condition has a small effect on D1 (7). A weak condition on
D1 (T) is thus sufficient, and it allows more subvectors to be
removed. The condition used ensures that 7" continues to detect
at least as many single-cycle gate-exhaustive faults as T,.

If these conditions are satisfied, v,.¢,, is removed from V'
permanently. Otherwise, the procedure restores vy, into V.

The order by which the subvectors from V' are considered
for removal is discussed next. The order attempts to ensure
that subvectors, which are more likely to be removed, will be
considered earlier. This reduces the computational effort of the
software procedure.

The likelihood that a subvector will be removed is measured
based on the test set Ty obtained for V' before any subvectors

TABLE IV
EXAMPLE 1 OF REMOVAL OF SUBVECTORS

iter used(v;) forv; € V Urem

1 182010232516 17 17 17 1725 1322 17 18 19 v2(10)
2714 131516151321 1915112216 17 19 17

2 122216 10 1516 18 17 1517 22 16 16 15 16 22 v3(10)

28 20 24 24 2220 17 17 10 19 16 22 20 18 10
3 252717152018 11 131720 17 18 16 10 13 15
1926 23 13 21 12 16 15 21 16 20 15 29 22

4 16 17 18 11 32 19 21 17 25 2020 17 16 17 18 15
18 26 17 2722 21 21 22 18 27 16 22 20

5 1423 18 16 26 25 19 22 21 19 18 17 11 20 22 27
16 1516 25 17 2515 18 18 32 21 20

6 2214 16 24 16 18 24 17 20 24 16 17 30 17 20 22
15242216 22 21 15 21 29 24 22

7 23201223 21 133228 14 19 23 19 24 13 17 26
1923 232124262919 1225

8 1920 18 21 21 28 26 19 24 19 24 23 22 16 22 25
17 18 17 26 20 32 16 21 14

v13(10), ve(11)

’Ug(ll), 1)15(15)

’U12(11)

v1(14)

’1)2(12), ’U24(12),
v5(13)
’U24(14), 1)13(16)

9 27 19 21 29 21 21 32 25 26 21 20 21 26 22 17 15 v22(14)
19 31 27 18 28 20 14 24
10 2523 29 24 3221 29 21 30 26 14 23 26 24 29 14 v10(14)

222329 18 26 22 22

19 34 44 33 38 35 31 37 48 3943 43 49 51 43 vs5(31), v2(33)

20 38 42 41 33 34 44 42 45 54 40 41 46 36 v3(33)
21 50 42 42 40 39 49 44 59 36 47 56 48

are removed from it. Using 7% ¢, the procedure associates with
every subvector v; € V a variable denoted by used(v;). The
value of used(v;) is equal to the number of times v; appears
in a seed s; whose test ¢; is included in T¢yy.

Since T, sy changes every time a subvector is removed from
V, the procedure is iterative. At the beginning of an iteration,
V' is used for computing T, s, and the variables used(v;) are
updated. The procedure considers the subvectors in V' from
low to high value of used(v e, ). An iteration terminates if a
subvector is removed from V' permanently. In this case, a new
iteration starts. The procedure terminates if an iteration ends
without removing any subvectors from V.

In the example of s1423, iteration 1 starts with an initial
set V' consisting of 32 subvectors. After computing T¢y, the
values of used(v;) are as shown in Table IV in the rows with
a 1 under column iter. The values are shown in the order
used(vp), used(vy), .... Based on the values of used(v;), the
procedure considers vy e, = vo With used(vyem) = 10 first. It
finds that the subvector can be removed without reducing the
fault coverage. This is shown under column v, of Table IV.
The number in parentheses is the value of used(vyem ).

In iteration 2, V' consists of 31 subvectors. Based on T¢yy,
the values of used(v;) are as shown in Table IV in the rows
with a 2 under column iter. With these values of used(v;),
the procedure considers vye,, = vz that has used(viem) =
10 first. It finds that the subvector can be removed without
reducing the fault coverage.

In iteration 3, the procedure considers v,e, = vi3 with
used(Vpem) = 10 first. It finds that the subvector cannot be
removed. It considers v,em = vg with used(viem) = 11
second. This subvector can be removed without reducing the
fault coverage.

In iteration 4, the subvectors considered for removal are
VUremn = v3 With used(vyem) = 11, followed by vperm = v15
with used(vyem) = 15. The second subvector is removed.



TABLE V
EXAMPLE 2 OF REMOVAL OF SUBVECTORS

iter | subv s.a. g.exh
0 32 99.155  98.805
1 31 99.324  98.753
2 30 99.324  99.116
3 29 99.831 99.584
4 28 99.915  99.532
5 27 99.915 99.844
6 26 99.915  100.000
7 25 99.915 99.896
8 24 99.915  99.792
9 23 99.915 99.792
10 22 99.915  99.636

The procedure continues in the same manner. Even in later
iterations, it finds a subvector it can remove after trying a small
number of subvectors with the lowest values of used(v;). It
terminates in iteration 21 with 12 subvectors in V' and the
values of used(v;) shown in the last row of Table IV.

Although the main purpose of the procedure is to reduce the
number of subvectors in V/, it also increases the single stuck-at
fault coverage when the test set 7" based on the initial set V'
does not detect all the single stuck-at faults detected by T,.
The single-cycle gate-exhaustive fault coverage is typically
significantly higher than that of T,. To maximize the increase
in the single stuck-at fault coverage, it is important to remove
subvectors from V' gradually. This is achieved by removing
subvectors one by one.

An example of the increase in the single stuck-at fault
coverage is given in Table V considering benchmark circuit
b07. The circuit has a compressed deterministic test set Sy,
for single stuck-at faults that consists of 41 seeds for an LF.SR
of length L = 36. The test set T, achieves complete single
stuck-at fault coverage equal to 99.915%. The single-cycle
gate-exhaustive fault coverage of Ty, is 59.459%. A seed
is partitioned into p = 8 subvectors of length [ = 5. The
initial set V' contains 32 subvectors. The procedure removes
subvectors from V' one by one as shown in Table V. For
every iteration, Table V shows the index of the iteration, the
number of subvectors in V, the single stuck-at fault coverage,
and the single-cycle gate-exhaustive fault coverage. Table V
demonstrates the following points. (1) The single stuck-at
fault coverage increases as the procedure removes subvectors
from V, and reaches complete fault coverage in iteration 4.
(2) The single-cycle gate-exhaustive fault coverage increases
significantly when 7' is used instead of T§,. As subvectors
are removed from V, the single-cycle gate-exhaustive fault
coverage changes such that it remains significantly higher than
that of T,.

If the on-chip decompression logic requires m > 1 seeds to
form a test, the software procedure needs to be extended as fol-
lows. (1) When constructing an initial set V' of subvectors, the
procedure needs to partition every seed of every compressed
test into [-bit subvectors, obtaining m - p subvectors per test.
(2) When constructing a set of applied tests 7', the procedure
needs to consider m consecutive seeds for every test.

IV. EXPERIMENTAL RESULTS

The results of the software procedure for single stuck-at
faults and single-cycle gate-exhaustive faults in benchmark
circuits are presented in this section.

A. setup

The software procedure was applied with the following
parameter values. The set S, is a compact deterministic set
of seeds for single stuck-at faults. The LF.SR used for S, is
the smallest primitive LF'S R from [1] that allows complete or
almost complete fault coverage to be achieved for single stuck-
at faults. The set F of single-cycle gate-exhaustive faults is
the set of detectable faults from [22].

The number of tests in 7" is Ny = 1,000,000. With an
LFSR of length L, this implies that all the seeds can be
considered when 2L < 1,000,000, or L. < 20, and most of
the seeds can be considered when L = 20. The results are
interesting for circuits with L > 20, where 27 >> 1,000, 000.
The number of tests applied until the fault coverages reach
their final values is denoted by nyy.

The software procedure is applied with 1 < [ < L — 1.
For every value of [, p = [L/l]. With I = 1 and p = L,
V = {0, 1}, and the on-chip test generation logic produces
pseudo-random seeds by selecting bits pseudo-randomly from
V. This case does not require any storage. In general, as [
is increased and p is decreased, the number of subvectors in
V increases, causing the storage requirements to increase. At
the same time, the longer subvectors allow the single stuck-at
fault coverage to increase, becoming closer to that of T,. The
fault coverage of single-cycle gate-exhaustive faults is high for
all the values of [ and p. Based on this discussion, the results
are reported for the lowest value of [ for which the highest
single stuck-at fault coverage is achieved. This value of [ is
denoted by [ls¢;. In addition, the case of [ = 1 is reported for
all the circuits to allow a comparison with the case where N
pseudo-random seeds are used.

Typically with [, the storage requirements for V are
significantly lower than for Sg,. Results for values of !
that are lower than [z are reported only when the storage
requirements for V' with [ = [z are close to the storage
requirements for Sg,.

When the single stuck-at fault coverage for [ is lower
than that of Tj,, several options exist for increasing the fault
coverage: (1) increasing the number of tests, Nr, (2) adding
test points, (3) complementing bits of seeds or applied tests as
in earlier approaches, (4) storing combinations of subvectors
that form compressed tests for the undetected faults, or (5)
storing unpartitioned seeds for topping off the seeds produced
by the on-chip test generation logic through pseudo-random
combinations of subvectors. The use of unpartitioned seeds is
demonstrated at the end of this section. As with other LBIST
approaches, it is assumed that a small loss of fault coverage is
acceptable, and that it is acceptable to apply a large number of
tests produced by the LBIST logic through pseudo-random
combinations to cover both single stuck-at and single-cycle
gate-exhaustive faults.



EXPERIMENTAL RESULTS (COMPLETE SINGLE STUCK-AT FAULT COVERAGE WITH l4¢; = 1)

TABLE VI

circuit inp L l p iter | subv bits frac tests eff s.a. diff g.exh diff ntime
$35932 1763 13 | 13 1 0 57 741 1.000 57 57 89.809  0.000 | 98.509  0.000 1.00
$35932 1763 13 1 13 0 2 2 0.003 232 81 89.809  0.000 | 99.996  1.488 3.71
sasc 132 13|13 1 0 41 533 1.000 41 41 100.000  0.000 | 67.374  0.000 1.00
sasc 132 13 1 13 0 2 2 0.004 416 167 100.000  0.000 | 93.923  26.550 4.83
des_area 367 14 | 14 1 0 158 2212 1.000 158 158 | 100.000  0.000 | 72.424  0.000 1.00
des_area 367 14 1 14 0 2 2 0.001 739 538 100.000  0.000 | 93.432  21.008 4.06
systemedes | 320 14 [ 14 1 0 102 1428 1.000 102 102 | 100.000  0.000 | 93.391 0.000 1.00
systemedes | 320 14 | 1 14 0 2 2 0.001 1297 184 | 100.000 0.000 | 99.646  6.255 4.48
1423 91 18 | 18 1 0 55 990 1.000 55 55 99.076  0.000 | 90.381 0.000 1.00
1423 91 18 1 18 0 2 2 0.002 | 25579 137 99.076  0.000 | 99.758  9.377 54.11
usb_phy 12 18 | 18 1 0 36 648 1.000 36 36 100.000  0.000 | 82.536  0.000 1.00
usb_phy 112 18 1 18 0 2 2 0.003 2913 114 | 100.000  0.000 | 99.677 17.141 18.00
b04 78 28 | 28 1 0 34 952 1.000 34 34 99.851 0.000 | 79.263  0.000 1.00
b04 78 28 1 28 0 2 2 0.002 | 46318 239 99.851  0.000 | 98.560  19.297 | 136.00
aes_core 788 28 | 28 1 0 380 | 10640  1.000 380 380 | 100.000 0.000 | 98.259  0.000 1.00
aes_core 788 28 1 28 0 2 2 0.000 3548 695 | 100.000  0.000 | 99.997 1.738 3.76
systemcaes | 928 29 | 29 1 0 109 3161 1.000 109 109 99.995  0.000 | 79.613  0.000 1.00
systemcaes | 928 29 1 29 0 2 2 0.001 39418 1047 | 99.995  0.000 | 99.989  20.376 14.78
$5378 214 36 | 36 1 0 133 4788  1.000 133 133 99.131  0.000 | 67.605  0.000 1.00
5378 214 36 1 36 0 2 2 0.000 | 53432 898 99.131 0.000 | 99.533 31928 | 43.62
13207 700 47 | 47 1 0 251 11797 1.000 251 251 98.462  0.000 | 62.259  0.000 1.00
$13207 700 47 1 47 0 2 2 0.000 | 190271 1905 | 98.462  0.000 | 97.623  35.364 | 181.57
TABLE VII
EXPERIMENTAL RESULTS (COMPLETE SINGLE STUCK-AT FAULT COVERAGE WITH lgz¢; > 1)
circuit inp L l p iter subv bits frac tests eff s.a. diff g.exh diff ntime
b07 53 36 | 36 1 0 41 1476 1.000 41 41 99.915 0.000 | 59.459  0.000 1.00
b07 53 36 | 1 36 0 2 2 0.001 | 37994 388 97.041  -2.874 | 96.674  37.214 3168.50
b07 53 36 | 5 8 10 22 110 0.075 | 963258 404 99.915 0.000 | 99.636  40.177 | 81965.01
simple_spi | 146 38 [ 38 1 0 46 1748 1.000 46 46 100.000  0.000 | 55.066  0.000 1.00
simple_spi | 146 38 1 38 0 2 2 0.001 | 129112 453 98.620  -1.380 | 97.568  42.503 2078.71
simple_spi | 146 38 | 2 19 1 3 6 0.003 | 620445 511 100.000  0.000 | 99.873  44.807 2712.29
i2c 145 43 | 43 1 0 58 2494 1.000 58 58 100.000  0.000 | 73.974  0.000 1.00
i2c 145 43 1 43 0 2 2 0.001 | 261195 278 96.577  -3.423 | 93.748  19.774 2086.92
i2c 145 43 | 15 3 | 138 35 525 0.211 | 158072 332 | 100.000  0.000 | 97.797  23.823 | 142832.39
spi 274 44 | 44 1 0 360 | 15840  1.000 360 360 99.985 0.000 | 67.073  0.000 1.00
spi 274 44 1 44 0 2 2 0.000 | 65510 2432 | 99.354  -0.631 | 97.956  30.883 162.45
spi 274 44 | 6 8 13 51 306 0.019 | 683691 2536 | 99.985 0.000 | 99.931  32.858 1213.15
B. Results of bits required for V' divided by the number of bits required

The results of the software procedure are presented in Tables
VI, VII and VIII. For the circuits in Table VI, [, = 1. For
the circuits in Tables VII and VIII, l,.; > 1. For the circuits
in Tables VI and VII, complete single stuck-at fault coverage
is achieved with [;. For the circuits in Table VIII, the single
stuck-at fault coverage is incomplete.

The circuits in each table are arranged from low to high
value of L. The first row for every circuit provides a baseline
where the compressed compact deterministic test set Sg,
is stored on-chip, and the test set Ty, is applied. This is
represented by [ = L, p 1 and V = S,,. Additional
rows show the final results of the software procedure with
1< < lsel'

In each row, after the circuit name, column ¢np shows the
number of inputs, and column L shows the length of the
LFSR. Columns [ and p show the values of the corresponding
parameters. Column ¢ter shows the iteration of the software
procedure, where iteration O corresponds to the initial set
V, and every additional iteration reduces the number of
subvectors in V' by one. Column subv shows the number
of subvectors in V. Column bits shows the number of bits
required for V, equal to [-|V'|. Column frac shows the number

for Sga, (I-|V])/(L-|Ssqa|). Column tests shows the number
of tests from 7' that need to be applied until the last test that is
effective in detecting target faults. This number of tests can be
used instead of N, and was denoted earlier by n.sy. Column
ef f shows the number of tests in 75 ¢ ¢. These are the tests that
increase the fault coverages of target faults. Column s.a. shows
the single stuck-at fault coverage. Column di f f that follows is
the increase or reduction in the single stuck-at fault coverage
relative to Sg,. Column g.exh shows the single-cycle gate-
exhaustive fault coverage. Column dif f that follows is the
increase or reduction in the single-cycle gate-exhaustive fault
coverage relative to S,,. Column ntime shows the runtime
of the software procedure divided by the runtime required for
fault simulation of T%,. This is referred to as the normalized
runtime.

C. Discussion

The following points can be seen from Tables VI-VIIL
The set S, represents the conventional approach to test data
compression where deterministic tests are compressed into
seeds for an LF'SR. Considering columns bits and frac, the
storage requirements of V' produced by the software procedure



TABLE VIII
EXPERIMENTAL RESULTS (INCOMPLETE SINGLE STUCK-AT FAULT COVERAGE)

circuit inp L l p iter | subv bits frac tests eff s.a. diff g.exh diff ntime
wb_dma 738 47 47 1 0 84 3948 1.000 84 84 100.000 0.000 73.840 0.000 1.00
wb_dma 738 47 1 47 0 2 2 0.001 | 252167 771 99.615 -0.385 99.077 25237 577.39
wb_dma 738 47 5 10 4 28 140 0.035 | 838936 767 99.978 -0.022 99.532  25.692 6023.19
wb_dma 738 47 10 5 0 277 27170 0.702 | 986814 792 99.989 -0.011 99.577 25737 472.61
s15850 611 57 57 1 0 197 11229 1.000 197 197 96.682 0.000 73.285 0.000 1.00
515850 611 57 1 57 0 2 2 0.000 | 261955 1788 94.559 -2.124 87.761 14.475 2007.22
s15850 611 57 4 15 1 15 60 0.005 | 999797 2267 96.119 -0.563 92.853  19.567 3443.86
§9234 247 75 75 1 0 134 10050  1.000 134 134 93.475 0.000 70.825 0.000 1.00
§9234 247 75 1 75 0 2 2 0.000 | 261492 921 90.761 -2.714 91.300  20.475 2836.36
$9234 247 75 3 25 0 8 24 0.002 | 996368 1093 92.796 -0.679 96.131  25.306 2512.70
$38584 1464 98 98 1 0 218 21364  1.000 218 218 95.852 0.000 88.313 0.000 1.00
838584 1464 98 1 98 0 2 2 0.000 | 130393 1687 95.648 -0.204 99.513  11.201 1061.35
$38584 1464 98 5 20 4 28 140 0.007 | 995504 1724 95.796 -0.055 99.766  11.453 | 62243.02
tv80 372 109 | 109 1 0 370 40330  1.000 370 370 99.527 0.000 77.264 0.000 1.00
tv80 372 109 1 109 0 2 2 0.000 | 261397 2106 97.947 -1.579 94.625 17.361 421.39
tv80 372 109 7 16 4 124 868 0.022 | 998072 2320 98.919 -0.607 97.424  20.159 | 33913.94
838417 1664 111 111 1 0 283 31413 1.000 283 283 99.471 0.000 70.723 0.000 1.00
s38417 1664 111 1 111 0 2 2 0.000 | 261979 4395 98.406 -1.065 89.715 18.993 760.24
838417 1664 111 4 28 2 14 56 0.002 | 998535 5410 99.343 -0.128 95.892  25.169 1973.63
bl5 483 113 113 1 0 266 30058 1.000 266 266 98.580 0.000 59.444 0.000 1.00
bl5 483 113 1 113 0 2 2 0.000 | 261591 1387 95.186 -3.393 71.993  12.549 1297.76
bl5 483 113 5 23 0 32 160 0.005 | 999779 1635 97.708 -0.872 83.513  24.069 1104.02
b20 527 119 119 1 0 238 28322 1.000 238 238 93.304 0.000 64.250 0.000 1.00
b20 527 119 1 119 0 2 2 0.000 | 260752 1355 87.714 -5.589 84.857  20.606 2647.18
b20 527 119 5 24 3 29 145 0.005 | 997430 1525 88.861 -4.442 86.057  21.807 | 13758.22
bl4 280 128 | 128 1 0 290 37120  1.000 290 290 94.960 0.000 72.068 0.000 1.00
bl4 280 128 1 128 0 2 2 0.000 2040 278 79.020 -15.940 | 67.510  -4.558 4204.46
bl4 280 128 3 43 3 5 15 0.000 | 973582 790 85.883 -9.077 78.680 6.612 36678.39

are significantly smaller than the storage requirements of Sy,
for most of the circuits considered. Thus, the use of the on-
chip test generation logic reduces the storage requirements
compared with the conventional approach to test data com-
pression represented by Sg,.

For the circuits with the lower values of L, ls; = 1 is
typically sufficient for achieving complete fault coverage of
single stuck-at faults. The circuit with the largest value of L
for which I, = 1 is s13207, with L = 47. In this case,
2L > Np.

For the circuits with the higher values of L, ls > 1
is typically needed, and using [ = 1 that produces pseudo-
random seeds results in a lower single stuck-at fault coverage
than [.;. Storage of V' is important in this case for increasing
the single stuck-at fault coverage. Moreover, the software
procedure reduces V' to reduce the storage requirements and
increase the single stuck-at fault coverage. The software pro-
cedure does not allow the single stuck-at fault coverage to
decrease as it removes subvectors from V, and it keeps track
of cases where the fault coverage is increased. This allows
it to identify cases where removing subvectors increases the
single stuck-at fault coverage.

The improvement in the fault coverage of single-cycle gate-
exhaustive faults is significant in all the cases when V is
used for on-chip test generation instead of applying T%,. The
single-cycle gate-exhaustive fault coverage does not increase
monotonically with the iterations of the software procedure
since the procedure only requires that the fault coverage would
be at least as high as that of T,. For the circuits with lz¢; > 1,
if [ =1 is used for producing pseudo-random seeds, the fault
coverage for single-cycle gate-exhaustive faults is significantly
lower than that achieved with I,;.

The increase in the fault coverage of single-cycle gate-
exhaustive faults requires an increase in the number of applied
tests. Columns tests and ef f describe this increase. Even
if only tests that increase the fault coverage are considered
(column eff), the number of tests required for detecting
single-cycle gate-exhaustive faults is significantly larger than
the number of tests in T, that are required for detecting single
stuck-at faults. With on-chip test generation that combines
subvectors pseudo-randomly, not every applied test is effective
in increasing the fault coverage, and the number of applied
tests (shown under column tests) must be allowed to be
significantly higher than the number of tests in T,.

The normalized runtime has a strong dependence on the
number of subvectors in V, and the number of subvectors
increases with l,.;. The normalized runtime does not increase
with the size of the circuit, implying that the software proce-
dure scales similar to a fault simulation procedure. The part
of the procedure that reduces the number of subvectors in V'
can be terminated earlier to reduce the normalized runtime for
the larger values of [s;.

Other parameters also do not deteriorate for larger circuits.
Considering the loss in single stuck-at fault coverage, a larger
circuit may have a lower fault coverage loss than a smaller
circuit. For example, the loss in single stuck-at fault coverage
is 0.872 for b15, and 0.128 for s38417 that is a larger circuit.
Comparing the number of applied tests to the number of tests
in Ty, the increase for a larger circuit may be smaller than the
increase for a larger circuit. For example, for b07 the increase
is 963258/41=23494.1, and for b15 that is larger the increase
is 999779/266=3758.6. Overall, the results do not deteriorate
with the size of the circuit.



TABLE IX

EXPERIMENTAL RESULTS (WITH UNPARTITIONED SEEDS)

circuit inp L l p iter | subv  unpart bits frac tests eff s.a. diff g.exh diff ntime
b07 53 36 36 1 0 41 0 1476 1.000 41 41 99.915 0.000 59.459 0.000 1.00

b07 53 36 3 12 2 6 0 18 0.012 9884 280 97.295 -2.620 85.603  26.143 277.00
b07 53 36 3 12 4 6 0 18 0.012 97081 303 98.732 -1.183 88.202  28.742 | 1040.50
b07 53 36 3 12 4 6 0 18 0.012 | 921022 304 99.408 -0.507 89.449  29.990 | 3482.50
b07 53 36 3 12 4 6 3 126 0.085 | 921025 307 99.915 0.000 89.813  30.353 | 3483.00
i2c 145 43 43 1 0 58 0 2494 1.000 58 58 100.000 0.000 73.974 0.000 1.00

i2c 145 43 4 11 8 8 0 32 0.013 9659 238 94.737 -5.263 89.975  16.001 | 1440.78
i2c 145 43 4 11 10 8 0 32 0.013 99783 295 97.261 -2.739 94492  20.518 | 2522.89
i2c 145 43 4 11 10 8 0 32 0.013 | 941774 347 99.529 -0.471 98.568  24.594 | 4495.89
i2c 145 43 4 11 10 8 6 290 0.116 | 941780 353 99.914 -0.086 98.981  25.007 | 4496.44
wb_dma 738 47 47 1 0 84 0 3948 1.000 84 84 100.000 0.000 73.840 0.000 1.00

wb.dma 738 47 4 12 5 11 0 44 0.011 9941 643 98.769 -1.231 92974  19.135 267.00
wb_dma 738 47 4 12 7 11 0 44 0.011 99504 763 99.626 -0.374 98.962  25.122 623.56
wb.dma 738 47 4 12 7 11 0 44 0.011 | 911910 789 99.967 -0.033 99.526  25.686 | 1058.65
wb_dma 738 47 4 12 7 11 3 185 0.047 | 911913 792 100.000 0.000 99.545 25705 | 1058.79
$15850 611 57 57 1 0 197 0 11229 1.000 197 197 96.682 0.000 73.285 0.000 1.00

$15850 611 57 4 15 4 12 0 48 0.004 9992 802 91.761 -4.921 76.307 3.022 301.97
$15850 611 57 4 15 6 12 0 48 0.004 99928 1496 94.064 -2.618 84.803  11.518 | 1006.07
$15850 611 57 4 15 6 12 0 48 0.004 | 999247 2244 95.787 -0.896 92.434  19.149 | 2745.35
$15850 611 57 4 15 6 12 19 1131 0.101 | 999266 2263 96.324 -0.358 92.816  19.531 | 2749.48
$9234 247 75 75 1 0 134 0 10050 1.000 134 134 93.475 0.000 70.825 0.000 1.00

$9234 247 75 4 19 0 16 0 64 0.006 9967 640 84.900 -8.575 74.861 4.036 72.44
$9234 247 75 4 19 2 16 0 64 0.006 99554 826 89.476 -3.999 87.228  16.404 | 1406.86
$9234 247 75 4 19 2 16 0 64 0.006 | 997175 1109 92.031 -1.444 95.869  25.045 | 3959.54
$9234 247 75 4 19 2 16 13 1039 0.103 | 997188 1122 93.316 -0.159 96.499  25.674 | 3962.95
338584 1464 98 98 1 0 218 0 21364  1.000 218 218 95.852 0.000 88.313 0.000 1.00

838584 1464 98 3 33 0 8 0 24 0.001 9993 1388 94.485 -1.366 96.348 8.036 29.34
$38584 1464 98 3 33 2 8 0 24 0.001 99110 1655 95.681 -0.171 99.456  11.143 346.18
838584 1464 98 3 33 2 8 0 24 0.001 | 991660 1710 95.733 -0.118 99.770  11.457 | 1403.72
$38584 1464 98 3 33 2 8 14 1396 0.065 | 991674 1724 95.852 0.000 99.852  11.539 | 1406.58
tv80 372 109 | 109 1 0 370 0 40330  1.000 370 370 99.527 0.000 77.264 0.000 1.00

tv80 372 109 6 19 1 63 0 378 0.009 9990 1241 91.041 -8.486 78.596 1.332 108.97
tv80 372 109 6 19 3 63 0 378 0.009 99986 1882 96.911 -2.615 90.892  13.628 | 2163.75
tv80 372 109 6 19 3 63 0 378 0.009 | 999575 2299 98.747 -0.780 97.158  19.894 | 2554.36
tv80 372 109 6 19 3 63 34 4084 0.101 | 999609 2333 99.437 -0.090 97.606  20.341 | 2556.29
$38417 1664 111 111 1 0 283 0 31413 1.000 283 283 99.471 0.000 70.723 0.000 1.00

$38417 1664 111 3 37 3 5 0 15 0.000 9996 2027 93.679 -5.792 75.511 4.788 367.47
838417 1664 111 3 37 5 5 0 15 0.000 99955 3768 97.742 -1.729 87.013 16290 692.07
$38417 1664 111 3 37 5 5 0 15 0.000 | 994091 5552 99.304 -0.167 96.303  25.580 | 1155.05
$38417 1664 111 3 37 5 5 29 3234 0.103 | 994120 5581 99.452 -0.019 96.467  25.745 | 1156.87
bl5 483 113 | 113 1 0 266 0 30058  1.000 266 266 98.580 0.000 59.444 0.000 1.00

bl5 483 113 5 23 0 32 0 160 0.005 9975 1179 77.546 -21.033 | 51.187  -8.257 93.75

bl5 483 113 5 23 2 32 0 160 0.005 99982 1367 91.300 -7.280 64.795 5.351 2673.95
bl5 483 113 5 23 2 32 0 160 0.005 | 999779 1635 97.708 -0.872 83.513  24.069 | 3760.90
bl5 483 113 5 23 2 32 26 3098 0.103 | 999805 1661 98.430 -0.149 84.341  24.897 | 3763.23
b20 527 119 | 119 1 0 238 0 28322 1.000 238 238 93.304 0.000 64.250 0.000 1.00

b20 527 119 3 40 3 5 0 15 0.001 9991 877 86.372 -6.931 77.874  13.624 384.14
b20 527 119 3 40 5 5 0 15 0.001 99695 1275 87.369 -5.935 83.874  19.624 864.00
b20 527 119 3 40 5 5 0 15 0.001 | 993897 1506 88.618 -4.686 85.832  21.582 | 3490.66
b20 527 119 3 40 5 5 24 2871 0.101 | 993921 1530 91.944 -1.360 87.038 22788 | 3500.70
bl4 280 128 | 128 1 0 290 0 37120  1.000 290 290 94.960 0.000 72.068 0.000 1.00

bl4 280 128 4 32 4 12 0 48 0.001 9811 455 82.647 -12.313 | 74.430 2.362 489.94
bl4 280 128 4 32 6 12 0 48 0.001 98718 561 83.829 -11.131 | 76.485 4.417 1288.84
bl4 280 128 4 32 6 12 0 48 0.001 | 944346 708 85.462 -9.498 78.866 6.798 4241.08
bl4 280 128 4 32 6 12 29 3760 0.101 | 944375 737 92.696 -2.264 82404  10.336 | 4253.62

D. Using Unpartitioned Seeds and Lower Values of Nt of Ssq.

This section explores two options. The first option is to
increase the fault coverage by storing a small number of
unpartitioned seeds from S,. Unpartitioned seeds are used for
topping off the tests produced by the on-chip test generation
logic through pseudo-random combinations of subvectors from
V. By storing a sufficient number of unpartitioned seeds
from S, it is possible to achieve complete single stuck-
at fault coverage for every value of /. However, the storage
requirements may be high. For the experiment in this section,
the storage requirements for V' and the unpartitioned seeds is
limited to approximately a tenth of the storage requirements

As [ is increased, the single stuck-at fault coverage achieved
based on the subvectors in V' increases, and fewer unpar-
titioned seeds need to be stored. As before, the results are
reported for the lowest value of [ for which the highest single
stuck-at fault coverage is achieved. This value of [ is denoted
by lsel-

The second option explored in this section is to reduce the
number of tests Np produced from pseudo-random combi-
nations of stored subvectors. Earlier, Ny = 1,000,000 was
used. Experimental results with Ny = 10,000 show that
reducing Nr reduces the runtime of the software procedure.



However, it also reduces the single stuck-at and single-cycle
gate-exhaustive fault coverages. Whereas the single stuck-at
fault coverage can be recovered by adding unpartitioned seeds,
the single-cycle gate-exhaustive fault coverage remains signifi-
cantly lower even after adding unpartitioned seeds. Therefore,
after applying the software procedure using Ny = 10,000,
tests are computed using N7 = 100,000, and then using
N7 = 1,000,000 as before, to demonstrate the effects on
the fault coverages. Unpartitioned seeds are added to the tests
produced with Ny = 1,000, 000.

The results in Tables VI, VII and VIII demonstrate that
lser < 5 is typically obtained. The value of [ is limited to
eight in this section.

The results for several circuits from Tables VII and VIII are
presented in Table IX. The format is similar to Tables VII and
VIII, with the addition of the number of unpartitioned seeds
under column unpart. The storage requirements and number
of applied tests take into consideration the unpartitioned seeds.

The first row for every circuit in Table IX describes Ss,.
The second row shows the results of the software procedure
using Ny = 10,000. The third and fourth rows show the
results obtained when the set of subvectors produced by the
software procedure is used for producing N = 100,000 and
N = 1,000,000 tests, respectively. The fifth row shows the
results obtained by adding unpartitioned seeds with a limit on
the storage requirements as discussed above.

The following points can be seen from Table IX. The
normalized runtime of the software procedure is reduced
significantly when N7 is reduced from Np = 1,000,000 to
Np =10, 000.

Without the topoff seeds the storage requirements are sim-
ilar for different values of Nr, and they are significantly
lower than the storage requirements for S,,, which represents
the conventional approach to test data compression. With the
topoff seeds the limit on the storage requirements ensures that
they are still significantly lower than those of Sg,.

The single stuck-at fault coverage as well as the single-
cycle gate-exhaustive fault coverage are significantly lower
when Np is lower. This makes it important to use a higher
value of Np for test application. In particular, the higher
value of Np ensures that the single stuck-at fault coverage
is higher, requiring fewer topoff seeds. It is also important for
the single-cycle gate-exhaustive fault coverage, which cannot
be recovered by topoff seeds targeting single stuck-at faults.

V. CONCLUDING REMARKS

A class of storage-based logic built-in self-test (LBIST)
approaches is based on storage of test data entries obtained
by partitioning deterministic tests, and forming tests from
different combinations of stored test data entries. In this article,
partitioning was applied for the first time to compressed de-
terministic tests. Tests were formed on-chip by using pseudo-
random combinations of subvectors of compressed determin-
istic tests to form seeds for the on-chip decompression logic,
which produces tests for the circuit. A software procedure
was described for deriving and reducing the stored test data.
Experimental results demonstrated the effectiveness of this

approach in reducing the volume of stored test data relative to
compressed deterministic test sets for benchmark circuits. Both
single stuck-at and single-cycle gate-exhaustive faults were
considered to demonstrate the ability to achieve comprehensive
fault coverage.
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