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Abstract—This paper presents a fully deterministic storage
based logic built-in self-test (LBIST) approach that stores, on
chip, reduced deterministic uncompressed test data sufficient for
achieving complete fault coverage. The goal of this approach is to
eliminate the need for pseudo-random tests, thereby reducing the
test application time by reducing the number of tests required
to achieve complete fault coverage. Under this approach, two
types of test data are stored on chip. 1) Subsets of scan vectors
obtained from a reduced set of deterministic tests, one subset per
test and, 2) permutations of scan vectors stored as sets of indices,
to indicate how to combine scan vectors to form tests on chip.
The same permutations are applied to all the subsets, magnifying
the effectiveness of each stored permutation and each subset,
allowing fewer subsets as well as fewer permutations to be used.
This helps in reducing the storage requirements. Experimental
results are presented for single stuck-at faults in benchmark
circuits and logic blocks of the OpenSPARC T1 microprocessor
to demonstrate the effectiveness of this approach.

I. INTRODUCTION

With the rapid advancement in the automotive industry
and other safety critical applications, the highly integrated
complex ICs used in these applications need high quality
test solutions to ensure their functional safety and long-term
reliability. Besides a high fault coverage, these test solutions
should meet requirements such as an ability to perform in
field testing and low test application time (TAT). Logic Built
In Self-Test (LBIST) is a testing technique where the hardware
required to test a chip is built into the chip [1]-[19]. This built-
in hardware takes care of test generation, test application and
response verification avoiding the need for an external tester,
therefore allowing in field testing. In addition to enhancing
security by removing the need for transfer of test data to and
from the chip [11], LBIST also provides the ability to test at
the chip frequency.

Basic LBIST techniques generate pseudo-random patterns
which on their own result in low fault coverage because of
the presence of random pattern resistant (RPR) faults with low
detection probabilities. To increase the fault coverage, LBIST
solutions based on pseudo-random patterns typically require
test points to be inserted [5], [16]. A large class of methods
modify pseudo-random tests to increase the fault coverage
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they achieve. These methods include bit-flipping [10], [13]
or bit-fixing [3] and weighted random pattern generation [2].
Hybrid LBIST, another class of solutions [6], [12], [15],
stores the top up deterministic patterns needed to detect RPR
faults in a compressed form on a tester, and decompresses
them on-chip using existing test data compression hardware
[21]-[23]. Another class of solutions stores the compressed
deterministic top up patterns on-chip. LFSR reseeding [7],
[9] can be considered a solution of this class. With LFSR
reseeding, multiple seeds for the LFSR are stored on-chip and
used for test application. Stellar BIST [17] stores compressed
deterministic parent patterns on-chip and decompresses them
using the on-chip test data compression logic. To reduce the
storage requirements, transformed derivatives of the parent
patterns are obtained in [17] by complementing multiple scan
slices at uniform intervals using on-chip test logic.

Another class of LBIST approaches where all the test data
required to achieve complete fault coverage are stored on-chip
is described in [8], [18] and [19]. This class of approaches
is based on partitioning a precomputed deterministic test
set into test data entries, for example scan vectors, small
enough to be stored on-chip. The on-chip test generation is
performed by combining the test data entries (the scan vectors)
either randomly or deterministically to achieve complete fault
coverage. The strength of this approach stems from the large
number of tests that can potentially be formed by combining
deterministic test data entries. From this large set it is possible
to select a subset for detecting target faults. In [18] and [19]
this property is used for achieving complete fault coverage
not only for stuck-at faults but also for single-cycle gate-
exhaustive faults.

In the approach described in [8], scan vectors obtained by
partitioning a precomputed deterministic test set are stored
separately for each scan chain. The subsets are reduced for
on-chip storage. The Cartesian product of these stored subsets
is performed on-chip for test generation. The number of tests
generated by the Cartesian product depends on the size of each
subset of scan vectors (V) and the number of subsets (n). In
[8], the Cartesian product was feasible since N and n were
small enough. The more recent approaches in this class do
not rely on the Cartesian product to accommodate circuits for
which N and n are large.
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In [18], a special type of pseudo-random tests is formed by
pseudo-random combinations of stored deterministic test data
entries (scan vectors). They are complemented by tests referred
to as deterministic formed by deterministic combinations of
stored scan vectors. To generate deterministic tests, additional
test data are stored on-chip representing which combinations
of scan vectors (indices of scan vectors in the stored set) are
needed to detect the target faults. Together the two types of
tests achieve complete fault coverage for single stuck-at and
single-cycle gate-exhaustive faults. All the scan vectors for all
the scan chains are stored in a single set in [18]. In [19], the set
of scan vectors is partitioned into subsets, allowing the on-chip
test generation process to focus on specific combinations of
scan vectors. As a result, only pseudo-random combinations of
deterministic scan vectors are used to achieve complete fault
coverage in [19]. As with other types of pseudo-random tests,
the number of tests needed in [18] and [19] is significantly
larger than the number of deterministic tests.

Whereas [18] and [19] rely on the use of pseudo-random
tests (pseudo-random combinations of stored scan vectors),
the goal of this paper is to eliminate the need for pseudo-
random tests. This will reduce the number of tests required
to achieve complete fault coverage and allow the LBIST
solution to meet the test time constraints that exist during
system startup and periodic in-field testing. Thus, this paper
proposes a fully deterministic storage based LBIST approach
from the class of approaches described in [8], [18] and [19].
The proposed approach stores two types of test data entries on-
chip. 1) Subsets of scan vectors, obtained from uncompressed
deterministic tests, one subset per test. 2) Permutations of
scan vector indices, stored to indicate how to combine scan
vectors to form tests. The same permutations are applied to
all the subsets, magnifying the effectiveness of each stored
permutation and each subset, allowing fewer subsets as well
as fewer permutations to be used. The permutation O, 1, ...,
n-1, where n is the number of scan vectors in a subset, results
in the original deterministic tests. Other permutations result in
different tests referred to as deterministic derivatives. Together
the original tests and their deterministic derivatives achieve
complete fault coverage, eliminating the need for pseudo-
random tests. Since the use of every permutation with every
subset of scan vectors reduces the number of subsets as well
as the number of permutations, it also reduces the storage
requirements associated with input stimuli. The proposed
scheme is based on the concepts from other solutions of the
same class [8], [18], [19] but avoids the limitations of [8].
It adopts the underlying principles of [8], [18], [19], such as
partitioning precomputed deterministic tests into scan vectors,
and achieving complete fault coverage without disturbing the
values of the stored deterministic test data. The permutation
operation in the proposed scheme enables reuse of the stored
test data entries from each subset several times in their
corresponding derivatives without altering the values of the
stored scan vectors.

The target faults in this paper are single stuck-at faults. The
approach described in this paper can be extended to other fault

models as well. Encoding [4] or test data compression [21]-
[23] can be used on the original deterministic scan vectors
to be stored on-chip to further reduce the on-chip storage
required. Test points can be used for increasing the fault
coverage without storing additional subsets. These options are
not considered in this paper.

The rest of the paper is organized as follows. Section II
describes the test data stored on-chip. The on-chip test genera-
tion logic is described in section III. A software procedure for
computing the subsets of scan vectors and the permutations
is described in Section IV. Section V describes a software
procedure to reduce the number of permutations. Section VI
presents the experimental results.

II. ON-CHIP STORAGE

This section describes the on-chip storage of test data entries
for on-chip test application. A circuit under consideration is
assumed to have n scan chains each of length k. The shorter
scan chains are padded to bring their length to k. This is done
only to simplify the discussion. As in [18], n ~ k is used to
make the scan vectors small enough to be stored on-chip.

The proposed scheme stores m subsets of scan vectors,
So, S1, ..., Sm—1. Each subset consists of n scan vectors,
corresponding to one deterministic test. Thus, S; = {sv;,
SVi 1, -+ - Svi,n—1}~

The proposed scheme also stores the permutations of scan
vector indices used to construct original deterministic tests
and their deterministic derivatives on-chip. Let Y denote the
collection of p permutations, ¥ = {Xy, X1, ..., Xp_1}. A
permutation X; is represented as a set of indices of scan
vectors X; = (0, 7j1, ..., Tjn—1). The permutation X is
always the original permutation (0, 1, ..., n-1) that results in
constructing the original deterministic patterns. The remaining
permutations, Xy, ..., X,_1, obtained by permuting the
original index set, are used to construct the deterministic
derivatives.

For 0 <i<m-—1and 0 <j < p, a test t;; is formed
by applying permutation X; to subset S;. The subsets of
scan vectors and the permutations are chosen by a software
procedure discussed in Sections IV and V.

Tables I and II illustrate the on-chip storage components
and the test set generated on-chip. In this example, the circuit
is assumed to have n=3 scan chains each of length k=4.
Table I shows the scan vectors in two subsets Sy and Sj.
Each subset contains n=3 scan vectors. Table II shows the
set of permutations Y= { Xy, X1, X2, X3, X4} and the tests
constructed from Sy and S; using Y. Here togg and t1g are
the original deterministic tests reconstructed by applying the
permutation X on Sy and S7, respectively. The other tests
tol, ..., toa and tqq, ..., t14 are the deterministic derivatives
generated from Sy and S;, respectively, by applying the
permutations X, X, X3 and X, to both the subsets. Since
every permutation is applied to every subset of scan vectors,
the number of tests generated on-chip is p*m, which is 5%2
= 10 tests for the above example. Both p and m will be
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TABLE I
SUBSETS OF SCAN VECTORS

i 54,0 SV;,1 SV;,2

0 0100 1101 0010

1 1011 0000 0110

TABLE II

TEST SET CONSTRUCTED FROM SCAN VECTORS USING PERMUTATIONS
J | ri0 | i | Ti2 toj t1j
0 0 1 2 t00={0100,1101,0010} | ¢10={1011,0000,0110}
1 2 0 1 t01={0010,0100,1101 t11={0110,1011,0000}
2 1 2 0 to2={1101,0010,0100 t12={0000,0110,1011
3 1 0 2 to3={1101,0100,0010 t13={0000,1011,0110
4 0 2 1 t04={0100,0010,1101 t14={1011,0110,0000

minimized to keep the number of applied tests as small as
possible.

III. ON-CHIP TEST GENERATION LOGIC

The on-chip test generation logic (TGL) for the proposed
scheme is described in this section. The TGL is adopted from
[19]. The TGL for the example in Tables I and II is illustrated
in Figure 1. Here M/ and M2 are two on-chip memories
storing subsets of scan vectors and permutations, respectively.
These memories are dedicated to LBIST. The memory M1 is
partitioned into two blocks storing the subsets Sy and S;. The
subset in each block has n = 3 scan vectors each of length k
= 4. A single scan vector of length k is shown by the dashed
box inside the memory block containing Sy. It takes k clock
cycles to shift a scan vector out of the memory and into a
scan chain bit by bit. The storage requirement of memory M/
in bits is m * n * k. A counter denoted by CNTm selects a
memory block thereby selecting which subset of scan vectors
will be used for test application.

The memory M2 is partitioned into p blocks storing p
permutations Xg, X1, ..., X,_1. The storage requirement of
memory M2 in bits is p * n * logon. A counter denoted by
CNTp selects which permutation will be applied to the subset
chosen by CNTm.

When the counter CNTm selects the memory block contain-
ing S;, the n scan vectors of .S; are available in the output lines
of the memory MI. From these n scan vectors, to select the
scan vector to be shifted into the scan chain SC;, a multiplexer
MUX, is used. MUX, has n data lines routed from the
output lines of memory MI and logon select lines routed
from the output lines of memory M2. When the counter CNTp
selects the permutation X, the n indices in X; are available
in the output of the memory M2. These indices r; o, 7,1, ...,
r;n—1 are routed as select inputs to the n multiplexers MU X,
MUX,, ..., MUX,_1, respectively. The logon select inputs
of a multiplexer MU X, point to the scan vector to be loaded
to the scan chain SC|,. The selected scan vector is then shifted
out of the selected memory block and into scan chain SC, bit
by bit over k clock cycles.

During on-chip test application, every time CNTm is incre-
mented, CNTp counts from O to p-1. This allows p permuta-
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Fig. 1. On-chip Test Generation Logic.

tions in M2 to be applied to the subset selected by CNTm to
produce p tests. The total number of tests applied to the circuit
is p*m. The software procedure discussed in the next section
computes and optimizes the number of subsets of scan vectors
as well as the number of permutations to reduce the memory
sizes of M1 and M2 and hence the overall area overhead, as
well as the number of tests. The routing overhead from the
TGL to the scan chains is similar to the routing overhead
incurred with test data compression. In the LBIST approach,
the memories M1 and M2 (with counters CNTm and CNTp)
and n multiplexers replace the on-chip decompression logic.
The stored test data entries can be adjusted if the scan chains
are re-ordered.

For the output response, it is assumed that an output
compaction logic such as a MISR [1] is used on the output
side to reduce the volume of captured results.

IV. SOFTWARE PROCEDURE

This section describes a software procedure for computing
the subsets of scan vectors and the permutations that recon-
struct the original tests and their corresponding deterministic
derivatives. This software procedure targets complete fault
coverage for single stuck-at faults. The set of all the detectable
stuck-at faults is denoted by F,,. Undetectable faults are
eliminated from consideration to simplify the procedure.

A. Overview

An overview of the procedure is shown in Figure 2. The
procedure starts by initializing the undetected fault list F}, ¢, =
Fy,. In each iteration i = 0, 1, ..., the software procedure cre-
ates a new subset of scan vectors ,S; and a set of permutations
Y ={Xi0, Xi1,..., Xip—1}. To create a new subset of scan
vectors S; in an arbitrary iteration i, the procedure generates a
deterministic test set 7' that detects all the faults in F,,. Each
test in the set 7" is simulated under F),,,. From the set 7, the
procedure chooses the test that detects the greatest number
of faults in F),5,. The chosen test pattern is then partitioned
into n scan vectors each of length k. These n scan vectors are
stored in a subset S;. Next, the procedure computes a set of
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‘ generate a new subset of scan vectors
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‘ compute a set of permutations ‘
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Fig. 2. Overview of software procedure.

permutations Y; that can be applied to every existing subset
of scan vectors Sg, S1, ..., S;—1, S;. The procedure computes
the set Y; = {X, 0, Xi1, ..., X;p—1} in such a way that the
deterministic derivatives produced by each permutation in Y;
detect as many faults as possible from F),,. This property of
the permutations magnifies their effectiveness thereby allowing
fewer subsets as well as fewer permutations to be used.

At the end of the permutation computation step, the proce-
dure generates a test set 7;. The tests in 7; are constructed
by applying every permutation in Y; to every existing subset
of scan vectors Sy, Sy, ..., Si—1, S;. Every test in T; is
then fault simulated with fault dropping under Fj,,. After
fault simulation, the undetected fault list F,, is updated. The
procedure terminates when Fj, 4, is empty which implies that
all the faults from F, are detected. The steps involved in the
permutation computation are described next.

B. Permutation Computation

Figure 3 shows the steps involved in the computation
of a set of permutations. In an arbitrary iteration 7, the
software procedure computes a set of permutations Y; =
{Xio0, Xi1, ..., Xip—1}. The first permutation of Y; is
the original permutation X;o = (0, 1, ..., n-1). The rest
of the permutations X; 1, ..., X; ,_1 are selected randomly
to avoid the complexity of forming permutations using a
deterministic procedure. The procedure produces a random
permutation by randomly permuting the original index set (0,
1, ..., n-1). It checks for every random permutation whether
the deterministic derivatives obtained from its application on
existing subsets of scan vectors detect any faults from Fi 4.
It then adds only permutations that detect new faults to the set
Y. The procedure stops producing the permutations when the
last w random permutations do not increase the fault coverage.

The value of w should be small enough to avoid long run
times, and large enough to find as many useful permutations as
possible. For the experimental results reported in this paper, w
is set to 15000 for all the circuits. This value was selected by
experimenting with different values and attempting to balance
the run time and the quality of the results.

C. Removing Unnecessary Permutations

The set Y; may contain permutations that are not necessary
for the fault coverage attained by Sy, Sy, ..., S;—1, S; and
Y;. For example, the random permutation X;; may not be
necessary after adding the rest of the permutations X o, ...,
X p—1. The original permutation X ¢ is excluded from this
analysis since the original tests are typically necessary for
achieving complete fault coverage.

’ add random permutations that detect faults in F,,to ¥;

usa

‘ last w permutations increase the fault coverage?

ll’]O

’ remove unnecessary permutations from Y; ‘

|

‘ combine Y;and Y, to obtain new Y; ‘

v

‘ remove unnecessary permutations from combined Y; ‘

‘yes

Fig. 3. Steps in permutation computation.

The software procedure removes the unnecessary permu-
tations as described next. The concepts are adopted from
[20]. The procedure constructs test sets T; 1, ..., Tj ,—1 for
the permutations X; 1, ..., X;,_1, respectively. A test set
T; ; contains all the deterministic derivatives constructed from
applying the permutation X; ; to every existing subset Sp, S1,
.. Si—1, S;. The procedure considers the test sets in different
orders to remove unnecessary test sets and their corresponding
permutations. Let 7; represent the collection of all the test
sets. First the procedure considers the test sets in 7} in the
original order followed by a random order and finally the
reverse order. While considering the test sets in a particular
order, the procedure simulates the ordered test sets in 7; under
F,, with fault dropping. It then associates with every test set
T;,; the number of faults it detects. This number is denoted by
f(T5 ;). The procedure rearranges the test sets by decreasing
order of f{T; ;) and simulates them again. If the number of
faults detected by a test set becomes zero, the test set and
the corresponding permutation are removed from 7; and Y;,
respectively. The procedure repeats the rearranging and fault
simulation three times under each initial order. The sets 7T; and
Y; are updated every time. The procedure reinitializes Fj, to
include all the target faults before changing the order.

D. Combining Sets of Permutations

Although Y; targets the subsets Sy, Si, ..., S; directly,
it is possible that permutations included in Y;_;, targeting
So, S1, ..., Si_1, would be useful after S; is added. It is
important to take advantage of effective permutations from
Y;_1 since this will reduce the number of iterations, and the
number of subsets. For this purpose, the procedure combines
Y; with Y;_; as follows. The procedure computes the average
number of faults f,(7;) detected by a subset T; ; € T;. It
also computes the average f,(1;_1), where T;_; represents
the collection of test sets from the previous iteration. The
procedure then combines the permutations from Y; and Y;_1
in the following fashion. Every X, ; with f{iT; ;) > f.(T;)
followed by every X;_1 ; with ilT;_1 ;) > fa(T3-1) followed
by X;; with fiT;;) < fo(T;) followed by X, ;; with
fTi—1,5) < fa(Ti—1). This order ensures that the permutations
that detect the largest numbers of faults, from both the sets
Y; and Y;_q, are preserved. Unnecessary permutations are
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removed from the combined set using the same procedure
described earlier, thereby allowing fewer permutations at the
end of each iteration. The faults that remain undetected at the
end of iteration i are assigned to F 4.

V. IMPROVING THE PERMUTATIONS

The improvement procedure described in this section con-
siders the permutations one by one for improvement. The
order of the permutations ensures that permutations detecting
more faults are considered earlier, making it more likely that
permutations at the end of the set ¥ will become unnecessary.
The procedure adds the improved permutations to a set Y;,04-
If Fi,04, which is a set of all the faults detected by the
deterministic derivatives, is not empty after considering all
the permutations in Y for improvement, the procedure repeats
the same process for as many passes as needed, until F,,,q
becomes empty. The entire procedure is repeated for several
iterations where at the end of each iteration Y,,,q4 is assigned
to Y. Each iteration tries to improve the set ¥ obtained from the
previous iteration. The procedure stops when M consecutive
iterations do not improve any permutation or reduce the
number of permutations. For the experimental results reported
in this paper, M is set to 4 for all the circuits.

The steps involved in an arbitrary iteration are shown in
Figure 4. In an arbitrary iteration, the procedure attempts
to improve the permutations X;, X, ..., X,_; from Y.
When X is considered, the procedure constructs the test set
T; by applying X; to every subset of scan vectors Sy, Si,

.oy Sm—1. It then simulates T under Fj,,q to compute the
number of faults T); detects, denoted by f{T}). It is important
to simulate T; because it is possible that the permutations that
were modified before X; detect the faults that were originally
detected by X;. If f/T;) = 0, no permutation based on X;
is added to Yi,0q. If f{T;) > 0, the improvement procedure
attempts to modify the permutation X; = (rjo, 751, ...,
7;n—1) as follows. It considers the indices 7,0, 75,1, ..., Tjn—1
one by one. It replaces the index under consideration with
every other index from the set {0, 1, ..., n-1}. For every index
in X, there are n-1 options available for replacement. The
total number of modifications performed on X; is n * (n-1).
The procedure considers these options one at a time. For every
replacement option for the index 7, where 0 <m <n —1,
a modified permutation XJ’-"Od and its corresponding test set
Tj"wd are obtained. The procedure simulates ij‘)d under F},,04
and performs the following check. If the modified permuta-
tion X;”Od detects more faults than its previous version, the
replacement option is accepted, and the procedure continues
to modify X }""d to improve it further. If not, the index under
consideration is restored to its previous value. After exploring
all the replacement options, the improved permutation X]’-”Od
is added to Y,,,,q and the faults detected by ij"d are dropped
from F),0q.

VI. EXPERIMENTAL RESULTS

The software procedure that computes the subsets of scan
vectors Sp, S1, ..., Sm—1 and set of permutations Y was

| j=1

% is f(7)) > 0?
l yes
‘ improve Xj, add to Y, ;and update F,, ;

v

’ if F,,,;= 9, stop

N
ha

|

|

l yes
Jj=j+1,isj < p-1? ‘F

-

Fig. 4. Steps in an arbitrary iteration for improving the permutations.

applied to single stuck-at faults in ISCAS-89, ITC-99 and
IWLS-05 benchmark circuits, and three logic blocks (ffu, spu
and exu) of the OpenSPARC T1 microprocessor [24]. Consid-
eration of these logic blocks demonstrates the applicability of
the proposed approach to logic blocks of a large processor. A
commercial tool was used for test generation, fault simulation
and reordering. The experimental results are shown in Table
III. Table III also compares the proposed method with [19]
and a pseudo-random LBIST method available in the same
commercial tool used for the implementation of the software
procedure.

In Table III, after the circuit name, column n shows the
number of scan chains which is equal to the number of
scan vectors in each subset .S;. Column k shows the length
of each scan chain. Column ATPG fests shows the number
of uncompressed deterministic tests that achieves complete
fault coverage. Column m shows the number of subsets of
scan vectors. Column p shows the number of permutations
in the set Y. Column p*m shows the total number of tests
generated on-chip to achieve complete fault coverage. Column
bits shows the number of storage bits required for m subsets
of scan vectors (subcolumn S), number of bits required for
storing p permutations (subcolumn Y) and total number of
bits for storing both the subsets and permutations (subcolumn
tot). Column red% shows the storage reduction percentage,
computed as (ATPG bits-tot bits)/ATPG bits. Here ATPG bits
is the number of storage bits required for ATPG tests. The
ATPG test set is generated by the same commercial ATPG
tool used for implementing the software procedure. Column
FC% shows the complete fault coverage achieved by the
proposed LBIST scheme. Column rf shows the run time
in minutes. This is the total run time taken to execute the
entire software procedure. Along with the commercial tool,
the implementation uses python scripts which are slow.

Column [19] and column random tests present the results
from [19] and a pseudo-random LBIST method, respectively,
to compare with the proposed LBIST scheme. Column [19]
subcolumn fests shows the number of test patterns generated
by [19], on chip, to achieve complete stuck-at fault coverage.
Subcolumn bits shows the number of bits required for storing
the scan vectors used in [19]. Subcolumn red% shows the
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TABLE III
EXPERIMENTAL RESULTS

ATPG bits [19] random
circuit n k tests m p p*m S Y tot red% | FC% It tests bits red% tests
$35932 42 | 43 59 1 23 23 1806 5796 7602 92.71 | 100.0 246 - - - 128

sasc 12 | 12 35 4 11 44 576 528 1104 76.46 | 100.0 13 384 144 95.04 256
systemcdes 18 | 18 104 3 31 93 972 2790 3762 88.84 | 99.74 38 768 216 99.15 704
des_area 18 | 18 195 5 30 150 1620 2700 4320 92.85 | 100.0 41 1152 720 98.34 768
usb_phy 11 | 11 39 4 14 56 484 616 1100 75.47 | 100.0 12 1024 176 95.09 1728
aes_core 28 | 29 376 2 253 506 1624 35420 37044 | 87.55 | 100.0 | 2580 - - - 2688
systemcaes 31 | 31 208 13 28 364 12493 4340 16833 | 91.32 | 100.0 546 4096 992 99.12 13504
b04 9 9 78 5 25 125 405 900 1305 79.34 | 96.91 18 49152 108 96.85 20032
s1423 10 | 10 70 7 17 119 700 680 1380 79.25 | 100.0 35 8192 320 86.48 | 25856
b05 6 7 90 21 17 357 882 306 1188 66.15 | 100.0 16 20480 120 9454 | 34432
$5378 14 | 15 129 11 48 528 2310 2688 4998 80.72 | 99.89 93 16384 1920 91.03 | 49344
s13207 16 | 16 60 13 14 182 3328 896 4224 71.61 | 95.75 78 53248 5616  96.59 | 213056
wb_conmax 44 | 44 178 8 68 544 15488 17952 33440 | 90.12 | 99.96 | 3840 - - - 310976
$9234 13 | 14 98 7 36 252 1274 1872 3146 81.34 | 99.17 144 - - - 406144
ffu 38 | 38 192 6 68 408 8664 15504 24168 | 91.17 | 97.73 1860 - - - 508224
b07 7 7 71 19 11 209 931 231 1162 66.60 | 100.0 15 98304 192 93.03 *IM
bl4 16 | 16 284 63 51 3213 16128 3264 19392 | 72.80 | 99.91 | 4422 - - - *IM
bl5 21 | 22 459 73 125 9125 33726 13125 46851 | 77.62 | 99.52 | 12696 - - - *IM
b20 22 | 22 332 69 58 4002 33396 6380 39776 | 7429 | 99.92 | 3660 - - - *IM
s38417 39 | 39 149 19 122 2318 28899 28548 57447 | 74.19 | 99.98 | 8094 - - - *IM
$38584 34 | 35 127 17 37 629 20230 7548 27778 | 81.38 | 99.70 660 - - - *1IM
DMA 49 | 49 351 102 115 11730 | 244902 33810 278712 | 66.86 | 99.64 | 26849 - - - *1IM
i2c 12 | 13 73 24 15 360 3744 720 4464 58.96 | 99.91 86 24576 624 90.44 *IM
pci_spoci_ctrl | 9 10 174 55 31 1705 4950 1116 6066 59.93 | 100.0 384 425984 1040 91.42 *1IM
simple_spi 12 | 13 62 11 18 198 1716 864 2580 71.88 | 100.0 23 28672 364 93.07 *IM
spi 17 | 17 500 18 72 1296 5202 6120 11322 | 91.86 | 99.93 225 32768 1088  99.02 *IM
tv80 19 | 20 466 76 102 7752 28880 9690 38570 | 77.93 | 100.0 | 3240 - - - *1IM
spu 46 | 46 198 114 28 3192 | 241224 7728 248952 | 40.27 | 99.04 | 13380 - - - *1IM
exu 54 | 55 421 Is1 75 11325 | 448470 24300 472770 | 61.93 | 98.37 | 45372 - - - *IM

storage reduction achieved in [19]. It is to be noted that
the circuits are synthesized differently and the test sets are
different in [19]. Column random tests shows the number of
pseudo-random test patterns generated by a pseudo-random
LBIST method to achieve complete fault coverage. An asterisk
indicates that the pseudo-random test generation is stopped
at IM tests without achieving complete fault coverage. The
circuits in Table III are arranged by increasing order of number
of random tests.

The following points can be seen from Table III. The
proposed fully deterministic LBIST scheme achieves complete
fault coverage for all the circuits, thereby eliminating the need
for pseudo-random tests. This in turn reduces the number
of tests. Compared with [19] and a pseudo-random LBIST
method, the proposed scheme uses a significantly smaller
number of tests. This is the main purpose of the work. For
example, in the case of spi, the reduction in number of tests
is 32768/1296=25.28.

The software procedure reduces the storage requirements
for all the circuits considered. The storage reduction achieved
by the proposed scheme is lesser than [19] which is inevitable
when no random tests are used.

The improvement software procedure helps in reducing the
initial number of permutations by over 52%. This procedure
is important for further reducing the storage requirement and
thus the hardware overhead.
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The circuit spu has the lowest storage reduction of 40%.
Without the last 1% fault coverage, the storage reduction for
spu is 92%. Similarly, for i2c, the reduction is 82% without
the last 2% fault coverage. This points to the possibility that
test points will be useful in keeping the storage reduction high.

VII. CONCLUSION

This paper described a fully deterministic storage based
logic built-in self-test (LBIST) approach that stores, on chip,
reduced deterministic uncompressed test data sufficient for
achieving complete fault coverage. This approach eliminated
the need for pseudo-random tests, thereby reducing the test
application time by reducing the number of tests required to
achieve complete fault coverage. Under this approach, two
types of test data are stored on chip. 1) Subsets of scan
vectors obtained from a reduced set of deterministic tests,
one subset per test and, 2) permutations of scan vectors
stored as sets of indices, to indicate how to combine scan
vectors to form tests on chip. The same permutations are
applied to all the subsets, magnifying the effectiveness of
each stored permutation and each subset, allowing fewer
subsets as well as fewer permutations to be used. This helps
in reducing the storage requirements. Experimental results
for single stuck-at faults in benchmark circuits and logic
blocks of the OpenSPARC T1 microprocessor demonstrated
the effectiveness of this approach.
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