
Usable Circuits with Imperfect Scan Logic
Irith Pomeranz

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907, U.S.A.
E-mail: pomeranz@ecn.purdue.edu

Abstract—The approximate computing paradigm supports
yield improvement by allowing imperfect components to be used
for computations that can tolerate imprecision. Applying the
same arguments to the scan logic, a circuit with faults in the scan
logic does not need to be discarded if it is possible to ascertain that
the circuit will work correctly during functional operation. This
article takes several steps toward a solution that allows circuits
with faults in the scan logic to be used. It provides conditions
under which a circuit with faults in the scan logic is usable. It
also suggests how to extend a test set for fault detection targeting
the functional logic to provide the fault detection capabilities
needed to ascertain that a circuit with faults in the scan logic is
usable. The transparent-scan approach is used for this purpose.
Experimental results for benchmark circuits demonstrate some
of the effects of this approach.

I. INTRODUCTION

The approximate computing paradigm allows imperfect
components to be used for computations that can tolerate
imprecision [1]-[10]. It thus supports yield improvement by
reducing the number of dice that need to be discarded because
of faults.

Applying the same arguments to the scan logic, a circuit
with faults in the scan logic does not need to be discarded if
it is possible to ascertain that the circuit will work correctly
during functional operation. With approximately 50% of the
area of a design being occupied by scan logic [11]-[12], the
effect on the yield can be significant.

This article suggests that a circuit with a fault fs in the
scan logic does not need to be discarded if two conditions
are satisfied: (1) it is possible to place the circuit in functional
mode when fs is present in the scan logic, and (2) tests can be
found for all the detectable faults in the functional logic in the
presence of fs. The set of detectable faults in the functional
logic is denoted by FL. The required tests detect faults in FL

when fs is present in the circuit.
A unit that satisfies these conditions is said to be usable

even though it has an imperfect scan logic. Such a unit can
be used in one of several ways as discussed next.

A unit that passes all the tests for FL can be considered
fault-free since faults in the functional logic have been tested
for, even though its scan logic is imperfect. Compared with
approximate computing, the advantage of allowing imperfect
scan chains is that it is still possible to ensure that the
functional logic passes all the tests.

The work was supported in part by NSF Grant No. CCF-2041649.

In addition, scan is a DFT approach aimed at making
the design easier to test by improving its controllability
and observability. An imperfect scan chain that still makes
the design more controllable and observable makes it more
testable, and thus achieves the goal of inserting DFT logic.

Even if the unit is eventually discarded, it can be used for
further diagnosis of defects in the functional logic. This is
important in the early stages of yield learning when the yield is
low, and defect diagnosis is needed for providing information
about the types of defects that occur using as many faulty units
as possible.

This article takes the following steps toward a solution that
allows units with faults in the scan logic to be used.

The first step is to identify a set of faults in the scan logic
that allow the circuit to be placed in functional mode. This
set of faults is denoted by FS . Of all the faults in the scan
logic, only faults from FS are considered further in this article.
Experimental results for benchmark circuits demonstrate that
FS contains significant numbers of faults.

The second step is related to the test set used for the circuit.
A conventional scan-based test set C for the detectable faults
in FL is generated under the assumption that the scan logic is
fault free. Such a test set is not always sufficient for detecting
the faults in FL when a fault from FS is present in the circuit.
Starting from C, the article suggests a procedure for generating
tests for FL that address the presence of a fault from FS .

Tests are simulated and generated in this article under the
approach referred to as transparent-scan [13]. This ensures
that faults in the scan logic are accounted for correctly.
Under transparent-scan, a conventional scan-based test set is
translated into a sequence of scan shift and functional capture
cycles. An input vector in the transparent-scan sequence
specifies values for the primary inputs, the scan enable and
scan chain inputs. The corresponding output vector specifies
values for the primary outputs and scan chain outputs. When
the transparent-scan sequence is simulated cycle by cycle, the
effects of faults in the scan logic are included in the simulation.

The test generation procedure suggested in this article uses
a transparent-scan sequence T obtained from a conventional
scan-based test set C that targets the detection of the faults
in FL. The procedure computes several different scan-enable
sequences for T to detect faults from FL in the presence of
faults from FS . In general, a fault fs ∈ FS is activated by
a scan shift cycle. Activation of fs may prevent a fault fl in

the functional logic from being detected. Without the ability
to detect fl, the circuit cannot be ascertained to be usable. By
replacing scan shift cycles with functional capture cycles, the
procedure described in this article produces a new scan-enable
sequence with fewer scan shift cycles. This sequence allows
fl to be detected in the presence of fs. Experimental results
for benchmark circuits show that, for significant numbers of
faults from FS , scan-enable sequences exist for detecting all
the detectable faults in the functional logic.

It is interesting to note that the need for tests other than
conventional scan-based tests also exists when considering
the problem of scan chain diagnosis [14]-[21]. Here, tests
with scan-enable sequences different from conventional scan-
based tests provide additional fault diagnosis capabilities. Scan
chain diagnosis is needed for identifying a fault in the scan
logic. The identification must be precise to determine with
confidence that the fault belongs to FS . This it not likely to
be possible for defects with complex behaviors. However, if
the fault belongs to FS , the circuit is usable if the second
condition can be ascertained as well.

The entire scan-based test set C is translated into a single
transparent-scan sequence T for the discussion in this article.
Since T requires sequential fault simulation, this limits the
discussion to logic blocks for which sequential fault simu-
lation of T is feasible. Partitioning C will result in shorter
transparent-scan sequences, and allow larger logic blocks to
be considered. In addition it is assumed that it is possible
to store scan-enable sequences on the tester, and use them
for test application. Excluding the scan-enable sequence, the
procedure described in this article does not modify the test set
C. If C is compressed, the same on-chip decompression logic
can be used for applying it.

The article is organized as follows. Section II provides the
conditions under which a circuit with a fault in the scan logic is
usable. Section III describes the type of tests considered in this
article. Section IV describes a procedure for generating scan-
enable sequences. Section V presents experimental results.

II. USABLE CIRCUITS WITH FAULTS IN THE SCAN LOGIC

Two conditions need to be satisfied for a fault fs in the scan
logic that leaves the circuit usable.
(1) In the presence of fs, it is possible to place the circuit in
functional mode by setting the scan-enable input to zero. The
set of all the faults in the scan logic that satisfy this condition
is denoted by FS .
(2) In the presence of fs, it is possible to detect all the
detectable faults in the functional logic, i.e., the set of faults
FL. If the circuit in the presence of fs passes a test set
that detects all the faults in FL, the functional logic can be
considered fault-free.

The two conditions together ensure that the circuit can work
correctly during functional operation, which is the condition
for a usable circuit. For simplicity of discussion, the sets of
faults FS and FL consist of single stuck-at faults.

To define the set FS , the structure of a multiplexer-based
scan flip-flop is shown in Figure 1. The flip-flop has index

&

&

+ FF

sen = 0 gi,2 = 0

gi,3 = 0

yi−1 gi,1 = x

Yi

gi,4 = 1

gi,5 = 0

gi,6

gi,7 yi

Fig. 1. Faults in the scan logic.

TABLE I
EXAMPLE OUTPUT RESPONSES

circuit − fs fs, fl,0 fs, fl,1 fs, fl,2
response 0000 1100 0011 0000 1100

i. Its present-state variable is yi, and its next-state variable is
Yi. The functional logic driving Yi is not shown in Figure 1.
The input sen is the scan-enable input. We have that sen = 0
during functional operation, and sen = 1 during scan shifting.

Since functional operation occurs when sen = 0, the fault
sen stuck-at 0, denoted by sen/0, may be present without
preventing the circuit from being placed in functional mode.

When sen = 0, additional values are implied as shown in
Figure 1. The stuck-at faults that result in the values shown
in Figure 1 can be present in the circuit without affecting
the ability to place it in functional mode. In addition, with
sen = 0, the value of gi,1 does not affect the ability to place
the circuit in functional mode. Therefore, the faults gi,1/0 and
gi,1/1 do not affect this ability.

Overall, the set of faults FS includes the fault sen/0, and
for every flip-flop i, the faults gi,1/0, gi,1/1, gi,2/0, gi,3/0,
gi,4/1 and gi,5/0.

A fault fs ∈ FS satisfies the first condition given above for
a usable circuit. For the second condition, a test set C needs to
detect all the detectable faults of the functional logic, included
in FL, when fs is present in the circuit. This implies that
the fault-free circuit is replaced with the circuit that contains
fs for the purpose of fault detection. More accurately, let
the response of the fault-free circuit to C be Z(−). Let the
response of the faulty circuit to C in the presence of a fault
f be Z(f). When the circuit is expected to be fault-free, the
condition for detecting a fault fl ∈ FL is Z(fl) 6= Z(−). If fs
leaves the circuit usable, it is acceptable for fs to be present in
the circuit, and the response of the fault-free circuit is replaced
with Z(fs). The condition that needs to be satisfied for every
fault fl ∈ FL is Z(fs, fl) 6= Z(fs), where Z(fs, fl) is the
response of the faulty circuit when fl is present in addition to
fs. If this condition is satisfied for a fault fs ∈ FS , the circuit
in the presence of fs is considered to be usable.

To illustrate this condition, Table I shows hypothetical
output responses of a circuit (an example based on an actual
circuit is given in the next section). The fault-free response
Z(−) = 0000 is shown in the second column of Table I,
followed by the response obtained in the presence of fs, and
three responses obtained when a fault in the functional logic
is present in addition to fs.

Once it is established that fs is present in the circuit, the
fault-free response Z(−) = 0000 is replaced with Z(fs) =
1100. The fault fl,0 is detected in the presence of fs since
Z(fs, fl,0) 6= Z(fs).

The same applies to fl,1. Even though Z(fs, fl,1) = Z(−),
the fault-free circuit is not relevant to the discussion once
it is determined that fs is present in the circuit. The fact
that Z(fs, fl,1) 6= Z(fs) implies that fl,1 is detected in the
presence of fs.

The fault (fs, fl,2) is detected relative to the fault-free
circuit. However, with Z(fs, fl,2) = Z(fs), the fault fl,2 is
not considered detected when the presence of fs is accepted.

It is possible to add conventional scan-based tests to a
test set C to detect faults from FL in the presence of a
fault fs ∈ FS . However, conventional scan-based tests have
a limited ability to detect faults in the functional logic in the
presence of faults in the scan logic. The approach in this article
relies on several different scan-enable sequences to detect the
faults in FL when fs is present in the circuit. The scan-enable
sequences are associated with a transparent-scan sequence T
obtained from a conventional scan-based test set C that detects
the faults in FL. This is discussed in the next sections.

III. SCAN-ENABLE SEQUENCES

This section starts with an example to illustrate the use
of transparent-scan and the importance of the scan-enable
sequence. The circuit under consideration is benchmark circuit
s27. The circuit has a set A of four primary inputs, one primary
output, z0, and three state variables included in a single scan
chain. In addition, the scan circuit has a scan-enable input
sen, a scan chain input sin, and a scan chain output sout. The
primary output z0 and the scan chain output sout are included
together in a set of outputs denoted by Z. The output response
of the circuit is obtained from Z.

An input (output) vector of a transparent-scan sequence
specifies values for all the inputs (outputs). A transparent-
scan sequence for s27 is shown in the left part of Table II.
The sequence is obtained from a conventional scan-based test
set that consists of six tests. Each test starts with a scan-
in operation of three clock cycles, and ends with a scan-out
operation of three clock cycles that is overlapped with the
scan-in operation of the next test. This results in the scan-
enable sequence 11101110...0111. This scan-enable sequence
is shown under column Sen,0 of Table II.

Table II shows the sequence of primary input vectors under
column A, and the scan chain input sequence under column
Sin. The sequence of output vectors is shown under column
Z0(−) for the fault-free circuit, and under column Z0(f) for
a fault f . The right part of Table II will be discussed later.

A fault f is detected, in the conventional sense, when
Z0(f) 6= Z0(−) at a clock cycle u. The output vectors at clock
cycle u are denoted by Z0(−)(u) for the fault-free circuit, and
Z0(f)(u) in the presence of a fault f . The condition for fault
detection at clock cycle u is Z0(f)(u) 6= Z0(−)(u). Under
transparent-scan, fault detection can occur at any clock cycle,
including both functional capture and scan shift cycles.

TABLE II
EXAMPLE TRANSPARENT-SCAN SEQUENCE

u A Sen,0 Sin Z0(−) Z0(f46) Sen,1 Z1(f46) Z1(f46, f5)
0 0000 1 1 xx xx 1 xx xx
1 0000 1 1 1x 1x 1 1x 1x
2 0000 1 0 1x 1x 1 1x 1x
3 0000 0 0 01 01 0 01 01
4 1001 1 0 11 11 1 11 11
5 1001 1 1 11 11 1 11 11
6 1001 1 0 10 11 1 11 11
7 1001 0 0 00 11 0 11 11
8 0100 1 0 00 11 0 11 11
9 0100 1 1 11 01 1 11 11

10 0100 1 1 10 11 1 11 11
11 0100 0 0 10 11 0 11 11
12 0111 1 1 11 11 0 11 11
13 0111 1 0 10 11 1 10 10
14 0111 1 0 00 01 1 11 01
15 0111 0 0 11 11 0 11 -
16 1101 1 1 10 10 1 10 -
17 1101 1 1 10 11 1 10 -
18 1101 1 0 10 11 1 10 -
19 1101 0 0 11 11 0 11 -
20 1010 1 0 11 11 1 11 -
21 1010 1 0 10 11 1 10 -
22 1010 1 0 11 11 1 11 -
23 1010 0 0 10 11 0 10 -
24 xxxx 1 x 10 10 1 10 -
25 xxxx 1 x x0 x1 1 x0 -
26 xxxx 1 x x1 x1 1 x1 -

The fault f46 ∈ FS of s27 is considered in the left part of
Table II. With Z0(f46)(6) 6= Z0(−)(6), the fault is detected
at clock cycle u = 6. The faults in FL are simulated in the
presence of f46. Fault simulation shows that nine faults remain
undetected, including f5 ∈ FL.

To detect f5 ∈ FL in the presence of f46 ∈ FS , the
procedure described in Section IV produces the scan-enable
sequence shown under column Sen,1 of Table II. The proce-
dure from Section IV decided to change scan shift cycles into
functional capture cycles at clock cycles u = 8 and 12. The
primary input and scan chain input sequences are not modified.

The output sequences obtained with Sen,1 are shown under
column Z0(f46) for f46 ∈ FS , and Z0(f46, f5) for the case
where f5 ∈ FL is present in addition to f46 ∈ FS . In the
presence of f46, the fault f5 is detected at clock cycle u =
14, i.e., Z0(f46, f5)(14) 6= Z0(f46)(14). The sequence is not
simulated beyond this clock cycle.

IV. GENERATION OF SCAN-ENABLE SEQUENCES

This section describes a procedure for generating scan-
enable sequences for a transparent-scan sequence T based on
the faults in FS .

A. Preliminaries

The transparent-scan sequence T is obtained from a conven-
tional scan-based test set C that targets the detection of the
faults in FL when the scan logic is fault-free. The transparent-
scan sequence is not modified except to produce additional
scan-enable sequences. The goal is to ensure that, with as
many faults in FS as possible, each one considered alone, all
the detectable faults in FL can be detected.

The procedure generates a set of scan-enable sequences,
denoted by SEN , based on all the faults in FS . If scan chain

diagnosis determines that a particular fault fs ∈ FS is present,
it is possible to select a subset of the sequences in SEN

for detecting the faults from FL. If a scan-enable sequence
Sen,i ∈ SEN is selected, the transparent-scan sequence with
the scan-enable sequence Sen,i needs to be applied. The
resulting transparent-scan sequence is denoted by Ti.

Initially, SEN contains only the original scan-enable se-
quence of T , denoted by Sen,0. For a circuit with K flip-flops
in its longest scan chain, Sen,0 = 1...101...10...01...1, with
subsequences of K scan shift cycles (1s) for scan operations,
and a single functional capture cycle (0) between every two
scan operations.

The procedure for computing scan-enable sequences uses
a fault simulation process that accepts a fault fs ∈ FS and
a set of scan-enable sequences SEN . For every scan-enable
sequence Sen,i ∈ SEN , every fault fl ∈ FL is simulated
under Ti in the presence of fs. The output sequence Zi(fs, fl)
is compared to the output sequence Zi(fs) obtained in the
presence of fs alone to determine whether fl is detected by
Ti when it is present together with fs. If fl is detected, it is
marked as such and not simulated further. The set of faults
from FL that are left undetected in the presence of fs is
denoted by UL(fs).

If the procedure obtains UL(fs) = ∅, all the faults in FL are
detected in the presence of fs, and the circuit in the presence
of fs satisfies the conditions of a usable circuit. In this case,
fs is moved from FS to a set denoted by FUSE .

B. Procedure Overview

Initially for the generation of scan-enable sequences,
FUSE = ∅ and SEN = {Sen,0}. In addition, UL(fs) = FL

for every fault fs ∈ FS indicates that the fault has not been
simulated yet (the entire set FL is not stored in this case, only
an indication that UL(fs) = FL).

The procedure performs iterations where it attempts to
generate new scan-enable sequences for more and more faults
from FS . This is motivated by the following observation. Even
with the initial set SEN = {Sen,0}, there are faults for which
UL(fs) is small, and new scan-enable sequences are required
for a small number of faults. After these faults are considered,
and new scan-enable sequences are added to SEN , the sets
UL(fs) decrease for other faults, and these faults are targeted
for the generation of new scan-enable sequences. Overall, the
procedure considers faults with small sets of undetected faults,
and postpones other faults to later iterations.

Two constants are used for deciding how a fault fs ∈ FS

will be handled, NSTORE and NGEN . In an arbitrary iteration,
when the procedure considers a fault fs ∈ FS , it first
performs fault simulation for fs with the current set SEN

to update the set UL(fs). If UL(fs) = ∅, fs is moved to
FUSE and not considered further. If |UL(fs)| ≤ NGEN , the
procedure attempts to generate new scan-enable sequences for
fs. Otherwise, the procedure postpones the consideration of
fs to a later iteration.

In addition, if |UL(fs)| ≤ NSTORE , the procedure stores
UL(fs) for later use. This will avoid the need to simulate

the entire set FL when fs is considered later. Otherwise, the
indication that UL(fs) = FL is kept.

With |UL(fs)| ≤ NGEN , the procedure attempts to generate
a new scan-enable sequence for every fault fl ∈ UL(fs). If
a new scan-enable sequence Sen,i is generated for fl, the
procedure simulates all the faults in UL(fs) under Ti, and
removes detected faults from UL(fs). It then adds Sen,i to
SEN . If the procedure is unable to generate a new scan-
enable sequence for a fault fl ∈ UL(fs), it does not consider
additional faults from UL(fs) in the same iteration.

To take full advantage of newly generated scan-enable
sequences, the procedure considers the faults of FS from low
to high size of UL(fs) (the size is considered before it is
updated). This affects the order of the faults starting in the
second iteration. Among faults with the same size of UL(fs),
the procedure prefers the one closest to the scan chain output.
This fault affects a smaller portion of the scan chain, and is
more likely to leave the circuit usable. A higher index indicates
that a fault is closer to the scan chain output.

The procedure terminates after consideration of all the faults
in FS does not result in the generation of any additional scan-
enable sequence.

C. Generating a Scan-Enable Sequence

The generation of a new scan-enable sequence for a fault
fl ∈ UL(fs) is described next. The new scan-enable sequence
is denoted by Sen,i. The length of Sen,i is equal to the length
of T , and it is denoted by L. For 0 ≤ u < L, the value at
clock cycle u of Sen,i is denoted by Sen,i(u).

For a constant NINIT , the sequence Sen,i is initialized
up to NINIT times using NINIT different sequences from
SEN . The procedure always uses Sen,0 to initialize Sen,i. In
addition, it uses up to NINIT − 1 sequences that detect fl
when it is present alone in the circuit. After initialization, the
procedure attempts to modify Sen,i to detect fl in the presence
of fs.

The modification is based on three premises, discussed next.
1) The Set ACT (fs): The first premise is that the activation

of fs, which occurs during scan shift cycles, prevents fl from
being detected in its presence. If fs is activated at fewer clock
cycles, fl may be detected.

Based on this premise, the procedure simulates the fault-
free circuit and the faulty circuit in the presence of fs under
Ti to search for scan shift cycles where fs is activated. The
activation of fs occurs at a clock cycle u if the fault site of fs
assumes different values in the fault-free and faulty circuits at
clock cycle u. If this condition is satisfied, clock cycle u is
included in a set denoted by ACT (fs). The set ACT (fs) is
updated as Sen,i is modified by considering the activation of
fs under Ti.

2) The Set DET (fl): The second premise is that a clock
cycle u ∈ ACT (fs) is important to the detection of fl if
it occurs close to a clock cycle where fl is detected by Ti.
Since fl is not detected in the presence of fs, detection of fl
is considered when it is present alone in the circuit.

Based on this premise, the procedure simulates the fault-
free circuit and the faulty circuit in the presence of fl under
Ti to search for clock cycles where fl is detected. The
detection of fl occurs on the outputs at clock cycle u when
Zi(fl)(u) 6= Zi(−)(u). If this condition is satisfied, clock
cycle u is included in a set denoted by DET (fl).

Considering a clock cycle u ∈ DET (fl), the presence
of fs is likely to prevent fl from being detected if fs is
activated within the clock cycles of a conventional scan-based
test preceding clock cycle u. This is because Ti is constructed
from conventional scan-based tests for FL. For a circuit with
K state variables in its longest scan chain, a conventional scan-
based test has 2K +1 clock cycles. The 2K +1 clock cycles
preceding clock cycle u are added to DET (fl).

3) The Set MOD: A scan shift cycle is considered im-
portant to the detection of fl if u ∈ ACT (fs) implies
that fs is activated at clock cycle u, and u ∈ DET (fl)
implies that fl is detected within 2K + 1 clock cycles from
u. Together, the procedure considers the clock cycles in
MOD = ACT (fs) ∩ DET (fl) important to change into
functional capture cycles. As the set MOD evolves, a clock
cycle that was already considered earlier is excluded.

4) Fault Detection: The third premise is that any change to
Sen,i should ensure that fl is detected by Ti when it is present
alone in the circuit. Although the fault is not detected in the
presence of fs, its detection alone ensures that Ti maintains its
ability to detect it. With fewer activations of fs, it is possible
that fl will be detected in its presence.

5) Procedure: With these premises, the procedure considers
the clock cycles from MOD one by one in a random order.
When clock cycle u is considered, the procedure assigns
Sen,i(u) = 0. It then performs fault simulation of fl under Ti

in the presence of fs. If fl is detected, the procedure has Sen,i

as the required scan-enable sequence. In this case, it simulates
all the faults in UL(fs) under Ti and removes detected faults
from UL(fs). It then adds Sen,i to SEN .

If Ti does not detect fl in the presence of fs, the procedure
simulates fl alone to check whether it is detected by Ti. If
it is, the procedure keeps Sen,i(u) = 0, and updates the set
MOD. Otherwise, it restores Sen,i(u) = 1.

The use of MOD = ACT (fs) ∩ DET (fl) results in
relatively small numbers of clock cycles that the procedure
considers for the generation of a new scan-enable sequence.

The procedure is not guaranteed to find a scan-enable
sequence for fl even if one exists. It compensates for this issue
by performing several iterations where it considers every fault
fs ∈ FS with 0 < |UL(fs)| ≤ NGEN .

V. EXPERIMENTAL RESULTS

The procedure for generating scan-enable sequences was
applied to benchmark circuits as described next.

The target faults are single stuck-at faults. The transparent-
scan sequence T was obtained from a compact scan-based test
set C for single stuck-at faults. The length of T is equal to
the number of clock cycles required for applying it, which is
also the number of clock cycles required for applying C.

The procedure was run with a limit of NSTORE = 256
on the number of undetected faults in a stored set UL(fs).
To generate new scan-enable sequences for T , the size of
UL(fs) was initially required to be at most NGEN = 16. This
value was selected based on the experimental observation that
benchmark circuits have large numbers of faults for which
UL(fs) ≤ 16 when T0 is simulated. After the procedure
terminates with this value, it is also run with NGEN = 64
and 256. The increased values of NGEN are needed for several
circuits.

The number of scan-enable sequences used for initialization
of a new scan-enable sequence is NINIT = 8. Experimental
results show that a higher value of NINIT is typically not
needed.

The procedure was run with a runtime limit. Additional
runtime may increase the number of faults that leave the circuit
usable.

The results are shown in Table III. The circuits are arranged
from low to high percentage of faults in FUSE relative to
the number of faults in FL. This percentage is computed as
|FUSE |/|FL| ·100. It provides an indication of the importance
of identifying faults in the scan logic that leave a circuit usable.

Table III is organized as follows. After the circuit name,
column sv shows the number of state variables, and column
pi shows the number of primary inputs.

Column C shows the number of tests in the conventional
scan-based test set C. Column T shows the length of the
transparent-scan sequence T , which is also the number of
clock cycles required for applying it.

Column FS shows the number of faults in FS , which is the
number of faults in the scan logic that allow the circuit to be
placed in functional mode. Column %FS shows the percentage
of faults in FS relative to the number of faults in FL, computed
as |FS |/|FL| · 100.

Column NGEN shows the value of the parameter NGEN .
Column iter shows the iteration of the test generation proce-
dure with NGEN . Column SEN shows the number of scan-
enable sequences in SEN . Column FUSE shows the number
of faults from FS that leave the circuit usable since they allow
all the faults in FL to be detected. Column %FUSE shows the
percentage of faults in FUSE relative to FL, |FUSE |/|FL|·100,
when SEN is used.

Column tg shows the total number of attempts made to
generate a scan-enable sequence for a fault fl ∈ FL in the
presence of a fault fs ∈ FS . Column ntime shows the
normalized runtime, which is the cumulative runtime divided
by the runtime for fault simulation with fault dropping of
FS ∪ FL under T0.

The following points can be seen from Table III. A con-
ventional scan-based test set, using only Sen,0, is typically
not sufficient for determining that a circuit is usable. With
the scan-enable sequences included in SEN , the number of
faults that leave the circuit usable is significant for many of
the circuits considered.

The number of faults in FUSE as a percentage of FL varies
with the circuit. For many of the circuits it is sufficiently high

TABLE III
EXPERIMENTAL RESULTS

circuit sv pi C T FS %FS NGEN iter SEN FUSE %FUSE tg ntime
systemcaes 670 258 121 81861 4021 18.527 16 1 1 4 0.018 0 67.80
s9234 228 19 111 25647 1369 19.763 16 1 5 12 0.173 5 1832.51
wb dma 523 215 66 35107 3139 34.506 16 1 13 20 0.220 12 601.51
s13207 669 31 235 158119 4015 40.907 16 1 16 22 0.224 15 117.05
s15850 597 14 97 58603 3583 30.559 16 1 58 88 0.751 57 382.97
b11 30 8 59 1859 181 16.621 64 5 123 14 1.286 807 43188.97
des area 128 239 118 15350 769 7.742 16 1 23 180 1.812 22 291.12
s5378 179 35 100 18179 1075 23.354 16 1 124 155 3.367 222 31679.40
b08 21 10 38 857 127 25.971 64 6 70 17 3.476 640 25837.35
b05 34 2 61 2169 205 11.289 64 12 206 72 3.965 2461 148174.03
b07 51 2 52 2755 307 25.951 64 5 191 55 4.649 1539 126008.30
systemcdes 190 130 79 15279 1141 17.283 16 1 19 465 7.043 18 706.85
s526 21 3 50 1121 127 22.883 64 6 157 47 8.468 1296 70219.70
b04 66 12 44 3014 397 29.495 256 2 248 126 9.361 5415 280647.41
s382 21 3 25 571 127 31.830 16 5 85 47 11.779 300 10754.76
b09 28 2 21 637 169 40.238 16 4 58 55 13.095 202 8794.03
i2c 128 17 45 5933 769 32.905 16 4 334 313 13.393 1295 143270.89
s953 29 16 76 2309 175 16.219 64 2 67 148 13.716 91 2406.90
s1423 74 17 26 2024 445 29.373 16 5 246 281 18.548 1074 61358.84
simple spi 131 15 36 4883 787 37.458 16 6 237 483 22.989 1430 176787.61
b03 30 5 24 774 181 40.044 16 4 58 114 25.221 283 13417.58
usb phy 98 14 32 3266 589 45.308 256 2 239 423 32.538 2815 204262.28
sasc 117 15 22 2713 703 41.696 16 3 107 575 34.104 449 34281.91

to make a difference in the number of usable circuits.
The normalized runtime does not increase with the size of

the circuit. This implies that the procedure scales similar to a
fault simulation procedure.

VI. CONCLUDING REMARKS

This article took several steps to suggest that, analogous to
approximate computing, a circuit with faults in the scan logic
does not need to be discarded if it is possible to ascertain that
the circuit will work correctly during functional operation. The
article provided conditions under which a circuit with faults
in the scan logic is usable. It also suggested how to identify
faults that satisfy these conditions. As part of this process,
faults in the scan logic need to be diagnosed, and faults in
the functional logic need to be detected in the presence of
faults in the scan logic. The article described a procedure that
generates several different scan-enable sequences for the same
transparent-scan sequence obtained from a conventional scan-
based fault detection test set for faults in the functional logic.
Experimental results were presented for benchmark circuits to
demonstrate some of the effects of this approach.

REFERENCES

[1] C. Li, W. Luo, S. S. Sapatnekar and J. Hu, ”Joint Precision Optimization
and High Level Synthesis for Approximate Computing”, in Proc. Design
Automation Conf., 2015, Art. 104, pp. 1–6.

[2] Q. Xu, T. Mytkowicz and N. S. Kim, ”Approximate Computing: A
Survey”, in IEEE Design & Test, Vol. 33, No. 1, 2016.

[3] S. Mittal, ”A Survey of Techniques for Approximate Computing”, in
ACM Computing Surveys, April 2016, Vol. 48, No. 4, Art. 62, pp. 1-
33.

[4] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni and J. Henkel, ”Cross-
Layer Approximate Computing: from Logic to Architectures”, in Proc.
Design Automation Conf., 2016, Art. 99, pp. 1-6.

[5] S. Dutt, S. Nandi and G. Trivedi. ”Analysis and Design of Adders for
Approximate Computing”, in ACM Trans. on Embedded Computing
Systems, Feb. 2017, Vol. 17, No. 2, Art. 40, pp. 1-28.

[6] M. Gao and G. Qu, ”Energy Efficient Runtime Approximate Computing
on Data Flow Graphs”, in Proc. Intl. Conf. on Computer-Aided Design,
2017, pp. 444–449.

[7] B. Nongpoh, R. Ray, M. Das and A. Banerjee, ”Enhancing Speculative
Execution With Selective Approximate Computing”, in ACM Trans. on
Design Automation, Feb. 2019, Vol. 24, No. 2, Art. 26, pp. 1-29.

[8] A. Wendler and O. Keszocze, ”A fast BDD Minimization Framework
for Approximate Computing”, in Proc. Design, Automation and Test in
Europe Conf., 2020, pp. 1372–1377.

[9] J. Bonnot, D. Menard and K. Desnos, ”Fast Kriging-Based Error
Evaluation for Approximate Computing Systems”, in Proc. Design,
Automation and Test in Europe Conf., 2020, pp. 1384–1389.

[10] M. Traiola, A. Virazel, P. Girard, M. Barbareschi and A. Bosio, ”A
Survey of Testing Techniques for Approximate Integrated Circuits”, in
Proceedings of the IEEE, Vol. 108, No. 12, 2020.

[11] S. R. Makar and E. J. McCluskey, ”Functional Tests for Scan Chain
Latches”, in Proc. Intl. Test Conf., 1995.

[12] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy and I.
Pomeranz, ”On the Detectability of Scan Chain Internal Faults - An
Industrial Case Study”, in Proc. VLSI Test Symp., April 2008.

[13] I. Pomeranz and S. M. Reddy, ”Transparent Scan: A New Approach to
Test Generation and Test Compaction for Scan Circuits that Incorporates
Limited Scan Operations”, in IEEE Trans. on Computer-Aided Design,
Dec. 2003, pp. 1663-1670.

[14] X. Tang, R. Guo, W.-T. Cheng, S. M. Reddy and Y. Huang, ”On
Improving Diagnostic Test Generation for Scan Chain Failures”, in Proc.
Asian Test Symp., 2009, pp. 41-46.

[15] Z. Chen, S. Seth, D. Xiang and B. B. Bhattacharya, ”Diagnosis of
Multiple Scan-Chain Faults in the Presence of System Logic Defects”,
in Proc. Asian Test Symp., 2011, pp. 297-302.

[16] W.-L. Tsai, W.-C. Liu and J. C.-M. Li, ”Structural Reduction Tech-
niques for Logic-Chain Bridging Fault Diagnosis”, in IEEE Trans. on
Computers, July 2012, Vol. 61, No. 7, pp. 928-938.

[17] Y. Huang, X. Fan, H. Tang, M. Sharma, W.-T. Cheng, B. Benware and S.
M. Reddy, ”Distributed Dynamic Partitioning based Diagnosis of Scan
Chain”, in Proc. VLSI Test Symposium, 2013, pp. 1-6.

[18] W.-H. Lo, A.-C. Hsieh, C.-M. Lan, M.-H. Lin and T. Hwang, ”Utilizing
Circuit Structure for Scan Chain Diagnosis”, in IEEE Trans. on VLSI
Systems, Dec. 2014, Vol. 22, No. 12, pp. 2766-2778.

[19] S. Kundu, S. Chattopadhyay, I. Sengupta and R. Kapur, ”Scan Chain
Masking for Diagnosis of Multiple Chain Failures in a Space Com-
paction Environment”, in IEEE Trans. on VLSI Systems, July 2015,
Vol. 23, No. 7, pp. 1185-1195.

[20] Y. Huang, B. Benware, R. Klingenberg, H. Tang, J. Dsouza, W.-
T. Cheng, ”Scan Chain Diagnosis Based on Unsupervised Machine
Learning” in Proc. Asian Test Symp., 2017.

[21] I.-D. Huang, P. Gupta, L. Lingappan and V. Gangaram, ”Online Scan
Diagnosis : A Novel Approach to Volume Diagnosis”, in Proc. Intl. Test
Conf., 2018.

