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Abstract— Extreme mobility becomes a norm rather than
an exception with emergent high-speed rails, drones, industrial
IoT, and many more. However, 4G/5G mobility management
is not always reliable in extreme mobility, with non-negligible
failures and policy conflicts. The root cause is that, existing
mobility management is primarily based on wireless signal
strength. While reasonable in static and low mobility, it is
vulnerable to dramatic wireless dynamics from extreme mobility
in triggering, decision, and execution. We devise REM, Reliable
Extreme Mobility management for beyond 5G cellular networks
while maintaining backward compatibility to 4G/5G. REM shifts
to movement-based mobility management in the delay-Doppler
domain. Its signaling overlay relaxes feedback via cross-band
estimation, simplifies policies with provable conflict freedom, and
stabilizes signaling via scheduling-based OTFS modulation. Our
evaluation with operational high-speed rail datasets shows that,
REM reduces failures comparable to static and low mobility, with
low signaling and latency cost. REM reduces the network failures
by up to an order of magnitude, eliminates policy conflicts, and
improves application performance by 31.8% - 88.3% compared
to legacy 4G/5G.

Index Terms— Mobile network, beyond 5G, extreme mobility
management, reliability, policy conflicts, delay-Doppler domain.

I. INTRODUCTION

M
OBILE users want anywhere, anytime network services.

Even when the user is moving at a high speed, the user

expects negligible service disruption. The demand for network

reliability is more pressing given emerging delay-sensitive

applications, e.g., mobile VR/AR. Such use scenarios demand

always-on network service even under extreme mobility, such

as the high-speed rails (35,000 km routes for over 1 billion pas-

sengers by 2019, with the speed up to 350 km/h [2]), vehicle-
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to-everything (e.g., autonomous driving and fleet management,

with 6 million vehicles by 2022 [3]), drones, and many more.

In this work, we examine the network reliability under

extreme mobility scenarios. We start with a key question: Is

4G/5G reliable for delay-sensitive applications under extreme

mobility? While the existing mobile network has been suc-

cessful in supporting wide-area mobility management, most

users are moving slowly or static. It is open to question

whether existing mobility management design meets reliability

demands under extreme mobility for two reasons. On the one

hand, the client is moving faster in high-speed rails, vehicles,

industrial IoT, etc., at a speed of up to 500km/h. On the other

hand, the upcoming 5G is adopting high-frequency radios

(sub-6GHz and above-20GHz mmWave) for fast data transfer.

Unfortunately, the answer is negative in reality. Our empir-

ical study of 4G LTE over high-speed rails unveils that,

the handovers are more frequent and unreliable. On average,

the handovers between base stations occur every 11–20s.

Handover failure and policy conflicts arise with alarming

frequency: The network failure ratio ranges between 5.2% and

12.5% depending on the train speed, and the policy conflicts

occur every 194–1090s. Both challenge the functionality of

mobile networks and amplify the failures, delays, transient

oscillations, and persistent loops. This leads to significant

user-perceived disruptions for interactive delay-sensitive appli-

cations like mobile VR/AR. We also verified with a 5G dataset

that the mobility management in 5G faces similar challenges

as 4G LTE. In 5G, given the denser cell deployment, handovers

happen even more frequently (50.2s to 41.9s) upon an even

slower speed.

We show that, the fundamental cause of unreliable 4G/5G in

extreme mobility is its wireless signal strength-based design.

4G/5G mobility takes wireless signal strength as input, relies

on the client-side feedback to trigger, and decides the target

based on policies. While reasonable in static and low mobility,

this design is sensitive to dramatic wireless dynamics from the

Doppler shift in extreme mobility. Such dynamics propagate to

all phases of mobility management and cause slow feedback

in triggering, missed good candidate cells in decision, and

unreliable signaling in execution. Our empirical study further

shows that, operators have tried to mitigate failures with

proactive policies. However, their methods amplify the policy

conflicts and eventually offset their failure mitigation.

We propose REM, Reliable Extreme Mobility management

for 4G, 5G and beyond. Our key insight is that the client

movement is more robust and predictable than wireless signal

strength, thus suitable to drive mobility management. Thus,

REM shifts to movement-based mobility management. REM
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is a signaling overlay in the delay-Doppler domain, which

extracts client movement and multi-path profile with the

recently proposed orthogonal time-frequency space (OTFS)

modulation [4]. To relax the client-side feedback, REM devises

a novel cross-based estimation to parallelize measurements.

This is achieved by extending OTFS with singular value

decomposition (SVD). REM further simplifies the policy with

provable conflict freedom, and stabilizes the signaling with a

novel scheduling-based OTFS. REM is backward compatible

with 4G/5G in static and low mobility, without changing their

designs or data transfers.

We prototype REM in commodity software-defined radio and

evaluate it with both low mobility datasets and high-speed rails

datasets. Compared to solutions today, REM eliminates policy

conflicts, and reduces failures by up to an order of magnitude

(0.9×–12.7× depending on client speed). Even in extreme

mobility, REM achieves comparable failure ratios to static and

low mobility scenarios. We also evaluate REM’s benefits for

real-world applications, including mobile VR/AR and data

transfer. Our experiments show that REM reduces disruption

for mobile VR applications by 47.1%, improves object recog-

nition accuracy by 88.3% for mobile AR, and reduces stalls

by 31.8%-46.2%. Meanwhile, REM retains marginal overhead

of signaling traffic and latency without hurting data transfer.

In summary, this work makes three main contributions:

1) We conduct an empirical study on the network reliability

in extreme mobility (§III). With the datasets from the

Chinese high-speed rails, we unveil various causes of the

failures and policy conflicts in all phases of the mobility

management;

2) We design REM, the first movement-based reliable

extreme mobility management for 4G, 5G and beyond

(§IV–V). As a signaling overlay in the delay-Doppler

domain, REM devises SVD-based cross-band estimation

to relax the feedback, simplifies the policy for prov-

able conflict freedom, and stabilizes the signaling with

scheduling-based OTFS modulation;

3) We prototype REM using software-defined radio, and

systematically evaluate REM’s network failure reduction,

policy conflict resolution, benefits to applications, and

system overhead (§VI).

This paper is organized as follows. We introduce the back-

ground of 4G/5G mobility management and the challenges

under extreme mobility in §II. In §III, we present our findings

on the limitations of mobility management in operation today

based on extensive datasets. Then we present the key ideas

in §IV and the design in §V. We show the implementation

and evaluation in §VI. We evaluate the benefits of REM for

emerging applications in §VII. Then, we discuss the remaining

questions on REM in §VIII and compare REM with related

work in §IX. Finally, §X concludes the paper.

II. MOBILITY MANAGEMENT PRIMER

We introduce the 4G/5G mobility management today, and

the challenges under extreme mobility.

A. 4G/5G Mobility Management

To support anywhere, anytime network services, 4G/5G

deploys base stations densely for clients to access. Each base

Fig. 1. Mobility management in 4G/5G today.

TABLE I

TRIGGERING CRITERIA BASED ON WIRELESS SIGNAL STRENGTH

IN 4G/5G. Rs AND Rn ARE SIGNAL STRENGTH INDICATORS.
ΔAx REPRESENTS THE THRESHOLD PARAMETER. [5], [6]

station may run multiple cells, each under various frequen-

cies (using separate antennas) with different coverage and

bandwidth. The network provides fine-grained mobility via

inter-cell handover. As a client leaves the one cell’s coverage,

it will be migrated to another one (called handover). Figure 1

shows there are two base stations named BS1 and BS2, and

BS2 supports two cells with different coverage. Note the client

might handover between two cells at the same base station or

at different base stations.

The 4G/5G mobility management is based on wireless

signal strength: It takes client-perceived per-cell wireless sig-

nal quality as the main input, relies on client-side channel

feedback to trigger, and decides the target cell based on local

policies. Figure 1 depicts 4G/5G handover [5], [6]. The mobil-

ity management has three phases. In the triggering phase, the

serving cell configures a client to measure specific frequency

bands. The measured bands are selected based on whether

there are neighboring cells located at that band. The client

will measure the given bands and examine neighbor cells’

signal strengths1 with standard triggering criteria in Table I.

The client will report the feedback if any criteria are satisfied.

Upon receiving the client’s feedback, the serving cell moves to

the decision phase. It runs its local policy (detailed in §III-B)

to decide if more feedback is needed, or if handover should

start. If a handover decision is made, the serving cell notifies

the device to execute handover to establish a connection with

the target cell.

B. Challenges Under Extreme Mobility

Current 4G/5G mobility management relies on wireless

signal strength indicators. However, extreme mobility chal-

lenges the reliability of such indicators due to increased

1In 4G/5G, the signal strengths can be RSRP, RSRQ or RSSI [5], [6].
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Fig. 2. BLER.

wireless dynamics and Doppler interference. As the client

moves, the propagation paths change accordingly and result in

wireless dynamics (i.e., multi-path fading). The movement also

incurs Doppler frequency shift, thus inter-carrier interference

and channel quality degradation. In 4G/5G OFDM/OFDMA,2

the channel remains approximately invariant in a very short

duration Tc ∝ 1/νmax [7], where Tc is the coherence time

and νmax ∝ vf/c is the maximum Doppler frequency, v is

client movement speed and c is light speed. In static and low-

mobility scenarios, the Doppler effect’s impact is reasonably

marginal (e.g., Tc ≈ 20ms for a vehicle at 60km/h under

900MHz 4G LTE band). But in extreme mobility, a fast-

moving client (e.g., 200–350km/h in high-speed rails) under

higher carrier frequency (e.g., mmWave) will experience fun-

damentally more dramatic channel dynamics (Tc ≈ 1ms as

quantified in §III-A).

III. UNRELIABLE EXTREME MOBILITY

A fundamental problem for the mobility management today

is that, it is based on indirect wireless signal strength, rather

than direct client movement. While acceptable in static and

low-speed mobility, such design is unreliable for extreme

mobility with various network failures, delays, and persis-

tent policy conflicts in practice. We conduct an empirical

analysis to quantify the reliability deficiencies at different

phases. Table II presents our results on two LTE datasets from

high-speed rails and our driving dataset (all detailed in §VI).

We find that the failures arise from triggering (§III-A),

decision (§III-B), and execution (§III-C). To mitigate these

failures, operators adopt proactive handover policies to trigger

handover promptly. We infer a serving cell’s handover policy

by following [8] to model the policy as a state machine, and

infer it using the LTE signaling messages. We find that the

proactive policy incurs non-negligible policy conflicts (every

194.6–1090.0s on average), which causes persistent loops and

voids operators’ failure mitigation efforts (§III-B). We next

elaborate on them, analyze their root causes, and validate them

with large-scale datasets. Our findings motivate the design of a

reliable mobility management scheme under dramatic wireless

dynamics under extreme mobility.

A. Unreliable Feedback for Triggering

Reporting client-side feedback reliably to the serving cell

is critical to trigger handovers (§II). Such feedback tracks the

client-perceived wireless quality of cells based on standard

2We use “OFDM” and “OFDMA” interchangeably since this paper focuses
on wireless channel (not resource allocation), so they are equivalent.

TABLE II

NETWORK RELIABILITY IN EXTREME MOBILITY

criteria (Table I). In extreme mobility, such feedback can be

sluggish and cause failures. It faces the fundamental dilemma

between exploration (more measurements for proper decision)

and exploitation (timely triggering for handover).

The dilemma results in two deficiencies of the current

feedback scheme: (1) Head-of-line blocking of measurement:

To decide an appropriate target cell, the client should detect all

cells that meet the criteria. For wireless signal strength-based

feedback, the client has to measure each cell sequentially, thus

delaying later cells. Reducing the cells to measure can mitigate

this delay, but at the risk of missing available cells (thus

failures). (2) Transient loop mitigation with extended trigger-

ing period: Instantaneous wireless measurement is dynamic

and causes transient oscillations between base stations. Direct

reporting instantaneous wireless quality can trigger unneces-

sary handovers and transient oscillations between cells (“ping-

pong loops”). To mitigate it, 4G/5G mandates the client

to report a cell only if its criteria hold for a configurable

triggering interval [5], [6].3 This delays feedback with late

handovers.

1) Reality Check: We gauge the impact of unreliable feed-

back by feedback delay and loss. To quantify the feedback

delay and loss, we analyze the collected physical layer signal-

ing message on measurement activities and link layer traces.

Table II shows 33.3–55.2% of failures in HSR are from

feedback delay/loss. The loss is mostly caused by errors:

Figure 2 shows a 9.9% block error rate before the loss, which

implies the feedback is corrupted in delivery. For the feedback

delay, Figure 3 shows a client on HSR takes 800ms on average

to generate feedback from different bands, during which it

has moved 44.6–78.0m (200–350km/h) along the rails and is

thus too late for a viable handover. Moreover, the operator

configures 40–80 ms as the triggering interval for cells under

the same frequency as serving cell’s (intra-frequency cells),

and 128, 160, 256, 320 or 640 ms for others (inter-frequency

cells). These are 2 orders of magnitude longer than 4G/5G

OFDM coherence time Tc ≈ c/fv ∈ [1.16ms, 6.18ms] (§II)

given f ∈ [874.2, 2665] MHz and v ∈ [200, 350] km/h

from our datasets. Note operators have shortened the

triggering interval for faster feedback than low mobility

3This configurable triggering interval is named as TimerToTrigger
in 4G/5G.
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Fig. 3. Slow meas.

(mostly 640ms in our dataset), but at the cost of more transient

loops and signaling.

2) Opportunity: Shared Physical Multipath: We find the

opportunity of shared physical multipath to reduce delay due

to sequential measurement and extended triggering period.

In reality, several cells would share a base station to aggregate

computation. These cells are under different bands to improve

the radio coverage and carrier aggregation. Our dataset

shows 53.4% of cells share the same base station with another

cell.4 These cells’ signals traverse the same paths from the base

station to the client, thus experiencing similar channels. This

indicates that the measurement of multiple cells at the single

base station could be accelerated without missing potential

cells. In §V, we show how to relax the exploration-exploitation

dilemma for reliable feedback.

B. Conflicting Policy for Decision

On receiving client-side measurements, the serving cell

should decide the target cell. 4G/5G handover decisions are

policy-driven design. To accommodate diverse demands (good

radio coverage, fast data speed, load balancing, failure miti-

gation, etc.), each cell can customize its local policies with

configurable criteria in Table I. Figure 6 exemplifies a typical

policy inferred from our HSR dataset. Such policy is tightly

coupled with wireless feedback (§III-A). The fundamental

reason is that wireless feedback is unreliable in extreme

mobility. Operators thus design multi-stage, complex, even

conflicting polity to mitigate late handovers. However, these

policies cause more failures and conflicts. Such policy suffers

from two deficiencies:

• Multi-stage policy: Most operators adopt multi-stage

handover policies as exemplified in Figure 6. At stage 1, cells

under the same frequency as serving cell’s are measured and

chosen first. Only if the serving cell gets bad, the policy moves

to stage 2 via measurement reconfiguration. The rationale is

for high performance: Measuring the inter-frequency cells will

force the client to temporarily switch its frequency bands and

thus cannot send/receive data.5 This scheme works well under

low mobility. But if the client moves fast, this policy can

miss potential inter-frequency cells. The extra round trips of

reconfiguration and feedback are needed for inter-frequency

cells, during which the client might have moved away.

4This is obtained by grouping the globally unique base station IDs from
LTE cells’ identifiers called ECIs [10].

5To measure an inter-frequency cell, a client should synchronize to it and
measure its signal strength. The serving cell pre-allocates Measurement-
Gaps [11], [12] for this, during which the client cannot send/receive data.

Fig. 4. Policy conflicts from load balancing in HSR.

Fig. 5. Failure-induced policy conflicts in HSR.

• Policy conflicts in extreme mobility: It has been shown

that [13], [14], policies among cells can have conflicts and

cause persistent loops. Figure 4a exemplifies a conflict from

our dataset. Cell 1 and 2 have different bandwidths (5MHz

vs. 20MHz). For fast data speed, cell 1 moves a client to

cell 2 if cell 2’s signal strength RSRP2 > −110dBm. But

cell 2 adopts a different policy: It migrates a client to cell 1 if

it is weak (RSRP2 < −95dBm) and cell 2 is strong (RSRP1 >
−100dBm). Both policies can be simultaneously satisfied if

RSRP1 > −100dBm and −110dBm < RSRP2 < −95dBm).
Then the client oscillates between cell 1 and 2 (8 handovers

within 15s in Figure 4b). Such loop disrupts client’s service

and incurs signaling storms for the network.

Surprisingly, we note policy conflicts are amplified in

extreme mobility, because of operators’ desire to mitigate

failures! This differs from [13], [14] that focus on static

scenarios, and has been frequently observed in our dataset

(detailed in validation below). As shown in §III-A, a fast-

moving client may miss the cells and lose service due to

slow feedback and decisions. As shown in Figure 5a,6 the

device is leaving from cell 3 to cell 4. The operator designed

the threshold to trigger handover even when cell 4’s RSRP is

3dB worse than cell 3’s RSRP. However, this raises conflicts

if neighbor cells use the same policy. Such policy will not

mitigate failures; the client will move back with loops.

1) Reality Check: Our empirical study confirms both prob-

lems. First, the multi-stage policy can miss inter-frequency

cells and induce handover failures. We quantify missed

cells by checking whether a handover failure is recovered

to an inter-frequency cell which is not measured before.

In such a case, the client ended up with connection loss and

re-connected with that missed cell. We find that missed cell

cases account for 3.7%–11.1% of failures in HSR (Table II).

6The relative location of railway and cells are conjectured from device
measured signal strength.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2023 at 21:46:48 UTC from IEEE Xplore.  Restrictions apply. 



196 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

TABLE III

MOBILITY IN 5G

TABLE IV

TWO-CELL POLICY CONFLICTS IN HSR DATASETS

We also examined why operators prefer the multi-stage policy.

If the client stays at the stage to measure inter-frequency

cells continuously, such measurements consume 38.3%–61.7%

spectrum in inter-frequency measurements (depending on cell

configurations).

Policy conflicts exist with alarming frequency in extreme

mobility. We quantify all conflicts between two cells by

inferring and checking handover policy from the dataset.

Table IV summarizes two-cell conflicts from our dataset. Note

policy conflicts can also happen with >2 cells, so this result

is a lower bound of conflicts in reality. On average, two-

cell policy conflicts occur every 194.6–1090s in high-speed

rails (3.8×–26.2× more than low mobility), each incurring

3.0–3.9 handovers on average. Surprisingly, intra-frequency

policy conflicts (A3-A3) are much more than static or

low-speed mobility [13], [14], and dominate the policy con-

flicts in extreme mobility (55.9%–100%). To trigger handovers

early with fewer failures, the operators configure a proactive

policy among cells (Figure 5a with ∆A3 < 0). Such policy

causes oscillations and voids the efforts of failure mitigation.

C. Unreliable Signaling for Execution

During execution, 4G/5G can also fail if the serving cell

cannot deliver the handover command to the client. The

unreliability originates from the wireless-based triggering con-

ditions and policy. Similar to feedback loss in §III-A, such

unreliable signaling mainly arises from the wireless dynamics

in extreme mobility. It can also come from failure propagation

of slow feedback in triggering (§III-A) and multi-stage policy

in decision (§III-B).

1) Reality Check: Table II shows 19.2%–31.5% of network

failures arise from the handover command loss. We detect

these failures by observing successful delivery of feedback that

can trigger handovers based on inferred policy (e.g., Figure 6),

but no handover command from the serving cell until the client

loses network access. We also observe high physical-layer

Fig. 6. Multi-stage policy state machine view.

block errors when such failure occurs. Figure 2 shows the

block error rate within 5 seconds before network failures.

The average block error rate is 30.3% for downlink (handover

command) and 9.9% for uplink (measurement feedback). This

implies the signaling is corrupted during the delivery, thus

failing to execute the handovers and losing network access.

D. Applicability in 5G

5G standards [6], [12], [15] introduced many new tech-

nologies to improve reliability, such as new radio physical

design, cloud-native deployment. However, the mobility man-

agement mechanism stays the same. As the management is

based on wireless signal strength, it still follows the three

phases, triggering, decision, and execution (§II). The feedback

and signaling rely on OFDM-based transmission, which is

unreliable for making handover decisions. The decision policy

tightly couples with signaling reliability, motivating operators

to adopt complex, even conflicting decision logic.

There are even more challenges for the mobility man-

agement in 5G. First, the density of cells increase in 5G,

which implies more frequent handovers. Especially in the

non-standalone mode, each device is connected with a 4G

cell and a 5G cell, thus the device will experience more cell

switching. Recent research on 5G mobility [16] conforms to

our statement that 5G handover is more frequent. Second,

5G adopts mmWave bands (e.g., 29GHz), where the Doppler

spread is more severe. The 5G also added new numerology

with a shorter slot time [12], which is more susceptible to

Doppler spread caused issues.

Although the mobility mechanism does not change, one

might wonder whether the infrastructure change in 5G brings

more benefits to optimize mobility performance. The main

infrastructure update from 4G to 5G is the adoption of

cloud-native deployment. The control plane operations can be

moved closer to the RAN to speed up the decision. However,

as revealed in §III-A, triggering delay is the main bottleneck.

The measurement and reporting are still constrained by the

round-trip between the device and base station. As the unstable

OFDM-based modulation remains unchanged, the problems

with signaling and policy remain.

1) Reality Check: We also study 5G mobility management

in an empirical study with 3866 handover samples. We run

45-hour driving experiments with 5G phones with low mobil-

ity. The experiments are performed under AT&T, one of the
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largest wireless operator in the US. During the experiment,

the devices keep active connection by downloading files and

sending heartbeat to the servers. The driving speed ranges

from 10-40 km/h to keep 5G connections. We collect signaling

events with MobileInsight [8] to check handover events.

We find that mobility reliability becomes even become

worse in 5G since handover will be more frequent and the

issues persist. As shown in Table III. The average handover

interval is 41.9s, which is even smaller than 50.2s in 4G

with 0-100 km/h driving speed. The failure ratio due to

feedback delay/loss and handover command loss are 1.02%

and 0.7%, which are even higher than 0.78% and 0.61%

in 4G. This proves that the unreliability of signaling under

mobility persists. The failure ratio due to missed cell and

coverage holes dropped in 5G, which is benefited from the

denser deployment. In conclusion, the signaling-strength-based

mobility management in 5G is still susceptible to signaling loss

and unreliable channel feedback. The policy-based decision

is expedited due to denser deployment but the handover

frequency increases at the same time.

IV. REM KEY IDEAS

We devise REM, Reliable Extreme Mobility management to

achieve the following goals:

• Excellent reliability which mitigates signaling loss,

channel feedback delay, and policy conflicts;

• Retain policy flexibility for the network operators;

• Backward compatibility with existing OFDM-based

designs and static/low-speed mobility, without hurting

wireless data performance.

Our key idea is that, extreme mobility is unreliable because

of the wireless signal strength-based design, which is suscepti-

ble to Doppler shift and multipath fading (§II). REM shifts from

indirect wireless signal strength-based to direct movement-

based mobility. Compared to wireless with short coherence

and dramatic dynamics, the client movement is slower and

thus more reliable to drive extreme mobility management. REM

tracks the client movement in the delay-Doppler domain to

defeat against the unreliability of wireless dynamics. Benefit-

ing from the reliable movement-based design, REM relaxes the

feedback’s exploration-exploitation dilemma in the triggering

phase, offers conflict-free policies in the decision phase, and

stabilizes the signaling in the execution phase.

A. Channel Model in Delay-Doppler Domain

We now introduce the channel model in delay-Doppler

domain and why it is the rescue to mobility management. The

channel in the delay-Doppler domain is represented as [17]:

h(τ, ν) =
P∑

p=1

hpδ(τ − τp)δ(ν − νp), (1)

where P is the number of propagation paths, hp, τp, νp are the

gain, propagation delay and Doppler frequency shift associated

with p-th path, and δ is the Dirac delta function. Figure 8a

shows a channel with 3 paths. The delay-Doppler form reflects

the multi-path geometry between cell and client in movement.

Fig. 7. REM overview.

The delay-Doppler representation decomposes channel para-

meters into two types: frequency dependent and frequency

independent. Note hp depends on the propagation medium,

τp depends on p-th path’s length, and νp ∝ vf
c

is the only

parameter that depends on the carrier frequency f . As we find

in §III-A, many cells are co-located at the same base station.

For co-located cells, they operate on different frequencies but

share the same physical paths to the device. Due to the shared

physical path, the hp and τp are the same. If we are able to

estimate the only remaining parameter νp, we can estimate a

cell’s channel without measuring it.

The delay-Doppler domain facilitates mobility management

due to its stability. Compared to time-frequency domain rep-

resentation H(t, f), delay-Doppler representation h(τ, ν) is

more stable benefited from the low variance of path delay and

Doppler shift [4], [18], [19]. By representing and transferring

signals in the delay-Doppler domain, the system will exploit

the full time-frequency diversity, and therefore experience

more stable channels and less loss/corruption.

B. REM Roadmap

With stabilized signals in the delay-Doppler domain, REM

devises the mobility management accordingly. REM builds

a signal overlay with the recently proposed OTFS modula-

tion [4]. On top of the signal overlap, REM further extends

OTFS to refine all phases of mobility management. REM pro-

poses the OTFS-based overlay for co-existence with OFDM,

relaxes reliance on feedback with cross-channel estimation,

and simplifies mobility policy to guarantee conflict-free han-

dovers. Figure 7 overviews REM’s main components.

• Delay-Doppler signaling overlay (§V-A): REM places

the signaling traffic and reference signals in a delay-Doppler

domain overlay. This overlay runs on top of existing OFDM,

without changing 4G/5G designs or data traffic. It stabilizes

the signaling in triggering (§III-A) and execution (§III-C), and

exposes movement information to later phases.

• Relaxed reliance on feedback (§V-B): To mitigate the

failures from slow and unreliable feedback (§III-A), REM

devises cross-band estimation in the delay-Doppler domain.

This approach accelerates the feedback without reducing the

cells to be explored, and facilitates earlier handovers with

fewer failures.

• Simplified, conflict-free policy (§V-C): To eliminate

policy conflicts and failures from missed cells (§III-B), REM

simplifies the policy in the delay-Doppler domain. It eliminates

the multi-stage decision with cross-band estimation, reduces

the configurations, and enables easy-to-satisfy conditions for

conflict-freedom.
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V. THE REM DESIGN

A. Delay-Doppler Signaling Overlay

REM designs the mobility management with delay-Doppler

domain channel representation. So REM requires its signaling

traffic (e.g., measurement feedback, handover commands, ref-

erence signals) sent with the delay-Doppler channel. As the

backward compatibility requirement indicates, changing exist-

ing 4G/5G designs or affecting OFDM-based data transfer

is not desired. To this end, REM leverages recent advances

in OTFS in the delay-Doppler domainREM integrates an

OTFS-based signaling overlay atop OFDMand enables the

co-existence.

1) OTFS-Based Overlay: OTFS is a modulation in the

delay-Doppler domain. Intuitively, OTFS multiplexes informa-

tion symbols across all the available carrier frequencies and

time slots, aiming to directly capture the underlying multi-

path geometry. Symbols experience all the diverse paths of

the channel and exhibit less variance. OTFS is suited for the

time and frequency selective fading channel, less vulnerable

to errors, and more robust to Doppler spread.

Figure 8a shows the OTFS modulation. It runs on top of

OFDM. The OFDM time-frequency domain is discretized to

a M × N grid (each being a 4G/5G radio resource element)

by sampling time and frequency axes at intervals T and ∆f ,7

respectively. Given a M × N time-frequency domain, the

delay-Doppler domain is also a M × N grid ( k
M∆f

, l
NT

),

where k = 0..M − 1, l = 0..N − 1. Note that 1
M∆f

and 1
NT

are the quantization steps of path delay and Doppler fre-

quency, respectively. The OTFS modulator arranges MN
data symbols in the delay-Doppler grid, denoted as x[k, l].
It then converts x[k, l] to X [n, m] in OFDM using the inverse

Symplectic Fourier transform (ISFFT): The OFDM signal

X [n, m] is transmitted via legacy 4G/5G radio. The received

signal Y [n, m] is in the time-frequency domain. Then SFFT

is applied to Y [n, m] and yields y[k, l] in the delay-Doppler

domain. With channel noises, we have [4], [20]

y[k, l] =
1

NM

M−1∑

k′=0

N−1∑

l′=0

hw(k′∆τ, l′∆ν)

× x[k − k′, l − l′] + n[k, l] (2)

where hw(τ, ν) =
∫ ∫

e−j2πτ ′ν′

h(τ ′, ν′)w(ν − ν′, τ − τ ′)
dτ ′dν′ is the convolution of channel h(τ ′, ν′) and rectangular

signal window: w(τ, ν) =
∑N−1

c=0

∑M−1
d=0 e−j2π(νcT−τd∆f),

n(k, l) = ISSFT (N [n, m]) is ISFFT of time-frequency

noises.

As shown in Figure 8, OTFS signal overlap runs on top

of OFDM and co-exists with OFDM data. REM supports

the hybrid mode for backward compatibility and efficiency.

We thus leave the choice of whether data traffic should use

OTFS to the operator. OTFS for data would also reduce

Doppler shifts for faster data speed [4], [9], but at the cost of

more per-data processing delays. Instead of mandating if OTFS

7In 4G OFDM, T = 66.7µs, Δf = 15KHz [11]. In 5G OFDM,
T can be 4.2, 8.3, 16.7, 33.3 or 66.7µs and Δf can be 15, 30, 60, 120 or
240KHz [12].

Fig. 8. Coexistence of OTFS signaling (delay-Doppler domain) and OFDM
data (time-frequency domain). The cell dynamically allocates M×N resource
elements mapped to a OTFS sub-grid in OFDM’s M ′

×N ′ grid.

should be used for data, we leave this decision to operators and

future designs, and offer a universal solution for both choices.

Note the co-existence of OFDM and OTFS requires that

OTFS symbols occupy a continuous M×N OFDM grid. How-

ever, if we adopt the legacy radio resource scheduling scheme

in 4G/5G, the signaling and data traffic are multiplexed in the

OFDM grid, which means the signaling traffic is scheduled

with disjoint OFDM slots. Under such a case, the OTFS cannot

run. The naive solution is to reserve a dedicated sub-grid for

OTFS-based signal traffic. But the volume of signal traffic

varies. Reserving resources based on the maximum volume

cause waste when there is less signal traffic.

2) Design of the Scheduler: We design a scheduler that

allocates OTFS-based subgrid dynamically. Our scheduler is

based on the insight that the 4G/5G signaling traffic is always

prioritized in scheduling and delivery by design [5], [6].

This is because without successful signaling procedures to

configure the protocol stack, the data traffic may not be

correctly delivered or processed. Due to the signaling traffic’s

functional importance, the 4G/5G scheduler always schedules

the radio resource for the signaling traffic first over data traffic.

Thus, the signaling traffic can always use OTFS, while the

data traffic could still use OFDM. We leverage this readily-

available feature to decouple the scheduling of OTFS-based

signal traffic and OFDM-based data traffic.

Figure 8b shows the design of REM’s OTFS signaling

overlay. It inserts an OTFS overlay between 4G/5G OFDM

radio and signaling layers (i.e., radio resource control [5], [6]).

At the transmitter side, REM modulates the signaling traffic

with SFFT, allocates a subgrid, and sends it to the scheduler.

The scheduler prioritizes signal traffic, including feedback
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and handover commands for mobility management and ref-

erence signals for cell measurements. It places all signaling

in a separate subgrid from OFDM symbols, ensuring the

orthogonality between signaling and data. At the receiver side,

REM demodulates OFDM symbols, and then run ISFFT to

decode signaling traffic. Although REM adds the SFFT/ISFFT

to pre/post-process the signaling traffic, the complexity is

similar to 4G/5G uplink’s SC-FDMA on top of OFDM (with

additional fast Fourier transform).

3) Scheduling of M, N : M, N can be small depending on

signaling traffic volume. If data uses OTFS, this problem

will disappear since M = M ′, N = N ′. The grid size of

OTFS is the same as the OFDM. If data does not use OTFS,

the required grids for signaling depend on signaling volume.

To improve it, the scheduler may allocate more guard resource

elements to enlarge M ′, N ′, at the cost of resource waste. Such

tradeoff is similar to 5G’s additional DMRS for high mobility

today [12], but is better than DMRS since it helps stabilize

the signaling channel. Note the maximum captured Doppler

M∆τ = 1/∆f depends on the subcarrier spacing ∆f only,

while the maximum captured delay N∆ν = 1/T depends on

the symbol length. Therein, the selection of M, N only affects

the quantization steps but not the bound of captured delay and

Doppler shift.

4) Applicability to 5G: The design of signal overlay is

applicable to 5G since 5G still relies on OFDM-based refer-

ence signals.There are two main differences, flexible subcarrier

spacing setting and dynamic reference signal allocation [12].

The 5G cells could configure subcarrier spacing from 15 KHz

to 240 KHz instead of using the fixed one in 4G. The

selection of subcarrier spacing affects quantization steps of

delay and Doppler in a similar way as the selection of M, N .

In order to accommodate different numerology, the scheduling

algorithm assigns M, N based on current numerology ∆f and

signaling traffic. In 5G, Synchronization Signal Blocks (SSB)

are equivalent to the reference signals in LTE. These SSBs

are scheduled with more flexible patterns to improve spectrum

efficiency. With dynamic SSB allocation, REM can be applied

with more compatibility.

B. Relaxed Reliance on Feedback

With the delay-Doppler overlay, REM relaxes the handover’s

reliance on the feedback for fast and satisfactory trigger-

ing (§III-A). To achieve so, the key is to relax the unique

dilemma in extreme mobility, between exploration of more

measurements for satisfactory triggering and exploitation for

fast triggering. We observe that, cells from the same base

station share the multi-paths to the client and thus similar

channels in the delay-Doppler domain (§III-A). To this end,

REM devises cross-band estimation to parallelize the feed-

back: It measures one only cell per base station, extracts the

multi-path profile from this measurement, maps it to other cells

from the same base station, and estimates these cells’ qualities

without measurements. This allows the serving cell to make

decisions without waiting for all feedback.

REM’s feedback reliance is inspired by the recent advances

of cross-band estimation in the static scenarios in the

Fig. 9. REM’s cross-band channel estimation. Gray boxes are additional
modules to OFDM today.

time-frequency domain [21]–[23]. Existing solutions are

designed in the time-frequency domain and primarily for

static scenarios. The idea is to extract the multi-path profiles

(path delay, attenuation, phase, etc.) from one band’s channel

estimation, and map it to another band traversing the same

paths. In the time-frequency domain, this is realized with

non-linear optimization [22] or machine learning [23]. While

feasible in the static scenarios, these existing solutions face

two challenges in extreme mobility. First, they do not consider

the Doppler effect in mobility. Second, their optimization and

machine learning are too slow to track the fast-varying channel

dynamics (§VI-B).

1) REM’s Intuition: To overcome these limitations, REM

generalizes and simplifies the cross-band estimation in the

delay-Doppler domain. This becomes possible with the

recently proposed OTFS modulation. REM leverages two

insights with delay-Doppler domain representation. First, the

delay-Doppler representation shows the multi-path profile

explicitly. The cross-band channel estimation only needs to

consider the transformation from one frequency to another

frequency sharing the same physical paths. Second, REM

leverages the decomposition of the multi-path profile into

frequency dependent and independent components.

As indicated in the channel representation h(τ, ν), two

propagation paths could vary in three dimensions, amplitude,

delay and Doppler. The delay and attenuation are frequency-

dependent. For each physical path, the delay and attenuation

are persistent regardless of the operating frequency. The delay

is decided by the distance of the path between the cell and the

device. The attenuation is decided by both the distance and

fading effects. This is the reason why two cells only differ in

Doppler shifts in the delay-Doppler domain.

Specifically, consider two cells from the same base sta-

tion. Given cell 1’s channel estimation {h1
w(k∆τ, l∆ν)}k,l,

REM estimates cell 2’s channel {h2
w(k∆τ, l∆ν)}k,l without

measuring it. To do so, REM first extracts multi-path profile

{hp, τp, ν
1
p} from cell 1 {h1

w(k∆τ, l∆ν)}k,l. Note that the

path delays τp and attenuations hp are frequency-independent,

thus identical for cell 1 and 2. The Doppler shifts of cell 1

ν1
p and cell 2 ν2

p are frequency-dependent and ν1
p �= ν2

p . But

they are correlated by ν1
p/ν2

p = f1/f2 (§II). So with cell 1’s

multi-path profile, we can estimate cell 2 by reusing {hp, τp}
and deriving {ν2

p} from ν1
p .

2) REM’s Cross-Band Estimation: We next elaborate on

REM’s cross-band estimation. With the signaling overlay

(§V-A), REM multiplexes 4G/5G’s reference signals8 in the

8The cell-specific reference signals in 4G LTE, and CSI-RS in 5G NR [12].
Both are decoupled from demodulation reference signals for data transfer.
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delay-Doppler domain (Figure 9). REM first estimate the

delay-Doppler channel {hw(k∆τ, l∆ν)}k,l based on expected

and received reference signals (y(k, l), x(k, l)) in (2) by

applying standard channel estimation [24].

REM leverages the path-sharing feature of two cells from

the same base station. Note channel estimation in (2) has

1

MN
hw(k∆τ, l∆ν) =

P∑

p=1

Γ(k∆τ, τp)

M

·hpe
−j2πτpνp ·

Φ(l′∆ν, νp)

N
(3)

where Γ(k∆τ, τp) =
∑M−1

m=0 ej2π(k∆τ−τp)m∆f , Φ(l∆ν, νp) =∑N−1
n=0 e−j2π(l∆ν−νp)nT . To decouple frequency-dependent

and frequency-independent terms, we can rewrite it in a matrix

form:

H = ΓPΦ (4)

where H ∈ C
M×N is the channel matrix from (2): H(k, l) =

1
MN

hw(k∆τ, l∆ν). Note H can be represented by

H =
1

MN

�
���

hw(0, 0) · · · hw(0, (N − 1)∆ν)

hw(∆τ, 0) · · · hw(∆τ, (N − 1)∆ν)

· · · · · · · · ·

hw((M − 1)∆τ, 0) · · · hw((M − 1)∆τ, (N − 1)∆ν)

�
���.

We have Γ ∈ C
M×P to denote the frequency-independent

path delay spread matrix Γ = 1
M

Γ(k∆τ, τp). Φ ∈

C
P×N is the frequency-dependent path Doppler spread matrix

with Φ(p, l) =
Φ(l∆ν,νp)e−j(θp+2πτP νP )

N
, where θp is the

frequency-independent path phase: hp = |hp|e
−jθp . Note that

P ∈ R
P×P
≥0 is a diagonal matrix that represents the frequency-

independent attenuation matrix with P(p, p) = |hp|. After

estimating the cell 1’s channel matrix H1, we can decompose

it as H1 = ΓPΦ1. We note that the path delay Γ and

attenuation P are frequency-independent, while the frequency-

dependent Doppler shift Φ2 can be derived from Φ1 given
ν1

p

ν2
p

= f1

f2
. Then we can obtain cell 2’s channel H2 = ΓPΦ2.

Such derivation does not requires optimization problem and

thus saves computation complexity.

3) Delay-Doppler Decomposition: So how to decompose

the delay-Doppler channel matrix H1 = ΓPΦ1? It turns

out that, such decomposition can be approximated by the

classical singular value decomposition (SVD). SVD can fac-

torize any matrix H ∈ C
M×N into two unitary matrices

and a diagonal matrix: H = UΣV, where U ∈ C
M×M

is a unitary matrix with UU
∗ = IM, V ∈ C

N×N is a

unitary matrix with VV
∗ = IN, and Σ ∈ R

M×N
≥0 is a diag-

onal matrix with non-negative real numbers on the diagonal

(i.e., singular values). Intuitively, SVD factorizes a matrix into

two orthonormal bases U (for each row) and V (for each

column), and attenuation Σ. In practice, to reduce matrix

dimensionality, SVD typically keeps the major singular values

(“principle components”) and truncate negligible ones. In fact,

we can prove their relation as follows (proved in Appendix A

of supplementary materials):

Theorem 1 (Cross-Band Estimation With SVD): A delay-

Doppler decomposition H = ΓPΦ is a singular value decom-

position if (i) the number of physical paths P ≤ min(M, N);

and (ii) for any two paths p �= p′, we always have τp − τp′ =
k∆τ and νp − νp′ = l∆ν for some non-zero integer k, l.

Both conditions in Theorem 1 are not hard to satisfy with

reasonable M and N . For condition (i), it has been observed

that the multi-path are sparse and limited in common sce-

narios [25]–[27]. Even one smallest 4G/5G physical resource

block with M = 12, N = 14 can support up to 12 paths,

which is sufficient for standardized multi-path models in

4G (7 paths for EPA, and 9 paths for EVA/ETU [28]) and

5G (12 paths for TDL-A/B/C [29]). For condition (ii), it holds

if the operator chooses a larger subgrid, e.g., under a com-

mon 40ms triggering interval and a 20MHz channel (§III-A),

(M, N) = (1200, 560), the distance corresponding to the

delay tap is ∆τc ≈ 15m and the Doppler tap is ∆ν ≈ 25Hz.

In the high-speed rails, the line-of-sight distance between the

base station and the train is approximately multiple times

of 15m (typically between 80m and 550m) and the Doppler is

approximately multiple times of 25Hz (typically 1150Hz) [30].

Algorithm 1 shows REM’s cross-band estimation via SVD.

Given cell 1’s channel estimation matrix H1, we run SVD

and use it as an approximation of H1 = ΓPΦ1 (line 1). Note

cell 1’s ΓP is frequency-independent and can be reused by

cell 2. To estimate cell 2, we need to infer Φ2 from Φ1. To this

end, Algorithm 1 estimates multi-path profile {hp, τp, ν
2
p}

Pmax

p=1

(line 2–8) based on the derivations in Appendix B of supple-

mentary materials. Then Algorithm 1 re-constructs Φ2 and

estimates cell 2 as H2 = ΓPΦ2. Algorithm 1 supports

multi-antenna systems such as MIMO and beamforming,

by running it on each antenna.

Under low mobility scenarios, the naive SVD decomposition

fails to adapt to the constraint of Doppler spread. We thus

design a heuristic-based algorithm to adapt to low mobility

scenarios. Doppler spread is limited by the device velocity.

Based on Doppler formula, the Doppler spread τp is modeled

by vs

c
f , which is bounded by the maximum value for velocity

vs and carrier frequency f . Thus we can heuristically derive

the upper bound of Doppler spread νp under the driving

case, considering the velocity limit vmax
s and f . With such

restrictions, we further examine the validity of each inferred

path by the estimated νp after Algorithm 1. The client could

use a static vmax
s or change vmax

s adaptively.

4) Sparsity for Estimation: We further leverage the sparsity

of multi-path propagation to improve estimation accuracy and

efficiency. To improve the estimation accuracy, we show that

under the single path model, the SVD decomposition holds

under no assumptions on Doppler and delay. To improve effi-

ciency, the sparsity of propagation paths serves as a constraint

to filter significant paths among possible min(M, N) paths.

Propagation path sparsity in high-speed rails originates from

the environmental setting and operator deployments. Cellular

networks for high-speed rails require dedicated antennas to

serve fast-moving users [30]. The dedicated antenna guar-

antees that the line-of-sight (LOS) propagation path usually

exists. The existence of the LOS path means a dominant path

presents higher amplitude [31]. Thus a single path model

captures the channel quality. This is why the single path

model is adopted by the 3GPP high-speed-train propagation

model [28].
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We first relax Theorem 1’s condition on delay and Doppler

with the insight of propagation path sparsity. It relaxes the

condition of SVD decomposition because the sparsity of

propagation indicates the sparsity of the channel matrix.

Theorem 1 sets constraints on path delay and Doppler since

the decomposed delay spread matrix Γ and Doppler spread

matrix Φ have to be semi-unitary. If the delay and Doppler are

not integrals, the fractional delay and Doppler cause coupling

between paths, destroying the unitarity of the matrix. However,

there is no coupling between path when there is a single path.

We prove that when there is a single path, SVD decompo-

sition holds. Theorem 2 shows that the SVD decomposition

holds under any delay and Doppler if the number of physical

paths is one, as shown in Appendix C of supplementary

materials. To summarize, the proof relies on the insight that

there is no coupling between paths. Theorem 1 relies the

conditions on delay τp and Doppler νp to eliminate the

coupling between paths. After we show that the delay spread

matrix Γ and Doppler spread matrix Φ are unit vectors, the

decomposition is thus valid.

Theorem 2 (Single Path Decomposition): The compact

SVD decomposition for a delay-Doppler channel matrix

H = UΣV is equivalent to decomposition H = ΓPΦ with

U = Γ,Σ = P,V = G when P = 1.

The condition of Theorem 2 holds when there is a single

path. Theorem 2 indicates the correlation between the path

amplitude and the decomposed singular value. Even when

there are more paths, the dominant path corresponds to the

major component of SVD decomposition. During our evalu-

ation in §VI-B, we find out that the decomposition error is

small even when there are many propagation paths. This is

because the dominant path is decomposed correctly.

5) Avoid Over-Fitting: We adapt Algorithm 1 to filter out

weak propagation paths. This is done by setting a threshold

on the number of inferred paths to leverage path diversity.

In Algorithm 1 line No. 2, we constrain the number of paths

as Pmax. This design will not affect Theorem 1’s validity

since we perform path pruning after SVD decomposition.

Specifically, we first rank all potential paths by their amplitude

and select the Pmax strongest ones. In practice, there are two

ways to decide the threshold. The operators can decide the

number of paths empirically based on 3GPP standards. For

example, the number of paths is 5 for driving scenarios in the

reference propagation model.

Another way to decide the threshold is to compare the

estimated path loss to the strongest path. Inspired by the

correlation between the path amplitude and the decomposed

singular value, we rank the decomposed components based

on the singular value. The largest singular value is mapped

to the strongest path, which dominates estimation accuracy.

Other weaker paths can be affected by interference and noises.

We thus omit the paths that are lower than the strongest one.

The offset to filter paths depends on operators’ experiences.

Constraining the number of paths improves the efficiency

as well. If Pmax = MIN(M, N), the optimization is reduced

to the naive estimation. With (M, N) = (1200, 560), there are

560 paths derived from SVD decomposition. In such a case,

setting Pmax = 9 reduces the computation of path by 62 times.

Algorithm 1 REM’s Cross-Band Channel Estimation

Require: Band 1’s channel matrix H1, H1(k, l) = h1
w(k∆τ, l∆ν)

from (2)

Ensure: Band 2’s channel matrix H2

1: Decompose H1 = ΓPΦ1 using SVD matrix factorization;

2: for each path p = 1, 2, . . . Pmax do

3: For any ∀l, l′ �= l ∈ [0, N − 1] and ∀k, k′ �= k ∈ [0, M − 1];

4: ν1
p ← e

−j2πν1
pT

= 1
N(N−1)

�
l,l′

Φ1(p,l)−Φ1(p,l′)

Φ1(p,l)ej2πl∆νT
−Φ1(p,l′)ej2πl′∆νT

;

5: τp ← ej2πτp∆f

= 1
M(M−1)

�
k,k′

Γ(k,p)−Γ(k′ ,p)

Γ(k,p)e−j2πk∆τ∆f
−Γ(k′,p)e−j2πk′∆τ∆f

;

6: ν2
p ← ν1

p
f2
f1

; � Transfer to band 2’s Doppler frequency

7: e−jθp ← 1
N

�
l

Φ(p,l)N

Φ(l∆ν,νp)e
−j2πτpνp

;

8: end for

9: Compute Φ2 with {hp, τp, ν2
p}p;

10: H2 ← ΓPΦ2;

The idea of constraining the number of paths adheres to the

nature of SVD to reduce data dimension. Since SVD extracts

the path loss with the singular values in P, the algorithm can

easily rank the diagonal matrix and filter out weak ones.

6) Defeat Against Channel Noise: The noises impact

channel estimation accuracy and indirectly affect cross-

band estimation. REM is robust to noises since it runs in

the delay-Doppler domain. According to (2), the noise in the

time-frequency domain N [n, m] is smoothed to n[k, l] in the

delay-Doppler domain via IFFT. For typical 4G/5G noises, this

results in a more robust channel estimation for hw. Current

OFDM-based channel estimation has shown that the low-rank

estimator with SVD decomposition can describe the channel

well without being affected by channel noise. Our evaluation in

§VI experimentally proves that SVD decomposition performs

well under various channel noises.

7) Complexity: REM’s runs SFFT/ISFFT to process the

reference signals and Algorithm 1 for cross-band estimation.

Both have polynomial complexity: The SFFT/ISFFT com-

plexity is O(MN log MN), and Algorithm 1’s complexity is

O(min(M, N)max(M, N)2). It is faster than [22], [23] that

rely on optimization or machine learning, thus suitable to track

the fast-varying channel in extreme mobility.

C. Simplified, Conflict-Free Policy

REM last simplifies the handover policy for high reliability

and verifiable correctness (§III-B). Our goal is to: (1) avoid

multi-stage policy whenever possible, without missing cells

or delaying handovers; and (2) eliminate policy conflicts in

extreme mobility. Meanwhile, REM still retains flexibility for

operators to customize their policies.

1) REM’s Simplification Approach: REM simplifies policy

today with cross-band estimation in delay-Doppler domain

in §V-B. Figure 10 exemplifies how REM simplifies an extreme

mobility policy today in four steps:

(1) Replace received signal strength with delay-Doppler SNR.

This helps stabilize the input and simplifies needed events.

With SNR as the coherent metric, cells are directly comparable

based on information theory as SNR explicitly indicates cell
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Fig. 10. REM’s policy simplification for Figure 6.

capacity C = B log(SNR + 1) (B is the bandwidth). Note

SNR should always be evaluated in handover, regardless of

other metrics to be used. Otherwise, “blind handovers” will

always happen with loops [13], and lose network access if the

target cell’s coverage is weak;

(2) Replace multi-stage policy with cross-band estimation. If

inter-frequency cells are co-located with intra-frequency ones,

REM replaces A1/A2-based multi-stage policy with cross-band

estimation in §V-B. This avoids missing cells and bypasses the

tradeoff between latency and spectral cost for inter-frequency

cells. Otherwise, REM retains the multi-stage policy and moves

to the next step (but still with the same conflict-freedom

guarantees below).

(3) Simplify policy with minimal events. REM replace all indi-

rect comparison events (A1, A2, A4, A5) and their thresholds

with direct comparison (A3). By removing the multi-stage

decision, A1/A2 events are removed. For other events, REM

replaces them with A3. To remove A5 used for indirect

signal strength comparison between cells, REM uses direct A3

comparison with ∆A3 = ∆2
A5 − ∆1

A5. To remove A4, there

are two cases in extreme mobility. First, due to the multi-

stage policy, most A4 events occur after A2 is triggered.

They are equivalent to A5 with ∆1
A5 = ∆A2, ∆

2
A5 = ∆A4

and replaced by A3 with the above procedure. Second, for

load balancing or adding capacity [8], [32], [33], a small

amount of A4 events are directly triggered without A2

(§III-B). They can also be replaced by A3: The serving cell

can equally find a cell with less load or more capacity using

A3 comparison on C = Blog(SNR+1), where ∆A3 decides

capacity difference.

2) REM’s Conflict-Freedom Guarantees: Compared to

today’s policies in §III-B, REM eliminates most events except

A3. This leads to fewer conflicts between events, and simpler

conflict resolutions than [13], [14]. We start with the policy

with delay-Doppler SNR only. We obtain the following result

(proved in Appendix D of supplementary materials):

Theorem 3 (Conflict-Freedom With Delay-Doppler SNR

Only): When only delay-Doppler SNR is used in REM’s

simplfied policy, no persistent loops will occur if and only

if between any two cells ci and cj , ∆i→j
A3 + ∆j→i

A3 ≥ 0.

Theorem 3 shows that, two-cell threshold coordination is

necessary and sufficient condition for policy conflict freedom.

Compared to the conflict freedom conditions today [13], [14],

Theorem 3 is much simpler with fewer events and less thresh-

old coordination between cells. Violation of Theorem 3 hap-

pens in extreme mobility when the operator tries proactive

handovers to mitigate failures (§III-B). With REM, operators

do not need this since REM has mitigated most failures.

REM retains flexibility for operators by supporting non-SNR

metrics, such as priorities, traffic load, and access control.

We prove Theorem 4 in Appendix E of supplementary mate-

rials that with coordinated SNR events, Theorem 3 ensures

handovers between cells will not be simultaneously satisfied.

Regardless of other policies, this condition suffices for con-

flict freedom. This simplifies the policy configurations with

provable conflict freedom.

Theorem 4 (Conflict-Freedom in General): For any set-

tings of non-SNR metrics in REM, satisfying Theorem 3 still

guarantees loop-freedom.

VI. EVALUATION

We implement and evaluate REM’s reliability in extreme

mobility (§VII), and its efficiency and overhead of its key com-

ponents (§VI-B). The details of implementation are presented

in Appendix F of supplementary materials.

Experimental Setup: To approximate real extreme mobility,

we run trace-driven emulations over a USRP-based testbed.

The details of mobility traces are presented in Appendix F

of supplementary materials. Our testbed consists of servers

running OAI [34] cellular protocol stack and the USRPs as

clients and base stations. The servers run OAI [34] cellular

protocol stack. We have USRP B210/N210 to test with real

channels, which are connected to servers with Intel Xeon

CPU E5-2420 v2 and 16GB memory. To emulate operational

settings, we configure the testbed based on the above datasets.

Specifically, we extract protocol configurations and mobility

policies for each cell from the dataset and test with various

settings. To compare REM with legacy 4G/5G, we replay the

mobility traces from our datasets and evaluate if REM can

prevent failures under the same settings. Note we run the

USRPs under the unlicensed 2412/2432MHz band instead of

licensed ones to comply with FCC regulations.

A. Overall Reliability in Extreme Mobility

We compare REM and legacy LTE on failure ratios η =
KLTE

K
and reduction ε = KLTE−KREM

KREM

, where K is total

handover counts, and KLTE (KREM) is the total handover

failure counts in LTE (REM). Since the failures occur ran-

domly with wireless dynamics, we assess REM’s worst-case

failure reduction as a lower bound. For failures from signaling

loss/corruption in §V-A–§V-B, we assume REM can prevent

them only if it reduces the BLER to 0. This under-estimates

REM’s failure reduction since signaling may be delivered with

non-zero BLER. For failures from missing cells in the multi-

stage policy in §V-C, the client will eventually reconnect to

a missed candidate cell if its SNR is better than the old cell.

We use missed cell’s SNR to check whether REM guarantees

successful handover before the client loses connection. Since

SNR is not collected in Beijing-Shanghai dataset, we do not

assess REM’s failure reduction for missing cells and thus under-

estimate its effectiveness. Table V shows REM’s reduction of

network failures and policy conflicts.

1) Overall Reliability Improvement: Table V shows REM

reduces the overall failures and conflicts in both HSR

datasets at all train speeds. In Beijing-Shanghai route, REM
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TABLE V

REDUCTION OF FAILURES AND POLICY CONFLICTS IN HIGH-SPEED RAILS (LGC = LEGACY)

reduces existing LTE’s failure ratio by 1.2× (5.2%→2.4%) at

100-200km/h, 3.0× (10.6%→2.6%) at 200–300km/h, and

2.6× (12.5%→3.5%) at 300-350km/h. In Beijing-Taiyuan

route at 200–300km/h, REM the failure ratio by 0.9× (8.1%

→4.2%). In all cases, REM achieves comparable failure ratios

to static and low-speed mobility (e.g., driving in Table II).

Note that these reductions consider the unavoidable failures

from coverage holes. Without coverage holes, REM achieves

negligible failures (0.6%–1.1%) and failure reductions

(3.9×–12.7×) by up to one order of magnitude.

2) Failure Reduction in Triggering: With the stabilized sig-

naling (§V-A), REM reduces the feedback-induced failures to

be negligible (0.1%–0.2%). Note failure reductions in decision

and execution can also be indirectly related to faster feedback

with cross-band estimation (§V-B).

3) Failure/Conflict Reduction in Decision: By eliminat-

ing the multi-stage policy, REM mitigates the failures from

missed inter-frequency cells (3× reduction in Beijing-Taiyuan

dataset). With the coarse-grained dataset, we cannot eval-

uate this benefit in Beijing-Shanghai route since no SNRs

were collected by that dataset. So REM’s failure reduction is

under-estimated in this dataset. Moreover, with the simplified

policy in §V-C, REM eliminates policy conflicts in all scenarios.

While this also eliminates operators’ proactive policies that try

to prevent failures, such elimination will not negatively affect

the failure mitigation with REM’s failure reduction (§VI-B).

4) Failure Reduction in Execution: REM reduces its failures

to 0–0.4%. Our dataset shows many handover commands in

OFDM-based LTE are corrupted/lost with acceptable SNR

([−5dB, 0dB]). Instead, REM explores the full frequency-time

diversity in delay-Doppler domain to mitigate the signaling

errors/corruptions.

5) Benefits for Data Transfer: We last assess how REM

benefits TCP and application data transfer. We define the

TCP stalling time as the duration that a TCP connection

cannot transfer data. We replay the iperf’s TCP data transfer

in the tcpdump traces and quantify their TCP performance

with/without REM. Note in the coarse-grained HSR dataset,

the iperf application at the client and server continuously

generate data. So the TCP stalling will not be caused by

the idle application or connection. Figure 11a shows REM’s

TCP stalling time reduction. With less failures, REM reduces

the average TCP stalling from 7.9s to 4.2s (46.8% reduc-

tion) at 200km/h, and from 6.6s to 4.5s (31.8% reduction)

Fig. 11. REM’s benefit for TCP.

Fig. 12. REM’s error reduction for signaling.

at 300km/h. Note that TCP stalling time is usually longer

than the network failures because of its retransmission timeout

(RTO). This is exemplified in Figure 11b: When a network fail-

ure occurs, the TCP congestion control aggressively increases

RTO for backoff, thus significantly delaying the data transfer.

By reducing the failures in extreme mobility, REM mitigates

such scenarios and benefits the applications’ data transfer.

B. Efficiency and Overhead

1) Stabilized Signaling in Delay-Doppler Domain (§V-A):

We first examine how delay-Doppler domain reduces signal-

ing errors/loss. We replay our datasets with same signaling

message length and SNR, and evaluate their BLER in a

4G/5G subframe (M = 12, N = 14 for 1ms [11], [12])

in standard reference multipath models for high-speed train

and driving [35], [36]. Figure 12 confirms REM reduces errors

by exploiting time-frequency diversity. This mitigates failures

from signaling loss/corruption.

Besides less errors, delay-Doppler domain also facilitates

more stable channels and SNRs. Figure 13 compares REM

and legacy LTE’s SNR in the same setting. In OFDM, slots

in different carrier frequency and time experience different

channel gains H(f, t) and thus diverse SNRs. Instead, REM
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Fig. 13. Stabilized delay-doppler domain.

Fig. 14. Viability of REM’s cross-band estimation.

Fig. 15. Cross-band estimation with HSR.

adopts OTFS to spread signaling traffic across the entire

time-frequency grid, explores the full frequency/time diversity

and results in stable channel gains hw(τ, ν) for all slots

(Equation 2). This results in more stable SNRs, and facilitates

SNR-based policy in REM and less transient loops.

2) Relaxed Feedback (§V-B): We evaluate two aspects. First,

we quantify the accuracy of REM’s cross-band estimation

by estimated SNR errors. Figure 14 shows that, REM can

achieve ≤2dB estimation errors for ≥90% measurements.

Then we evaluate whether REM’s cell estimation can trigger

the same events for handover. With our dataset, we extract all

handovers’ measurements and triggering events/thresholds to

estimate handover decision precision. Figure 14 shows that,

REM can achieve ≤2dB estimation errors for ≥90% mea-

surements, and correctly triggers ≥90% handovers. We also

evaluate how heuristic-based approach improves the vanilla

SVD decomposition, the average SNR error is reduced by

77.8% (1.85 dB to 0.41 dB). We further validate the impact of

fractional Doppler when Theorem 1 does not hold. We evaluate

how the fractional Doppler affects SNR error. As shown in

Figure 16, the SNR error is below 2dB.

We further compare REM’s accuracy with R2F2 [22] and

OptML [23], the state-of-the-art cross-band estimations. Note

that R2F2 and OptML require to configure the maximum

number of paths to be explored, which will affect their

estimation accuracy. For a fair comparison, we empirically

find their optimal configuration (6 paths for both R2F2 and

OptML), and show the results under this setting. Moreover,

Fig. 16. Impact of fractional Doppler.

Fig. 17. Delays in REM.

to train the OptML model, we randomly choose 80% data

from the HSR dataset, and use the remaining 20% data to test

OptML. Figure 15 shows REM achieves 86.8% lower mean

SNR error than R2F2, and 51.9% lower mean SNR error than

OptML in the high-speed rail scenario. As explained in §V-B,

this is because REM explicitly tackles the Doppler effect in

extreme mobility.

We last quantify REM’s acceleration for the feedback.

For each saved measurement, REM reduces its measurement

duration (including the triggering interval in §III-A) and

round-trips of feedback (totally T1). Meanwhile, REM incurs

extra runtime of cross-band estimation T2, so the feedback

latency savings is T1−T2. Figure 17a shows REM reduces the

average feedback latency from 802.5 ms to 242.4 ms. We also

compare REM’s runtime T2 with state-of-the-arts under 4G/5G

reference multi-path channels without Doppler (unsupported

by R2F2/OptML). Figure 17b shows REM outperforms both,

without optimization or machine learning. In the HSR, REM

saves the runtime from 2.4s (416.3ms) in R2F2 (OptML)

to 158.1ms, thus 14× (1.6×) reduction. While it is possi-

ble to accelerate R2F2 and OptML with advanced hardware

(e.g., FPGA and GPU), such a solution is too expensive for

the resource and energy-constrained mobile devices.

3) Simplified, Conflict-Free Policy (§V-C): As shown in

Table V, REM’s simplified policy provably prevents conflicts.

One may wonder if eliminating the conflicts will cause more

failures. We show REM prevents this situation. For all the

conflict-prone handover, we follow Theorem 3 and 4 to update

thresholds, and repeat the evaluation in §VII to evaluate if

more failures will happen. Figure 18 compares the failures

(without coverage holes) after REM fixes conflicts. It shows

that REM still retains negligible failures, since it prevents late

handovers with faster feedback and signaling loss/corruption

with delay-Doppler OTFS modulation.

VII. BENEFITS FOR APPLICATIONS

How can REM benefit real applications with enhanced

mobility and efficiency? In this section, we evaluate the perfor-

mance improvement for emerging applications with stringent

latency requirements like AR/VR.
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Fig. 18. Failures without aggressive policies.

Fig. 19. Testbed setup for edge-based VR/AR.

A. Experimental Setup

To evaluate the performance of mobile VR/AR applications,

we use Pixel 2XL as the client and deploy the edge server with

the testbed (§VI). The overall setup is shown in Figure 19. The

client is connected with the base station within the coverage

of the USRP, so handover will not be triggered without

channel dynamics in the lab environment. Therefore, we replay

HSR traces to emulate the scenario with and without REM.

Specifically, we inject handover to the testbed and control the

delay based on replayed traces.

We launch AR/VR demo applications to test performance.

The following settings are consistent with either legacy mobil-

ity management or REM. We deploy the VR and AR engine

at the edge server co-located with the core network. For

the mobile VR application, we consider VR streaming of

medium quality with the same setting as [37]. The client

sends motion updates to the server, expecting to receive a

streamed VR frame and render the view with the updated

frame. We evaluate performance by checking whether the

request frame is missing after the client renders an updated

view. In our experiments, we let the client send periodic

motion updates. For the mobile AR application, the client

streams real-time video to the edge server for object detection.

After receiving the identified location of recognized objects,

the client will render the bounding box of the object on

the current frame. If the object recognition result is delayed

due to network failure, the rendered bounding box might not

overlap with the ground truth bounding box. We use the same

streaming content for Mobile VR and AR to guarantee the

results are not affected by streaming content. We quantify the

timeliness of the recognition result for evaluation.

B. Disruption Reduction for Mobile VR

We evaluate the disruption that a requested frame is missing

when the user updates its view. Figure 20a shows REM reduces

the median (95%ile) disruption from 82.5 (508.7) ms to

78.5 (418.4) ms for affected frames. We also evaluate the dis-

ruption under the static case. The median (95%ile) disruption

is 74.0 (415.8) ms, which proves REM reduces the median

disruption added by handover failure by 47.1%. Note not

all frames experience disruption, we find that the percentage

Fig. 20. Performance of mobile VR/AR.

of affected frames is similar for the case with and without

REM. REM outperforms legacy 4G/5G since it mitigates the

disruption by reducing failure-caused disruption to normal

handover latency.

C. Recognition Performance for Mobile AR

We evaluate the performance based on Intersection over

Union (IOU), which is a common metric to evaluate whether

the identified object bounding box matches with the ground

truth in object detection and tracking [38]. Figure 20a

shows shows REM improves the median (95%ile) IoU from

0.18 (0.43) to 0.24 (0.59) for affected frames. To quantify

the overall performance, we take the IoU threshold as 0.25 as

proposed in [38]. The ratio exceeding the threshold is 49.7%

(88.3% improvements) with REM compared with 26.4% in the

case without REM. We notice that REM’s benefit is more sig-

nificant under low-IoU samples. This is because REM reduces

the probability of handover failure where IoU is low due to

failure-caused disruption.

VIII. DISCUSSION

A. Applicability of REM

REM is applicable to all modes of mobility and other appli-

cation scenarios in general. REM is applicable to ALL mobil-

ity, not just the extreme case, as validated in our extensive

evaluation. REM also applies to various application scenarios.

The design of movement-based mobility management does not

rely on a fixed trajectory. The inherent reason is that movement

evolves much slower than wireless. As long as the client and

the network both adopt OTFS-based signaling, REM could

benefit all mobile scenarios, e.g., IoT, drones, etc.

B. Impact on Performance

While REM does not explicitly target performance, REM also

benefits data performance. With reduced handover failures and

policy conflicts, the clients are faced with less disruption.

Besides, REM’s cross-band estimation enables measurement

without MeasurementGap for inter-frequency cells, thus

saving more spectrum for data transfer. What’s more, if data

also uses OTFS, REM’s SNR-based policy would select the cell

with high capacity C = B log(SNR + 1), thus improving the

data speed. We note that dual connectivity could potentially

leverage the SNR-based policy to choose the cells with the

highest capacity to aggregate. We leave that as future work.

C. REM’s Deployability

REM requires deployment at both the device side and

the network side to support OTFS based communication.
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In order to support OTFS, only a signal processing mod-

ule (ISFFT/SFFT) needs to be implemented and all OFDM

modules can be reused. The main challenge is how to incre-

mentally roll out the OTFS based signaling. REM handled

the co-existence of OFDM and OTFS with a dynamic sched-

uler. With the scheduler, the base station adaptively allocates

resources to OTFS grids and OFDM grids, enabling incremen-

tal deployment of REM.

D. Compatibility

REM is backward compatible to both and benefits them

too. It also reduces their failures (although less common

than extreme mobility), saves the signaling overhead from

excessive feedback, and eliminates their policy conflicts. REM

is backward compatible since it only requires an optional

overlap on top of OFDM in legacy 4G/5G. If either the client

or network does not support REM, it can seamlessly rollback

to legacy 4G/5G by disabling REM overlays.

IX. RELATED WORK

Reliable and fast mobility management has been an active

topic for years. Most efforts follow the wireless signal

strength-based design today and explore how to refine its

signaling procedures [39], [40], handover decision [37], [41],

transport-layer data speed in mobility [9], [42], policy con-

flicts [13], [14], to name a few. These approaches are lim-

ited since they still follow the wireless-signal-strength based

approach. There are also related works focused on how to

improve the reliability of mobility on the device side [37],

[43], [44]. However, these approaches are limited since the

device has to follow the network’s decision. They do not solve

the fundamental problem underlying the instability of OFDM

signals. Instead, REM revisits the foundations of wireless signal

strength-based design, unveils diverse network failures and

policy conflicts below the IP layer, and proposes a shift to

movement-based reliable extreme mobility.

REM is inspired by prior efforts for refining wireless robust-

ness, and generalizes them to mobility. It follows similar

design philosophy to geographical routing [45]–[47], but in

a different scenario in mobility management. REM leverages

the delay-Doppler domain from the radar community and

recent advances in OTFS modulation [4], [20], [48]. But REM

moves beyond wireless modulation and generalizes to mobility

management. REM’s relaxed feedback in §V-B extends the

cross-band estimation in [22], [23] to mobility scenarios, and

simplifies the estimation in the delay-Doppler domain.

X. CONCLUSION

Extreme mobility has become popular with various emer-

gent high-speed mobility scenarios (rails, vehicles, drones,

etc.) and high-frequency radios (e.g., mmWave). Unfortu-

nately, we show that 4G/5G is not well prepared to support

them. The fundamental problem is that, 4G/5G’s wireless

signal strength-based design is vulnerable to dramatic wire-

less dynamics in extreme mobility. We thus devise REM,

a movement-based mobility management in delay-Doppler

domain. REM relaxes the feedback with cross-band estima-

tion, simplifies the policy for provable conflict-freedom, and

stabilizes the critical signaling traffic.

REM is an initial step toward movement-based mobile net-

work design and management. Its core philosophy is client

movement is more robust and predictable than wireless, thus

suitable to drive mobility management in extreme mobility.

Beyond reliability, this idea can be generalized to broader

scopes such as channel prediction, wireless performance

optimization, geographical routing, and delay-Doppler based

localization. More client movement insights can be explored in

the future, such as the predictive client trajectory (e.g., in rails

and satellites), explicit geometric modeling, and historical base

station measurements. We hope REM stimulates more efforts

toward predictable, robust mobile networks.
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