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Abstract. Mimblewimble is a privacy-preserving cryptocurrency, pro-
viding the functionality of transaction aggregation. Once certain coins
have been spent in Mimblewimble, they can be deleted from the UTXO
set. This is desirable: now storage can be saved and computation cost
can be reduced. Fuchsbauer et al. (EUROCRYPT 2019) abstracted Mim-
blewimble as an Aggregate Cash System (ACS) and provided security
analysis via game-based definitions.

In this paper, we revisit the ACS, and focus on Non-interactive ACS,
denoted as NiACS. We for the first time propose a simulation-based
security definition and formalize an ideal functionality for NiACS. Then,
we construct a NiACS protocol in a hybrid model which can securely
realize the ideal NiACS functionality in the Universal Composition (UC)
framework. In addition, we propose a building block, which is a variant
of the ElGamal encryption scheme that may be of independent interest.
Finally, we show how to instantiate our protocol, and obtain the first
NiACS system with UC security.

1 Introduction

Decentralized cryptocurrencies like Bitcoin have attracted huge attention in the
past decade. While these cryptocurrencies have multiple advantages over the
traditional electronic payment systems, we must note that these benefits are at
the expense of transaction-privacy or user-anonymity [6,32]: users’ transaction
data in the distributed ledgers of the cryptocurrency systems are public, and
thus can be traced. Many strategies have been taken to improve the privacy
(e.g., using a fresh pseudonymous address for each payment). Unfortunately, it
has been demonstrated that the expected user-anonymity can still be lost: an
attacker could deanonymize the transactions on the ledger by clustering and
analyzing the transaction graph [36,40].

Motivated by these security concerns, extensive efforts have been devoted to
develop privacy-preserving techniques for improving the amount confidentiality
and user anonymity of cryptocurrencies. Typically, homomorphic commitments
are used to ensure the confidentiality of the amounts in transactions. To enable
user anonymity, there exist two design paradigms:
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(i) First, anonymity sets are introduced to hide the identities of the users. Good
examples include Monero [37], Zcash [8] and Quisquis [19]. Unfortunately,
as mentioned in [19], the information that which coins have been spent in
Monero/Zcash is not allowed to be revealed, and thus the already spent
coins cannot be eliminated from the cryptocurrency systems; as a conse-
quence, the size of UTXO sets in these systems will grow constantly. Then
Quisquis [19] was proposed to solve this problem but at the price of intro-
ducing a complicated mechanism: the users have to have their wallets to
“watch on” the blockchain so that certain information (e.g., wallet address
or public key) in their wallets can be properly updated. Moreover, Quisquis
suffers from the so-called “front-running” attacks as pointed out in [11].

(ii) To achieve anonymity, coins of a transaction can be mixed with those of
other transactions; this is called CoinJoin. Now, the coins that have been
spent can be deleted from the UTXO set; In this way, the size of UTXO set
will be significantly reduced. We note that, many systems (e.g., CoinShuf-
fle [41] and Mixcoin [10]) under this design paradigm focus on anonymity
but not considering the confidentiality of the amounts in transactions. It is
worth mentioning that the anonymity of cryptocurrencies under this design
paradigm may be weakened, when some parties are designated for receiving
and mixing transactions. Still, it has attracted much attention thanks to its
potential for high performance.

Mimblewimble. A new cryptocurrency dubbed Mimblewimble, which follows
the second paradigm and considers confidentiality, was proposed by an anony-
mous author in [26] and further improved by Poelstra [39]. A nice feature Mim-
blewimble additionally enjoys is that, when multiple transactions are aggregated
and the corresponding coins are mixed, it allows cut-through1 while maintaining
the verifiability of the aggregate transaction. This feature can reduce storage
and benefit new users to verify the system. To formally analyze the security
of Mimblewimble, Fuchsbauer et al. [21] abstracted it as an Aggregate Cash
System (ACS) and formalized its security via a series of games. Specifically,
they proposed three game-based security properties: inflation-resistance ensures
that coins can only be supplied by legitimate ways (e.g., coinbase transactions),
theft-resistance guarantees that no one can spend coins without the correspond-
ing spending keys, and transaction indistinguishability requires that the amount
should be hidden and change coins and output coins be indistinguishable. The
work [21] by Fuchsbauer et al. is significant for the formal security analysis of
Mimblewimble, but their definition is still subject to the following limitations:

– First, we point out that the security games proposed in [21] are not “succinct”
enough. For example the theft-resistance property definition is strongly cor-
related with their construction. More concretely, to define theft-resistance

1 A basic property of the UTXO model is that a sequence of two transactions, the first
one spending an output out1 and creating out2, followed by the second one spending
out2 and creating out3, is equivalent to a single cut-through transaction spending
out1 and creating out3.
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property, a notion of pre-transaction has been introduced. However, this pre-
transaction is part of their protocol construction. This indicates that their
theft-resistance property definition is not general enough: their definition only
allows pre-transaction dependent protocols, and does not allow other natural
constructions.

– Second, Fuchsbauer et al. [21] did not define the unlinkability of inputs and
outputs, which is an important security property of ACS. More specifically,
this property means that, when a transaction is mixed with others, anyone not
involved in these transactions cannot identify which inputs and/or outputs
belong to the same transaction. Note that if a party can obtain the individual
transactions before aggregation, then she/he must be aware of the linkability
of the inputs and outputs; we thus do not consider the unlinkability2 against
the parties who are continuously monitoring the network, or parties who are
responsible for aggregating transactions.

– While game-based definitions are useful for capturing the security properties
of ACS as in [21], it is more desirable to investigate the security properties
in the real/ideal simulation paradigm: First, following the game-based defi-
nition approach, typically we are not clear if the list of security properties
that we formalized are sufficient; often certain natural security properties are
missed. Second, following the real/ideal simulation paradigm, “The security
guarantees achieved are easily understood (because the ideal model is easily
understood) [34].” In addition, simulation-based definitions allow sequential
or even universal composability, enabling modular design and analysis. Please
see Lindell’s tutorials [34,35] for a more careful elaboration.

In addition, a transaction in ACS has to be generated jointly by the sender
and receiver (see Sect. 2.2 for more details). In practice, however, it is not easy
to guarantee that both the sender and receiver are always online at the same
time. For example, it may be difficult for an online retailer to keep his wallet
online all the time to receive irregular payments. A better way is that the retailer
publishes an account for receiving payments on the sales website, and the buyers
can complete payments at any time without the retailer’s cooperation. Beam [1]
and MWC [3], the two representative projects based on ACS, have made efforts
to mitigate the problem to some extent, but do not solve it completely.

1.1 Contributions

In this work, we focus on mitigating the above limitations by proposing an Aggre-
gate Cash System supporting non-interactive payments, denoted as NiACS, and
defining its security in the real/ideal simulation paradigm. Our contributions are
summarized below:

2 In practice, Grin and Beam enhance unlinkability by leveraging Dandelion relay
protocol [18] that aggregates transactions during the propagation. However, their
approach still cannot realize complete unlinkability, since someone on the network
will always be able to see an unaggregated transaction.
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We first define an ideal functionality FNiACS, which captures the core fea-
tures of NiACS but does not depend on the concrete design of NiACS. Our
ideal functionality FNiACS captures the inflation-resistance, theft-resistance, and
transaction indistinguishability properties in [21]; in addition our functionality
FNiACS captures unlinkability, which is a very important security property for
privacy-preserving cryptocurrencies. We remark that, the unlinkability has not
been formalized in [21].

Our ideal functionality FNiACS is not introduced for formalizing security prop-
erties for interactive ACS. However, to capture interactive payments, we can
redefine the ideal functionality; for example, we can let the functionality inform
the receiver before dealing with a transaction, and this is missing in the current
functionality FNiACS.

Furthermore, we propose a NiACS protocol ΠNiACS that UC-realizes FNiACS

in a hybrid model. In contrast to Mimblewimble, our design can support non-
interactive payments. That is, the sender is able to generate a valid transaction
by himself, and the receiver can directly obtain private information of output
coins from the transaction without out-of-band communication over a private
channel. Particularly, to avoid the out-of-band communication, we propose a
new variant of ElGamal encryption, the ciphertext of which includes a Peder-
sen commitment and its openings (i.e., randomness and value) can be obtained
readily by the holder of the decryption key. Moreover, we present a concrete
instantiation of our NiACS protocol, thus obtaining the first NiACS with UC
security.

1.2 Related Work

Over the past decade, extensive efforts have been made to achieve provably
secure privacy-preserving cryptocurrencies [8,10,19,26,37]. For example, Ring
Confidential Transaction (RingCT), the core protocol of Monero, was first for-
mally analyzed by Sun et al. [42], which was further refined by subsequent works
[17,33,45]. In addition, Zcash was proposed along with formal security proper-
ties by Ben-Sasson et al. [8]. However, Garman et al. [23] pointed out that the
security properties defined in [8] is incomplete and complex, and adversary can
leverage these weaknesses to break the security. Moreover, Garman et al. [23]
gave a simulation-based definition to avoid the weaknesses. More recently, more
and more works have focused on the simulation-based definitions for Blockchain
protocols. Badertscher et al. abstracted Bitcoin as a ledger functionality in [7].
Kerber et al. [28] gave a private ledger functionality and designed a privacy-
preserving proof-of-stake (PoS) blockchain protocol that can securely realize the
private ledger functionality in the UC setting.

Mimblewimble was first proposed by [26] and then improved further by Poel-
stra [39]. Mimblewimble is simple to implement and has been used in three
open-source cryptocurrency projects, i.e., Beam [1], Grin [2], and MWC [3].
However, no formal security analysis has been given for these works until the
work by Fuchsbauer et al. [21]. In particular, Fuchsbauer et al. [21] abstracted
Mimblewimble as ACS and defined its security properties for the first time.
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However, these security properties are incomplete and complex. In particular,
unlinkability is an important property of Mimblewimble, but not formally defined
in [21]. Besides, they proposed a new one-round interactive ACS that has been
implemented in MWC [3]. Later, Yu [44] leveraged one-time addresses to achieve
non-interactive payments for Mimblewimble, but without formal analysis.

In a concurrent and independent work, Fuchsbauer et al. [22] pointed out
and fixed the flaws in the proposal by [44], and formally analyzed their own
modified scheme based on game-based definitions. Fuchsbauer et al. [22] and Yu
[44] share the same initial idea of achieving non-interactive transactions with us,
but there are many differences between their construction and ours. In particular,
Fuchsbauer et al. [22] added a new type of excess X :=

∏
R̂i/

∏
Di, called

“stealth excess”, where R̂i is used to “transmit” the secret key of a one-time
address and Di is a one-time doubling key used to prevent feed-me attack. For
a coin, when it is in an output list, it will be associated with R̂i; when it is in an
input list, it will be associated with Di. Since R̂i �= Di, if the coin is cut through,
the stealth excess cannot be verified. Therefore, their scheme cannot support cut-
through. In contrast, our transactions only include one type of excess, namely
the original excess in Mimblewimble, and thus our construction still supports
cut-through. Note that cut-through is an important feature of Mimblewimble as
it can save the on-chain storage cost. In addition, we for the first time define
a simulation-based security model for NiACS, while Fuchsbauer et al. [22] still
follows a game-based security model, which is not suitable for complex execution
environments.

2 Technical Overview

To overcome the security and practicality issues mentioned before, we first define
an ideal functionality for ACS supporting non-interactive payments, denoted
by FNiACS. Compared to the game-based security definition proposed in [21],
FNiACS is more general and comprehensive. Furthermore, we propose a new non-
interactive payment system, dubbed ΠNiACS, that securely realizes FNiACS. Before
showing the high-level idea of our design, we first briefly introduce how to define
an ideal functionality that captures the desirable security of NiACS.

2.1 Non-interactive Aggregate Cash System Functionality

As ACS is essentially a privacy-preserving ledger, we attempt to define its ideal
functionality with the abstraction FLedger of the most basic ledger Bitcoin [7,29]
as the starting point. At a high level, the ledger functionality defined in [29] is
the same as that defined in [7]. More concretely, anyone can submit a transaction
to FLedger, then FLedger will validate the transaction by a predicate Validate. If the
transaction is valid, it will be added into a buffer. Periodically, the transactions
in the buffer will be moved to state in the form of a block, where the state refers to
the ledger state and the transactions in the state cannot be changed. Moreover,
anyone is allowed to read the content of state. In a nutshell, FLedger defines
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the basic interfaces of a ledger, including submitting transactions, maintaining
ledger, and reading ledger.

Compared to the basic ledger, ACS additionally protects privacy (payment
amount confidentiality, sender anonymity and receiver anonymity) and allows
aggregation of transactions before packing. Therefore, to define the ideal func-
tionality of ACS, we need to further specify the content of a transaction and add
interfaces for aggregation. In addition, in this work, we focus on ACS supporting
non-interactive payments, and thus we denote the ideal functionality as FNiACS.

To preserve privacy, a transaction cannot contain the identifiers of relevant
parties and the amount of each coin, but a transaction needs to specify which
coins are spent or created. Therefore, for each coin, we define an identifier cid that
is pseudorandom and does not reveal its amount and owner, and for each party,
FNiACS maintains a list of coins that are possessed by the party. When a party
called user wants to transfer some coins, he inputs ({cidi}, {P̂j , v̂j}) to FNiACS

where {cidi} is an identifier list of the coins to be spent, P̂j is a receiver who will
receive a coin of amount v̂j . If all the coins identified by {cidi} are owned by the
party, and the sum of the amounts is enough, FNiACS will notify the adversary
(namely, simulator) S to generate a coin identifier ĉidj for each output coin
whose owner is P̂j and amount is v̂j . At this point, FNiACS generates a transaction
TX := ({cidi}, {ĉidj}) according to the party’s payment request. We can see that
FNiACS generates the transaction without the participation of any receiver, which
means that the functionality captures the non-interactive payments. Moreover, it
is the transaction that will be added to state, not the payment request. Therefore,
when other parties obtain state by reading the ledger, regarding the transaction,
they can only see the identifiers in {cidi} and {ĉidj} but learn nothing about the
owners and the amounts. However, if parties can get the individual transaction,
they can learn the linkability of the coins in it, which will weaken the sender
anonymity. The aggregation explained below helps to break the linkability.

As mentioned before, unlike in Bitcoin, a transaction in NiACS will be aggre-
gated with other transactions before being packed into a block. Thus, the coins of
a transaction are mixed with coins in other transactions such that the linkability
of input and output coins is broken. More specifically, in FNiACS, we add a role
called aggregator who is responsible for aggregating transactions. Once a transac-
tion TX is generated, FNiACS sends it to the parties who act as aggregators. Then,
an aggregator will aggregate the transactions to a “large” transaction, which will
be added to buffer and eventually moved to state. For example, given two trans-
actions TX1 := ({cid1i }, {ĉid

1

j}) and TX2 := ({cid2i }, {ĉid
2

j}), an aggregator can

generate an aggregate transaction TX1+TX2 := ({cid1i }∪{cid2i }, {ĉid
1

j}∪{ĉid
2

j})
and submit it to FNiACS. When others get the aggregate transaction, they cannot
identify which coins belong to a transaction as the coin identifiers are indepen-
dent and pseudorandom. In addition, a user is allowed to spend the output coins
of an unconfirmed transaction with an elevated fee, as described in [4]. Therefore,
cut-through can occur when the transactions are aggregated.

To sum up, we define FNiACS by adding privacy protection and aggregation
features to the basic ledger functionality FLedger. In FNiACS, a transaction only
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contains pseudorandom and independent coin identifiers, and thus anyone cannot
learn the amounts and participants. In addition, there are aggregators responsi-
ble for aggregating transactions and submitting the aggregate transactions to the
ledger. Through aggregation, some coins can be cut through, which can reduce
the storage of the ledger. Moreover, a transaction is stored in the ledger after
being mixed with other transactions such that the linkability of the input coins
and output coins is hidden, which further enhances sender anonymity.

Next we proceed to introduce the high-level idea of our design ΠNiACS. Since
our design is inspired by Mimblewimble [21,39], before continuing we first briefly
recall the main idea of Mimblewimble.

2.2 Recall Mimblewimble

Mimblewimble [21,39] is an interactive payment system with support for trans-
action aggregation. Briefly, a coin in Mimblewimble is a Pedersen commitment
cm := grhv, where v is the amount of this coin, and it is spent with only the
randomness r (usually called spending key)3. A transaction here consists of an
input list, an output list, and a kernel, as shown in Fig. 1; the concept of kernel
is firstly introduced in Mimblewimble, which plays a crucial role in guaranteeing
the validity of the transaction. Particularly, the input (resp. output) list includes
the spent (resp. newly created) coins, and the kernel contains the contents used
for proving the balance of the transaction and the ownership of the spent coins.
To illustrate how the validity of transactions is guaranteed, we take a concrete
example as below.

Let TX1 be a transaction including 2 input coins {cm1
1, cm

1
2} and

3 output coins {ĉm1
1, ĉm

1
2, ĉm

1
3}4. Besides, an item called excess E1 :=

∏3
j=1 ĉm1

j/
∏2

i=1 cm1
i is contained in its kernel. Obviously, if the transaction is

balanced, E1 is a commitment to 0. To show the balance of this transaction, the
sender generates a proof that E1 is a commitment to 0 as shown in Fig. 1; essen-
tially, this is realized by invoking a zero-knowledge ideal functionality F zero

NIZK, and
the witness is the randomness of E1. However, the randomness of E1 is derived
from the randomnesses of both the input commitments {cm1

i }i∈[2] and output
commitments {ĉm1

j}j∈[3], and the randomnesses of output commitments are only
known to the receiver, so the sender has to generate the proof interactively with
the receiver. Moreover, since the ownership of the coin in Mimblewimble is equiv-
alent to the knowledge of the opening of the commitment, the proof also implies
that the input coins are indeed spent by the owner.

Further to break the linkability of inputs and outputs in a transaction, Mim-
blewimble adopts the idea of CoinJoin, that is, to aggregate different transactions
into a “large” one. As indicated in [21], however, it is not hard to find out the
input and output coins of a transaction from the aggregate transaction by solving

3 In contrast, the coin in other cryptocurrencies like Zcash is spent with the opening
of the commitment and a secret key associated with the address recording the coin.

4 Note that for each output coin ĉm1
i , there is also a range proof to guarantee that the

committed value is valid (i.e., v ∈ [0, vmax]), but we ignore it here for simplicity.
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Fig. 1. The transaction and aggregation process of Mimblewimble (ĉm1
2 = cm2

1).

a simple subset sum problem based on the excess. To solve this problem, an offset
is added to blind the excess, e.g., the final excess in the kernel of TX1 becomes
Ẽ1 := E1 · gδ. Next we take the example given in Fig. 1 to explain the aggre-
gation process: The initial input (resp. output) list of the aggregate transaction
TX1 + TX2 is the union of input (resp. output) lists of TX1 and TX2 in random
order. If some coins in TX2’s input list are also in TX1’s output list, then the coins
(together with the associated range proofs) are removed from the input and out-
put lists of TX1 + TX2, which is the so-called cut-through. More concretely, ĉm1

2

in TX1 is equal to cm2
1 in TX2, so in TX1 + TX2, cm2

1 and ĉm1
2 are removed from

input list and output list of the aggregate transaction, respectively. The kernel of
TX1+TX2 is the union of the TX1’s kernel and TX2’s kernel, except that the offset
of TX1 + TX2 is δ1 + δ2.

From the above, we can see that proving the excess being a commitment to 0
is the main reason of making Mimblewimble interactive. Next, we show how to
surround this obstacle and design a NiACS that securely realizes the proposed
ideal functionality FNiACS.

2.3 Our Non-interactive Aggregate Cash System ΠNiACS

Recall that in Mimblewimble each coin is spent with the randomness of its com-
mitment as the spending key, and the output coins of each transaction have to be
created by the receiver. Therefore, the sender knows nothing about the random-
ness of each output coin, and he has to interact with the receiver for proving that
the excess is a commitment to 0. To realize non-interactive payments, a natural
choice is to let the sender create the output coins. Using this approach, the sender
can generate the proof of balance by himself, but the associated randomness can
never be used as the spending key of the coin. Hence, our essential idea is to verify
the balance of the transaction and the ownership of the input coins separately. To
this end, we introduce an address for each coin in our ΠNiACS, then the secret key
corresponding to the address is used to spend the associated coin while the ran-
domness of the associated commitment is used only to prove balance. Following
this way, the interaction between the sender and receiver can be avoided, but the
first challenging task we face is to bind a coin and an address.

In fact, the combination of commitments and addresses have been employed
previously to achieve privacy-preserving cryptocurrencies (e.g., Monero [37] and
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Zcash [8]). Among them, a signature for each transaction is usually generated
for preventing it from being tampered with. In our design, however, distinct
transactions will be mixed or aggregated to hide the relations of input coins
and output coins (namely, linkability). Then when verifying the aggregate trans-
action, the verifiers need to pick out the individual transaction to verify the
signature, which will break the unlinkability. Therefore, it is not easy to bind a
coin and an address while supporting transaction aggregation.
Bind an Address and a Coin. As discussed before, binding a coin to an
address through a signature on the whole transaction will break the unlinkability.
Therefore, a natural idea is to bind each coin and the associated address through
a separate signature. However,the question is how to generate such a signature?

Fortunately, we observe that in our ΠNiACS, the randomnesses of commit-
ments do not act as the spending keys anymore, and the sender knows the ran-
domnesses of all output coins as they are generated by the sender himself rather
than the receiver. Moreover, the proof of the excess being a commitment to 0
leaks nothing about the randomnesses of the coins, due to the zero-knowledge
property. Hence, our idea is to use the randomness of each commitment as the
signing key to sign the corresponding address, which can be achieved by lever-
aging the primitive named signature of knowledge [15].

More specifically, signature of knowledge extends the traditional notion of
digital signature to the notion that allows one to issue signatures on behalf of
any NP statement, which can be interpreted as follows: “A person in possession
of a witness w to the statement x ∈ L has signed message m." An instance of sig-
nature of knowledge can be related to a language. In the confidential transaction,
for each commitment, a range proof is generated to prove that the committed
value is within a specific range [0, vmax]. Therefore, we can define the language
Lrange := {cm | ∃ r, v s.t. cm = grhv ∧ v ∈ [0, vmax]}, and only the one knowing
the opening (r, v) of cm can sign an address by invoking F range

SoK .
To guarantee the validity of transactions, the second challenge is to prove the

balance of each transaction as well as the knowledge of spending keys (i.e., the
ownership of input coins). Regarding the former, it can be proved in the same
way as Mimblewimble. Therefore, the main challenge is to prove the ownership
of the input coins.
Prove the Ownership of Input Coins. A natural solution is to provide a
zero-knowledge proof that the sender knows the corresponding secret key of the
address. However, an independent proof can be stolen and used in other transac-
tions. A common approach for avoiding this problem is to bind the address and
the transaction through a signature of knowledge (i.e., sign the transaction using
the secret key), but as discussed before, signing the whole transaction will break
the unlinkability. Therefore, what we essentially need is to bind the address to
an “abstract” of the transaction that does not reveal the relation of the inputs
and outputs. We observe that an excess in Mimblewimble is abstracted from
all input and output coins of a transaction, and that it reveals nothing about
the relation between the inputs and outputs, due to the added offset. Thus, we
bind the address of each coin to the transaction via signing its excess with the
associated spending key. Then the same excess will be signed n times if the



754 Y. Jia et al.

transaction includes n input coins. In this case, when the transaction is aggre-
gated with others, any party can learn that these input coins belong to the same
transaction, which may reveal partial information about the linkability. To avoid
this leakage, our key idea is to randomly split the excess into n parts, and then
to sign each part with a separate spending key. Using this approach, the sender
can prove the knowledge of spending keys while preventing the proofs from being
stolen and used in other transactions. Similarly, this can be realized through the
signature of knowledge functionality, where the witness is the spending key and
the message is a part of the excess.

Following the above way, the sender can generate a valid transaction in a non-
interactive way, but the receiver cannot spend the received coins as she does not
know the private information (i.e., openings of commitments). Therefore, the
third challenge is how to send the private information to the receiver.
Send Private Information to Receiver. A natural approach is to send the
value and randomness to the receiver through a private communication channel.
In this way, the sender and receiver must interact at least once per transaction,
which defeats our purpose of achieving non-interactive payments. Another way
is to encrypt the private information with the receiver’s public key and send the
ciphertext along with each output coin. This will avoid the interaction between
the sender and receiver, but results in a significant increase of transaction size.
Inspired by the recent work due to Chen et al. [16], we propose a novel way of
encrypting the private information while mitigating the transaction expansion.

In particular, Chen et al. [16] proposed a twisted ElGamal encryption to
transfer values privately (from sender to receiver) as follows. Roughly, the sender
encrypts a value v into a ciphertext in the form of (pkr, grhv), where pk = gsk and
sk is known by the receiver and r is randomly chosen by the sender, and includes
the ciphertext in the transaction; as grhv is in fact a Pedersen commitment, we
write the ciphertext as (X, cm) for simplicity. After receiving the ciphertext, the
receiver can then recover v by computing cm/X

1
sk . Note that the value is in

a certain range, and thus the receiver can get v from hv. Unfortunately, the
receiver cannot get the randomness r, so she cannot spend the coin cm. To
overcome this problem, they proposed to spend the coin in an alternative way.
More specifically, after recovering the amount v from C := (X, cm), the receiver
generates a new coin C ′ := (X ′, cm′) with the equivalent amount as C. Further,
the receiver provides a proof through a Σ-protocol to prove that the messages
in cm and cm′ are identical.

At the first glance, their approach works in our design as well. Unfortunately,
we find it does not support cut-through. Particularly, we assume that a coin
cm created in transaction TXc is spent in transaction TXs through a new coin
cm′ with the equivalent amount. Note that in TXc, it is cm that is used to
generate the excess Ec := cm · E∗

c · gδc , where E∗
c denotes the excess of other

coins excluding cm and δc denotes the offset. In contrast, it is cm′ that is used
to generate the excess Es := E∗

s/cm′ · gδs of TXs, where E∗
s is the excess of

other commitments than cm′ and δs is the offset. Now we can see that if the
two transactions are aggregated and the coin is cut through, then the excess
of the aggregate transaction should be E∗

s · E∗
c · gδs+δc according to our design.
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Kernel OutputInput

x

x y

x y

x can be found outside
the transaction
according to y.

Kernel OutputInput

         is invoked with x
as the statement and y
as the message. 

                  is invoked with
x as the statement. 

Fig. 2. The transaction and aggregation process of ΠNiACS (ĉm1
2 = cm2

1).

Following the above approach, however, Es · Ec = E∗
s · E∗

c · cm
cm′ · gδs+δc , which is

not equal to E∗
s · E∗

c · gδs+δc as cm
cm′ �= 1. Therefore, the approach by Chen et al.

fails to work in our design.
To tackle the above problem, our essential idea is to enable the receiver

to recover both the value and the randomness directly from the coin cm. To
this end, we propose a new variant of ElGamal by generating the ciphertext as
(pkr, gH(gr)hv), where the randomness of the commitment is chosen through a
random oracle H(·). In this way, the receiver holding sk can easily recover gr

and thus get H(gr).
To this point, we obtain our NiACS protocol ΠNiACS. Following the above

ideas, the transaction and aggregation process in our design are as shown in
Fig. 2. More details are shown in Sect. 4.

3 Simulation-Based Security for NiACS

In this section, we propose a simulation-based security definition for NiACS
through an ideal functionality FNiACS.

As FNiACS is essentially a ledger that records aggregate transactions rather
than individual ones. Therefore, we define FNiACS starting from the basic ledger

Algorithm 1. State Update
1: procedure ExtendState(, , buffer, T, counter)
2: Send 〈ClockRead, sid〉 to GClock and receive 〈ClockRead, sid, τ〉 from GClock;
3: if |τ − T · counter| > T then
4: := ||Blockify(τ, buffer);
5: buffer := ε;
6: counter := counter + 1;
7: Send 〈ClockUpdate, sid〉 to GClock.
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Fig. 3. Overview of ideal functionality FNiACS.

functionality FLedger formalized by Kiayias et al. [29] and follow their parameters.
Prior to introducing our functionality FNiACS, we first recall the parameters used
later: buffer is to contain the valid transactions that have not been confirmed,
state is the state of ledger containing confirmed transactions, the constant T
denotes the time interval between generating blocks, and counter is to keep track
of the number of state updates. In addition, the state is updated by Extend-

State shown in Algorithm 1, where the function Blockify(τ, buffer) is used to
organize the transactions in buffer into a block and τ is a time obtained from a
global clock ideal functionality GClock.

Now we proceed to introduce our functionality FNiACS as shown in Fig. 3.
Roughly speaking, FNiACS consists of four parts: Initialization, Users’ trans-
actions, Aggregation, and Ledger. In initialization part, parties register on the
ledger while stating their roles (user/aggregator), and users need to state their
initial amounts. The registration information will be recorded into the genesis
block. After the system is bootstrapped, the parties can also register. Here, for
simplicity, we assume that parties only register at the beginning. In users’ trans-
actions part, users can submit payment requests to FNiACS, and if a payment
request is valid, FNiACS will generate the corresponding transaction and send
it to the aggregators. In aggregation part, aggregators can send aggregation
requests to FNiACS, and if an aggregation request is valid, FNiACS will aggregate
corresponding transactions and return the aggregate transaction to the aggrega-
tor. In ledger part, any party can read the ledger. Moreover, the adversary can
(1) directly submit transactions without being aggregated to ledger, and (2) per-
mute the buffer, which reflects his influence on the delivery. Next, we introduce
each part of FNiACS in detail.
Initialization. In Fig. 4, we describe the initialization process. FNiACS first ini-
tializes state := ε, buffer := ε and counter := 0. Besides, FNiACS initializes
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Fig. 4. Ideal functionality of NiACS (Initialization).

three lists, Lcoin, LTX and LA for recording coins, transactions and corrupted
parties, respectively. At the beginning, FNiACS will be notified which parties
are corrupted by receiving the message 〈Corrupt, sid, Pt〉 from adversary S.
Then Pt will be recorded in LA. For registration, a party Pk will send the reg-
istration information to FNiACS. In the registration information, Pk needs to
declare his role. If Pk acts as a user, he needs to declare his initial amount.
Once receiving a registration message 〈Registration, sid, Inforreg, Pk〉 from Pk,
FNiACS first checks if the party has registered before. If so, FNiACS ignores the
message. Note that a party can only register as one role. If the party wants
to register as a user and the corresponding initial amount vk is in a valid
range, FNiACS sends 〈Registration, sid,user, vk, Pk〉 to adversary S. Then S
will generate a coin identifier cidk for the initial coin, and send a message
〈Registrated, sid, (Pk,user), cidk〉 to FNiACS. At this point, the initial coin
of Pk is created, and FNiACS will add the coin (cidk, vk, Pk, Pk) into Lcoin in
the format of (identifier, value, owner, creator) and adds (Pk,user, (cidk, vk)) into
buffer. If Pk is registered as an aggregator, after receiving the agreement from S,
FNiACS adds (Pk, aggregator,⊥) into buffer. We allow the adversary to decide
when the registration is finished, and thus once receiving 〈Initialized, sid〉
from S, FNiACS executes ExtendState to get the genesis state. FNiACS returns
〈Initialized, sid, cidk〉 to inform Pk of successful registration.
Users’ Transactions. In Fig. 5, we describe the process of a user
submitting a transaction. A user Pk forwards a payment request
〈Submit, sid, Pk,LAgg, {cidi}, {(P̂j , v̂j)}〉 to FNiACS to initiate the process of gen-
erating a transaction. In the payment request, LAgg

5 is a list of aggregators who

5 Environment Z can abstract the situation that a party can send a transaction to
different aggregator sets at different times, by assigning different aggregator lists for
a transaction.



758 Y. Jia et al.

Fig. 5. Ideal functionality of NiACS (Users’ transactions).

can receive the transaction and aggregate it, {cidi} is the set of coins to be
spent, and {(P̂j , v̂j)} is the set of receivers and the corresponding values. Upon
receiving a payment request, FNiACS will perform the following three steps:

– Transaction validation: FNiACS first needs to get the current state and check
if Pk can spend all the coins in {cidi}. More specifically, for each cidi, FNiACS

retrieves (cidi, vi, Pi, ·) from Lcoin and checks if Pi = Pk. If so, Pk can spend
this coin. Note that it is possible that Pi =⊥, which means that the coin is
generated by a corrupted party and has no designated owner. In this case,
any corrupted party in LA can spend this coin. For all i, if Pk can indeed
spend coin cidi and all these coins are in state, FNiACS further checks if all
the output values are valid (i.e., v̂j ∈ [0, vmax] for all j) and the transaction
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is balanced (i.e.,
∑

i vi =
∑

j v̂j). If all above verifications pass, FNiACS will
generate new coins for the receivers as below.

– Creating new coins: FNiACS sends a message to request S to generate the iden-
tifiers of new coins. Since the adversary S knows the values/amounts of coins
generated or received by corrupted parties, FNiACS will send 〈RequestID, sid,
(P̂j , v̂j)〉 to the adversary if the sender Pk or a receiver P̂j is corrupted. Other-
wise, FNiACS will send 〈RequestID, sid,⊥〉 to capture that both the receiver
and the amount of the coin are hidden from S. Upon receiving the response
〈ResponseID, sid, ĉidj〉 from S, where ĉidj is the identifier of the new coin,
FNiACS records (ĉidj , v̂j , P̂j , Pk) in Lcoin. After getting the identifiers of all the
new coins, FNiACS represents the transaction as TX := ({cidi}, {ĉidj}), which
will be sent to the designated aggregators in LAgg as below.

– Sending TX to aggregators: Although an aggregator list LAgg for a transac-
tion TX is assigned in the input message, whether or not an aggregator can
receive the transaction TX is eventually determined by the adversary S, so
the set of aggregators who indeed receive the transaction is a subset of the
assigned aggregators. When receiving a transaction for the first time, FNiACS

initializes a list L∗
Agg to record the aggregators who will finally receive the

transaction. For each aggregator Aggt in LAgg, FNiACS will ask S if Aggt can
receive the transaction through a message 〈SendTX, sid,TX, Pk,Aggt〉. Note
that if the sender Pk is corrupted, S can know which transaction is required to
be sent to an aggregator, so TX �=⊥. But when the sender is honest, S cannot
know the information about the transaction, and thus TX =⊥. Upon receiv-
ing 〈SendTX, sid, Pk,Aggt,OK〉, FNiACS will send 〈ReceivedTX, sid,TX〉 to
Aggt and add Aggt to L∗

Agg. After sending the transaction to the allowed
aggregators, FNiACS needs to record the transaction into LTX, including its
transaction identifier TX, aggregators receiving the transaction L∗

Agg and its
details ({cidi}, {(P̂j , v̂j)}). In addition, Pk can repeatedly input the same
transaction, but with different aggregator lists. In this case, FNiACS only sends
the transaction to the new aggregators in LAgg/L∗

Agg.

Aggregation. In Fig. 6, we show how FNiACS aggregates certain transactions and
puts the aggregate transactions into buffer. An aggregator Aggk can ask FNiACS

to aggregate the transactions in {TXt} and put the aggregate transaction into
the ledger by submitting an aggregation request 〈Aggregate, sid, {TXt}〉. Upon
receiving the request, FNiACS initializes three empty lists Linp, Loutp and Lcut. Linp

and Loutp are used to record the identifiers of spent coins and created coins in the
aggregate transaction, respectively. For each transaction TXt in {TXt}, FNiACS

first checks if the aggregator Aggk indeed received the transaction according to
the records in LTX. If not, FNiACS will ignore the transaction TXt, otherwise
parses TXt as ({cidi}, {ĉidj}) and adds all identifiers in {cidi} and {ĉidj} to
Linp and Loutp respectively. At this point, the transactions in {TXt} received by
the aggregator Aggk have been aggregated into (Linp,Loutp). Then cut-through
proceeds as follows: For each spent coin cidi ∈ Linp, FNiACS checks if it belongs to
Loutp, if so, cidi will be removed from Linp and Loutp. Obviously, if a cut happens
on a coin that is created or received by a corrupted party, the adversary S will
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Fig. 6. Ideal functionality of NiACS (Aggregation).

Fig. 7. Ideal functionality of NiACS (Ledger).

be aware of it. Thus, FNiACS uses Lcut to record these coins. We allow S to know
how many coins (related to honest parties and corrupted parties) are cut, and
denotes the number as a variable c. After executing the above process, Linp and
Loutp constitute the aggregate transaction aTX. Finally, if all the input coins of
aTX are in state, FNiACS adds aTX into buffer and sends 〈AggTX, sid, aTX〉 and
〈AggTX, sid,Aggk, aTX, c,Lcut〉 to Aggk and S, respectively.
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Ledger. For the basic interfaces of a ledger, we follow the ledger functionality
defined in [29]. To be self-contained, we show the ledger functionality in Fig. 7.
More specifically, we follow their definition in the following three aspects: (1) The
abstraction of consensus layer: FNiACS executes the procedure ExtendState

shown in Algorithm 1 to extend the state, which is an abstract of consensus
layer; (2) The way of parties and adversary reading the ledger: for an honest
party, FNiACS only provides state, but for a corrupted party, FNiACS give state
and buffer; (3) Allowing adversary to permute buffer: to abstract the case where
adversary can delay the delivery of transactions in the network, FNiACS receives
a permutation π from the adversary, and apply the permutation on buffer.

In addition, we allow the adversary S to directly submit transactions to the
ledger. Note that in the ledger functionality defined in [29], both honest and
corrupted parties can directly submit transactions to the ledger. Whereas, in
our NiACS, each honest sender’s transaction first needs to be aggregated and
then submitted to the ledger by the designated aggregators. Therefore, honest
parties who intend to protect privacy will not directly submit transactions to
the ledger.

Security Properties Captured By our Definition. Informally, our ideal
functionality FNiACS captures the following security properties: inflation-
resistance, theft-resistance, transaction indistinguishability, and unlinkability.
More specifically, FNiACS requires parties to register the initial amounts and
spend the coins with enough value, which implies inflation-resistance. For each
coin, FNiACS records its owner and only allows the owner to spend the coin, which
means theft-resistance. A transaction consists of an input list and an output list,
each containing multiple coin identifiers cid. Since the coin identifiers are pseu-
dorandom, the transaction amount is hidden and change coins and output coins
are indistinguishable obviously, which provides transaction indistinguishability.
Moreover, the transactions contained in the state of the ledger is in an aggre-
gate form, so the irrelevant parties cannot learn which coins belong to the same
transaction, i.e., unlinkability.

4 Our Non-interactive Aggregate Cash System

In this section, we present the details of our protocol ΠNiACS. First, we propose a
new variant of ElGamal encryption that is important for realizing non-interactive
payments. Then, we introduce the ideal functionalities and auxiliary algorithms
used through our design. At last, we present our protocol based on these func-
tionalities, auxiliary algorithms, and the variant of ElGamal encryption.

4.1 New Variant of ElGamal Encryption

Inspired by the twisted ElGamal encryption [16], we propose a new variant
of ElGamal encryption scheme shown in Fig. 8. The ciphertext is of the form(
pkr, gH(gr)hm

)
for a message m ∈ Zp. Therefore, the receiver can recover both

the randomness H(gr) and the message m by using the secret key sk, which
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plays a crucial role for our design. We remark that, as shown in [11,16,19], the
encrypted message m can be efficiently recovered from hm when the message
space is small, e.g., by brute-force enumeration as in [11,19], or Shanks’s algo-
rithm as in [16]. We show the security of our new variant of ElGamal encryption
by Theorem 1, and please find the proof in the full version.

Fig. 8. New variant of ElGamal.

Theorem 1. Assuming that the Divisible Computational Diffie-Hellman
(DCDH) problem is hard6, the proposed encryption scheme is IND-CPA secure
in the random oracle model.

4.2 Ideal Functionalities and Auxiliary Algorithms

We design our protocol in a hybrid model. To ease the understanding of our
protocol, we first recall the subroutine ideal functionalities invoked in our design
and represent some specific processes as auxiliary algorithms. We give the details
of these functionalities and auxiliary algorithms in the full version.
Ideal Functionalities. The ideal functionalities used throughout our design can
be divided into two categories; the first is used for transaction layer, while the
second is for consensus layer. For the former, it is summarized in Table 1. For the
latter, we note that the functionality FNiACS defined in Sect. 3 is a private ledger,
and thus can be seen as a “private” version of FLedger defined in [29]. Therefore, we
focus on designing privacy-preserving transaction layer while assuming there is a
secure consensus layer. In this work, we design our protocol ΠNiACS by leveraging
the functionality FLedger.
Auxiliary Algorithms. For the auxiliary algorithms, we divide them into two
categories: one-time addresses and construction of transactions.
One-Time Addresses. In our system, each user has a permanent address Addr :=
gKey, where Key

$←− Zp is the associated secret key and g is a generator of the
cyclic group G with order p. We use one-time address to hide the identity of a
user in the real world. One-time addresses/secret keys are generated as follows:
6 Informally, the DCDH assumption means that, given a tuple (g, ga, gb), where g is

a generator of a cyclic group G with prime order p and a, b
$←− Zp, the probability

of computing ga/b is negligible.
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– GenOTAddr is to generate a one-time address and its auxiliary string for
a user with permanent address Addr. It takes Addr as input, and outputs a
one-time address pk and corresponding auxiliary string R.

– GenOTKey is to generate a one-time spending key. It takes a permanent
address/key pair (Addr,Key) and a one-time address/auxiliary string (pk,R)
as input, if (pk,R) is derived from (Addr,Key), outputs the one-time secret
key sk, otherwise outputs ⊥.

Table 1. Ideal functionalities and descriptions

Faddr
NIZK Non-interactive zero-knowledge for language Laddr := {(pk,R) | ∃ (Addr, r),

s.t. pk = AddrH(Addrr), R = gr}, which is used to prove that the one-time address
pk and its auxiliary string R are correctly generated

Fzero
NIZK Non-interactive zero-knowledge for language Lzero := {cm | ∃ r, s.t. cm = grh0},

which is used to prove that each excess part is a commitment to 0

Fenc
NIZK Non-interactive zero-knowledge for language Lenc := {(pk, (X, cm)) | ∃ (r, v),

s.t. X = pkr, cm = gH(gr)hv}, which is used to prove that the amount v is
correctly encrypted

F range
SoK Signature of knowledge for language Lrange := {cm | ∃ (r, v), s.t. cm = grhv ∧ v ∈

[0, vmax]}, which is used to prove that the amount of each coin is within a valid
range and to sign an address

Fkey
SoK Signature of knowledge for language Lkey := {pk | ∃ sk, s.t. pk = gsk}, which is

used to prove the knowledge of a spending key and to sign an excess part

FSMT Secure message transmission is for users to send transactions to aggregators

Construction of Transactions. The remaining algorithms are used to generate
and verify transactions as follows:

– GenExcess is to generate the excess and offset. It takes as input all the
commitments and their openings in both the input and output lists (i.e.,
{cmi, (αi, vi)} and {ĉmj , (α̂j , v̂j)}), then chooses an offset δ and computes
the final excess Ẽ and its randomness ẽ. After that, it splits the excess Ẽ into
n parts, s.t., Ẽ = Ẽ1 · Ẽ2 · · · Ẽn, and outputs ({Ẽi, ẽi}, δ).

– GenOutput and VerOutput are to generate and verify the output coins,
respectively. For each output, GenOutput takes (v̂j , ˆAddrj) as input, then
generates and outputs a one-time address ĉidj := (p̂kj , R̂j), a proof π̂addr

j

that the one-time address is correctly generated, a ciphertext (X̂j , ĉmj) of
vj , a proof π̂enc

j that (X̂j , ĉmj) is correctly generated, a signature σ̂range
j on

(p̂kj , R̂j) and the randomness α̂j of ĉmj . VerOutput takes (ĉidj , π̂
addr
j , (X̂j ,

ĉmj), π̂enc
j , σ̂range

j ) as input, then outputs 1 if π̂addr
j , π̂enc

j and σ̂range
j are valid,

and 0 otherwise.
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– GenInput and VerInput are used to generate and verify the proof of spend-
ing key for each input coin, respectively. GenInput takes as inputs a partial
excess Ẽi and the associated randomness ẽi, a coin identifier cidi (i.e., one-
time address) and the corresponding one-time spending key ski, then out-
puts a proof π̃zero

i that Ẽi is a commitment to 0 and a signature σkey
i that

proves the knowledge of ski and binds the input coin to Ẽi. VerInput takes
(cidi, (Ẽi, π̃

zero
i ), σkey

i ) as input, and outputs 1 if both π̃zero
i and σkey

i are valid,
otherwise returns 0.

– Aggregate is to aggregate a valid individual transaction TX with an (aggre-
gate) transaction (LI ,LO,LK ,Δ). It takes as input a transaction TX, an
input list LI , an output list LO, a kernel list LK and Δ, then outputs a new
aggregate transaction (LI ,LO,LK ,Δ).

4.3 Description of ΠNiACS

Given the above ideal functionalities and auxiliary algorithms, we show the spec-
ification of our ΠNiACS in Fig. 9, Fig. 10, Fig. 11 and Fig. 12. Please refer to the
full version for the detailed description.

Fig. 9. Our ΠNiACS supporting non-interactive payments (Initialization).
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Fig. 10. Our ΠNiACS supporting non-interactive payments (Users’ transactions).

Initialization. Figure 9 shows the initialization process of ΠNiACS. Steps 1–
6 show the initialization process of a user, including generating permanent
address/key and initial coin, and submitting the initial information to FLedger.
Steps 7–8 show the initialization process of an aggregator, i.e., registering the
role to FLedger.
Users’ Transactions. In Fig. 10, we describe how a user constructs a transfer
transaction. In steps 3–13, the user checks if the transfer request from Z is valid.
If so, the user generates the transaction by invoking GenOutput, GenExcess

and GenInput as shown in steps 14–20. At last, the user sends the transaction
to the designated aggregators through FSMT as shown in steps 21–22.
Aggregation. Figure 11 shows the process of aggregation. In steps 2–14, the
aggregator checks if the transactions received from FSMT are valid by verify-
ing the kernel and invoking VerInput and VerOutput, and records the valid
transactions. Then the aggregator aggregates the valid transactions specified
by Z through executing Aggregate and submits the aggregate transaction to
FLedger, as shown in steps 16–21. Note that the aggregator just outputs the coin
identifiers in (aggregate) transactions to Z, rather than the real-world (aggre-
gate) transactions. Therefore, the aggregator executes Clean to extract the coin
identifiers from (aggregate) transactions.
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Fig. 11. Our ΠNiACS supporting non-interactive payments (Aggregation).

Fig. 12. Our ΠNiACS supporting non-interactive payments (Ledger).

Ledger. In Fig. 12, we describe the part related to reading and maintaining
ledger. Steps 2–5 show how the honest party obtains state. Besides state, a cor-
rupted party can also obtain buffer and permute it as shown in steps 7–10. Like-
wise, the party just outputs the coin identifiers in state or buffer to Z. Therefore,
the aggregator executes Clean to extract the coin identifiers from state or buffer.
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4.4 Security

Next we show the security of ΠNiACS against the static adversaries by Theorem 2.
Please refer to the full version for the proof.

Theorem 2. Assuming that DCDH problem is hard, the protocol ΠNiACS UC-
realizes FNiACS in the {FNIZK,FSoK,FSMT,FLedger,FRO}-hybrid model, in the pres-
ence of static malicious adversaries.

5 Instantiations

In the previous section, we describe our protocol ΠNiACS and prove it can UC-
realize FNiACS in a hybrid model. In this section, we describe how to realize
the subroutine ideal functionalities FNIZK and FSoK used in our ΠNiACS, which
dominate the cost of our protocol. Next, we will describe the sub-protocols to
achieve FNIZK and FSoK in the stand-alone setting and the UC setting.
Stand-Alone Setting. Recall our ΠNiACS, F zero

NIZK is used to prove that an excess
part Ẽi is a commitment to 0, namely Ei := gei , and Fkey

SoK is used to prove the
knowledge of secret key sk to a public key pk := gsk while signing an address.
We can see that the languages in the two functionalities can be summarized as
LDLOG := {X | ∃ x, s.t. X = gx}. Therefore, F zero

NIZK and Fkey
SoK can be securely

realized based on the Σ-protocol for proving knowledge of a discrete logarithm
shown in Fig. 13. More specifically, for F zero

NIZK, X is the excess part, and x is
the corresponding discrete logarithm. By using Fiat-Shamir transform [20], the
interactive protocol in Fig. 13 can be converted into a non-interactive one where
the challenge c is generated by a random oracle with (X,R) as the input. In
practice, the random oracle will be instantiated by a hash function. Obviously,
when X is pk and x is sk, the protocol in Fig. 13 can be used to prove the
knowledge of a spending key, and can also be transformed to a non-interactive
protocol by using Fiat-Shamir transform. At this point, we obtain a protocol
for zero-knowledge proof of spending key. Next, we need to transform it into a
protocol for signature of knowledge. Much work (e.g., [5,14]) has proved that
the Fiat-Shamir transform can also be used to convert a public-coin proof of

Fig. 13. Interactive Zero-knowledge proof of a discrete logarithm.
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knowledge into a signature scheme by taking the message to be signed as the
part of input to random oracle. More concretely, in our protocol, the excess part
Ẽi will be input to the random oracle along with (X,R). Therefore, we obtain
the protocol that can securely realize Fkey

SoK.
Like other privacy-preserving cryptocurrencies, we also leverage Bulletproof

[12] to generate range proofs. As mentioned in [12], Bulletproof is a public-coin
proof of knowledge, and thus Bulletproof can also be converted into a non-
interactive scheme by using Fiat-Shamir transform. Similarly, based on Bullet-
proof, we can obtain the protocol to securely realize F range

SoK by taking the message
to be signed (i.e., the address of each output coin in our ΠNiACS) as the part of
input to random oracle.

The new variant of ElGamal proposed in this work can allow the receiver
to obtain the value and randomness of a commitment by decryption, but the
ciphertext needs to be generated using a hash function. Likewise, the one-time
address and its auxiliary string are generated by using hash function. Hence, we
cannot use Σ-protocol to realize F enc

NIZK and Faddr
NIZK. We need to use the general-

purpose zk-SNARK [9,25,38,43].
UC Setting. The above protocols only securely realize the corresponding ideal
functionalities in the stand-alone setting. Next, we discuss how to transform the
above protocols to achieve UC security.

As for the Σ-protocol, we can use the compiler proposed by Camenisch et al.
[13] to transform them to realize UC-security. The known practical instantiations
(e.g., [9,25,38,43]) for SNARK also do not UC-realize FNIZK as they cannot
satisfy Black-Box Simulation Extractability. Like other works, e.g. Hawk [31],
Gyges [27], Ouroboros Crypsinous [28], we can also leverage the C∅C∅ framework
proposed by Kosba et al. [30] to achieve Black-Box Simulation Extractability
(namely, SSE-NIZK) in the standard CRS model.

6 Performance Analysis

In this section, we first give a performance estimation of our ΠNiACS where FNIZK

and FSoK are achieved in the stand-alone setting. Then, we compare our ΠNiACS

with Mimblewimble [39] and the work by Fuchsbauer et al. [22].
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Table 2. Performance estimation and comparison.

Spending time Verifying time TX size

[39] (2m + 2) · exp + H + m · T P
range 3 · exp + H + m · T V

range
(m + n + 2) · |G| + 2 · |Zp|
+m · |πrange|

[22]
(4n + 6m + 3) · exp

+(2n + 3m + 1) · H+

m · (T P
range+ T P

addr + T P
enc )

(3n + 5) · exp + (n + 1) · H+

m · (T V
range+ T V

addr + T V
enc )

(3n + 4m + 3) · |G|
+(n + m + 3) · |Zp|
+m · (|πrange|+ |πaddr| + |πenc| )

ΠNiACS

(4n + 7m + 1) · exp

+(3n + 2m) · H+

m · (T P
range+ T P

addr +T P
enc )

(4n + 1) · exp + 2n · H+

m · (T V
range+ T V

addr + T V
enc )

(5n + 4m) · |G|
+(2n + 1) · |Zp|
+m · (|πrange|+ |πaddr| + |πenc| )

n: the number of input coins; m: the number of output coins; exp: an exponentiation
operation in group G with prime order p; H: a hash function; |G|: the length of element
in group G; |Zp|: the length of element in Zp; T

P/V
x : the time to generate/verify a proof

for language Lx (x ∈ {range, addr, enc}); |πx|: the length of proof for language Lx

(x ∈ {range, addr, enc}); The costs marked in blue are not necessary against rational
adversaries; The costs marked in gray are not actually mentioned in [22], but they
are necessary against malicious adversaries.

6.1 Performance Estimation

According to the instantiations described above, we give a performance esti-
mation in Table 2. More specifically, according to the results shown in [12],
the proving time TP

range for range [0, 264] is 29ms while the verification time
TV

range is 3.9ms. The range proof size πrange is 675 bytes. For the languages
Laddr := {(pk,R) | ∃ (Addr, r) and Lenc := {(pk, (X, cm)) | ∃ (r, v), s.t. X =
pkr, cm = gH(gr)hv}, we use the scheme in [25], a general-purpose zk-SNARK, to
generate the proofs, and thus the proof sizes |πaddr| and |πenc| are both 2G1+G2.
The corresponding proving time (TP

addr and TP
enc) and verification time (TV

addr and
TV

enc) mainly depend on the number of constraints. Concretely, we implement the
hash function in Laddr and Lenc by using MiMCHash-256. The number of con-
straints required by Laddr and Lenc is 11, 742 and 14, 799, respectively7. Moreover,
in practice, the proofs for Laddr and Lenc are not necessary as explained below,
and we mark the corresponding costs in blue.

In the security analysis in Sect. 4.4, we assume that the adversary will have
malicious behaviors arbitrarily. However, it is reasonable to assume that the
adversary is rational in practice. As mentioned in [24], a rational adversary
is expected to act in a utility-maximizing way. The costs marked in blue are
related to Faddr

NIZK and F enc
NIZK, which are used to ensure that the one-time address

and ciphertext are correctly generated for the receiver, respectively. The receiver
in practice can identify if the one-time address and ciphertext are valid without
the proofs, and if not, the receiver can abort the deal (e.g., refuse to send the
goods), and thus can not be harmed. Moreover, the sender cannot benefit from
it. Therefore, a rational adversary will not carry out this malicious behavior.
Obviously, the receiver can identify if a one-time address is valid by invoking
7 If zk-SNARK is transformed to SSE-NIZK by using the framework in [30], the num-

ber of constraints required by Laddr and Lenc will increase to about 71, 742 and 74, 799,
respectively.
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GenOTKey. Next, we will explain how the receiver identifies whether a cipher-
text is generated correctly.

If a transaction containing ciphertext (X∗, Y ) can be confirmed, Y must
be a valid commitment due to our design, i.e., Y = gαhv. If X∗ associated
with Y is generated correctly, denoted as X, the receiver can recover (α, v) by
computing α := H(X

1
sk ), hv := Y/gα and recovering v from hv where v ∈ [0, 264].

Otherwise, i.e., X∗ = X ′ �= X, the receiver will obtain α′ = H(X ′ 1
sk ) �= α and

hv′
= Y/gα′

= gα−α′
hv. Due to the random oracle, hv′

is randomly distributed
and so the probability of v′ ∈ [0, 264] is 264

2256 , which is negligible. Therefore, the
receiver can recognize the invalid ciphertext by checking if v ∈ [0, 264].

6.2 Comparison

We also give the performance estimations of Mimblewimble [39] and the non-
interactive solution proposed independently and concurrently by Fuchsbauer et
al. [22] in Table 2. It can be seen that both our work and Fuchsbauer et al. [22]
degrade performance to achieve non-interaction, and the performances of the two
non-interactive solutions are comparable. As for our work, besides introducing
addresses and related proofs, the main reason leading to a higher cost is that our
protocol needs to split the excess into multiple parts. Similarly, Fuchsbauer et
al. [22] also introduce addresses and related proofs. Although they do not split
the excess, they add a doubling key for each one-time address, thus resulting in
the comparable additional cost. In a nutshell, the two non-interactive solutions
are more suitable for the scenarios where non-interaction is strongly desirable.
Nevertheless, designing a non-interaction version without degrading performance
is still a challenging problem.
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