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Abstract—Designing reliable codes for channels with feedback,
which has significant theoretical and practical importance, is one
of the long-standing open problems in coding theory. While there
are numerous prior works on analytical codes for channels with
feedback, the majority of them focus on channels with noise-
less output feedback, where the optimal coding scheme is still
unknown. For channels with noisy feedback, deriving analytical
codes becomes even more challenging, and much less is known.
Recently, it has been shown that deep learning can, in part,
address these challenges and lead to the discovery of new codes
for channels with noisy output feedback. Despite the success,
there are three important open problems: (a) deep learning-
based codes mainly focus on the passive feedback setup, which
is shown to be worse than the active feedback setup; (b) deep
learning-based codes are hard to interpret or analyze; and (c)
they have not been successfully demonstrated in the over-the-air
channels with feedback. We address these three challenges. First,
we present a learning-based framework for designing codes for
channels with active feedback. Second, we analyze the latent fea-
tures of the learned codes to devise an analytical coding scheme.
We show that the approximated analytical code is a non-trivial
variation of the state-of-the-art codes, demonstrating that deep
learning is a powerful tool for deriving a new analytical communi-
cation scheme for challenging communication scenarios. Finally,
we demonstrate the over-the-air performance of our neural codes
by building a wireless testbed that consists of two separate N200
USRPs operating as the transmitter and the receiver. To the
best of our knowledge, this is the first over-the-air hardware
implementation of neural codes for interactive channels.

Index Terms—Deep learning for channel coding, channels with
feedback, active feedback, software-defined radios, interpretable
machine learning.

I. INTRODUCTION

A
CRITICAL aspect of reliable communication involves

designing codes that allow transmissions to be robustly

and computationally efficiently decoded under noisy condi-

tions. Advances in the design of reliable and efficient codes

have been driven by information, communication, and cod-

ing theories, featuring several codes such as Turbo, Low
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Density Parity Codes (LDPC), and Polar codes [1], [2] that are

near optimal for the canonical point-to-point Additive White

Gaussian Noise (AWGN) channels.

However, designing reliable codes becomes much more

challenging when the channel deviates from AWGN channels.

An important such scenario is the channels with feedback,

where the transmitter and the receiver can cooperate via feed-

back to communicate a message reliably. On the practical

front, modern communication relies on the Automatic Repeat

reQuest (ARQ) and the hybrid ARQ, where the transmitter re-

transmits the entire message block or transmits a pre-assigned

message block upon receiving a repeat request. On the theoret-

ical front, in 1956 [3], Shannon initiated the study of channels

with noiseless output feedback, where the received value is

fed back to the transmitter with a unit-step delay, and showed

that the output feedback significantly improves reliability [4].

Shalkwijk and Kailath provided a linear encoding scheme,

referred to as the SK scheme, which achieves such improved

reliability, leading to a doubly exponential error exponent, for

finite-block length settings [4].

Despite several theoretical studies on channels with feed-

back [4], [5], [6], [7], [8], [9], [10], there are many important

open problems. First, the optimal coding scheme for chan-

nels with noiseless output feedback is still unknown. In [10],

Polyanskiy et al. introduced an encoding scheme, referred to as

the PPV scheme, for communicating a single bit over channels

with noiseless output feedback. which is shown to be asymp-

totically optimal, achieves zero error probability with minimal

energy requirement, and outperforms the SK scheme. Whether

the PPV scheme is optimal for communicating a single bit over

finite rounds of communications, however, is an open problem.

Furthermore, the elegant theory and results from the SK

and PPV schemes break if there is noise in the output feed-

back channel. As the noise in the feedback channel prohibits

the encoder and the decoder from perfectly synchronizing,

an estimation error accumulates over time, which leads to

poor performance. Kim et al. showed that linear codes that

utilize the noisy output feedback could not achieve a posi-

tive rate of communication [8]. For non-asymptotic settings,

in [7], Chance and Love proposed a linear coding scheme that

improves upon the SK scheme for channels with noisy output

feedback, which is later further improved by Mishra et al. [11].

Nevertheless, the optimal coding scheme for channels with

noisy feedback is still unknown.

More recently, with the advances in deep learning, it has

been shown that coding schemes can be learned in a data-

driven manner. Neural network-based nonlinear codes, called
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Deepcode, were introduced in [12]; they are shown to outper-

form both the Chance-Love and Mishra-Vasal-Kim schemes

for the AWGN channel with noisy output feedback. This suc-

cess is attributed to the deep learning tools which enable

efficient search over nonlinear codes.

Several works have generalized Deepcode by using dif-

ferent neural architectures, combined with novel training

methodologies. Deep Extended Feedback (DEF) codes and

Deep SNR-Robust Feedback (DRF) codes were introduced

in [13] and [14] respectively, both of which build upon the

Deepcode architecture and achieve improved reliability via

different training procedures. In [15], the authors introduce

AttentionCode, a new class of deep learning based feedback

codes designed by a variation of the transformer architecture.

As a follow-up, [16] presents the Generalized Block Attention

Feedback (GBAF) code, a generalization of AttentionCode

that addresses some limitations of existing neural designs, such

as communication overhead and a limited set of feasible rates.

Despite the success of neural codes, there are three impor-

tant open problems of significant theoretical and practical

importance. First, the underlying channel model considered

in [12], [13], [14], [15], [16] is the channel with noisy out-

put feedback, where the receiver passively sends the received

output to the transmitter. In other words, the receiver is not

allowed to encode its received values into a feedback signal.

In [17], Ben-Yishai and Shayevitz showed that the reliability

can be noticeably improved by letting the receiver encode its

feedback signal. Their proposed feedback encoding scheme,

referred to as the Modulo-SK scheme, relies on the modulo-

lattice operation, which is piecewise linear. However, learning

a nonlinear feedback encoder along with the channel encoder

and decoder is more challenging than learning only the channel

encoder and decoder. In [12], this challenge, along with some

negative results, is explicitly noted; encoding the feedback sig-

nal in the Deepcode architecture of [12] led to a minimal gain

in reliability.

Second, the interpretation of neural codes remains a chal-

lenging open problem. Although a first-order analysis of

learned codes is provided in [12], deriving an analytical

approximation of learned codes is a widely open problem.

Recently, there has been an analytical analysis of deep-learned

codes for the point-to-point channels without feedback [18].

However, there is very little understanding and interpretation

of deep-learned codes for channels with and without feedback

besides this work.

Last, the channel model considered in the literature focuses

on the Additive White Gaussian Noise (AWGN) channel.

However, the practical channels are not always AWGN, and

verifying the performance of neural codes in the over-the-air

wireless environment is a necessary precursor for deploying

neural codes in practical systems. However, most work on

deep-learned codes focuses on the synthetic channels [12],

[13], [14], [15], [16], [19], [20], [21].

In this paper, to address all three challenges mentioned

above, we (a) introduce a framework, which we call ActiveFB,

to learn nonlinear coding schemes for channels with active

feedback, (b) derive an analytical approximation for the neu-

ral codes and provide the interpretation analysis, and (c)

demonstrate them in the fading channels and over-the-air

system. We specifically focus on communicating a short

message sequence, which is a problem setup introduced

and studied by Polyanskiy et al. [10], instead of a long

message sequence as in [12], [13], [14]. Surprisingly, we

show that our neural codes for a 2-bit message sequence

outperform the neural codes learned for a 50-bit message

sequence in [12], [13], [14]. Furthermore, we run systematic

interpretation analysis and derive a precise analytical approx-

imation of the learned codes, which could not be done for

longer-blocklength codes in [12], [13], [14]. We show that

the analytical approximation is a variation of the PPV scheme

in [10] and provide an interpretation of how the two schemes

are different. Our main contributions are as follows.

• Learning framework for channels with active feedback:

We introduce ActiveFB,1 a two-layer Recurrent Neural

Network (RNN) encoder coupled with a two-layer RNN

feedback encoder and a decoder for communicating a

short message bit sequence over channels with active

feedback. We empirically show that ActiveFB outper-

forms all the state-of-the-art codes such as the PPV

scheme, SK scheme, Modulo-SK scheme, and neural

codes for channels with noisy feedback as well as chan-

nels with noiseless feedback (Sections III, V-B, IV-C).

In addition, a comparison against non-feedback schemes

can be found in the Deepcode work [12].

• Analytical approximation of learned codes for noiseless

feedback: For channels with noiseless feedback, we show

that our ActiveFB code can be closely approximated

as a variation of the PPV scheme, i.e., we establish

a new state-of-the-art analytical scheme for channels

with noiseless feedback. In addition, we show that the

PPV scheme, which has been mainly considered for

asymptotic settings in [10], can be further optimized by

controlling the power of each transmission. We provide

a dynamic programming approach for this optimization

(Section IV-D).

• Analytical approximation of learned codes for noisy feed-

back: For channels with noisy feedback, we show that the

ActiveFB scheme can still be approximated as a PPV

scheme. Compared to the Modulo-SK scheme, which

encodes the feedback in a piecewise linear manner, we

observe that ActiveFB encodes the feedback in a non-

linear manner which can be modeled using a PPV-like

scheme (Section V-C).

• Over-the-air demonstration of ActiveFB: We also demon-

strate the superior performance of our neural network-

based schemes by implementing them on an end-to-end

communication system on an over-the-air channel in real-

time. This is the first demonstration of active feedback

coding schemes on a dynamic fading channel, to the best

of our knowledge (Section VI).

II. PROBLEM FORMULATION

We consider AWGN channels with active feedback depicted

in Fig. 1. The forward channel is modeled as an AWGN chan-

nel, i.e., yi = xi + zi, where zi ∼ N (0, σ 2) denotes the

Gaussian noise. Following each ith forward transmission, the

1Source codes are available at https://github.com/karlchahine/ActiveFB.
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Fig. 1. (Top) Channels with active feedback. We jointly learn the encoder,
the decoder, and the feedback encoder. (Bottom) We design a neural code,
labeled as ActiveFB, which outperforms the state-of-the-art coding scheme
for active feedback channels, labeled as Modulo-SK, and the state-of-the-art
neural coding scheme for passive feedback channels, labeled as DRF code
for channels with noisy feedback. K denotes the number of message bits to
communicate.

feedback encoder maps its received values yi = (y1, . . . , yi)

to a feedback symbol ci which is fed back to the transmitter

with one step delay. The feedback channel is also modeled as

an AWGN channel, i.e., c̃i = ci + wi, where wi ∼ N (0, σ 2
f )

denotes the Gaussian noise.

We assume that the encoder wishes to communicate K

binary messages b ∈ {0, 1}K over N rounds of transmissions.

We mainly focus on communicating one bit, i.e., K = 1. The

encoder function is inherently causal and given as xi+1 =

fenc(b, c̃i) for i = 1, 2, . . . , N − 1. The feedback encoder

function is also causal, where ci = ffbenc(y
i). The decoder

function is non-causal; after N rounds of communications, the

decoder estimates the message based on its received sequence

as b̂ = fdec(y
n). The power constraints are given as E[x2] ≤ 1

and E[c2] ≤ 1, where the expectations are over both the uni-

form distribution of the bits generated and the randomness in

the Gaussian noise.

Our goal throughout this paper is to design (fenc, ffbenc, fdec)

which jointly minimizes the probability of error

Pe := P{b̂ �= b}. Designing codes for channels with active

feedback is a challenging task as it involves the joint design

of the feedback encoder as well as the encoder and the

decoder. In the following section, we introduce the ActiveFB

framework, where we model the encoder, the feedback

encoder, and the decoder as RNNs, and learn them jointly,

the results of which are analyzed, interpreted, and compared

against existing codes in Sections IV and V.

III. ACTIVEFB: JOINT CODING AND

FEEDBACK CODING VIA RNN

For concreteness, we consider the transmission of a

single bit b ∈ {0, 1} over N = 3 rounds of interactive

communications. As feedback systems are sequential by

nature, we model the channel encoder, the feedback encoder,

and the channel decoder as RNNs, as illustrated in Fig. 2.

A. Architecture

Our ActiveFB framework consists of the channel encoder,

the feedback encoder, and the channel decoder parametrized

by RNNs, reflecting the sequential nature of the feedback.

While the RNN parametrization is a natural fit, we empirically

observe that the architectural choices have a negligibe impact

on the reliability. For example, RNNs with 50 hidden units and

RNNs with 10 hidden units lead to very similar reliability. Our

experiments are simulated using 50 hidden units. Moreover,

we observe that the appropriate power allocation is crucial, as

we explain in the following.

Encoding: We model the channel encoder as an RNN, which

takes the newly available feedback as input in a causal manner.

As illustrated in Fig. 2, at every time-step i, i ∈ {1, 2, 3}, the

input to the RNN encoder consists of the message bit b and all

the feedbacks from the previous steps 1, . . . , i − 1. At times

i = 1 and i = 2, we pad the missing entries with 0.5. The

encoder’s output x̃i is passed through a power constraint block

xi = h(x̃i).

Power allocation: The power constraint block h(.) operates

in two successive stages.

(1) Power normalization: In the first stage, we estimate the

first and second moments of each batch of size J. More specif-

ically, at time i and for training example j, x
j
i = (x̃

j
i − µi)/σi,

where µi = 1
J

∑J
j=1 x̃

j
i and σi =

√

1
J

∑J
j=1(x̃

j
i − µi)2 are the

batch mean and standard deviation, respectively. This results

in having E[xi] = 0 and E[x2
i ] = 1, satisfying power con-

straints in wireless systems. During the training phase, µi and

σi are estimated from each batch. On the other hand, during

the testing phase, µi and σi are pre-computed with multiple

batches.

(2) Power scaling: In the second stage, we introduce

trainable weights p1, p2, and p3, which control the power

allocated to x1, x2, and x3, respectively. The weights

are updated throughout the training such that the average

power should satisfy
∑3

i=1 p2
i /3 ≤ 1. As shown in Fig. 2

(Bottom), the trainable power scaling leads to reliability

improvement.

Feedback encoding and channel decoding: The receiver per-

forms both the feedback encoding and channel decoding via

an RNN, which takes yi at time i for i = 1, 2, 3, as shown

in Fig. 2. For time-steps i = 1 and i = 2, the decoder RNN

generates a coded symbol which then goes through the power

constraint block h(.). The power-constrained coded bit ci is

then transmitted to the encoder through a feedback channel;

the transmitter receives c̃i = ci + wi. At time i = 3, the

decoder generates b̂, the final estimate of the message b. In

our experiments, we tried having two separate RNNs for the

feedback encoding and channel decoding, and having a single

RNN for both the feedback encoding and channel decoding

(as depicted in Fig. 2 (Top)). We observed that having a sin-

gle RNN led to a better performance. We therefore show the

results of adopting a single RNN.
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Fig. 2. (Top) Neural architecture of ActiveFB. We model the encoder, the
feedback encoder, and the decoder as RNNs. We also entangle the feedback
encoder and the decoder into one RNN. (Bottom) Power allocation is critical
in achieving the high reliability of ActiveFB.

B. Training

We train the channel encoder, the feedback encoder, and

the channel decoder jointly under AWGN channels with noisy

feedback so that the probability of error in recovering the

information bit b is minimized. Both the encoder and the

decoder RNNs are jointly trained using binary cross-entropy as

the loss function with a batch size 500 via an Adam optimizer.

We also use a decaying learning rate and gradient clipping; we

reduce the learning rate by 10 times after training with 106

examples, starting from 0.01. We train and test at the same

Signal to Noise Ratio (SNR) defined as SNR = −10 log10(σ
2),

where σ 2 is the noise variance. As illustrated in the follow-

ing sections, we will evaluate ActiveFB over a range of SNR

points. The forward and feedback channels do not necessarily

share the same SNR value.

We also note that the architecture of ActiveFB depicted

in Fig. 2 (Top) and our training methodology can be eas-

ily specialized to channels with noiseless feedback. The only

change we make for channels with noiseless feedback is that

the feedback noise samples w1 and w2 are set to 0. In the

following sections, we run a set of experiments to describe

the performance of ActiveFB under various settings, including

both channels with noisy feedback and channels with noiseless

feedback.

IV. CHANNELS WITH NOISELESS FEEDBACK

As a precursor to learning codes for channels with noisy

feedback, we begin our experiments and analysis for channels

with noiseless feedback. Our ActiveFB framework is directly

applicable to channels with noiseless feedback, for which the

optimal coding scheme is not known to date.

In Section IV-A, we provide an overview of two exist-

ing coding schemes for channels with noiseless feedback,

namely, the SK scheme and the PPV scheme. The SK scheme

is a celebrated linear coding scheme which minimizes the

mean square error in communicating a discrete message,

and the PPV scheme is the state-of-the-art coding scheme

for communicating a single bit. In Section IV-B, we show

that we can improve the PPV scheme by introducing a

dynamic program-based power optimization. We then show

in Section IV-C that ActiveFB learns a code that outperforms

both the power-optimized PPV scheme and the SK scheme. We

provide an analytical approximation of the ActiveFB codes and

interpretation in Section IV-D, where we show that ActiveFB

codes are a non-trivial variation of the PPV scheme.

A. Existing Coding Schemes

Shalkwijk-Kailath (SK) scheme: Shalkwijk and Kailath

introduced a celebrated linear communication scheme for

channels with noiseless feedback [4]. The transmitter (Tx)

first maps the message b ∈ {0, 1}K to the real-valued vari-

able θ using a Pulse Amplitude Modulation (PAM). In the

first round, it sends a scaled version of θ satisfying the power

constraint P. In subsequent rounds, for example, at round i,

the receiver (Rx) maintains an estimate θ̂i of θ given all the

observations it has and feeds its observation back to Tx. Tx

then computes the estimation error εi = θ̂i − θ and sends a

power-scaled version of εi to Rx so that the Rx can correct the

error. After a fixed number of rounds, Rx decodes the message

using a minimum distance rule. Theoretically, the SK scheme

relies on exactly noiseless feedback and does not extend to

channels with an even arbitrarily small amount of noise in

the feedback [4], [6]. An extension of SK to noisy settings is

described in Section V-A.

Polyanskiy, Poor and Verdú (PPV) scheme: Polyanskiy,

Poor and Verdú introduced nonlinear coding schemes for

communicating a single bit over channels with noiseless feed-

back [10]. The encoder uses Log Likelihood Ratio (LLR) it

receives as feedback at the end of each round to compute the

error in the estimate of the transmitted bit at the receiver.

It then scales the error value appropriately to satisfy the

power constraint and sends it in the subsequent transmission.

This proposed scheme was shown to achieve the minimum

energy per bit, i.e., the probability of error approaches zero as

the number of transmission rounds goes to infinity with the

minimum energy spent per bit.

More specifically, to communicate a binary message W ∈

{−1, 1}, where W = 2b − 1 for b ∈ {0, 1}, at the ith round,

the encoder uses the function

xi

(

W, yi−1
)

=
Wdi

1 + eWSi−1
, (1)

where Si−1 = log
P[W=+1|yi−1]

P[W=−1|yi−1]
denotes the LLR for i =

1, 2, . . . , N and yi−1 are the noisy received symbols at the

receiver up till time i − 1, i.e., yi−1 = (y1, . . . , yi−1). The

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2023 at 22:04:02 UTC from IEEE Xplore.  Restrictions apply. 



578 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 3, SEPTEMBER 2022

scaling factor di denotes the power scaling constant for the ith

round of transmission. After N rounds, the receiver recovers

the message Ŵ based on the final LLR SN .

B. Power Optimization for the PPV Scheme

The PPV scheme is shown to achieve the zero error proba-

bility with a minimal power as the number of rounds N → ∞

with a constant power scaling factor di = d. However, for

a non-asymptotic regime where N < ∞, as observed in

ActiveFB codes, choosing the right set of power scaling fac-

tors di’s is important. To this end, we build on the PPV scheme

to address this shortcoming. Specifically, we formulate the

power optimization problem and provide a dynamic program

algorithm that numerically computes the optimal set of di’s

according to a sum power constraint. We show that this mod-

ification leads to improved reliability up to 1dB as shown

in Fig. 3.

Numerical optimization and dynamic program: We define

the objective for solving for the optimal parameters di’s as

d̃1, . . . , d̃N = arg min
d1:N

PN
e ,

where PN
e denotes the error after N rounds of transmissions

obtained when the encoder follows (1).

To solve the optimization formulated above, we propose a

dynamic program that expresses PN
e in terms of di and the

statistics of LLR Si−1, i = N . . . 1 backward recursively, and

solves for the optimal di at each step for any given statistics

of Si−1 with sum power constraint. Specifically, we show the

following two theorems to solve the optimization.

Theorem 1: The probability of error at the end of N trans-

missions, PN
e , can be expressed as a recursion function in terms

of the statistics of LLR, µi and σi, given by

PN
e = 1 − Q

(

−
µN

σN

)

, (2)

where µN and σN are described recursively in terms of di as

µi = µi−1 +
d2

i

2σ 2
, (3)

σ 2
i = σ 2

i−1 +

(

di

σ 2

)2

, (4)

and Q(·) is the complementary error function.

Proof: Without loss of generality, we can express the prob-

ability of error at the end of N rounds as PN
e = Pr{SN <

0|W = 1} (due to symmetry).

We also note that given W = 1, the update to the value of

LLR Si can be expressed as

Si = Si−1 +
1

2σ 2
d2

i +
1

σ 2
dizi, (5)

where zi ∼ N
[

0, σ 2
]

is the forward noise in the ith trans-

mission. It is evident from the recursive equation in (5) that

the random variable SN is just a sum of N Gaussian random

variables scaled and shifted depending on noise variances and

parameters d1:N . Therefore, the value of PN
e at the end of N

transmissions can be expressed as in (2).

Fig. 3. (Top) ActiveFB outperforms all the baselines for channels with
noiseless feedback for N = 3 rounds of communications. (Bottom) ActiveFB
outperforms the baselines for channels with noiseless feedback for N = 6
rounds of communications.

We then obtain an updated equation for the statistics
{

µi, σ
2
i

}

as shown in (3) and (4). Using (2), (3), and (4),

we can express PN
e as a backward recursion.

Next, we need to constraint di to satisfy the sum power

constraint. Let EN
i denote the unallocated power for remaining

transmissions i till N. Then, di is bounded such that

0 ≤ d2
i

(

µ′
i
2
+ σ ′

i
2
)

≤ EN
i , (6)

where µ′
i and σ ′

i are the mean and variance of 1

1+eSi−1
given

Si−1 ∼ N
(

µi−1, σ
2
i−1

)

.

Finally, we have the following optimization problem at any

round i given as

d̃i

(

µi−1, σi−1, EN
i

)

= arg min
di

1 − Q

⎛

⎜

⎜

⎝

−
µi−1 + di

2σ 2
√

σi−1 +
(

di

σ 2

)2

⎞

⎟

⎟

⎠

,

along with the constraint in (6). We solve this optimization

numerically to obtain the set of optimal parameters d̃1:N .

We have summarized the steps in the dynamic program in

Algorithm 1.

The algorithm is used to compute the set of optimal param-

eters di’s, which can be used in the encoding function in (1).

In Fig. 3, we plot the Bit Error Rate (BER) across different

forward SNRs for noiseless feedback channel and compare it

with other algorithms. We see that the PPV scheme with the

optimized d parameters outperforms the original PPV scheme

which assumed a constant d.
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Algorithm 1: Proposed DP to Optimize di in the PPV

Scheme

Input: Blocklength: N, Sum power: EN
1

Output: Parameters: d̃i, i = 1 · · · N

for i = N, . . . , 2 do

for any µi−1, σi−1 and EN
i do

µi = µi−1 +
d2

i

2σ 2 from (3)

σ 2
i = σ 2

i−1 +
(

di

σ 2

)2
from (4)

if i == N then

d̃i = argmin
di

1 − Q
(

−µi

σi

)

PN+1−i
e

(

µi−1, σi−1, EN
i

)

= 1 − Q
(

−µi

σi

)

at

di = d̃i

end

else

d̃i = argmin
di

PN−i
e

(

µi, σi, EN
i

)

PN+1−i
e

(

µi−1, σi−1, EN
i

)

= PN−i
e

(

µi, σi, EN
i

)

at

di = d̃i

end

end

end

µ1 =
d2

1

2σ 2 , σ 2
1 =

(

d1

σ 2

)2

d̃1 = argmin
d1

PN−1
e

(

µ1, σ1, EN
1

)

for i = 2, . . . , N do

µi = µi−1 +
d2

i

2σ 2 , σ 2
i = σ 2

i−1 +
(

di

σ 2

)2

µ′
i, σ

′
i = ψ(µi−1, σi−1)

EN
i = EN

i−1 − d2
i

(

µ′2 + σ ′2
)

d̃i = d̄
(

µi, σi, EN
i

)

end

Now we are ready to provide numerical results for

ActiveFB. In the next section, we present the reliability of

ActiveFB and compare it against the power-optimized PPV

and SK schemes.

C. ActiveFB: Numerical Results

We analyze the performance of ActiveFB under noiseless

feedback. In Fig. 3 (Top and bottom), we plot the BER vs.

the forward channel Signal to Noise Ratio (SNR) for high

rate (N = 3) and low rate (N = 6) for the following:

• ActiveFB K=1: This is our neural model described

in Section III, where K is the number of transmitted

information bits. Here, we transmit a single bit b (K = 1).

• SK scheme: We plot the BER of the celebrated SK scheme

introduced in Section IV-A.

• PPV scheme with constant d: We plot the BER of the PPV

scheme introduced in Section IV-A but with a constant

power scaling factor di = d for all the transmissions to

meet the sum power constraint.

• PPV scheme power optimized: We plot the BER of the

PPV scheme after power optimization using a dynamic

programming algorithm. The details of the work are

presented in Section IV-B.

We can see that the ActiveFB scheme outperforms both the

power-optimized PPV and SK schemes for a wide range of

forward SNR values for the noiseless feedback channel.

D. Interpretation of ActiveFB

In this section, we provide an interpretation analysis for

ActiveFB. The interpretability can have various meanings. We

focus on two aspects of interpretability: (a) providing a simple

expression for the encoding and decoding functions and (b)

being able to explain the difference between the neural codes

and existing codes, and potentially provide an insight on how

one can modify existing codes to improve the reliability based

on neural results.

To this end, we first derive analytical schemes that approx-

imate ActiveFB by studying the input-output relationships of

the codes produced by the RNN. We consider the encoded

bits as a function of the intended message and the received

feedback and obtain an analytical scheme by fitting it to the

already existing PPV scheme and its variant. By doing so, we

obtain an insight into how one could alter the PPV scheme to

further improve its reliability.

1) ActiveFB+: Derived Scheme From ActiveFB With a PPV

Variation as a Backbone: We observe that the ActiveFB code

resembles the PPV scheme, which motivates us to approximate

the trained codes using the PPV scheme. In particular, we

consider the following functional templates based on the PPV

scheme to approximate ActiveFB codes.

• PPV-like scheme:

xi

(

W, ci−1
)

=
Wdi

1 + ea1ci−1
,

where a1 ∈ R
i−1 represents the vector that linearly com-

bines the received feedback ci−1 (For passive feedback,

ci−1 = Y i−1). Note that this parameterization resembles

the PPV scheme in (1).

• Modified PPV scheme:

xi

(

W, ci−1
)

=
Wdi

1 + ea1ci−1+a2
,

where a1 denotes the vector that linearly combines the

received feedback ci−1, and a2 denotes the bias.

With the two functional parameterizations, we fit the param-

eters a1 (and a2) for the PPV-like and modified PPV schemes

for 0 dB forward SNR.

Fitting with the PPV-like scheme: The encoder output xi for

different rounds of transmission are expressed as x1 = −1.1W,

x2 = −3.4W

1+e1.7Wc1
, and x3 = 5.4W

1+e1.462W(2c1−c2) , where W = 2b − 1

with b as the original bit and c1 and c2 as the feedback received

after the first and second rounds of transmissions, respectively.

The final approximated decoding function is approximated as

Ŵ = −15 + 30

1+e6c1−3c2+c3
, where the final estimated bit b̂ = 1

if Ŵ > 0 and 0 otherwise.

Fitting with the Modified PPV scheme: The fitting to the

PPV scheme optimizes over the power allocation, which is

the only degree of freedom available. However, by introduc-

ing a bias in the exponent in the modified PPV scheme, there
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Fig. 4. We observe that ActiveFB outperforms the power-optimized PPV
scheme. Moreover, the fitted model of the modified PPV scheme outperforms
the fitted model of the PPV scheme, both of which are more reliable than the
power-optimized PPV scheme. The blocklength was assumed to be N = 3,
and the sum power was assumed as 0.5 dB. A forward SNR of 0 dB was
considered for the fitting.

is a performance enhancement attributed to the extra flexi-

bility in encoding the transmitted symbol as a function of

the feedback. The transmissions assuming a modified PPV-

like encoding function, can be expressed as x1 = −1.1W,

x2 = −3.9W

1+e1.5Wc1+0.3 , and x3 = 9.2W

1+eW(2c1−c2)+0.9
. The final decod-

ing function is approximated as Ŵ = −15+ 30

1+e6c1−3c2+c3
. The

fitting model with a1 and a2 fits the RNN data more closely

than the corresponding PPV scheme with just a1.

In Fig. 4, we plot the BER of the different fitted models

against the forward SNR and are compared against a baseline

of the optimized PPV scheme and the RNN. We consider a

noiseless feedback regime with finite blocklength N = 3 and

restrict the sum power to 0.5 dB. As mentioned above, the

fitting was done with data collected from RNN at 0 dB but was

used to analyze the performance for the range of SNR. We see

that the performance of the fitted models is an improvement

over the baseline and is close to the results obtained for RNN,

albeit with reduced complexities.

2) Comparison of ActiveFB vs. PPV Scheme: The PPV-like

schemes that we consider for fitting are more general than the

PPV scheme that was proposed in [10]. The basic assumption

in the PPV scheme is that the difference in the transmitted

symbols for intended bits b = 0 or 1, when the same feedback

is received, is given by the parameter di, i.e.,

xi

(

+1|ci
)

− xi

(

−1|ci
)

= di. (7)

This is assumed constant for the state-of-the-art PPV scheme.

That is, the difference term does not depend on the feedback

symbols ci. However, we observe from the analytical approx-

imation and the constellation plots that ActiveFB does not

maintain a fixed distance between the encoded symbols as a

function of the feedback. The distance between the symbols

increases when the error is higher, i.e., more power is allocated

for the encoded symbol if it is farther from the true value. It

also means the power is suppressed for the symbol if it is

close to the true value. Hence, we introduce variation in di

as a function of feedback and modify the underlying function

structure by introducing a bias in the exponent. This implies

that the distance between the encoded symbols for given feed-

back for b = 0, 1 is no longer a constant. This provides further

flexibility in modulating the power sent after each feedback.

V. CODING FOR CHANNELS WITH NOISY FEEDBACK

We now consider channels with noisy feedback, where the

feedback encoding is crucial for combating the noise in the

feedback channel. In Section V-A, we provide a brief overview

of existing coding schemes, such as the Modulo-SK scheme

and the DRF code, which serve as baselines for ActiveFB in

Section V-B. We show that ActiveFB outperforms both base-

lines. In Section V-C, we provide an analytical approximation

of the ActiveFB codes and interpretation, where we explain the

nonlinearity of ActiveFB compared to the piecewise-linearity

of the Modulo-SK scheme.

A. Existing Coding Schemes

Linear schemes for channels with passive feedback: Chance

and Love in [7] and Mishra et al. [11] proposed linear schemes

for channels with noisy output feedback. Chance and Love

provided a concatenated code with the inner code as a linear

encoding scheme that performs better than the SK scheme.

Authors of [11] provided a dynamic program to solve for the

linear sequential codes in closed-form.

Modulo-SK scheme for channels with active feedback: Ben-

Yishai and Shayevitz in [17] generalized the SK scheme to

active noisy feedback settings, where both Tx and Rx are

allowed to employ coding and exchange signals on the fly.

This should be distinguished from passive feedback, where no

coding is allowed over the feedback channel. The previously

described SK and PPV schemes belong to the passive feedback

category.

A key observation in Modulo-SK is that the transmission

of θ̂n over the feedback link (from Rx to Tx) can be regarded

as a Joint Source Channel Coding (JSCC) problem with side

information θ . More explicitly, at round n, Rx holds its esti-

mate θ̂n and wants to communicate it with Tx, who knows θ

and can use it as side information. To exploit this, the authors

employ a lattice-based JSCC scheme with side information

based on a more general scheme by Kochman and Zamir [22].

More precisely, Tx encodes its message into a scalar θ using

PAM. In subsequent rounds, Rx computes a linear estimate of

θ and feeds back an exponentially amplified version of this

estimate, modulo a fixed interval. The modulo operation makes

use of the fact that Tx knows θ and facilitates the essential

“zoom-in” amplification without exceeding the power limit. In

turn, Tx employs a suitable modulo computation and obtains

the estimation error, corrupted by excess additive noise. This

quantity is then properly scaled and sent over the feedforward

channel to Rx. After a fixed number of rounds, Rx decodes

the message using a minimum distance rule.

The Modulo-SK scheme is shown to outperform the SK

scheme by a large margin, which demonstrates the advantage

of utilizing the side information at the transmitter in com-

pressing the receiver’s outputs. In Section III, we show that by

jointly designing (learning) the encoder, the decoder, and the

feedback encoder, we can learn nonlinear feedback encoding
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schemes that outperform the Modulo-SK scheme for commu-

nicating a single bit over channels with active feedback. The

modulo operation in the Modulo-SK scheme, on the other

hand, is piecewise linear.

Neural codes for channels with passive feedback: In [12],

the authors present Deepcode, the first family of nonlinear

codes obtained via deep learning for both noiseless and noisy

passive feedback channels. They demonstrate a new family of

RNN-driven nonlinear neural codes, which outperform the SK

scheme. Deepcode progresses in two phases. In the first phase,

K information bits b are sent raw (uncoded) over the AWGN

channel (K = 50 is considered). In the second phase, 2K

coded bits are generated based on the information bits b and

(delayed) output feedback and sequentially transmitted. As for

decoding, the authors propose a decoding scheme using two

layers of bidirectional Gated Recurrent Units (GRU). Based

on the received sequence of length 3K, the decoder estimates

K information bits b̂. While Deepcode outperforms the exist-

ing linear codes for channels with passive feedback, extending

the Deepcode framework to channels with active feedback

has been an open problem. In [12], the authors note that

designing codes for this setting is challenging as it involves

designing two encoders and one decoder jointly in a sequential

manner. More recently, [13] and [14] extended the Deepcode

framework, improving its performance. In [13], the authors

introduce Deep Extended Feedback Code (DEF code), a gen-

eralization of Deepcode in two ways: (a) parity symbols are

generated over longer time intervals in order to provide bet-

ter error correction capability; and (b) high-order modulation

formats are deployed to achieve increased spectral efficiency.

In [14], the authors propose Deep SNR-Robust Feedback Code

(DRF Code). The proposed code introduces two novelties over

the previously proposed DNN-based codes: (a) An SNR-aware

attention mechanism at the decoder which enables the reliable

application of the same trained network over a wide range

of SNR values; (b) A curriculum training with batch-size

scheduling is used to speed up and stabilize training. DRF

codes outperformed both Deepcode and DEF codes.

In the following, we show that by allowing the receiver to

actively encode its feedback, ActiveFB (for K = 2 information

bits) outperforms all the baselines, including DRF codes (for

K = 50 information bits).

B. ActiveFB: Numerical Results

First, we evaluate the performance of ActiveFB under noisy

feedback for different rates, rate 1/3 with N = 3 and rate 1/6

with N = 6 transmissions, by communicating a single bit

b ∈ {0, 1}, the results of which are shown in Fig. 5 (Top and

Bottom respectively). We observe that our model outperforms

the baselines in both cases.

The following schemes are included as baselines.

• ActiveFB K=1: This is our neural model described

in Section III, where K is the number of transmitted

information bits. In this case, we transmit a single bit

b (K = 1).

• ActiveFB K=2: Similar to the above, this is our neural

model described in Section III. The difference is that we

Fig. 5. ActiveFB outperforms the baselines for channels with noisy feed-
back for N = 3 rounds of communications (Top) and N = 6 rounds of
communications (Bottom). The forward SNR is fixed to 0 dB.

now transmit a vector b ∈ {0, 1}2, since K = 2. This

time, we transmit a real symbol xi every transmission i

for a total of 6 transmissions to keep the rate as 1/3.

• Modulo-SK K=1 [17]: We consider Modulo-SK

(described in Section V-A) when K = 1.

• Modulo-SK K=13 [17]: We also consider Modulo-SK for

K = 13.

• DRF Code [14]: We include DRF Code for K = 50

information bits described in Section V-A.

From Fig. 5, we conclude that (a) we outperform all the

baselines when the feedback SNR is moderate and (b) trans-

mitting 2 bits instead of 1 results in a noticeable gain. It

is interesting to note that the ActiveFB scheme for K = 2

outperforms DRF Code (for K = 50) and the Modulo-SK

scheme for K = 1. Compared to the Modulo-SK scheme for

K = 13, ActiveFB for K = 2 is comparable but is more

reliable at low feedback SNR regimes. On the other hand,

when feedback SNR is high, Modulo-SK with a sufficiently

large K is highly reliable. We also note that generalizing

ActiveFB to K > 2 is not straightforward. Neural coding for

active feedback channels for a large K is an interesting future

direction.

C. Interpretation of ActiveFB

In the previous section, we showed that ActiveFB outper-

forms the Modulo-SK scheme by a huge margin, as shown

in Fig. 5. The interpretation of the generated codes can pro-

vide insights into the encoding process and help us formulate

analytical encoding schemes that are less complex and easy to

interpret.
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Fig. 6. Constellation plot showing the feedback encoder output at the end
of round 1.

1) ActiveFB+: Derived Scheme From ActiveFB: We con-

sider the encoder data from communication scheme with

N = 3, forward SNR of 0 dB and several feedback SNRs

to interpret the correlation between the input and the output

data. We curve-fit the input data to the output data for each

transmission round to get an approximate analytical expres-

sion. We then substitute it for RNN and make performance

comparison.

Round 1 (Raw Bit Transmission and Likelihood Feedback):

At Round 1, we verify that the encoder’s output x1 =

K0(−2b + 1) is a BPSK mapping of bit b ∈ {0, 1} to {−1, 1}

where K0 is chosen to match the data. The decoder receives

y1 = x1 +z1 where z1 is the noise in the forward transmission.

The feedback symbol c1 = Normalize(b̂1) is obtained from

likelihood b̂1 = Pb|Y(1|y1). This can be interpreted as involv-

ing (a) the posterior likelihood b̂1 = Pb|Y(1|y1) = σ(2y1/σ
2)

and (b) the power normalization which is done by subtract-

ing the mean and dividing by the standard deviation resulting

in the constants. We show that the feedback symbol from the

decoder to the encoder can be approximated as

c1 = K1 +
K5

1 + eK6y1+K9
,

where K1, K5, K6 and K9 are chosen from the input-output

relationship of the data from the RNN.

Round 2 (Transmission of the Likelihood Error and Updated

Likelihood): Fig. 7 (Top) shows the encoder’s output x2 as a

linear function of the received noisy feedback c̃1 = c1+w1 and

color-coded by the originally transmitted bit b. The encoder

uses c̃1 to estimate the error ê1 between the bit b and the

estimated likelihood after the first transmission, ê1 = (b −

(K1c̃1 + K2)) where K1 and K2 are constants. It transmits this

error after power normalization which can be expressed as

x2 = K3 + K2ê1. The resulting fitted analytical function is

given as x2 = 1.5x1 − c̃1.

For the feedback transmission, the decoder receives y2 =

x2 + z2, i.e., a noisy version of the error ê1 in the likeli-

hood and computes a linear Minimum Mean Square Estimate

(MMSE) estimation as K1 +K2y2. Now, from Fig. 7, we infer

that the transmitted feedback is computed as a linear combi-

nation of the old likelihood b̂1 computed at the receiver at

round 1 and the new likelihood function computed given the

new information y2 available at the receiver.

Fig. 7. The plot shows the Round 2 forward transmission (Top) and the feed-
back transmission (Bottom). The fitted models (black) are termed ActiveFB+
scheme for noisy feedback.

Let b̂2 represent the likelihood of the bit b when two

symbols y1 and y2 are received, which can be expressed as

b̂2 = Pb|Y1,Y2(1|y1, y2) (8)

= P
b|b̂1,Y2

(

1|b̂1, y2

)

(9)

= σ

(

K1 + K2b̂1 + K3y2

)

, (10)

where the expression inside the sigmoid function is basically

estimating b − b̂1 from y2 and then adding b̂1 (with scaling

and shifting appropriately) in order to get

c2 = K1 + K2b̂1 + K3σ

(

K4y2 + K5b̂2

)

, (11)

which with constants can be expressed as

c2 = 1.4 − 0.3c1 −
2.8

1 + e3.2c1−2y2
.

Round 3 (Final Transmission of the Error in Likelihood and

Final Decoding): In the last round of transmission, the encoder

chooses either to send the error between the actual bit b and

the estimate of the likelihood b̂2 or send zero if the error has

no effect on the final bit error performance as a means to save

power, as is evident from the figure. The error is computed

as a PPV-like function where the output becomes zero as it

approaches 0 as the estimate at the receiver moves closer to

the actual bit that was transmitted. The analytical function is

modeled using both the previously received feedback symbols

c̃1 and c̃2. The final transmitted symbol can be expressed as

x3 = K1W + K2c̃1 + K3c̃2 +
WK5

1 + eWK6c̃1+WK7c̃2+K9
,

where Ki’s are the constants obtained from fitting and W is

the transmitted message from the first round.

Upon receiving the final transmission from the encoder, the

receiver repeats the process that was done at the previous
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Fig. 8. Final encoded symbol is shown in the top figure while the bottom
figure shows the final decoded output.

instant. It estimates the error in the likelihood from the trans-

mitted symbol and adds it to the previous likelihood estimate.

So we get one expression as

c3 = K1 + K2y1 + K3y2 + K4y3 −
K5

1 + e5.2c2−1.6y3
. (12)

The final decoding involves applying a sigmoid function on

c3 to obtain the final decoded bit. The fitting results for the

third round of transmission are plotted in Fig. 8. The colored

points denote the data obtained from the RNN plotted between

the input on the x-axis and output on the y-axis. The fitting

results are shown in black which closely resemble the relation

shown by the RNN data (Fig. 8).

Results: In Fig. 9, we plot the BER of the proposed

activeFB scheme, Modulo-SK, and the analytical scheme

obtained by fitting the learned scheme to a predetermined

function structure discussed above.

The fitting was conducted at forward SNR of 0 dB for

various feedback SNRs. The comparison shows that the fit-

ted curves, termed “Fitted”, are better than the state-of-the-art

schemes.

The significant gap between the ActiveFB and ActiveFB+

scheme was investigated by doing an ablation study where

the encoders and decoders are sequentially replaced with the

corresponding analytical model and the studying the effect on

the BER performance.

We deduce that the intermediate stage, where the entire

network except for the decoder at the final round is replaced

by their analytical counterpart, performs much better than the

case when the entire network is replaced. This implies that

the PPV-like scheme is not sufficient to describe the relation-

ship between the input and the output of the RNN for the last

stage of the transmission. This is showcased in Fig. 9 thorugh

the plot termed “Fitted*“, which shows that the performance is

much better than the case when the whole network is replaced.

Fig. 9. The plot shows the BER comparison between the origi-
nal RNN(ActiveFB), the Modulo-SK, and the fitted analytical models
(ActiveFB+) for a noisy feedback regime across different feedback SNR.
The blocklength was assumed to be N = 3, and the sum power was assumed
as 0.5 dB. “Fitted*” plot shows the intermediate state in our ablation study
where all parts except the decoder in the last round are replaced with analytical
models.

2) Comparison of ActiveFB vs. Modulo-SK: An important

interpretation to make is how ActiveFB is different from the

baseline Modulo-SK scheme. A key difference is in the non-

linear nature of the ActiveFB and the piecewise-linear nature

of the Modulo-SK scheme.

As shown in Fig. 8, the learned neural codes are nonlinear,

in contrast to the Modulo-SK codes, which are piece-wise lin-

ear codes. Based on the interpretation analysis of the learned

nonlinear neural codes, we observe that the receiver is approx-

imately sending its estimate of the log-likelihood-ratios, or

more accurately, of the probability that b = 1, and then the

transmitter creates a biased constellation based on the noisy

feedback.

VI. OVER-THE-AIR DEMONSTRATION

In the preceding sections, we developed codes for AWGN

channels with feedback and focused on the theoretical analy-

sis, deriving analytical coding schemes and building insights

based on neural results. In this section, we focus on practical

aspects, which are complementary to the theoretical analysis.

We demonstrate our ActiveFB schemes for fading channels

and in a hardware setup (software-defined radios) to study the

performance in a practical communication scenario.

A. Rician Fading Channel

As a precursor to the over-the-air experiment, we first con-

sider Rician fading channels parametrized by F and σ . A

general description of a Rician fading channel is considered

in which a channel is comprised of both a line-of-sight (LOS)

and non-line-of-sight (NLOS) component. The amplitude of

the LOS and NLOS components is dictated by F. The channel

is defined as y = hx + z, where z ∼ N (0, σ 2) and

h =

∣

∣

∣

∣

∣

√

F

(F + 1)
(1 + 1i) +

√

1

(F + 1)
hNLOS

∣

∣

∣

∣

∣

,

and hNLOS is distributed as CN (0, I).

We apply this channel model to ActiveFB (described in

Section III) and Modulo-SK (described in Section V-A). In
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Fig. 10. ActiveFB outperforms Modulo-SK for the Rician fading channel.
We considered F = 10 and set the forward SNR as 0 dB.

Fig. 10, we plot the BER vs. the feedback channel SNR,

where we fix the forward channel SNR as 0 dB for both

schemes, from which we observe that the ActiveFB outper-

forms Modulo-SK by a large margin.

B. Over-the-Air Channel

The channel encountered in practical communication

systems are not AWGN due to physical world effects like

scattering and reflections that cause unwanted fading. The

noise affecting the transmitted message is neither additive nor

Gaussian.

We can represent the received signal in an Over-the-Air

(OTA) channel setup as

y = hx + z, (13)

where y is the received value, x is the transmitted symbol, h is

the Rician channel coefficient, and z ∼ N(0, σ 2
z ) is the AWGN

noise. The channel coefficient h represents both the Line of

Sight (LOS) and the non-LOS component of the Rician fading

channel and can be characterized as h = hLOS +hNLOS, where

the line-of-sight component hLOS = µh has a constant value

µh while hNLOS ∼ N
(

0, σ 2
h

)

is a zero-mean Gaussian random

variable with variance σ 2
h .

For over-the-air channels, one can estimate the Rician chan-

nel parameter h and the noise parameter z based on the channel

realizations by estimating σ 2
z , µh and σ 2

h .

Setup: As depicted in Fig. 11, our setup consists of two

separate N200 USRPs as transmitter and receiver with anten-

nas to communicate over the air. They are kept at a distance

of around 3 meters from each other. The gain parameters are

adjusted on the boards to simulate any desired channel SNR.

The USRPs have two separate computers on the backend to

perform data generation, encoding and the decoding processes.

We implement a communication system based on the

802.11a WiFi standard [23]. We use Orthogonal Frequency

Domain Multiplexing (OFDM) modulation and demodulation

for the baseband data processing as it is well-suited for wide-

band applications and all modern practical setups use OFDM

signaling. The end-to-end OFDM setup is shown in Fig. 11.

For synchronization, we use Short Training Sequences (STS)

and the Long Training Sequences (LTS) which aid in the

determination of symbol boundaries and are used for channel

estimation and frequency offset compensation.

Fig. 11. (Top) Feedback setup showing the SDRs as Tx and Rx with the
backend computers. (Bottom) Block diagram showing the implementation to
illustrate the active feedback scheme with the over-the-air environment.

Fig. 12. Frame structures for the forward and feedback transmissions are
shown. The beginning of each frame is a preamble for synchronization, offset
correction, and channel estimation.

Frame arrangement: The frame structure for arranging the

forward and feedback data is derived from the standard as

shown in Fig. 12. We follow batch processing of the feedback

wherein the feedback of all symbols in a frame is transferred

after the entire frame’s forward transmission is completed

to ensure channels are uncorrelated. Each frame begins with

a preamble to aid in synchronization, frequency, phase off-

set corrections, and channel estimation. The details of the

preamble constituents can be found in the standard [23].

Channel Estimation: The first step in our training method-

ology is to determine the statistical parameters σ 2
z , µh, and

σ 2
h so that we can describe the channel precisely. We do a

number of captures for the forward and the feedback channel

and perform channel estimation to get a set of realizations of

the channel h and noise z. Then, we plot the histogram of

these realizations and fit it to a customized distribution with a

known mean and variance to obtain the statistics of the cap-

tured channel data. The histograms of the raw channel data

and the synthetic channel data are shown in Fig. 13. Finally,

we use the learned statistics to define the channel model and

use it in the training process.

Training: The next step is using the learned channel model

in the training of the RNN. The training procedure of the RNN

remains the same as was discussed in Section III. The trained

encoders are then used in the setup for encoding and decoding

data and the results are evaluated.

Remark 1: We approximate the statistics of the channel and

then simulate the channel in the training process instead of

including the actual over-the-air channel. This is because (a)

the online training with the over-the-air channel requires a

lot of captures which in turn would extend the time required
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Fig. 13. Histogram plot of the raw channel data and the data generated
using a custom Rician distribution captured at a particular subcarrier. It is
worth noting that the channel statistics change with frequency; therefore, this
process is done separately at each subcarrier.

Fig. 14. The plot compares the BER of our proposed scheme (ActiveFB)
and the existing schemes (PPV scheme, Modulo SK) in an over-the-air
channel when implemented on a SDR hardware setup. (Top) The figure
shows the performance in a noiseless regime. (Bottom) The figure shows the
performance in a noisy feedback regime when the forward SNR = Eb/N0 =
0 dB.

for training and (b) we cannot backpropagate through the

over-the-air channel measurement, which in turn requires the

encoder to be learned via reinforcement learning, which is

more time-consuming than the backpropagation.

C. Results

We consider both noiseless and noisy feedback regimes to

demonstrate the performance improvement over the state-of-

the-art encoding schemes. In Fig. 14 (Top), we plot BER as a

function of the forward SNR, Eb/N0, for channels with noise-

less feedback while in Fig. 14 (Bottom), we plot BER for

channels with noisy active feedback against the feedback SNR

with forward SNR set at 0 dB.

Estimating the SNR of channels accurately is a daunting

task. Therefore, we estimate the SNR per bit, i.e., Eb/N0,

by sending a random set of messages with unit power and

determining the variance of noise with N0 = E
[

(

x − yeq

)2
]

,

where yeq are the received values after equalization. This is

an approximate method to find the value for the SNR of the

transmitted bit. This is done at all the channel settings before

attempting communication to characterize the channel and to

use it as a common metric for comparison of BER across

different algorithms. We consider the PPV scheme as the base-

line for the noiseless feedback; we consider the Modulo-SK

scheme as the baseline for the noisy active feedback. In both

cases, ActiveFB clearly outperforms these baselines.

VII. CONCLUSION AND DISCUSSION

We proposed ActiveFB, a family of RNN-based coding

schemes for channels with active feedback. Here the decoder

actively encodes its received values into the feedback signal,

and the encoder uses the feedback to generate the subsequent

transmission symbols. We demonstrated the effectiveness of

the neural network technique in achieving superior reliability

over state-of-the-art schemes. ActiveFB outperforms the state-

of-the-art schemes, such as the PPV scheme for channels with

noiseless feedback and the Modulo-SK scheme for channels

with noisy feedback.

In order to compare the performance of the ActiveFB

scheme against the best analytical baselines for channels

with noiseless feedback, we developed a novel technique to

optimize the power allocation for the PPV scheme based

on dynamic programming which significantly improves the

reliability. We showed that ActiveFB still outperforms the

power-optimized PPV scheme, reflecting that ActiveFB is

different from the PPV scheme.

We demonstrated that a new scheme termed ActiveFB+,

approximated from ActiveFB as a modified version of the PPV

scheme, closely mimics the RNN-based ActiveFB scheme

and outperforms all the existing baselines both for noise-

less and noisy feedback regimes. This approximation provides

several benefits. First, we have an analytical scheme sig-

nificantly less complex than the original RNN that gives

similar performance. Besides being computationally efficient,

the analytical expression makes more sense than the RNN

parametrizations. Second, we use these analytical approxima-

tions to provide insights and interpretations of the ActiveFB

codes, e.g., explain the difference between ActiveFB and the

PPV scheme.

Finally, we also demonstrated the improved reliability of our

ActiveFB schemes by implementing them on an end-to-end

communication system with SDRs in the real-time over-the-air

environment. This is the first over-the-air hardware demonstra-

tion of neural codes for interactive channels with feedback to

the best of our knowledge.

There are several interesting open problems for future

research. We mainly focused on short blocklength regimes.

Surprisingly, ActiveFB for a very short blocklength regime

is shown to outperform the state-of-the-art baselines designed

for longer blocklengths for both channels with noisy feed-

back and channels with noiseless feedback. Whether one could
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extend ActiveFB to longer blocklength regimes is a challeng-

ing but very interesting open problem. On a related note, for

longer blocklength regimes, we conjecture that architectural

choices might be more crucial. Various architectures, such as

the transformer architecture, can be considered and compared.

For example, in [15], the authors introduce AttentionCode, a

new class of deep learning based feedback codes designed by a

variation of the transformer architecture. As a follow-up, [16]

presents the Generalized Block Attention Feedback (GBAF)

code, a generalization of AttentionCode that addresses some

limitations of existing neural designs, such as communication

overhead and a limited set of feasible rates. GBAF is shown

to outperform AttentionCode and DRF codes by a large mar-

gin as it strongly leverages the blocklength gain at the cost of

increased complexity for channels with noisy output feedback.

Generalizing the GBAF code and its variants to the active feed-

back setting and developing an analyzable code that leverages

the blocklength gain are left as very interesting open problems.

Finally, another interesting open problem to study is to charac-

terize how the approximated analytical codes vary depending

on the system parameters like the forward and feedback noise

variances.
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