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Inventing Codes for Channels With
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Abstract—Designing reliable codes for channels with feedback,
which has significant theoretical and practical importance, is one
of the long-standing open problems in coding theory. While there
are numerous prior works on analytical codes for channels with
feedback, the majority of them focus on channels with noise-
less output feedback, where the optimal coding scheme is still
unknown. For channels with noisy feedback, deriving analytical
codes becomes even more challenging, and much less is known.
Recently, it has been shown that deep learning can, in part,
address these challenges and lead to the discovery of new codes
for channels with noisy output feedback. Despite the success,
there are three important open problems: (¢) deep learning-
based codes mainly focus on the passive feedback setup, which
is shown to be worse than the active feedback setup; (b) deep
learning-based codes are hard to interpret or analyze; and (c)
they have not been successfully demonstrated in the over-the-air
channels with feedback. We address these three challenges. First,
we present a learning-based framework for designing codes for
channels with active feedback. Second, we analyze the latent fea-
tures of the learned codes to devise an analytical coding scheme.
We show that the approximated analytical code is a non-trivial
variation of the state-of-the-art codes, demonstrating that deep
learning is a powerful tool for deriving a new analytical communi-
cation scheme for challenging communication scenarios. Finally,
we demonstrate the over-the-air performance of our neural codes
by building a wireless testbed that consists of two separate N200
USRPs operating as the transmitter and the receiver. To the
best of our knowledge, this is the first over-the-air hardware
implementation of neural codes for interactive channels.

Index Terms—Deep learning for channel coding, channels with
feedback, active feedback, software-defined radios, interpretable
machine learning.

I. INTRODUCTION

CRITICAL aspect of reliable communication involves
designing codes that allow transmissions to be robustly
and computationally efficiently decoded under noisy condi-
tions. Advances in the design of reliable and efficient codes
have been driven by information, communication, and cod-
ing theories, featuring several codes such as Turbo, Low
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Density Parity Codes (LDPC), and Polar codes [1], [2] that are
near optimal for the canonical point-to-point Additive White
Gaussian Noise (AWGN) channels.

However, designing reliable codes becomes much more
challenging when the channel deviates from AWGN channels.
An important such scenario is the channels with feedback,
where the transmitter and the receiver can cooperate via feed-
back to communicate a message reliably. On the practical
front, modern communication relies on the Automatic Repeat
reQuest (ARQ) and the hybrid ARQ, where the transmitter re-
transmits the entire message block or transmits a pre-assigned
message block upon receiving a repeat request. On the theoret-
ical front, in 1956 [3], Shannon initiated the study of channels
with noiseless output feedback, where the received value is
fed back to the transmitter with a unit-step delay, and showed
that the output feedback significantly improves reliability [4].
Shalkwijk and Kailath provided a linear encoding scheme,
referred to as the SK scheme, which achieves such improved
reliability, leading to a doubly exponential error exponent, for
finite-block length settings [4].

Despite several theoretical studies on channels with feed-
back [4], [5], [6], [7], [8], [9], [10], there are many important
open problems. First, the optimal coding scheme for chan-
nels with noiseless output feedback is still unknown. In [10],
Polyanskiy et al. introduced an encoding scheme, referred to as
the PPV scheme, for communicating a single bit over channels
with noiseless output feedback. which is shown to be asymp-
totically optimal, achieves zero error probability with minimal
energy requirement, and outperforms the SK scheme. Whether
the PPV scheme is optimal for communicating a single bit over
finite rounds of communications, however, is an open problem.

Furthermore, the elegant theory and results from the SK
and PPV schemes break if there is noise in the output feed-
back channel. As the noise in the feedback channel prohibits
the encoder and the decoder from perfectly synchronizing,
an estimation error accumulates over time, which leads to
poor performance. Kim et al. showed that linear codes that
utilize the noisy output feedback could not achieve a posi-
tive rate of communication [8]. For non-asymptotic settings,
in [7], Chance and Love proposed a linear coding scheme that
improves upon the SK scheme for channels with noisy output
feedback, which is later further improved by Mishra et al. [11].
Nevertheless, the optimal coding scheme for channels with
noisy feedback is still unknown.

More recently, with the advances in deep learning, it has
been shown that coding schemes can be learned in a data-
driven manner. Neural network-based nonlinear codes, called
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Deepcode, were introduced in [12]; they are shown to outper-
form both the Chance-Love and Mishra-Vasal-Kim schemes
for the AWGN channel with noisy output feedback. This suc-
cess is attributed to the deep learning tools which enable
efficient search over nonlinear codes.

Several works have generalized Deepcode by using dif-
ferent neural architectures, combined with novel training
methodologies. Deep Extended Feedback (DEF) codes and
Deep SNR-Robust Feedback (DRF) codes were introduced
in [13] and [14] respectively, both of which build upon the
Deepcode architecture and achieve improved reliability via
different training procedures. In [15], the authors introduce
AttentionCode, a new class of deep learning based feedback
codes designed by a variation of the transformer architecture.
As a follow-up, [16] presents the Generalized Block Attention
Feedback (GBAF) code, a generalization of AttentionCode
that addresses some limitations of existing neural designs, such
as communication overhead and a limited set of feasible rates.

Despite the success of neural codes, there are three impor-
tant open problems of significant theoretical and practical
importance. First, the underlying channel model considered
in [12], [13], [14], [15], [16] is the channel with noisy out-
put feedback, where the receiver passively sends the received
output to the transmitter. In other words, the receiver is not
allowed to encode its received values into a feedback signal.
In [17], Ben-Yishai and Shayevitz showed that the reliability
can be noticeably improved by letting the receiver encode its
feedback signal. Their proposed feedback encoding scheme,
referred to as the Modulo-SK scheme, relies on the modulo-
lattice operation, which is piecewise linear. However, learning
a nonlinear feedback encoder along with the channel encoder
and decoder is more challenging than learning only the channel
encoder and decoder. In [12], this challenge, along with some
negative results, is explicitly noted; encoding the feedback sig-
nal in the Deepcode architecture of [12] led to a minimal gain
in reliability.

Second, the interpretation of neural codes remains a chal-
lenging open problem. Although a first-order analysis of
learned codes is provided in [12], deriving an analytical
approximation of learned codes is a widely open problem.
Recently, there has been an analytical analysis of deep-learned
codes for the point-to-point channels without feedback [18].
However, there is very little understanding and interpretation
of deep-learned codes for channels with and without feedback
besides this work.

Last, the channel model considered in the literature focuses
on the Additive White Gaussian Noise (AWGN) channel.
However, the practical channels are not always AWGN, and
verifying the performance of neural codes in the over-the-air
wireless environment is a necessary precursor for deploying
neural codes in practical systems. However, most work on
deep-learned codes focuses on the synthetic channels [12],
[13], [14], [15], [16], [19], [20], [21].

In this paper, to address all three challenges mentioned
above, we (a) introduce a framework, which we call ActiveFB,
to learn nonlinear coding schemes for channels with active
feedback, (b) derive an analytical approximation for the neu-
ral codes and provide the interpretation analysis, and (c)
demonstrate them in the fading channels and over-the-air

system. We specifically focus on communicating a short
message sequence, which is a problem setup introduced
and studied by Polyanskiy et al. [10], instead of a long
message sequence as in [12], [13], [14]. Surprisingly, we
show that our neural codes for a 2-bit message sequence
outperform the neural codes learned for a 50-bit message
sequence in [12], [13], [14]. Furthermore, we run systematic
interpretation analysis and derive a precise analytical approx-
imation of the learned codes, which could not be done for
longer-blocklength codes in [12], [13], [14]. We show that
the analytical approximation is a variation of the PPV scheme
in [10] and provide an interpretation of how the two schemes
are different. Our main contributions are as follows.

o Learning framework for channels with active feedback:
We introduce ActiveFB,! a two-layer Recurrent Neural
Network (RNN) encoder coupled with a two-layer RNN
feedback encoder and a decoder for communicating a
short message bit sequence over channels with active
feedback. We empirically show that ActiveFB outper-
forms all the state-of-the-art codes such as the PPV
scheme, SK scheme, Modulo-SK scheme, and neural
codes for channels with noisy feedback as well as chan-
nels with noiseless feedback (Sections III, V-B, IV-C).
In addition, a comparison against non-feedback schemes
can be found in the Deepcode work [12].

o Analytical approximation of learned codes for noiseless
feedback: For channels with noiseless feedback, we show
that our ActiveFB code can be closely approximated
as a variation of the PPV scheme, i.e., we establish
a new state-of-the-art analytical scheme for channels
with noiseless feedback. In addition, we show that the
PPV scheme, which has been mainly considered for
asymptotic settings in [10], can be further optimized by
controlling the power of each transmission. We provide
a dynamic programming approach for this optimization
(Section IV-D).

o Analytical approximation of learned codes for noisy feed-
back: For channels with noisy feedback, we show that the
ActiveFB scheme can still be approximated as a PPV
scheme. Compared to the Modulo-SK scheme, which
encodes the feedback in a piecewise linear manner, we
observe that ActiveFB encodes the feedback in a non-
linear manner which can be modeled using a PPV-like
scheme (Section V-C).

o Over-the-air demonstration of ActiveFB: We also demon-
strate the superior performance of our neural network-
based schemes by implementing them on an end-to-end
communication system on an over-the-air channel in real-
time. This is the first demonstration of active feedback
coding schemes on a dynamic fading channel, to the best
of our knowledge (Section VI).

II. PROBLEM FORMULATION

We consider AWGN channels with active feedback depicted
in Fig. 1. The forward channel is modeled as an AWGN chan-
nel, ie., yi = x; + z, where z; ~ N(0,0?) denotes the
Gaussian noise. Following each i forward transmission, the

ISource codes are available at https://github.com/karlchahine/ActiveFB.
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Fig. 1. (Top) Channels with active feedback. We jointly learn the encoder,
the decoder, and the feedback encoder. (Bottom) We design a neural code,
labeled as ActiveFB, which outperforms the state-of-the-art coding scheme
for active feedback channels, labeled as Modulo-SK, and the state-of-the-art
neural coding scheme for passive feedback channels, labeled as DRF code
for channels with noisy feedback. K denotes the number of message bits to
communicate.

feedback encoder maps its received values y' = (y1,...,y;)
to a feedback symbol ¢; which is fed back to the transmitter
with one step delay. The feedback channel is also modeled as
an AWGN channel, i.e., ¢; = ¢; + w;, where w; ~ N (0, afz)
denotes the Gaussian noise.

We assume that the encoder wishes to communicate K
binary messages b € {0, 1}X over N rounds of transmissions.
We mainly focus on communicating one bit, i.e., K = 1. The
encoder function is inherently causal and given as x;1; =
Jenc (b, &y fori = 1,2,...,N — 1. The feedback encoder
function is also causal, where ¢; = ffbenc(yi). The decoder
function is non-causal; after N rounds of communications, the
decoder estimates the message based on its received sequence
as b = faec (™). The power constraints are given as E[x*] <1
and ]E[cz] < 1, where the expectations are over both the uni-
form distribution of the bits generated and the randomness in
the Gaussian noise.

Our goal throughout this paper is to design (fenc, fibencs fdec)
which  jointly ~minimizes the probability of error
P, .= P{b # b}. Designing codes for channels with active
feedback is a challenging task as it involves the joint design
of the feedback encoder as well as the encoder and the
decoder. In the following section, we introduce the ActiveFB
framework, where we model the encoder, the feedback
encoder, and the decoder as RNNs, and learn them jointly,
the results of which are analyzed, interpreted, and compared
against existing codes in Sections IV and V.

III. ACTIVEFB: JOINT CODING AND
FEEDBACK CODING VIA RNN

For concreteness, we consider the transmission of a
single bit » € {0,1} over N = 3 rounds of interactive

communications. As feedback systems are sequential by
nature, we model the channel encoder, the feedback encoder,
and the channel decoder as RNNs, as illustrated in Fig. 2.

A. Architecture

Our ActiveFB framework consists of the channel encoder,
the feedback encoder, and the channel decoder parametrized
by RNNs, reflecting the sequential nature of the feedback.
While the RNN parametrization is a natural fit, we empirically
observe that the architectural choices have a negligibe impact
on the reliability. For example, RNNs with 50 hidden units and
RNNSs with 10 hidden units lead to very similar reliability. Our
experiments are simulated using 50 hidden units. Moreover,
we observe that the appropriate power allocation is crucial, as
we explain in the following.

Encoding: We model the channel encoder as an RNN, which
takes the newly available feedback as input in a causal manner.
As illustrated in Fig. 2, at every time-step i, i € {1, 2, 3}, the
input to the RNN encoder consists of the message bit b and all
the feedbacks from the previous steps 1,...,7 — 1. At times
i =1 and i = 2, we pad the missing entries with 0.5. The
encoder’s output X; is passed through a power constraint block
X = /’1(561').

Power allocation: The power constraint block A(.) operates
in two successive stages.

(1) Power normalization: In the first stage, we estimate the
first and second moments of each batch of size J. More specif-
ically, at time i and for training example j, X, = (¥ — w;)/0;,

where u; = }Z]lzlii and o; = ,/} ]!:1(54 — ui)? are the

batch mean and standard deviation, respectively. This results
in having E[x;] = 0 and IE[xl-z] = 1, satisfying power con-
straints in wireless systems. During the training phase, ©; and
o; are estimated from each batch. On the other hand, during
the testing phase, u; and o; are pre-computed with multiple
batches.

(2) Power scaling: In the second stage, we introduce
trainable weights p1, pa, and p3, which control the power
allocated to xj;, x», and x3, respectively. The weights
are updated throughout the training such that the average
power should satisfy Z?zlpizﬂ < 1. As shown in Fig. 2
(Bottom), the trainable power scaling leads to reliability
improvement.

Feedback encoding and channel decoding: The receiver per-
forms both the feedback encoding and channel decoding via
an RNN, which takes y; at time i for i = 1,2, 3, as shown
in Fig. 2. For time-steps i = 1 and i = 2, the decoder RNN
generates a coded symbol which then goes through the power
constraint block A(.). The power-constrained coded bit ¢; is
then transmitted to the encoder through a feedback channel;
the transmitter receives ¢; = ¢; + w;. At time i = 3, the
decoder generates b, the final estimate of the message b. In
our experiments, we tried having two separate RNNs for the
feedback encoding and channel decoding, and having a single
RNN for both the feedback encoding and channel decoding
(as depicted in Fig. 2 (Top)). We observed that having a sin-
gle RNN led to a better performance. We therefore show the
results of adopting a single RNN.
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Fig. 2. (Top) Neural architecture of ActiveFB. We model the encoder, the
feedback encoder, and the decoder as RNNs. We also entangle the feedback
encoder and the decoder into one RNN. (Bottom) Power allocation is critical
in achieving the high reliability of ActiveFB.

B. Training

We train the channel encoder, the feedback encoder, and
the channel decoder jointly under AWGN channels with noisy
feedback so that the probability of error in recovering the
information bit b is minimized. Both the encoder and the
decoder RNNSs are jointly trained using binary cross-entropy as
the loss function with a batch size 500 via an Adam optimizer.
We also use a decaying learning rate and gradient clipping; we
reduce the learning rate by 10 times after training with 10°
examples, starting from 0.01. We train and test at the same
Signal to Noise Ratio (SNR) defined as SNR = —101log 10(02),
where o2 is the noise variance. As illustrated in the follow-
ing sections, we will evaluate ActiveFB over a range of SNR
points. The forward and feedback channels do not necessarily
share the same SNR value.

We also note that the architecture of ActiveFB depicted
in Fig. 2 (Top) and our training methodology can be eas-
ily specialized to channels with noiseless feedback. The only
change we make for channels with noiseless feedback is that
the feedback noise samples w; and w, are set to 0. In the
following sections, we run a set of experiments to describe
the performance of ActiveFB under various settings, including
both channels with noisy feedback and channels with noiseless
feedback.

IV. CHANNELS WITH NOISELESS FEEDBACK

As a precursor to learning codes for channels with noisy
feedback, we begin our experiments and analysis for channels

with noiseless feedback. Our ActiveFB framework is directly
applicable to channels with noiseless feedback, for which the
optimal coding scheme is not known to date.

In Section IV-A, we provide an overview of two exist-
ing coding schemes for channels with noiseless feedback,
namely, the SK scheme and the PPV scheme. The SK scheme
is a celebrated linear coding scheme which minimizes the
mean square error in communicating a discrete message,
and the PPV scheme is the state-of-the-art coding scheme
for communicating a single bit. In Section IV-B, we show
that we can improve the PPV scheme by introducing a
dynamic program-based power optimization. We then show
in Section IV-C that ActiveFB learns a code that outperforms
both the power-optimized PPV scheme and the SK scheme. We
provide an analytical approximation of the ActiveFB codes and
interpretation in Section IV-D, where we show that ActiveFB
codes are a non-trivial variation of the PPV scheme.

A. Existing Coding Schemes

Shalkwijk-Kailath (SK) scheme: Shalkwijk and Kailath
introduced a celebrated linear communication scheme for
channels with noiseless feedback [4]. The transmitter (Tx)
first maps the message b € {0, 1}X to the real-valued vari-
able 6 using a Pulse Amplitude Modulation (PAM). In the
first round, it sends a scaled version of 0 satisfying the power
constraint P. In subsequent rounds, for example, at round i,
the receiver (Rx) maintains an estimate é,- of 0 given all the
observations it has and feeds its observation back to Tx. Tx
then computes the estimation error €; = éi — 0 and sends a
power-scaled version of ¢€; to Rx so that the Rx can correct the
error. After a fixed number of rounds, Rx decodes the message
using a minimum distance rule. Theoretically, the SK scheme
relies on exactly noiseless feedback and does not extend to
channels with an even arbitrarily small amount of noise in
the feedback [4], [6]. An extension of SK to noisy settings is
described in Section V-A.

Polyanskiy, Poor and Verdi (PPV) scheme: Polyanskiy,
Poor and Verdd introduced nonlinear coding schemes for
communicating a single bit over channels with noiseless feed-
back [10]. The encoder uses Log Likelihood Ratio (LLR) it
receives as feedback at the end of each round to compute the
error in the estimate of the transmitted bit at the receiver.
It then scales the error value appropriately to satisfy the
power constraint and sends it in the subsequent transmission.
This proposed scheme was shown to achieve the minimum
energy per bit, i.e., the probability of error approaches zero as
the number of transmission rounds goes to infinity with the
minimum energy spent per bit.

More specifically, to communicate a binary message W €
{—1,1}, where W = 2b — 1 for b € {0, 1}, at the i round,
the encoder uses the function

i1 Wd;
xi(Woy ™) = —— M

T4 WS’
— i—1
where S;_; = log};P/WV%M denotes the LLR for i =
1,2,...,N and y"~! are the noisy received symbols at the
receiver up till time i — 1, i.e., y’_l = (y1,...,Yi—1). The
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scaling factor d; denotes the power scaling constant for the i
round of transmission. After N rounds, the receiver recovers
the message W based on the final LLR Sy.

B. Power Optimization for the PPV Scheme

The PPV scheme is shown to achieve the zero error proba-
bility with a minimal power as the number of rounds N — oo
with a constant power scaling factor d; = d. However, for
a non-asymptotic regime where N < 00, as observed in
ActiveFB codes, choosing the right set of power scaling fac-
tors d;’s is important. To this end, we build on the PPV scheme
to address this shortcoming. Specifically, we formulate the
power optimization problem and provide a dynamic program
algorithm that numerically computes the optimal set of d;’s
according to a sum power constraint. We show that this mod-
ification leads to improved reliability up to 1dB as shown
in Fig. 3.

Numerical optimization and dynamic program: We define
the objective for solving for the optimal parameters d;’s as

di,...,dy = argminPIZ,
dl:N

where P denotes the error after N rounds of transmissions
obtained when the encoder follows (1).

To solve the optimization formulated above, we propose a
dynamic program that expresses P in terms of d; and the
statistics of LLR S;_1, i = N...1 backward recursively, and
solves for the optimal d; at each step for any given statistics
of S;_1 with sum power constraint. Specifically, we show the
following two theorems to solve the optimization.

Theorem 1: The probability of error at the end of N trans-
missions, Pév , can be expressed as a recursion function in terms
of the statistics of LLR, u; and o, given by

P’Zzl—Q(—”—N), @)
ON
where uy and oy are described recursively in terms of d; as
Wi = pi-1+ d—? (3)
202’ )
ai2 — ‘71‘271 + (j_lZ) , “4)

and Q(-) is the complementary error function.

Proof: Without loss of generality, we can express the prob-
ability of error at the end of N rounds as Pﬁ,v = Pr{Sy <
0|W = 1} (due to symmetry).

We also note that given W = 1, the update to the value of
LLR S; can be expressed as

1 1
Si=8i-1+ szz + ;diZia )

where z; ~ N [O, 02] is the forward noise in the " trans-
mission. It is evident from the recursive equation in (5) that
the random variable Sy is just a sum of N Gaussian random
variables scaled and shifted depending on noise variances and
parameters di.y. Therefore, the value of PQV at the end of N
transmissions can be expressed as in (2).

BER

—— ActiveFB K=1

—&— PPV with constant d
—+— PPV power optimized
—— SK

104
-200 -175 -150 -125 -1.00 -0.75 -0.50 -0.25 0.00

Forward SNR

BER

—— ActiveFB K=1

—4— PPV with constant d
—+— PPV power optimized
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Fig. 3. (Top) ActiveFB outperforms all the baselines for channels with
noiseless feedback for N = 3 rounds of communications. (Bottom) ActiveFB
outperforms the baselines for channels with noiseless feedback for N = 6
rounds of communications.

We then obtain an updated equation for the statistics
{u,i,oiz} as shown in (3) and (4). Using (2), (3), and (4),
we can express PY as a backward recursion. u

Next, we need to constraint d; to satisfy the sum power
constraint. Let EZN denote the unallocated power for remaining
transmissions I till N. Then, d; is bounded such that

1

0= d(uf +0) < EY, (©)

where 11/ and o] are the mean and variance of —%— given

14e5i-1
Si—1 ~ N (-1, 0,-2,1)-
Finally, we have the following optimization problem at any
round i given as

Eii(l/«i—h Oi-1, Efv)

d.
. Hi-1+ 53
=argmin 1 — Q 2% ,

d; d; 2
Oi-1+ (0_'2)

along with the constraint in (6). We solve this optimization
numerically to obtain the set of optimal parameters dy.n.
We have summarized the steps in the dynamic program in
Algorithm 1.

The algorithm is used to compute the set of optimal param-
eters d;’s, which can be used in the encoding function in (1).
In Fig. 3, we plot the Bit Error Rate (BER) across different
forward SNRs for noiseless feedback channel and compare it
with other algorithms. We see that the PPV scheme with the
optimized d parameters outperforms the original PPV scheme
which assumed a constant d.
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Algorithm 1: Proposed DP to Optimize d; in the PPV
Scheme

Input: Blocklength: N, Sum power: EIIV

Output: Parameters: Zii, i=1---N

fori=N,...,2do
for any w1, oi- 1 and EN do

Hi = Wi— 1+2 5 from (3)
o} = ail + (%) from (4)

l

if i == N then
di = arg;nin 1— Q(—’;—;)
PYH Y (imy, 001, EY) = 1 — Q(-ﬁ:—f) at
di = d;

end

else

Zl' = argmin Py_i(ui, oj, EN)
d;

PN+] Z(I/Lz 1, Oi— lsE')
di = d;

PY= (1, 04, EN) at

end

end

end
dZ d 2
=, oF = (—)
dy = argmin PY- Yur, 01, EY)
d
fori=2,...,Ndo

2 2
d;
Mi = pi-1 + (,2, i2_0121+(_2>

/’Lia U,' = ¥ (Ki-1,0i-1)
Ef\/ — N1 —d?(,u/z—i—o/2>
di = d(pi, 0, EV)

end

Now we are ready to provide numerical results for
ActiveFB. In the next section, we present the reliability of
ActiveFB and compare it against the power-optimized PPV
and SK schemes.

C. ActiveFB: Numerical Results

We analyze the performance of ActiveFB under noiseless
feedback. In Fig. 3 (Top and bottom), we plot the BER vs.
the forward channel Signal to Noise Ratio (SNR) for high
rate (N = 3) and low rate (N = 6) for the following:

o ActiveFB K=1: This is our neural model described
in Section III, where K is the number of transmitted
information bits. Here, we transmit a single bit b (K = 1).

o SK scheme: We plot the BER of the celebrated SK scheme
introduced in Section IV-A.

o PPV scheme with constant d: We plot the BER of the PPV
scheme introduced in Section IV-A but with a constant
power scaling factor d; = d for all the transmissions to
meet the sum power constraint.

e PPV scheme power optimized: We plot the BER of the
PPV scheme after power optimization using a dynamic

programming algorithm. The details of the work are
presented in Section IV-B.
We can see that the ActiveFB scheme outperforms both the
power-optimized PPV and SK schemes for a wide range of
forward SNR values for the noiseless feedback channel.

D. Interpretation of ActiveFB

In this section, we provide an interpretation analysis for
ActiveFB. The interpretability can have various meanings. We
focus on two aspects of interpretability: (a) providing a simple
expression for the encoding and decoding functions and (b)
being able to explain the difference between the neural codes
and existing codes, and potentially provide an insight on how
one can modify existing codes to improve the reliability based
on neural results.

To this end, we first derive analytical schemes that approx-
imate ActiveFB by studying the input-output relationships of
the codes produced by the RNN. We consider the encoded
bits as a function of the intended message and the received
feedback and obtain an analytical scheme by fitting it to the
already existing PPV scheme and its variant. By doing so, we
obtain an insight into how one could alter the PPV scheme to
further improve its reliability.

1) ActiveFB+: Derived Scheme From ActiveFB With a PPV
Variation as a Backbone: We observe that the ActiveFB code
resembles the PPV scheme, which motivates us to approximate
the trained codes using the PPV scheme. In particular, we
consider the following functional templates based on the PPV
scheme to approximate ActiveFB codes.

o PPV-like scheme:

Wd;

(W) =
1 4 ear¢

where a; € Ri~! represents the vector that linearly com-
bines the received feedback ¢!~ (For passive feedback,
¢! = yi=1). Note that this parameterization resembles
the PPV scheme in (1).

o Modified PPV scheme:

x,-(W, ciil) =

where a; denotes the vector that linearly combines the
received feedback ¢!, and ap denotes the bias.

With the two functional parameterizations, we fit the param-
eters a; (and ap) for the PPV-like and modified PPV schemes
for 0 dB forward SNR.

Fitting with the PPV-like scheme: The encoder output x; for
different rounds of transmission are expressed as x; = —1.1W,
Xy = 1;;—ﬁm|, and x3 = WMZ;‘%, where W = 2b — 1
with b as the original bit and ¢ and ¢ as the feedback received
after the first and second rounds of transmissions, respectively.
The final approximated decoding function is approximated as

W=-15+ 1+6¢13—03cz+63’ where the final estimated bit b = 1

if W > 0 and 0 otherwise.

Fitting with the Modified PPV scheme: The fitting to the
PPV scheme optimizes over the power allocation, which is
the only degree of freedom available. However, by introduc-
ing a bias in the exponent in the modified PPV scheme, there

Wwd,;
1 + ealci’1+a2 ’
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Fig. 4.  We observe that ActiveFB outperforms the power-optimized PPV
scheme. Moreover, the fitted model of the modified PPV scheme outperforms
the fitted model of the PPV scheme, both of which are more reliable than the
power-optimized PPV scheme. The blocklength was assumed to be N = 3,
and the sum power was assumed as 0.5 dB. A forward SNR of 0 dB was
considered for the fitting.

is a performance enhancement attributed to the extra flexi-
bility in encoding the transmitted symbol as a function of
the feedback. The transmissions assuming a modified PPV-
like encoding function, can be expressed as x; = —1.1W,

_ _ —39W IV A—
X2 = 1 T5We 103> and x3 = ey The final decod-
30 The

ing function is approximated as W = —15+ 1o —3rTes -
fitting model with a; and a fits the RNN data more closely
than the corresponding PPV scheme with just aj.

In Fig. 4, we plot the BER of the different fitted models
against the forward SNR and are compared against a baseline
of the optimized PPV scheme and the RNN. We consider a
noiseless feedback regime with finite blocklength N = 3 and
restrict the sum power to 0.5 dB. As mentioned above, the
fitting was done with data collected from RNN at O dB but was
used to analyze the performance for the range of SNR. We see
that the performance of the fitted models is an improvement
over the baseline and is close to the results obtained for RNN,
albeit with reduced complexities.

2) Comparison of ActiveFB vs. PPV Scheme: The PPV-like
schemes that we consider for fitting are more general than the
PPV scheme that was proposed in [10]. The basic assumption
in the PPV scheme is that the difference in the transmitted
symbols for intended bits b = 0 or 1, when the same feedback
is received, is given by the parameter d, i.e.,

xi(+11¢") = xi(=11¢") = d;. @)

This is assumed constant for the state-of-the-art PPV scheme.
That is, the difference term does not depend on the feedback
symbols ¢!. However, we observe from the analytical approx-
imation and the constellation plots that ActiveFB does not
maintain a fixed distance between the encoded symbols as a
function of the feedback. The distance between the symbols
increases when the error is higher, i.e., more power is allocated
for the encoded symbol if it is farther from the true value. It
also means the power is suppressed for the symbol if it is
close to the true value. Hence, we introduce variation in d;
as a function of feedback and modify the underlying function
structure by introducing a bias in the exponent. This implies

that the distance between the encoded symbols for given feed-
back for b = 0, 1 is no longer a constant. This provides further
flexibility in modulating the power sent after each feedback.

V. CODING FOR CHANNELS WITH NOISY FEEDBACK

We now consider channels with noisy feedback, where the
feedback encoding is crucial for combating the noise in the
feedback channel. In Section V-A, we provide a brief overview
of existing coding schemes, such as the Modulo-SK scheme
and the DRF code, which serve as baselines for ActiveFB in
Section V-B. We show that ActiveFB outperforms both base-
lines. In Section V-C, we provide an analytical approximation
of the ActiveFB codes and interpretation, where we explain the
nonlinearity of ActiveFB compared to the piecewise-linearity
of the Modulo-SK scheme.

A. Existing Coding Schemes

Linear schemes for channels with passive feedback: Chance
and Love in [7] and Mishra et al. [11] proposed linear schemes
for channels with noisy output feedback. Chance and Love
provided a concatenated code with the inner code as a linear
encoding scheme that performs better than the SK scheme.
Authors of [11] provided a dynamic program to solve for the
linear sequential codes in closed-form.

Modulo-SK scheme for channels with active feedback: Ben-
Yishai and Shayevitz in [17] generalized the SK scheme to
active noisy feedback settings, where both Tx and Rx are
allowed to employ coding and exchange signals on the fly.
This should be distinguished from passive feedback, where no
coding is allowed over the feedback channel. The previously
described SK and PPV schemes belong to the passive feedback
category.

A key observation in Modulo-SK is that the transmission
of én over the feedback link (from Rx to Tx) can be regarded
as a Joint Source Channel Coding (JSCC) problem with side
information #. More explicitly, at round n, Rx holds its esti-
mate én and wants to communicate it with Tx, who knows 6
and can use it as side information. To exploit this, the authors
employ a lattice-based JSCC scheme with side information
based on a more general scheme by Kochman and Zamir [22].

More precisely, Tx encodes its message into a scalar 6 using
PAM. In subsequent rounds, Rx computes a linear estimate of
6 and feeds back an exponentially amplified version of this
estimate, modulo a fixed interval. The modulo operation makes
use of the fact that Tx knows 6 and facilitates the essential
“zoom-in” amplification without exceeding the power limit. In
turn, Tx employs a suitable modulo computation and obtains
the estimation error, corrupted by excess additive noise. This
quantity is then properly scaled and sent over the feedforward
channel to Rx. After a fixed number of rounds, Rx decodes
the message using a minimum distance rule.

The Modulo-SK scheme is shown to outperform the SK
scheme by a large margin, which demonstrates the advantage
of utilizing the side information at the transmitter in com-
pressing the receiver’s outputs. In Section III, we show that by
jointly designing (learning) the encoder, the decoder, and the
feedback encoder, we can learn nonlinear feedback encoding
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schemes that outperform the Modulo-SK scheme for commu-
nicating a single bit over channels with active feedback. The
modulo operation in the Modulo-SK scheme, on the other
hand, is piecewise linear.

Neural codes for channels with passive feedback: In [12],
the authors present Deepcode, the first family of nonlinear
codes obtained via deep learning for both noiseless and noisy
passive feedback channels. They demonstrate a new family of
RNN-driven nonlinear neural codes, which outperform the SK
scheme. Deepcode progresses in two phases. In the first phase,
K information bits b are sent raw (uncoded) over the AWGN
channel (K = 50 is considered). In the second phase, 2K
coded bits are generated based on the information bits b and
(delayed) output feedback and sequentially transmitted. As for
decoding, the authors propose a decoding scheme using two
layers of bidirectional Gated Recurrent Units (GRU). Based
on the received sequence of length 3K, the decoder estimates
K information bits b. While Deepcode outperforms the exist-
ing linear codes for channels with passive feedback, extending
the Deepcode framework to channels with active feedback
has been an open problem. In [12], the authors note that
designing codes for this setting is challenging as it involves
designing two encoders and one decoder jointly in a sequential
manner. More recently, [13] and [14] extended the Deepcode
framework, improving its performance. In [13], the authors
introduce Deep Extended Feedback Code (DEF code), a gen-
eralization of Deepcode in two ways: (a) parity symbols are
generated over longer time intervals in order to provide bet-
ter error correction capability; and (b) high-order modulation
formats are deployed to achieve increased spectral efficiency.
In [14], the authors propose Deep SNR-Robust Feedback Code
(DRF Code). The proposed code introduces two novelties over
the previously proposed DNN-based codes: (@) An SNR-aware
attention mechanism at the decoder which enables the reliable
application of the same trained network over a wide range
of SNR values; (b) A curriculum training with batch-size
scheduling is used to speed up and stabilize training. DRF
codes outperformed both Deepcode and DEF codes.

In the following, we show that by allowing the receiver to
actively encode its feedback, ActiveFB (for K = 2 information
bits) outperforms all the baselines, including DRF codes (for
K = 50 information bits).

B. ActiveFB: Numerical Results

First, we evaluate the performance of ActiveFB under noisy
feedback for different rates, rate 1/3 with N = 3 and rate 1/6
with N = 6 transmissions, by communicating a single bit
b € {0, 1}, the results of which are shown in Fig. 5 (Top and
Bottom respectively). We observe that our model outperforms
the baselines in both cases.

The following schemes are included as baselines.

o ActiveFB K=I: This is our neural model described
in Section III, where K is the number of transmitted
information bits. In this case, we transmit a single bit
b(K=1).

e ActiveFB K=2: Similar to the above, this is our neural
model described in Section III. The difference is that we

BER
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Fig. 5. ActiveFB outperforms the baselines for channels with noisy feed-
back for N = 3 rounds of communications (Top) and N = 6 rounds of
communications (Bottom). The forward SNR is fixed to 0 dB.

now transmit a vector b € {0, 1}2, since K = 2. This
time, we transmit a real symbol x; every transmission i
for a total of 6 transmissions to keep the rate as 1/3.

o Modulo-SK K=1 [I7]: We consider Modulo-SK
(described in Section V-A) when K = 1.

o Modulo-SK K=13 [17]: We also consider Modulo-SK for
K =13.

e DRF Code [14]: We include DRF Code for K = 50
information bits described in Section V-A.

From Fig. 5, we conclude that (a) we outperform all the
baselines when the feedback SNR is moderate and (b) trans-
mitting 2 bits instead of 1 results in a noticeable gain. It
is interesting to note that the ActiveFB scheme for K = 2
outperforms DRF Code (for K = 50) and the Modulo-SK
scheme for K = 1. Compared to the Modulo-SK scheme for
K = 13, ActiveFB for K = 2 is comparable but is more
reliable at low feedback SNR regimes. On the other hand,
when feedback SNR is high, Modulo-SK with a sufficiently
large K is highly reliable. We also note that generalizing
ActiveFB to K > 2 is not straightforward. Neural coding for
active feedback channels for a large K is an interesting future
direction.

C. Interpretation of ActiveF'B

In the previous section, we showed that ActiveFB outper-
forms the Modulo-SK scheme by a huge margin, as shown
in Fig. 5. The interpretation of the generated codes can pro-
vide insights into the encoding process and help us formulate
analytical encoding schemes that are less complex and easy to
interpret.
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O ActiveFB
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Fig. 6. Constellation plot showing the feedback encoder output at the end
of round 1.

1) ActiveFB+: Derived Scheme From ActiveFB: We con-
sider the encoder data from communication scheme with
N = 3, forward SNR of 0 dB and several feedback SNRs
to interpret the correlation between the input and the output
data. We curve-fit the input data to the output data for each
transmission round to get an approximate analytical expres-
sion. We then substitute it for RNN and make performance
comparison.

Round 1 (Raw Bit Transmission and Likelihood Feedback):
At Round 1, we verify that the encoder’s output x; =
Ko(—2b + 1) is a BPSK mapping of bit b € {0, 1} to {—1, 1}
where Kj is chosen to match the data. The decoder receives
y1 = X1 +z1 where z; is the noise in the forward transmission.
The feedback symbol c¢; = Normalize(lsl) is obtained from
likelihood IA)l = Ppy(1]y1). This can be interpreted as involv-
ing (a) the posterior likelihood 131 = Ppy(1ly1) = G(Zyl/az)
and (b) the power normalization which is done by subtract-
ing the mean and dividing by the standard deviation resulting
in the constants. We show that the feedback symbol from the
decoder to the encoder can be approximated as

Ks
c1 =K+ T Ktk
where K1, K5, K¢ and Kg are chosen from the input-output
relationship of the data from the RNN.

Round 2 (Transmission of the Likelihood Error and Updated
Likelihood): Fig. 7 (Top) shows the encoder’s output x; as a
linear function of the received noisy feedback ¢; = ¢;+w and
color-coded by the originally transmitted bit b. The encoder
uses ¢ to estimate the error e; between the bit b and the
estimated likelihood after the first transmission, ¢; = (b —
(K1c¢1 + K»)) where K| and K, are constants. It transmits this
error after power normalization which can be expressed as
xy = K3 + Kjzep. The resulting fitted analytical function is
given as x; = 1.5x1 — ¢y.

For the feedback transmission, the decoder receives y, =
Xy + 72, i.e., a noisy version of the error e¢; in the likeli-
hood and computes a linear Minimum Mean Square Estimate
(MMSE) estimation as K1 + K>y,. Now, from Fig. 7, we infer
that the transmitted feedback is computed as a linear combi-
nation of the old likelihood 1;1 computed at the receiver at
round 1 and the new likelihood function computed given the
new information y, available at the receiver.

O ActiveFB Bit 0 -
31| O ActiveFB Bit 1 o
O ActiveFB+ &
2
. ¥ s
N o
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2 -
¢‘”
-3
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Fig. 7. The plot shows the Round 2 forward transmission (Top) and the feed-
back transmission (Bottom). The fitted models (black) are termed ActiveFB+
scheme for noisy feedback.

Let b, represent the likelihood of the bit b when two
symbols y; and y, are received, which can be expressed as

by = Pyyy,.v,(11y1, y2) ®)
=Py, v, (1101.72) ©)
=0 <K1 + Kzin + K3y2), (10)

where the expression inside the sigmoid function is basically
estimating b — by from y; and then adding b; (with scaling
and shifting appropriately) in order to get

=K1 + Kzé] + Kzo <K4y2 + K5];2), (11

which with constants can be expressed as

2.8

Round 3 (Final Transmission of the Error in Likelihood and
Final Decoding): In the last round of transmission, the encoder
chooses either to send the error between the actual bit b and
the estimate of the likelihood 132 or send zero if the error has
no effect on the final bit error performance as a means to save
power, as is evident from the figure. The error is computed
as a PPV-like function where the output becomes zero as it
approaches O as the estimate at the receiver moves closer to
the actual bit that was transmitted. The analytical function is
modeled using both the previously received feedback symbols
¢1 and ¢;. The final transmitted symbol can be expressed as

WK
1+ eWKéZ‘1+WK7Z‘2+K9 ’

¢ =14—-0.3c; —

x3 =KiW+ Kx¢1 + Kz3¢ +

where K;’s are the constants obtained from fitting and W is
the transmitted message from the first round.

Upon receiving the final transmission from the encoder, the
receiver repeats the process that was done at the previous
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Fig. 8. Final encoded symbol is shown in the top figure while the bottom
figure shows the final decoded output.

instant. It estimates the error in the likelihood from the trans-
mitted symbol and adds it to the previous likelihood estimate.
So we get one expression as

Ks

c3 = Ky + Koy + Kzys + Kays — T 52016y

(12)

The final decoding involves applying a sigmoid function on
c3 to obtain the final decoded bit. The fitting results for the
third round of transmission are plotted in Fig. 8. The colored
points denote the data obtained from the RNN plotted between
the input on the x-axis and output on the y-axis. The fitting
results are shown in black which closely resemble the relation
shown by the RNN data (Fig. 8).

Results: In Fig. 9, we plot the BER of the proposed
activeFB scheme, Modulo-SK, and the analytical scheme
obtained by fitting the learned scheme to a predetermined
function structure discussed above.

The fitting was conducted at forward SNR of O dB for
various feedback SNRs. The comparison shows that the fit-
ted curves, termed “Fitted”, are better than the state-of-the-art
schemes.

The significant gap between the ActiveFB and ActiveFB+
scheme was investigated by doing an ablation study where
the encoders and decoders are sequentially replaced with the
corresponding analytical model and the studying the effect on
the BER performance.

We deduce that the intermediate stage, where the entire
network except for the decoder at the final round is replaced
by their analytical counterpart, performs much better than the
case when the entire network is replaced. This implies that
the PPV-like scheme is not sufficient to describe the relation-
ship between the input and the output of the RNN for the last
stage of the transmission. This is showcased in Fig. 9 thorugh
the plot termed “Fitted**, which shows that the performance is
much better than the case when the whole network is replaced.
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Fig. 9. The plot shows the BER comparison between the origi-
nal RNN(ActiveFB), the Modulo-SK, and the fitted analytical models
(ActiveFB+-) for a noisy feedback regime across different feedback SNR.
The blocklength was assumed to be N = 3, and the sum power was assumed
as 0.5 dB. “Fitted*” plot shows the intermediate state in our ablation study
where all parts except the decoder in the last round are replaced with analytical
models.

2) Comparison of ActiveFB vs. Modulo-SK: An important
interpretation to make is how ActiveFB is different from the
baseline Modulo-SK scheme. A key difference is in the non-
linear nature of the ActiveFB and the piecewise-linear nature
of the Modulo-SK scheme.

As shown in Fig. 8, the learned neural codes are nonlinear,
in contrast to the Modulo-SK codes, which are piece-wise lin-
ear codes. Based on the interpretation analysis of the learned
nonlinear neural codes, we observe that the receiver is approx-
imately sending its estimate of the log-likelihood-ratios, or
more accurately, of the probability that b = 1, and then the
transmitter creates a biased constellation based on the noisy
feedback.

VI. OVER-THE-AIR DEMONSTRATION

In the preceding sections, we developed codes for AWGN
channels with feedback and focused on the theoretical analy-
sis, deriving analytical coding schemes and building insights
based on neural results. In this section, we focus on practical
aspects, which are complementary to the theoretical analysis.
We demonstrate our ActiveFB schemes for fading channels
and in a hardware setup (software-defined radios) to study the
performance in a practical communication scenario.

A. Rician Fading Channel

As a precursor to the over-the-air experiment, we first con-
sider Rician fading channels parametrized by F and o. A
general description of a Rician fading channel is considered
in which a channel is comprised of both a line-of-sight (LOS)
and non-line-of-sight (NLOS) component. The amplitude of
the LOS and NLOS components is dictated by F. The channel
is defined as y = hx + z, where z ~ AN'(0, ) and

F 1
h=|[|——(+ 1)+ | ———hNOS
|w+n(+0+ (F+1) '

and ANLOS s distributed as CA(0, I).
We apply this channel model to ActiveFB (described in
Section III) and Modulo-SK (described in Section V-A). In
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Fig. 10. ActiveFB outperforms Modulo-SK for the Rician fading channel.
We considered F = 10 and set the forward SNR as 0 dB.

Fig. 10, we plot the BER vs. the feedback channel SNR,
where we fix the forward channel SNR as O dB for both
schemes, from which we observe that the ActiveFB outper-
forms Modulo-SK by a large margin.

B. Over-the-Air Channel

The channel encountered in practical communication
systems are not AWGN due to physical world effects like
scattering and reflections that cause unwanted fading. The
noise affecting the transmitted message is neither additive nor
Gaussian.

We can represent the received signal in an Over-the-Air
(OTA) channel setup as

y=hi+z, (13)

where y is the received value, x is the transmitted symbol, # is
the Rician channel coefficient, and z ~ N(O, crzz) is the AWGN
noise. The channel coefficient & represents both the Line of
Sight (LOS) and the non-LOS component of the Rician fading
channel and can be characterized as h = hy os + ANLos, Where
the line-of-sight component s os = up has a constant value
up while hinpos ~ N (0, cr,%) is a zero-mean Gaussian random
variable with variance ahz.

For over-the-air channels, one can estimate the Rician chan-
nel parameter 4 and the noise parameter z based on the channel
realizations by estimating ozz, up and a}%.

Setup: As depicted in Fig. 11, our setup consists of two
separate N200 USRPs as transmitter and receiver with anten-
nas to communicate over the air. They are kept at a distance
of around 3 meters from each other. The gain parameters are
adjusted on the boards to simulate any desired channel SNR.
The USRPs have two separate computers on the backend to
perform data generation, encoding and the decoding processes.

We implement a communication system based on the
802.11a WiFi standard [23]. We use Orthogonal Frequency
Domain Multiplexing (OFDM) modulation and demodulation
for the baseband data processing as it is well-suited for wide-
band applications and all modern practical setups use OFDM
signaling. The end-to-end OFDM setup is shown in Fig. 11.
For synchronization, we use Short Training Sequences (STS)
and the Long Training Sequences (LTS) which aid in the
determination of symbol boundaries and are used for channel
estimation and frequency offset compensation.

oom | [].[ ofom

Modulator I | Demodulator | RNN

Feedback
Encoder

RNN Forward
Encoder ofbM | [ orom
Demodulator r LI | Modulator
Fig. 11. (Top) Feedback setup showing the SDRs as Tx and Rx with the

backend computers. (Bottom) Block diagram showing the implementation to
illustrate the active feedback scheme with the over-the-air environment.
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Fig. 12.  Frame structures for the forward and feedback transmissions are
shown. The beginning of each frame is a preamble for synchronization, offset
correction, and channel estimation.

Frame arrangement: The frame structure for arranging the
forward and feedback data is derived from the standard as
shown in Fig. 12. We follow batch processing of the feedback
wherein the feedback of all symbols in a frame is transferred
after the entire frame’s forward transmission is completed
to ensure channels are uncorrelated. Each frame begins with
a preamble to aid in synchronization, frequency, phase off-
set corrections, and channel estimation. The details of the
preamble constituents can be found in the standard [23].

Channel Estimation: The first step in our training method-
ology is to determine the statistical parameters 0’Z2, Wh, and
0,% so that we can describe the channel precisely. We do a
number of captures for the forward and the feedback channel
and perform channel estimation to get a set of realizations of
the channel # and noise z. Then, we plot the histogram of
these realizations and fit it to a customized distribution with a
known mean and variance to obtain the statistics of the cap-
tured channel data. The histograms of the raw channel data
and the synthetic channel data are shown in Fig. 13. Finally,
we use the learned statistics to define the channel model and
use it in the training process.

Training: The next step is using the learned channel model
in the training of the RNN. The training procedure of the RNN
remains the same as was discussed in Section III. The trained
encoders are then used in the setup for encoding and decoding
data and the results are evaluated.

Remark 1: We approximate the statistics of the channel and
then simulate the channel in the training process instead of
including the actual over-the-air channel. This is because (a)
the online training with the over-the-air channel requires a
lot of captures which in turn would extend the time required
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Fig. 13. Histogram plot of the raw channel data and the data generated
using a custom Rician distribution captured at a particular subcarrier. It is
worth noting that the channel statistics change with frequency; therefore, this
process is done separately at each subcarrier.
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Fig. 14. The plot compares the BER of our proposed scheme (ActiveFB)
and the existing schemes (PPV scheme, Modulo SK) in an over-the-air
channel when implemented on a SDR hardware setup. (Top) The figure
shows the performance in a noiseless regime. (Bottom) The figure shows the
performance in a noisy feedback regime when the forward SNR = Ep, /Ny =
0 dB.

for training and (b) we cannot backpropagate through the
over-the-air channel measurement, which in turn requires the
encoder to be learned via reinforcement learning, which is
more time-consuming than the backpropagation.

C. Results

We consider both noiseless and noisy feedback regimes to
demonstrate the performance improvement over the state-of-
the-art encoding schemes. In Fig. 14 (Top), we plot BER as a
function of the forward SNR, Ej /Ny, for channels with noise-
less feedback while in Fig. 14 (Bottom), we plot BER for
channels with noisy active feedback against the feedback SNR
with forward SNR set at 0 dB.

Estimating the SNR of channels accurately is a daunting
task. Therefore, we estimate the SNR per bit, i.e., Ep/No,

by sending a random set of messages with unit power and
determining the variance of noise with No = E [(x - yeq)2 ,
where y,, are the received values after equalization. This is
an approximate method to find the value for the SNR of the
transmitted bit. This is done at all the channel settings before
attempting communication to characterize the channel and to
use it as a common metric for comparison of BER across
different algorithms. We consider the PPV scheme as the base-
line for the noiseless feedback; we consider the Modulo-SK
scheme as the baseline for the noisy active feedback. In both
cases, ActiveFB clearly outperforms these baselines.

VII. CONCLUSION AND DISCUSSION

We proposed ActiveFB, a family of RNN-based coding
schemes for channels with active feedback. Here the decoder
actively encodes its received values into the feedback signal,
and the encoder uses the feedback to generate the subsequent
transmission symbols. We demonstrated the effectiveness of
the neural network technique in achieving superior reliability
over state-of-the-art schemes. ActiveFB outperforms the state-
of-the-art schemes, such as the PPV scheme for channels with
noiseless feedback and the Modulo-SK scheme for channels
with noisy feedback.

In order to compare the performance of the ActiveFB
scheme against the best analytical baselines for channels
with noiseless feedback, we developed a novel technique to
optimize the power allocation for the PPV scheme based
on dynamic programming which significantly improves the
reliability. We showed that ActiveFB still outperforms the
power-optimized PPV scheme, reflecting that ActiveFB is
different from the PPV scheme.

We demonstrated that a new scheme termed ActiveFB+,
approximated from ActiveFB as a modified version of the PPV
scheme, closely mimics the RNN-based ActiveFB scheme
and outperforms all the existing baselines both for noise-
less and noisy feedback regimes. This approximation provides
several benefits. First, we have an analytical scheme sig-
nificantly less complex than the original RNN that gives
similar performance. Besides being computationally efficient,
the analytical expression makes more sense than the RNN
parametrizations. Second, we use these analytical approxima-
tions to provide insights and interpretations of the ActiveFB
codes, e.g., explain the difference between ActiveFB and the
PPV scheme.

Finally, we also demonstrated the improved reliability of our
ActiveFB schemes by implementing them on an end-to-end
communication system with SDRs in the real-time over-the-air
environment. This is the first over-the-air hardware demonstra-
tion of neural codes for interactive channels with feedback to
the best of our knowledge.

There are several interesting open problems for future
research. We mainly focused on short blocklength regimes.
Surprisingly, ActiveFB for a very short blocklength regime
is shown to outperform the state-of-the-art baselines designed
for longer blocklengths for both channels with noisy feed-
back and channels with noiseless feedback. Whether one could
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extend ActiveFB to longer blocklength regimes is a challeng-
ing but very interesting open problem. On a related note, for
longer blocklength regimes, we conjecture that architectural
choices might be more crucial. Various architectures, such as
the transformer architecture, can be considered and compared.
For example, in [15], the authors introduce AttentionCode, a
new class of deep learning based feedback codes designed by a
variation of the transformer architecture. As a follow-up, [16]
presents the Generalized Block Attention Feedback (GBAF)
code, a generalization of AttentionCode that addresses some
limitations of existing neural designs, such as communication
overhead and a limited set of feasible rates. GBAF is shown
to outperform AttentionCode and DRF codes by a large mar-
gin as it strongly leverages the blocklength gain at the cost of
increased complexity for channels with noisy output feedback.
Generalizing the GBAF code and its variants to the active feed-
back setting and developing an analyzable code that leverages
the blocklength gain are left as very interesting open problems.
Finally, another interesting open problem to study is to charac-
terize how the approximated analytical codes vary depending
on the system parameters like the forward and feedback noise
variances.
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