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Abstract. There has been a long-standing interest in computing diverse
solutions to optimization problems. In 1995 J. Krarup [29] posed the
problem of finding k-edge disjoint Hamiltonian Circuits of minimum
total weight, called the peripatetic salesman problem (PSP). Since then
researchers have investigated the complexity of finding diverse solutions
to spanning trees, paths, vertex covers, matchings, and more. Unlike the
PSP that has a constraint on the total weight of the solutions, recent
work has involved finding diverse solutions that are all optimal.
However, sometimes the space of exact solutions may be too small to
achieve sufficient diversity. Motivated by this, we initiate the study of
obtaining sufficiently-diverse, yet approximately-optimal solutions to
optimization problems. Formally, given an integer k, an approximation
factor c, and an instance I of an optimization problem, we aim to obtain
a set of k solutions to I that a) are all c approximately-optimal for I
and b) maximize the diversity of the k solutions. Finding such solutions,
therefore, requires a better understanding of the global landscape of the
optimization function.
Given a metric on the space of solutions, and the diversity measure
as the sum of pairwise distances between solutions, we first provide a
general reduction to an associated budget-constrained optimization (BCO)
problem, where one objective function is to be (maximized) minimized
subject to a bound on the second objective function. We then prove that
bi-approximations to the BCO can be used to give bi-approximations to
the diverse approximately optimal solutions problem.
As applications of our result, we present polynomial time approximation
algorithms for several problems such as diverse c-approximate maximum
matchings, s− t shortest paths, global min-cut, and minimum weight bases
of a matroid. The last result gives us diverse c-approximate minimum
spanning trees, advancing a step towards achieving diverse c-approximate
TSP tours.
We also explore the connection to the field of multiobjective optimization
and show that the class of problems to which our result applies includes
those for which the associated DUALRESTRICT problem defined by
Papadimitriou and Yannakakis [37], and recently explored by Herzel et
al. [27] can be solved in polynomial time.
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1 Introduction

Techniques for optimization problems focus on obtaining optimal solutions to
an objective function and have widespread applications ranging from machine
learning, operations research, computational biology, networks, to geophysics,
economics, and finance. However, in many scenarios, the optimal solution is not
only computationally difficult to obtain, but can also render the system built upon
its utilization vulnerable to adversarial attacks. Consider a patrolling agent tasked
with monitoring n sites in the plane. The most efficient solution (i.e., maximizing
the frequency of visiting each of the n sites) would naturally be to patrol along the
tour of shortest length6 (the solution to TSP - the Traveling Salesman Problem).
However, an adversary who wants to avoid the patroller can also compute
the shortest TSP tour and can design its actions strategically [41]. Similarly,
applications utilizing the minimum spanning tree (MST) on a communication
network may be affected if an adversary gains knowledge of the network [14];
systems using solutions to a linear program (LP) would be vulnerable if an
adversary gains knowledge of the program’s function and constraints.

One way to address the vulnerability is to use a set of approximately optimal
solutions and randomize among them. However, this may not help much to
mitigate the problem, if these approximate solutions are combinatorially too
“similar” to the optimal solution. For example, all points in a sufficiently small
neighborhood of the optimal solution on the LP polytope will be approximately
optimal, but these solutions are not too much different and the adversaries
can still effectively carry out their attacks. Similarly one may use another tree
instead of the MST, but if the new tree shares many edges with the MST the
same vulnerability persists. Thus k-best enumeration algorithms ([20,25,31,32,35])
developed for a variety of problems fall short in this regard.

One of the oldest known formulations is the Peripatetic Salesman problem
(PSP) by Krarup [29], which asks for k-edge disjoint Hamiltonian circuits of
minimum total weight in a network. Since then, several researchers have tried to
compute diverse solutions for several optimization problems [4,5,18,24]. Most of
these works are on graph problems, and diversity usually corresponds to the size
of the symmetric difference of the edge sets in the solutions. Crucially, almost
all of the aforementioned work demands either every solution individually be
optimal, or the set of solutions in totality (as in the case of the PSP) be optimal.
Nevertheless, the space of optimal solutions may be too small to achieve
sufficient diversity, and it may just be singular (unique solution). In addition,
for NP-complete problems finding just one optimal solution is already difficult.
While there is some research that takes the route of developing FPT algorithms

6 We assume without loss of generality that the optimal TSP is combinatorially unique
by a slight perturbation of the distances.
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for this setting [5,19], to us it seems practical to also consider the relaxation to
approximately-optimal solutions.

This motivates the problem of finding a set of diverse and approximately
optimal solutions, which is the problem considered in this article. The number
of solutions k and the desired approximation factor c > 1 is provided by the
user as input. Working in the larger class gives one more hope of finding diverse
solutions, yet every solution has a guarantee on its quality.

1.1 Our Contributions

We develop approximation algorithms for finding k solutions to the given op-
timization problem: for every solution, the quality is bounded by a user-given
approximation ratio c > 1 to the optimal solution and the diversity of these k
solutions is maximized. Given a metric on the space of solutions to the problem,
we consider the diversity measure given by the sum (or average) of pairwise
distances between the k solutions. Combining ideas from the well-studied problem
on dispersion (which we describe next), we reduce the above problem to a budget
constrained optimization (BCO) program.

1.2 Dispersion

Generally speaking, if the optimization problem itself is NP-hard, finding diverse
solutions for that problem is also NP-hard (see Proposition 1 for more detail).
On the other hand, interestingly, even if the original problem is not NP-hard,
finding diverse and approximately optimal solutions can still be NP-hard. This
is due to the connection of the diversity maximization objective with the general
family of problems that consider selecting k elements from the given input set
with maximum “dispersion”, defined as max-min distance, max-average distance,
and so on.

The dispersion problem has a long history, with many variants both in the
metric setting and the geometric setting [17,30,40]. For example, finding a subset
of size k from an input set of n points in a metric space that maximizes the
distance between closest pairs or the sum of distances of the k selected points
are both NP-hard [1,39]. For the max-sum dispersion problem, the best known
approximation factor is 2 for general metrics [7,26], although PTAS are available
for Euclidean metrics or more generally, metrics of negative type, even with
matroid constraints [10,11].
Dispersion in exponentially-sized space We make use of the general frame-
work of the 2-approximation algorithm [8,39] to the max-sum k-dispersion prob-
lem, a greedy algorithm where the i + 1th solution is chosen to be the most
distant/diverse one from the first i solutions. Notice that in our setting, there
is an important additional challenge to understand the space within which the
approximate solutions stay. In all of the problems we study, the total number
of solutions can be exponential in the input size. Thus we need to have a non-
trivial way of navigating within this large space and carry furthest insertion
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without considering all points in the space. This is where our reduction to budget
constrained problem comes in.

Self avoiding dispersion Furthermore, even after implicitly defining the i+1th
furthest point insertion via some optimization problem, one needs to take care
that the (farthest, in terms of sum of distances) solution does not turn out to
equal one of the previously found i solutions, as this is a requirement for the
furthest point insertion algorithm. This is an issue one faces because of the
implicit nature of the furthest point procedure in the exponential-sized space of
solutions: in the metric k-dispersion problem, it was easy to guarantee distinctness
as one only considered the n− i points not yet selected.

1.3 Reduction to Budget Constrained Optimization

Combining with dispersion, we reduce the diversity computational problem to a
budget constrained optimization (BCO) problem where the budget is an upper
(resp. lower) bound if the quality of solution is described by a minimization
(resp. maximization) problem. Recall that the number of solutions k and the
approximation factor c is input by the user; a larger c allows for more diversity.

We show how using an (a, b) bi-approximation algorithm for the BCO problem
provides a set of O(a)-diverse, bc approximately-optimal solutions to the diversity
computational problem (the hidden constant is at most 4). This main reduction
is described in Theorem 1.

The main challenge in transferring the bi-approximation results because of
a technicality that we describe next. Let Ω(c) be the space of c approximate
solutions. A (∗, b) bi-approximation algorithm to the BCO relaxes the budget
constraint by a factor b, and hence only promises to return a faraway point in
the larger space Ω(b · c). Thus bi-approximation of BCO do not simply give a
farthest point insertion in the space of solutions, and instead return a point in a
larger space. Nevertheless, we prove in Lemma 4 that in most cases, one loses a
factor of at most 4 in the approximation factor for the diversity.

Once the reduction to BCOs is complete, for diverse approximate matchings,
spanning trees and shortest paths we exploit the special characteristics of the
corresponding BCO to solve it optimally (a = b = 1). For other problems
such as global min-cut, diverse approximate minimum weight spanning trees,
and the more general minimum weight bases of a matroid, we utilize known bi-
approximations to the BCO to obtain bi-approximations for the diversity problem.
For all problems except diverse (unweighted) spanning trees7, our algorithms are
the first polynomial time bi-approximations for these problems.

We also connect to the wide literature on multicriteria optimization and show
that our result applies to the entire class of problems for which the associated
DUALRESTRICT problem (defined by Papadimitriou and Yannakakis [37], and

7 While an exact algorithm for diverse unweighted spanning trees is known [24], we
give a faster (by a factor Ω(n1.5k1.5/α(n,m)) where α(·) denotes the inverse of the
Ackermann function), 2-approximation here.
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recently studied by Herzel et al. [27]) has a polynomial time solution. We discuss
this in more detail after presenting our reduction.
Layout: The rest of this paper is organized as follows: we survey related work in
Section 2, and formulate the problem in Section 3. In Section 4 we mention the
connection to dispersion and describe the reduction to the budget constrained
optimization problem (Theorem 1). Sections 5-8 describe four applications of our
technique to various problems such as diverse approximate matchings, global min-
cuts, shortest paths, minimum spanning trees, and minimum weight bases of a
matroid. We remark that this list is by no means exhaustive, and we leave finding
other interesting optimization problems which are amenable to our approach for
future research. We end with open problems in Section 9.

2 Related Work

Recently there has been a surge of interest in the tractability of finding di-
verse solutions for a number of combinatorial optimization problems, such as
spanning trees, minimum spanning trees, k-paths, shortest paths, k-matchings,
etc. [18,19,22,23,24]. Most of the existing work focuses on finding diverse optimal
solutions. In cases when finding the optimal solution is NP-complete, several
works have focused on developing FPT algorithms [5,19]. Nevertheless, as pointed
out in [23], it would be more practical to consider finding a set of diverse “short”
paths rather than one set of diverse shortest paths. They show that finding a set of
approximately shortest paths with the maximum diversity is NP-hard, but leave
the question of developing approximation algorithms open, a question that we
answer in our paper for several problems. Similarly the problem of finding diverse
maximum matchings was proved to be NP-hard in [18]. We remark that the
main difference between our result and previous work is that our algorithms can
find a diverse set of c-approximate solutions in polynomial time. If the attained
diversity is not sufficient for the application, the user can input a larger c, in
hopes of increasing it.
Multicriteria Optimization: In this domain, several optimization functions
are given on a space of solutions. Clearly, there may not be a single solution
that is the best for all objective functions, and researchers have focused on
obtaining Pareto-optimal solutions, which are solutions that are non-dominated
by other solutions. Put differently, a solution is Pareto-optimal if no other solution
can have a better cost for all criteria. Since exact solutions are hard to find,
research has focused on finding ϵ Pareto-optimal solutions, which are a 1+ϵ factor
approximations of Pareto-optimal solutions. Papadimitriou and Yannakakis [37]
showed that under pretty mild conditions, any mutlicriteria optimization problem
admits an ϵ Pareto-optimal set of fully polynomial cardinality. In terms of being
able to find such an ϵ Pareto-optimal set, they show that a (FPTAS) PTAS exists
for the problem if and only if an associated GAP problem can be solved in (fully)
polynomial time. Very recently, Herzel et al.[27] study the class of problems for
which a FPTAS or PTAS exists for finding ϵ Pareto-optimal solutions that are
exact in one of the criteria. Such problems are a subset of the ones characterized
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by GAP. Herzel et al. [27] characterize the condition similarly: a FPTAS (PTAS)
exists if and only if an associated DUALRESTRICT problem can be solved in
(fully) polynomial time. For more details we refer the reader to the survey by
Herzel at al. [28].

3 Diversity Computational Problem (DCP)

First, we define some notations. We use the definition of optimization problems
given in [3] with additional formalism as introduced in [21].

Definition 1 (Optimization Problem). An optimization problem Π is
characterized by the following quadruple of objects (IΠ , SolΠ , ∆Π , goalΠ), where:

– IΠ is the set of instances of Π. In particular for every d ∈ N, IΠ(d) is the
set of instances of Π of input size at most d (bits);

– SolΠ is a function that associates to any input instance x ∈ IΠ the set of
feasible solutions of x;

– ∆Π is the measure function8, defined for pairs (x, y) such that x ∈ IΠ and
y ∈ SolΠ(x). For every such pair (x, y), ∆Π(x, y) provides a non-negative
integer which is the value of the feasible solution y;

– goalΠ ∈ {min,max} specifies whether Π is a maximization or minimization
problem.

We would like to identify a subset of our solution space which are (approxi-
mately) optimal with respect to our measure function. To this effect, we define a
notion of approximately optimal feasible solution.

Definition 2 (Approximately Optimal Feasible Solution). Let Π(IΠ , SolΠ , ∆Π , goalΠ)
be an optimization problem and let c ≥ 1. For every x ∈ IΠ and y ∈ SolΠ(x) we
say that y is a c-approximate optimal solution of x if for every y′ ∈ SolΠ(x)
we have ∆Π(x, y) · c ≥ ∆Π(x, y′) if goalΠ = max and ∆Π(x, y) ≤ ∆Π(x, y′) · c
if goalΠ = min.

Definition 3 (Computational Problem). Let Π(IΠ , SolΠ , ∆Π , goalΠ) be an
optimization problem and let λ : N → N. The computational problem associ-
ated with (Π,λ) is given as input an instance x ∈ IΠ(d) (for some d ∈ N) and
real c := λ(d) ≥ 1 find a c-approximate optimal feasible solution of x.

Definition 4 (DCP - Diversity Computational Problem). Let Π(IΠ , SolΠ , ∆Π , goalΠ)
be an optimization problem and let λ : N → N. Let σΠ,t be a diversity measure that
maps every t feasible solutions of an instance of IΠ to a non-negative real number.
The diversity computational problem associated with (Π,σΠ,t, k, λ) is
given as input an instance x ∈ IΠ(d) (for some d ∈ N), an integer k := k(d), and
real c := λ(d) ≥ 1, find k-many c-approximate solutions y1, . . . , yk to x which
maximize the value of σΠ,k(x, y1, . . . , yk).
8 We define the measure function only for feasible solutions of an instance. Indeed if
an algorithm solving the optimization problem outputs a non-feasible solution then,
the measure just evaluates to -1 in case of maximization problems and ∞ in case of
minimization problems.
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Proposition 1. Let Π(IΠ , SolΠ , ∆Π , goalΠ) be an optimization problem and let
λ : N → N. Let σΠ,t be a diversity measure that maps every t feasible solutions
of an instance of IΠ to a non-negative real number. If the computational problem
associated with (Π,λ) is NP-hard then, the diversity computational problem
associated with (Π,σΠ,t, λ) is also NP-hard.

Therefore the interesting questions arise when we compute problems associated
with (Π,λ) which are in P, or even more when, (Π,1) is in P where 1 is the
constant function which maps every element of the domain to 1. For the remainder
of this paper, we will consider λ(d) to be the constant function, and will simply
refer to the constant as c.

Finally, we define bicriteria approximations for the diversity computational
problem:

Definition 5 ((α, β) bi-approximation for the Diversity Computational
Problem). Consider the diversity computational problem associated with (Π,σΠ,t, k, c),
and a given instance x ∈ IΠ(d) (for some d ∈ N). An algorithm is called an
(α, β) bi-approximation for the diversity computational problem if it outputs k
feasible solutions y1, . . . , yk such that a) yi is a β · c-approximate optimal fea-
sible solution to x for all 1 ≤ i ≤ k, and b) for any set y

′

1, . . . , y
′

k of k-many

c-approximate optimal feasible solutions, σΠ,k(y1, · · · , yk) · α ≥ σΠ,k(y
′

1, · · · , y
′

k).
Furthermore, such an algorithm is said to run in polynomial time if the running
time is polynomial in d and k.

4 The Reduction: Enter Dispersion and Biobjective
Optimization

As stated in the introduction, our problems are related to the classical dispersion
problem in a metric space. Here we state the dispersion problem and show that
under the exponential time hypothesis, 2-approximation is actually tight for
the k-dispersion problem. We will then use dispersion to reduce the problem of
finding diverse, approximately optimal solutions to solving an associated budget
constrained optimization problems.

4.1 Dispersion Problem

Definition 6 (k-Dispersion, total distance). Given a finite set of points P
whose pairwise distances satisfy the triangle inequality and an integer k ≥ 2, find
a set S ⊆ P of cardinality k so that W (S) is maximized, where W (S) is the sum
of the pairwise distances between points in S.

The main previous work on the k-dispersion problem relevant to us is [39],
where the problem was named as Maximum-Average Facility Dispersion problem
with triangle inequality (MAFD-TI). The problems are equivalent as maximizing
the average distance between the points also maximizes the sum of pairwise
distances between them and vice-versa.
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The k-dispersion problem is NP-hard, but one can find a set S whose W (S)
is at least a constant factor of the maximum possible in polynomial time by a
greedy procedure [39]. We call the greedy procedure furthest insertion. It works as
follows. Initially, let P be a singleton set that contains an arbitrary point from the
given set. While |S| < k, add to S a point x /∈ S so that W (S∪{x}) ≥ W (S∪{y})
for any y /∈ S. Repeat the greedy addition until S has size k. The final S is a
desired solution, which is shown to be a 4-approximation in [39]. It is worth
noting that the furthest insertion in [39] initializes S as a furthest pair of points
in the given set, and the above change does not worsen the approximation factor.
In a later paper [8], the greedy algorithm of choosing an arbitrary initial point is
shown to be a 2-approximation, which is a tight bound for this algorithm [7].

Lemma 1 (Furthest Insertion in [8,39]). The k-dispersion problem can be
2-approximated by the furthest insertion algorithm.

The running time of the furthest insertion algorithm is polynomial in |S| the
size of S, as it performs k iterations, each performing at most O(k|S|) distance
computations/lookups. Note that in our case S is the collection of objects of a
certain type (matchings, paths, trees, etc.). Hence the size of our metric space is
typically exponential in |V | and |E|. This adds a new dimension of complexity
to the traditional dispersion problems studied.

4.2 Reduction to Budget Constrained Optimization

Recall the definitions of the Diversity Computational Problem (Definition 4 and
(a, b) bi-approximations (Definition 5). As the input instance x ∈ IΠ will be clear
from context, we drop the dependence on x, and assume a fixed input instance
to a computational problem. Thus SolΠ will denote the set of feasible solutions,
and ∆Π(y) the measure of the feasible solution y.
Diversity and similarity measures from metrics Let d : SolΠ × SolΠ → R+

be a metric on the space of feasible solutions. When such a metric is available, we
will consider the diversity function σΠ,t : SolΠ × · · · × SolΠ → R+ that assigns
the diversity measure

∑
i,j d(yi, yj) to a t-tuple of feasible solutions (y1, · · · , yt).

Also, given such a metric d, define D to be the diameter of SolΠ under d, i.e.,
D = maxy,y′∈SolΠ d(y, y′). In many cases, we will be interested in the similarity
measure sΠ,t defined by sΠ,t(y1, · · · , yt) =

∑
i,j(D−d(yi, yj)). The examples the

reader should keep in mind are graph objects such as spanning trees, matchings,
shortest paths, Hamiltonian circuits, etc., such that d(y, y′) denotes the Hamming
distance, a.k.a. size of the symmetric difference of the edge sets of y and y′, and
s denotes the size of their intersection.

In the remainder of the paper we consider the above total distance (resp.
similarity) diversity measures σΠ,t arising from the metric d (resp. similarity
measure s), and we will parameterize the problem by d (resp. s) instead.

Definition 7 (Budget Constrained Optimization). Given an instance of
a computational problem Π, a c ≥ 1, and a set y1, . . . , yi of feasible solu-
tions in SolΠ , define the metric budget constrained optimization problem
BCO(Π, (y1, . . . , yi), c, d) as follows:
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– If goalπ = min, define ∆∗ := miny∈SolΠ ∆Π(y). Then BCO(Π, (y1, . . . , yi), c, d)
is the problem

max fd(y) :=
i∑

j=1

d(y, yi)

s.t. ∆Π(y) ≤ c ·∆∗

y ∈ SolΠ \ {y1, . . . , yi}

(1)

– If goalπ = max, define ∆∗ := maxy∈SolΠ ∆Π(y). Then BCO(Π, (y1, . . . , yi), c, d)
is the problem

max fd(y) :=
i∑

j=1

d(y, yi)

s.t. ∆Π(y) · c ≥ ∆∗

y ∈ SolΠ \ {y1, . . . , yi}

(2)

– Given a similarity measure s, define the similarity budget constrained
optimization problem BCO(Π, (y1, . . . , yi), c, s) with the same constraint
set as above (depending on goalπ), but with the objective function changed to

gs(y) :== min
∑i

j=1 s(y, yi) instead of fd(y) = max
∑i

j=1 d(y, yi).

Definition 8 (Bi-approximation to BCO). An algorithm for an associated
BCO is called an (a, b) bi-approximation algorithm if for any 1 ≤ i ≤ k, it outputs
a solution y such that the following holds.

– If goalΠ = min and the associated BCO is BCO(Π, (y1, . . . , yi), c, d), then
a) y ∈ SolΠ \ {y1, · · · , yi}, b) ∆Π(y) ≤ b · c ·∆∗, and c) for all y′ satisfying
the constraints of BCO(Π, (y1, . . . , yi), c, d), fd(y) · a ≥ fd(y

′).
– If goalΠ = max and the associated BCO is BCO(Π, (y1, . . . , yi), c, d), then
a) y ∈ SolΠ \ {y1, · · · , yi}, b) ∆Π(y) · b · c ≥ ∆∗, and c) for all y′ satisfying
the constraints of BCO(Π, (y1, . . . , yi), c, d), fd(y) · a ≥ fd(y

′).
– If goalΠ = min and the associated BCO is BCO(Π, (y1, . . . , yi), c, s), then
a) y ∈ SolΠ \ {y1, · · · , yi}, b) ∆Π(y) ≤ b · c ·∆∗, and c) for all y′ satisfying
the constraints of BCO(Π, (y1, . . . , yi), c, s), gs(y) ≤ gs(y

′) · a.
– If goalΠ = max and the associated BCO is BCO(Π, (y1, . . . , yi), c, s), then
a) y ∈ SolΠ \ {y1, · · · , yi}, b) ∆Π(y) · b · c ≥ ∆∗, and c) for all y′ satisfying
the constraints of BCO(Π, (y1, . . . , yi), c, s), gs(y) ≤ gs(y

′) · a.

Remark: Minimization and maximization are essentially equivalent (by changing
the sign), and so optimally solving one solves the other. The reason why we
continue to treat them separately is because obtaining an approximation to
minimizing total similarity gs(y) :=

∑i
j=1 s(y, yi) is not equivalent to an ap-

proximation to maximizing total distance fd(y) :=
∑i

j=1 d(y, yi)– in fact, these
functions are the “opposite” of each other, as fd(y) = Di− gs(y).

We are now ready to state our main theorem.
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Theorem 1 (Reduction of DCP to BCO). Consider an input (Π, k, d, c)
to the diversity computational problem (DCP).

– For metric BCO,

1. An (a, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) can be used to
give a (2a, 1) approximation to the DCP, and

2. An (a, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) can be used to
give a (4a, b) approximation to the DCP.

– For similarity BCO,

3. A (1, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used to give
a (2, 1) approximation to the DCP,

4. A (1, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used to give
(4, b) approximation to the DCP,

5. A (1 + ϵ, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used
to give (4, 1) approximation to the DCP, under the condition that the
average pairwise distance in the optimal solution to the DCP is at least
D 4ϵ

1+2ϵ .

In all of the above, the overhead for obtaining a bi-approximation for the
DCP, given a bi-approximation for BCO problem, is O(k).

The detailed proof of Theorem 1 is in Appendix 10. A few remarks are in
order:

– The above theorem provides a recipe for solving the diversity computational
problem for any given optimization problem. As long as either the metric
or the similarity budget constrained optimization problems can be solved or
approximated in polynomial time, one has an analogous result for the DCP.

– In the remainder of this paper we will see several application that follow from
the above 5 “types” of bi-approximations available. These include DCP for
Maximum Matching and Global Min-Cut (Type 1), DCP for shortest path
(Type 3), DCP for minimum weight bases of a matroid, minimum spanning
trees (Types 4 and 5).

– Whenever either a or b (or both) is set to be 1+ ϵ, we call a bi-approximation
for the BCO problem an FPTAS if the running time is polynomial in 1/ϵ in
addition to being polynomial in d and i. Otherwise we call it a PTAS.

Relation to Multicriteria Optimization: Observe that for similarity BCOs,
we need either a or b to be 1. This class of biobjective problems that have a PTAS
that is exact in one of the criteria is a special case of the multicriteria problems
that have a PTAS that is exact in one of the criteria. Herzel et al. [27] showed
that this class is exactly the class of problems for which the DUALRESTRICT
version of the problem, posed by Diakonikolas and Yannakakis [15]), can be solved
in polynomial time. These are also the class of problems having a polynomial-
time computable approximate ϵ-Pareto set that is exact in one objective. This
equivalence means that our theorem is applicable to this entire class of problems.
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4.3 Relaxed BCOs and Self-Avoidance

Before we delve into our applications, we describe another challenge in directly
applying results from multicriteria optimization literature. For a BCO, the second
constraint demands that y ∈ SolΠ \{y1, · · · , yi}. Intuitively y is the farthest point
to the set of already discovered solutions {y1, · · · , yi}, and because it is defined
implicitly, without the second constraint y may equal one of the yj (1 ≤ j ≤ i).
Consider an alternate BCO, which we call BCOr where the constraint is relaxed to
y ∈ SolΠ . For many graph problems, solving BCOr combined with the approach
by Lawler [31] gives a solution to the original BCO. This is extremely useful
because most of the literature on multicriteria optimization concerns optimization
of the relaxed type of problems BCOr, and one can borrow results derived before
without worrying about the second constraint. We remark that for other problems,
k-best enumeration algorithms (see [20,25,31,32,35] for examples) may be useful
to switch from the BCO to its relaxed version. Thus any algorithm for BCOr

can be used, modulo the self-avoiding constraint (to be handled using Lawler’s
approach), to give a polynomial time algorithm for the Diversity Computational
Problem with the same guarantees as in Theorem 1. We provide examples of the
approach by Lawler in subsequent sections where we consider specific problems.

5 Application 1: Diverse Spanning Trees

In this section, we discuss the diverse spanning trees problem, which is the
diversity computational problem for spanning trees with Hamming distance
function as the diversity measure. Let G = (V,E) be an undirected graph. The
problem aims to output a set S of k spanning trees T1, · · · , Tk of G such that
the sum of the pairwise distances

∑
i,j∈S d(Ti, Tj) is maximized, where d is

the Hamming distance between the edge sets of the trees. While this problem
actually has an exact algorithm running in time O((kn)2.5m) [24], we get a faster
approximation algorithm.

Theorem 2. Given a simple graph G = (V,E), there exists an O(knmα(n,m))-
time algorithm, where α(·) is the inverse of the Ackermann function, that generates
k spanning trees T1, · · · , Tk, such that the sum of all pairwise Hamming distances
is at least half of an optimal set of k diverse spanning trees.

We prove the above theorem in Section 11 in the appendix, by developing an
exact (1, 1) polynomial time subroutine for the associated BCO problem.

6 Application 2: Diverse Approximate Shortest Paths

Given a graph G = (V,E), non-negative edge weights w(e), two vertices s and t,
and a factor c > 1, the diversity computational problem asks to output k many
st paths, such that the weight of each path is within a factor c of the weight of
the shortest st path, and subject to this constraint, the total pairwise distance
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between the paths is maximized. Here the distance between two paths is again
the Hamming distance, or size of symmetric difference of their edge sets.

In [23], it is shown that finding k shortest paths with the maximum diversity
(i.e. the average Hamming distance between solutions) can be solved in polynomial
time, but finding k “short” paths with the maximum diversity is NP-hard. In
contrast, in what follows, we will show that finding k “short” paths with constant
approximate diversity is polynomial-time solvable.

We will show that the associated budget constrained optimization problem for
this is of Type 3 in Theorem 1. In other words, we will show that the BCO can
be solved exactly. This will result in a (2, 1) approximation algorithm for the
diversity computational problem.

Hence, we need an algorithm that implements: given a set S of c-st-shortest
paths, find a c-st-shortest path P /∈ S so that W (S ∪ {P}) is maximum among
all W (S ∪ {P ′}) for c-st-shortest path P ′ /∈ S. Here, W (S′) is the sum of all
pairwise Hamming distances between two elements in S′. This is a special case
of the bicriteria shortest paths, for which there is an algorithm in [36]. In our
case, one of the two weight functions is an integral function with range
bounded in [0, k]. Hence, it can be solved more efficiently than the solution
in [36], which can be summarized as following.

Lemma 2 (Exact solution to the relaxed BCOr problem). Given a real
c ≥ 1 and a directed simple graph G = (V ∪ {s, t}, E) associated with two weight
functions on edges ω : E → R+ and f : E → {0, 1, . . . , r}, there is an O(r|V |3)-
time algorithm to output an st-path P ∗ so that

∑
e∈E(P∗) f(e) is minimized while

retaining
∑

e∈E(P∗) ω(e) ≤ c
∑

e∈E(P ) ω(e) for all st-paths P .

Please see Section 12 in appendix for the detailed proof of Lemma 2.
Self-Avoiding Constraint We now turn to solving the associated (non-relaxed)
BCO problem, by generalizing the above lemma to Corollary 1 (proof in appendix
Section 12.). Thus corollary 1 will help us avoid the situation that a furthest
insertion returns a path that is already picked by some previous furthest insertion.

Corollary 1 (Exact solution to the BCO problem). Given a real c ≥ 1,
a directed simple graph G = (V ∪ {s, t}, E) associated with two weight functions
on edges ω : E → R+, f : E → {0, 1, . . . , r}, and two disjoint subsets of edges
Ein, Eex ⊆ E so that all edges in Ein together form a directed simple path Pprefix

starting from node s, there exists an O(r|V |3)-time algorithm to output an c-
st-shortest path P ∗ under ω so that

∑
e∈E(P∗) f(e) is minimum among all the

c-st-shortest paths P that contain Pprefix as a prefix and contain no edges from
Eex, if such an c-st-shortest path exists.

We are ready to state our main result (proof in appendix Section 12) for the
diverse c-st-shortest paths.

Theorem 3 ((2, 1) bi-approximation to the Diversity Problem on Short-
est Paths). For any directed simple graph G = (V ∪ {s, t}, E), given a c > 1
and a k ∈ N, there exists an O(k3|V |4)-time algorithm that, if G contains at least
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k distinct c-st-shortest paths, computes a set S of k distinct c-st-shortest paths
so that the sum of all pairwise Hamming distances between two paths in S is at
least one half of the maximum possible; otherwise, reports “Non-existent.”

7 Application 3: Diverse Approximate Maximum
Matchings, and Global Min-cut

Consider the diversity computational problem for computing k many c maximum
matchings for undirected graphs. In [18], the authors present an algorithm,
among others, to find a pair of maximum matchings for bipartite graphs whose
Hamming distance is maximized. In contrast, our result can be used to find k ≥ 2
approximate maximum matchings for any graph whose diversity (i.e. the average
Hamming distance) approximates the largest possible by a factor of 2.

We show that this problem can be restated into the budgeted matching
problem [6]. As noted in [6], though the budgeted matching is in general NP-
hard, if both the weight and cost functions are integral and have a range bounded
by a polynomial in |V |, then it can be solved in polynomial time with a good
probability by a reduction to the exact perfect matching problem [9,34]. The
exact running time for such a case is not stated explicitly in [6]. We combine the
algorithm in [6] and the approach by Lawler [31] to prove:

Theorem 4. There exists a O(k4|V |7 log3 k|V |) time, (2, 1) bi-approximation
to the diversity computational problem for c-maximum matchings, with failure
probability 1/|V |Ω(1).

The details of our algorithm can be found in appendix Section 13.
DCP for Global Min-Cuts: Next, consider the diversity computational problem
for computing k many c-approximate global min-cuts: given a graph G and a
positive weight function w on its edges, a c-approximate min-cut is a cut C whose
cut-edge set E(C) satisfies

∑
e∈E(C) w(e) ≤ c

∑
e∈E(C′) w(e) for any other cut

C ′. Given i cuts, we define the (integral) cost of an edge as the number of cuts
in which it appears as a cut edge. Consider the BCO with cost minimization
in the objective function (as the cost of a cut is now inversely proportional
to its sum of distances from the found cuts) and constraint with upper bound
(the weight of the cut should be at most c times that of a global min weight
cut). In [2] the authors provide a polynomial-time algorithm for this problem,
implying that the BCO can be solved exactly in polynomial time. This gives us a
(2, 1) bi-approximation to the diversity computational problem for c-approximate
global minimum cuts. We remark that one may be able to exploit integrality of
our cost function to obtain a faster algorithm than that in [2].

8 Application 4: Diverse Minimum Weight Matroid Bases
and Minimum Spanning Trees

One of the original ways to attack the peripatetic salesman problem (Krarup
[29]) was to study the k edge-disjoint spanning trees problem [13]. Note that the
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existence of such trees is not guaranteed, and one can use our results in Section 5
to maximize diversity of the k trees found.

However, for an application to the TSP problem, cost conditions must be
taken into account. Here we study the diverse computational problem (DCP) on
minimum spanning trees: Given a weighted undirected graph G = (V,E) with
nonnegative weights w(e), c > 1 and a k ∈ N, return k spanning trees of G such
that each spanning tree is a c-approximate minimum spanning tree, and subject
to this, the diversity of the k trees is maximized. Here again the diversity of a set
of trees is the sum of pairwise distances between them, and the distance between
two trees is the size of their symmetric difference.

Our results in this section generalize to the problem of finding k diverse
bases of a matroid such that every basis in the solution set is a c approximate
minimum-weight basis. The DCP on MSTs is a special case of this problem.
However, in order to not introduce extra notation and definitions here, we will
describe our method for minimum spanning trees. We will then briefly sketch
how to extend the algorithm to the general matroid case.

Starting with T1 = MST (G) (a minimum spanning tree on G, computable in
polynomial time), assume we have obtained i trees T1, · · · , Ti, all of which are
c-approximate minimum spanning trees. Assign to each edge a length ℓ(e) which
equals |j : 1 ≤ j ≤ i, e ∈ Tj |.

Claim. Given T1, · · · , Ti, finding Ti+1 that maximizes
∑i

j=1 d(T, Tj) is equivalent
to finding T that minimizes

∑
e∈T ℓ(e).

Proof. An explicit calculation reveals that
∑

e∈T ℓ(e) = (n− 1)i−
∑i

j=1 d(T, Tj).

Consider now the associated similarity budget constrained optimization prob-
lem

min
∑
e∈T

ℓ(e)

s.t. w(T ) ≤ c · w(MST (G))

T ∈ SolΠ \ {T1, . . . , Ti}

(3)

Here SolΠ is just the set of spanning trees on G. We will handle the self-
avoiding constraints in a similar fashion as in Section 5. For the moment consider
the relaxed BCOr where the last constraint is simply T ∈ SolΠ . This is a
budget constrained MST with two weights. This problem has been considered
by Ravi and Goemans [38], who termed it the CMST problem. They provide
a (1, 2) bi-approximation that runs in near-linear time, and a (1, 1 + ϵ) bi-
approximation that runs in polynomial time9. Also, they show that the (1, 1+ϵ) bi-
approximation can be used as a subroutine to compute a (1+ϵ, 1) bi-approximation
in pseudopolynomial time.

Applying their results and observing that we are in cases 4 and 5 of Theorem 1,
we get

9 The latter is a PTAS, not an FPTAS.
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Theorem 5 (DCP for Mininum Spanning Trees). There exists a

– polynomial (in n,m and k) time algorithm that outputs a (4, 2) bi-approximation
to the DCP problem for MSTs.

– polynomial (in n,m and k) and exponential in 1/ϵ time algorithm that outputs
a (4, 1 + ϵ) bi-approximation to the DCP problem for MSTs.

– pseudopolynomial time algorithm that outputs a (4, 1) bi-approximation to
the DCP problem for MSTs, as long as the average distance between the trees
in the optimal solution to the k DCP on c-approximate minimum spanning

trees does not exceed 4ϵ(n−1)
1+2ϵ .

Extension to Matroids: It is stated in the paper by Ravi and Goemans [38]
that the same result holds if one replaces the set of spanning trees by the bases
of any matroid. It is straightforward to show that the analog of Claim 8 hold in
the matroid setting too. With a bit of work, one can also generalize the approach
of Lawler [31] to avoid self-intersection (the bases found so far), and thus all
the techniques generalize to the matroid setting. In all of this, we assume an
independence oracle for the matroid, as is standard. In [19], it is shown that,
given integers k, d, finding k perfect matchings so that every pair of the found
matchings have Hamming distance at least d is NP-hard. This hardness result
also applies to finding weighted diverse bases and weighted diverse common
independent sets.

9 Conclusion

We obtained bi-approximation algorithms for the diversity computational prob-
lems associated with approximate minimum-weight bases of a matroid, shortest
paths, matchings, min-cut and spanning trees. Our general reduction lemma
can be applied to any computational problem for which the DUALRESTRICT
version defined by Papadimitriou and Yannakakis [37] can be solved in polynomial
time. One may also exploit special integrality properties of our BCO to get faster
algorithms than those for general multicriteria problems. There are (at least)
three open questions:

– Are there other interesting examples of problems to which our reduction
lemma applies?

– It is noteworthy that while Types 3, 4 and 5 in Theorem 1 contain the class
for which DUALRESTRICT can be solved efficiently, the case of a = b =
1 + ϵ missing in our theorem would include the larger GAP class studied
by Papadimitriou and Yannakakis [37]. Our current techniques to prove
Theorem 1 do not allow us to translate such bi-approximations of BCOs into
those for DCPs (at least not without demanding certain stronger condition
than in Type 5).

– Can the diversity computational problem for approximate TSP tours or
Max-TSP tours be solved in polynomial time?
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10 Proof of Reduction Theorem

Theorem 1 (Reduction of DCP to BCO). Consider an input (Π, k, d, c)
to the diversity computational problem (DCP).

– For metric BCO,

1. An (a, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) can be used to
give a (2a, 1) approximation to the DCP, and

2. An (a, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) can be used to
give a (4a, b) approximation to the DCP.

– For similarity BCO,

3. A (1, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used to give
a (2, 1) approximation to the DCP,

4. A (1, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used to give
(4, b) approximation to the DCP,

5. A (1 + ϵ, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used
to give (4, 1) approximation to the DCP, under the condition that the
average pairwise distance in the optimal solution to the DCP is at least
D 4ϵ

1+2ϵ .

In all of the above, the overhead for obtaining a bi-approximation for the
DCP, given a bi-approximation for BCO problem, is O(k).

Given a BCO(Π, (y1, . . . , yi), c, d), denote by Ω(c, (y1, . . . , yi)) its feasible set.
When b = 1, the returned solution y lies in Ω(c, (y1, . . . , yi)). On the other hand
when b > 1, the returned solution lies in the larger space Ω(bc, (y1, . . . , yi)). Our
proof will handle these cases separately. We will first state two lemmas concerning
the greedy heuristic of farthest point insertion, the first of which we suspect is
folklore, but we could not find a reference. The second lemma is the heart of the
argument, and is (as far as we know) novel.

Lemma 3. Let A be a metric space, and consider the k-dispersion problem in A
as in Definition 6. Consider an oracle O that, given a set Pi := {p1, · · · , pi} of i

points in A, returns a point p ∈ A\Pi such that
∑i

j=1 d(p, pi) ·a ≥
∑i

j=1 d(p
′, pi)

for all p′ ∈ A \ Pi for some constant a > 1. Then in k calls to O one can obtain
a 2a-approximate solution to the k-dispersion problem on A. In other words, the
total pairwise distance between the k points of the solution obtained via O is at
most that of the optimal solution to the k-dispersion divided by 2a.

Lemma 4. Assume A is a metric space, and B ⊆ A. Suppose there is an oracle
O that, given a set of i points Pi := {p1, · · · , pi} in A, outputs a point p ∈ A \Pi

such that
∑i

j=1 d(pj , p) ≥ maxp′∈B

∑i
j=1 d(pj , p

′). Then the oracle can be used
to give a set of k points in A whose diversity is at least 1/4 of an optimal solution
to the k-dispersion problem in B.

Assuming the above lemmas, we now prove the theorem.
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– Type 1: An (a, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) returns a
point in Ω(c, (y1, . . . , yi)). Therefore we only apply Lemma 3 and we are
done.

– Type 2: An (a, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) returns a
point in Ω(bc, (y1, . . . , yi)), that is an a-approximation to the farthest point
in Ω(c, (y1, . . . , yi)). Applying Lemma 3 and Lemma 4 together, we get the
claimed result.

– Type 3: A (1, 1) bi-approximation to the similarity BCO(Π, (y1, . . . , yi), c, s)
returns the farthest point in Ω(c, (y1, . . . , yi)), and so this case follows from
the 2-approximation guarantee of the farthest insertion heuristic, without
applying either lemma.

– Type 4: A (1, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) returns the
farthest point in Ω(bc, (y1, . . . , yi)). In this case, we only apply Lemma 4 to
get the claimed result.

We prove the remaining case of Type 5 separately. A (1+ϵ, 1) bi-approximation
to BCO(Π, (y1, . . . , yi), c, s) returns a point in Ω(c, (y1, . . . , yi)). However, this
point is not the farthest point, nor necessarily an approximation of it. This is
because the guarantee is only on the total similarity, and not the total distance.
In other words, a 1 + ϵ approximation to gs(y) :=

∑i
j=1 s(y, yi) is not a 1 +

ϵ approximation to fd(y) :=
∑i

j=1 d(y, yi)– in fact, these functions are the
“opposite” of each other, as fd(y) = Di− gs(y).

Let y∗ be the point in Ω(c, (y1, . . . , yi)) that maximizes fd(y), i.e., the farthest
point. The (1 + ϵ, 1) bi-approximation algorithm returns a point y such that
gs(y) ≤ a · gs(y∗). Consider the condition that the average pairwise distance in
the optimal solution OPT to the DCP is at least D 4ϵ

1+2ϵ . We refer the reader
now to Lemma 1 in [7], which proves that during farthest point insertion, at step
i+1 in the algorithm when Pi = {p1, · · · , pi} have been selected, there is a point
p /∈ Pi whose average distance is at least OPT/2. While this lemma seems like it
can only be applied to point sets Pi formed during an iterated farthest insertion,
a careful analysis of Lemmas 3,4,5 and 6 in [7] used to prove it reveals that the
argument does not demand that this be the case. That is, for any set Pi of i
points, there always exist a p /∈ Pi whose average distance is at least OPT/2.

This implies the existence of a point y′ ∈ Ω(c, (y1, . . . , yi)) such that the
average distance of y′ to the yis is at least OPT/2 ≥ D 2ϵ

1+2ϵ = D(1− 1
1+2ϵ ). Since

y∗ is the farthest point, the same condition holds for y∗.

This implies that the total distance fd(y
∗) ≥ Di(1 − 1

1+2ϵ ), implying that
gs(y

∗) = Di − fd(y
∗) ≤ Di/(1 + 2ϵ). We then have the following string of

inequalities
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gs(y
∗) ≤ Di

1 + 2ϵ
⇐⇒ Di ≥ (1 + 2ϵ)gs(y

∗)

⇐⇒ Di

2
≥ (

1

2
+ ϵ)gs(y

∗)

⇐⇒ Di− (1 + ϵ)gs(y
∗) ≥ 1

2
(D − gs(y

∗))

But we know that the returned point y satisfies gs(y) ≤ (1+ϵ)gs(y
∗), implying

that fd(y) = Di−gs(y) ≥ 1
2 (D−gs(y

∗)) = fd(y
∗)/2. Hence y is a 2-approximation

to the farthest point, and we can apply Lemma 3 to complete the proof.

10.1 Proofs of Lemmas 3 and 4

Proof of Lemma 3: We will prove the statement of the lemma for the average
distance, which will imply the claim for the total distance. Let OPT be the
average distance between solutions in the optimal solution to the k-dispersion
problem. By Lemma 1 in [7], at any step i, there is always a solution whose
distance to the already selected set Pi is at least OPT/2, and hence the same
holds for the farthest solution. This implies that the point p returned by the
algorithm has a distance at least OPT/2a. A simple inductive argument now
finishes the proof: assume the lemma holds until stage i, i.e., the average pairwise
distance between points in Pi is at least OPT/2a. When pi+1 = p is chosen, its
average distance to the i points in Pi is at least OPT/2a by the above reasoning,
and so the Pi+1 has an average pairwise distance of at least OPT/2a.

Proof of Lemma 4 For a point p ∈ A, denote by nB(p) its closest point in B.
By definition, if p ∈ B then nB(p) = p.

Assume that the oracle O in the hypothesis ofthe lemma exists. Then given
the point set Pi, consider the point set Qi = {nB(pj) : 1 ≤ j ≤ i}. As mentioned
before, a careful analysis of Lemmas 3-6 in [7] reveals that there always exists a
point p∗ ∈ B whose average distance to the points in Qi is at least OPT (B)/2,
where OPT (B) denotes the optimal average pairwise distance between points in
the optimal solution to the k dispersion problem on B.

Consider the three points pi, nB(pi) and p∗. By the triangle inequality,
d(pi, p

∗) ≥ d(p∗, nB(pi))− d(pi, nB(pi)). However, by definition, d(pi, nB(pi)) ≤
d(pi, p

∗). This implies that d(pi, p
∗) ≥ d(p∗, nB(pi)) − d(pi, p

∗), implying that
d(pi, p

∗) ≥ d(p∗, nB(pi))/2. Summing over all i, we get that the total (and hence
the average) distance of p∗ to points Pi is at least half of its total distance
to points in Qi. Since the average distance of p∗ to points in Qi is at least
OPT (B)/2, we get that the average distance of p∗ to points in Pi is at least
OPT (B)/4.

However, the oracle O returns a point p ∈ A whose average distance to Pi is
at least that of p∗ to points in Pi, which as argued above is at least OPT (B)/4.
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By the same inductive argument as in Lemma 3, we get that the average distance
between points returned by k calls to O is at least OPT (B)/4, proving that it
gives a 4-approximation.
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11 Diverse Spanning Trees

In this section, we discuss the diverse spanning trees problem, which is the
diversity computational problem for spanning trees with Hamming distance
function as the diversity measure. Let G = (V,E) be an undirected graph. The
problem aims to output a set S of k spanning trees T1, · · · , Tk of G such that
the sum of the pairwise distances

∑
i,j∈S d(Ti, Tj) is maximized, where d is

the Hamming distance between the edge sets of the trees. While this problem
actually has an exact algorithm running in time O((kn)2.5m) [24], we get a faster
approximation algorithm.

Theorem 6. Given a simple graph G = (V,E), there exists an O(knmα(n,m))-
time algorithm (here α(·) denotes the inverse of the Ackermann function) that
generates k spanning trees T1, · · · , Tk, such that the sum of all pairwise Hamming
distances is at least half of an optimal set of k diverse spanning trees.

Using our reduction Theorem 1, we observe that since one is only required to
output spanning trees, the associated budget constrained problem has no inequal-
ities. Having obtained i trees T1, · · · , Ti (starting with an arbitrary spanning tree
T1), the BCO problem looks like

max fd(y) :=
i∑

j=1

d(T, Ti)

s.t. T ∈ SolΠ \ {T1, . . . , Ti}

(4)

Note that the relaxed budget constrained problem then simply asks to maxi-
mize

∑i
j=1 d(T, Ti). We first show how to solve this problem exactly, and then

adapt the approach by Lawler [31] to handle the self-avoiding constraint. The

algorithm to maximize
∑i

j=1 d(T, Ti) is very simple: give each edge e a weight

w(e) =
∑i

j=1 1(e ∈ Tj) and compute the minimum spanning tree T with respect
to these edge weights.

Lemma 5. The minimum spanning tree T with respect to the edge weights w
satisfies

∑i
j=1 d(Tj , T ) ≥

∑i
j=1 d(Tj , T

′) for any spanning tree T ′.

The proof of Lemma 5 is at the end of this section. If T ̸= Tj for all 1 ≤ j ≤ i,
that is, the new spanning tree is different from all previous trees, then we are
done and Theorem 2 is proved using Lemma 5.
Self-Avoiding Constraint However, this is not guaranteed as our measure is
the sum-of-distances and not the minimum distance. Note that for furthest point
insertion, we need the point that is furthest from the current set, but does not
belong to the current set. This is an issue we face because of the implicit nature
of the furthest point procedure in the exponential-sized space of spanning trees:
in the metric k-dispersion problem, it was easy to guarantee distinctness as one
only considered the n− i points not yet selected.

We now show how to guarantee that the new tree is distinct. In case that
T = Tj for some 1 ≤ j ≤ i, we use the approach by Lawler [31]. We will
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obtain i + 1 distinct spanning trees T̃1, · · · , T̃i+1, at least one of which must

then be distinct from T1, · · · , Ti, which will be chosen as Ti+1. Set T̃1 = Tj .

For every edge e ∈ T̃1, we find the minimum spanning tree Te (with respect to
the same edge weights w(e) as before) after deleting e from the graph. Among
the collection {Te}e∈T̃1

of trees thus obtained, we find the one whose sum of

distances from T1, · · · , Ti is as large as possible, and set it to be T̃2. Note that
T̃2 ̸= T̃1. If T̃2 ≠ Tj for all 1 ≤ j ≤ i, then we are done; else, we repeat the

above procedure to obtain the collection {Te}e∈T̃2
and set T̃3 as the best one in

{Te}e∈T̃1
∪{Te}e∈T̃2

\ {T̃1, T̃2}, after which we are either done or we repeat to get

T̃4, and so on. We stop after obtaining T̃i+1, and select the T̃(.) that is distinct
from all of T1, · · · , Ti. The proof of Lemma 5 implies that the Ti+1 thus obtained
is the furthest tree from the T1, · · · , Ti among all trees T /∈ {T1, · · · , Ti}, and
we have accomplished furthest point insertion in the space of spanning trees. In
total, the above needs to compute O(kn) instances of the minimum spanning
tree, so the running time is O(knmα(n,m)) [12].

11.1 Proof of Lemma 5

Proof. Given input spanning trees T1, · · · , Ti, suppose T
A is the tree returned by

the algorithm in Section 4.1, and T ∗ is an optimal spanning tree. Let Ej be the
subset of edges with weight j. That is, Ej = {e ∈ E|w(e) = j} for all 0 ≤ j ≤ i
and partition E as E = E0 ∪ E1 ∪ · · · ∪ Ei.

Let cj = |TA ∩ Ej | and βj = |T ∗ ∩ Ej |. To prove that TA is optimal, we will

show that
∑i

j=1 d(T
A, Tj) ≥

∑i
j=1 d(T

∗, Tj).

Define A =
∑i

j=1 d(T
A, Tj) and B =

∑i
j=1 d(T

∗, Tj). Plugging αj and βj into
the sum of pairwise distances from our tree and the optimal tree to constructed
trees, we get

A =
i∑

j=1

d(TA, Tj) = (n− 1)i−
i∑

j=1

jαj

and

B =

i∑
j=1

d(T ∗, Tj) = (n− 1)i−
i∑

j=1

jβj .

We will show that A−B =
∑i

j=0 j(βj − αj) ≥ 0. We first express A−B as the
dot product of two vectors

A−B =< 0, 1, · · · , i >< β0 − α0, β1 − α1, · · · , βi − αi >
t,

where < . >t denotes transpose, and makes a column vector out of a row vector.
We develop some more notation:

Ej := E0 ∪ E1 ∪ · · · ∪ Ej

αj := α0 + α1 + · · ·+ αj
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βj := β0 + β1 + · · ·+ βj

cj :=< 0, 1, · · · , j >

αj
v :=< α0, α1, · · · , αj >

t

βj
v :=< β0, β1, · · · , βj >

t

With this we have that A−B = ci(βi
v − αi

v).
We will show ciβi

v ≥ ciαi
v by induction on i, which will prove that A ≥ B,

completing the proof.
We first claim that αj ≥ βj for all 0 ≤ j ≤ i. To prove this, fix a j and let

C1 be the number of connected components (including any isolated vertices) of
TA ∩ Ej and C2 be the number of connected components of T ∗ ∩ Ej . Clearly,
C1 ≤ C2 since for Kruskal’s algorithm for minimum spanning trees is the greedy
algorithm that adds as many edges from Ej into the solution as possible without
creating a cycle, and the addition of an edge decreases the number of connected
components by one. Since, C1 = n− αj and C2 = n− βj , C1 ≤ C2 implies that
αj ≥ βj .

Now, we continue our proof that ciβi
v ≥ ciαi

v by induction on i. Observe
||αi

v||1 = ||βi
v||1 = n

′
:= n− 1, as both spanning trees contain exactly n− 1 edges.

Base Case For the base case of i = 1, c1 =< 0, 1 >,α1
v =< α0, n

′ − α0 >,
and β1

v =< β0, n
′ − β0 > . From the previously mentioned property, we know

α0 = α0 ≥ β0 = β0. Hence, c
1β1

v = n′ − β0 ≥ n− α0 = c1α1
v.

The induction hypothesis assumes that ciβi
v ≥ ciαi

v for i = K − 1, i.e., the
statement is true for two vectors of length K − 1. Now, consider when i = K.
Since ||αK−1

v ||1 = αK−1 ≥ ||βK−1
v ||1 = βK−1, there are two cases,

Case 1): ||βK−1
v ||1 = ||αK−1

v ||1 Then since ||βK
v ||1 = ||αK

v ||1, we get that
αK = βK . Using the induction hypothesis, we get

cKβK
v = cK−1βK−1

v +KβK ≥ cK−1αK−1
v +KαK = cKαK

v .

Case 2) ||αK−1
v ||1 > ||βK−1

v ||1. Then ||αK
v ||1 = ||βK

v ||1 yields αK < βK . Let
d = βK − αK = ||αK−1

v ||1 − ||βK−1
v ||1. Then, cKβK

v − cKαK
v = cK−1(βK−1

v −
αK−1
v )+Kd. We claim that this quantity is positive. This is because the minimum

value of cK−1(βK−1
v − αK−1

v ), subject to the conditions that a) ||αK−1
v ||1 −

||βK−1
v ||1 = d > 0 and b) ||αK

v ||1 = ||βK
v ||1, occurs when βj = αj for all

0 ≤ j ≤ K − 2, βK−1 = αK−1 − d, and βK = αK + d. For this setting, the value
of cK−1(βK−1

v − αK−1
v ) + Kd equals −(K − 1)d + Kd = d, which is positive,

completing the proof.
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12 DCP on Approximate Shortest Paths

Lemma 2 (Exact solution to the relaxed BCOr problem). Given a real
c ≥ 1 and a directed simple graph G = (V ∪ {s, t}, E) associated with two weight
functions on edges ω : E → R+ and f : E → {0, 1, . . . , r}, there is an O(r|V |3)-
time algorithm to output an st-path P ∗ so that

∑
e∈E(P∗) f(e) is minimized while

retaining
∑

e∈E(P∗) ω(e) ≤ c
∑

e∈E(P ) ω(e) for all st-paths P .

Proof. Let D(., .) be a |V | × r(|V | − 1) table with the entry values defined as the
following:

D(v, c) = min

 ∑
e∈E(P )

ω(e) : P is an sv-path with
∑

e∈E(P )

f(e) ≤ c

 .

If the RHS takes the minimum from an empty set, then we define D(v, c) = ∞.
By definition, P ∗ has

∑
e∈E(P∗) f(e) = c∗ so that

c∗ = min{c ∈ [0, r(|V | − 1)] : D(t, c) ≤ c · disω(s, t)}

where disω(s, t) denotes the distance under ω from s to t. By backtracking from
the D(t, c∗), one can construct P ∗ from the table D in O(r|V |) time. Hence, our
goal is to fill out the entries in D using O(r|V |3) time.

To compute D(v, 0) for all v ∈ V , it suffices to run Dijkstra’s algorithm [16]
on the graph obtained from G with the removal of the edges whose f(e) > 0.
This step takes O(|V |2) time.

Given D(v, c′) for all v ∈ V, c′ ∈ [0, c − 1], to compute D(v, c) for all v ∈ V
there are two cases to discuss. We say an sv-path P admits D(v, c′) if P has∑

e∈E(P ) ω(e) = D(v, c′) and
∑

e∈E(P ) f(e) ≤ c′.

Case 1. Some sv-path (s, . . . , x, v) with f((x, v)) > 0 admits D(v, c).
Case 2. Some sw-path P = (s, . . . , y, w) with f((y, w)) > 0 admits D(w, c),
and P together with some edges e whose f(e) = 0 admits D(v, c).

For Case 1, it suffices to check D(x, c − f((x, v))) for all the neighbors of
v with f((x, v)) > 0. This step takes O(|V |) time. For Case 2, observe that
D(w, c) can be determined by Case 1. It suffices to initialize D(v, c) for all
v ∈ V as the values obtained from Case 1 and update D(v, c) if there is a
path Q from some node w to v so that every edge e ∈ E(Q) has f(e) = 0 and
D(w, c) +

∑
e∈E(Q) ω(e) < D(v, c). This can be implemented in O(|V |2) time

for each c by running Dijkstra’s algorithm on the graph G = (V,E ∪ E1 \ E2)
where E1 is a set of new directed edges (s, v) for all v ∈ V with f((s, v)) = 0
and ω((s, v)) as the initial D(v, c) obtained from Case 1, and E2 is the set of all
the edges e ∈ E that have f(e) > 0. It is worth noting that, though we do not
explicitly check whether the found paths contain cycles or not (i.e. not simple
paths), the paths found to admit D(v, c) must be simple since all shortest paths
in a positive weight graph are simple.

To sum up, an optimal solution P ∗ can be found in O(r|V |3) time.
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Corollary 1 (Exact solution to the BCO problem). Given a real c ≥ 1, a
directed simple graph G = (V ∪ {s, t}, E) associated with two weight functions
on edges ω : E → R+, f : E → {0, 1, . . . , r}, and two disjoint subsets of edges
Ein, Eex ⊆ E so that all edges in Ein together form a directed simple path Pprefix

starting from node s, there exists an O(r|V |3)-time algorithm to output an c-
st-shortest path P ∗ under ω so that

∑
e∈E(P∗) f(e) is minimum among all the

c-st-shortest paths P that contain Pprefix as a prefix and contain no edges from
Eex, if such an c-st-shortest path exists.

Proof. Let Pprefix = (s, . . . , v). This suffices to find a feasible vt-path Psuffix =
(v, . . . , t) on the graph obtained from G with the removal of all the nodes in
Pprefix except v and with the removal of all edges in Eex and those incident to
the deleted nodes. This can be computed by Lemma 2.

Theorem 3 ((2, 1) bi-approximation to the Diversity Problem on Short-
est Paths). For any directed simple graph G = (V ∪ {s, t}, E), given a c > 1
and a k ∈ N, there exists an O(k3|V |4)-time algorithm that, if G contains at least
k distinct c-st-shortest paths, computes a set S of k distinct c-st-shortest paths
so that the sum of all pairwise Hamming distances between two paths in S is at
least one half of the maximum possible; otherwise, reports “Non-existent.”

Proof. Let P1 be an arbitrary 1-st-shortest path (i.e. a shortest path from s to
t), which can be computed in O(|V |2) time by Dijkstra’s algorithm. We perform
the furthest insertion mentioned in Lemma 1 to obtain the c-st-shortest paths
P2, P3, . . . , Pk. The collection {Pi : i ∈ [1, k]} is a desired solution.

To perform the i-th furthest insertion for i ∈ [1, k − 1], we need an algorithm
for the problem that, given {Pj : 1 ≤ j ≤ i}, find an c-st-shortest path Pi+1 so
that the following conditions both hold:

1.
∑

e∈E(Pi+1)
fi(e) is minimum among all c-st-shortest paths where fi(e) for

e ∈ E is defined as the number of times that e appears in Pj for all j ∈ [1, i].
Hence, fi maps E to {0, 1, . . . , i}.

2. Pi+1 ̸= Pj for all j ∈ [1, i].

To find an c-st-shortest path that satisfies the first condition, it is an instance
of the bicriteria shortest path problem with two weight functions ω and fi. By
Lemma 2, this can be done in O(i|V |3) time.

However, the c-st-shortest path found by minimizing
∑

e fi(e) is not neces-
sarily different from those found in the previous furthest insertions. To remedy,
one can find the c-st-shortest paths whose

∑
e fi(e) are the j-th smallest for all

j ∈ [1, i+1]. Some of the i+1 c-st-shortest paths can meet the second condition.
This step can be implemented by the standard approach due to Lawler [31].
That is, suppose in time T one can compute Pi+1 with an additional constraint
that some given edge set Ei,in (all edges in Ei,in together form a directed path
starting from node s) must be contained in E(Pi+1) and some given edge set
Ei,ex must not be contained in E(Pi+1), then enumerating the i + 1 smallest
candidates for Pi+1 can be done in O(i|V |T ) time. By Corollary 1, T = O(i|V |3).



10 Gao et al.

Thus, the i-th furthest insertion can be done in O(i2|V |4) time. In total, our
approach needs O(k3|V |4) time as desired.
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13 DCP on Approximate Maximum Matchings

We show that the diverse c-maximum matchings can be 2-approximated by a
randomized polynomial-time algorithm with high probability.

Define the distance between two matchings as the Hamming distance between
the edge sets. The associated relaxed BCOr is a maximizatin problem with lower
bounded constraints. It can be restated as: given a non-empty set S of c-maximum
matchings, find a c-maximum matching M /∈ S so that W (S ∪{M}) is maximum
among all W (S ∪ {M ′}) for c-maximum matching M ′ /∈ S (here W (X) is the
sum of pairwise distances between all matchings in X. This problem can be
restated into the budgeted matching problem [6]. As noted in [6], though the
budgeted matching is in general NP-hard, if both the weight and cost functions
are integral and have a range bounded by a polynomial in |V |, then it can be
solved in polynomial time with a good probability by a reduction to the exact
perfect matching problem [9,34]. The exact running time for such a case is not
stated explicitly in [6], and we analyze it as below.

Lemma 6 (Restricted Budgeted Matching Problem). Given an undirected
simple graph G = (V,E) and a cost function c : E → {0, 1, . . . , r} on edges, there
exists an O(r2|V |6 log2 r|V |)-time randomized algorithm that can find a matching
of smallest cost among all c-maximum matchings with some constant success
probability where the cost of a matching is the sum of the costs of all edges in the
matching.

Proof. Suppose that, for all x ∈ [0, X] with X = O(|V |), for all y ∈ [0, Y ] with
Y = O(r|V |), we can decide whether G contains a matching M that consists of
x edges and has cost y. Then, the desired matching M∗ can be found.

As the reduction in [6], we construct an edge-weighted graph H = (U,F ) so
that

– U = V ∪ {z1, z2, . . . , z|V |} where zi /∈ V for all i ∈ [1, |V |],
– F = E ∪ {{zi, zj} : i ̸= j ∈ [1, |V |]} ∪ {{x, zi} : x ∈ V, i ∈ [1, |V |]}, and
– for every edge e ∈ F , if e is also in E, then it has weight Γ + c(e) for some

sufficiently large integer Γ to be determined later; otherwise, it has weight 0.

By setting Γ ≥ r⌈|V |/2⌉+1, G has a matching M that consists of x edges
and has cost y if and only if H has a perfect matching of weight xΓ + y.
This is an instance of the exact perfect matching problem [9,34], which can be
solved by a randomized algorithm in O(r|V |4 log r|V |) time with some constant
success probability. Summing over all choices of x and y, the running time is
O(r2|V |6 log2 r|V |).

We are ready to prove our main result for the diverse c-maximum matchings.

Theorem 7. Given an undirected simple graph G = (V,E) and an integer k,
there exists an O(k4|V |7 log3 k|V |)-time randomized algorithm that computes a
set S of k distinct c-maximum matchings so that the sum of all pairwise Hamming
distances between two matchings in S is at least half of the maximum possible
with failure probability 1/|V |Ω(1), if G contains k distinct c-maximum matchings.
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Proof. Let M1 be an arbitrary maximum matching, which can be computed in
O(|V |2.5) time [33]. For each i ∈ [1, k − 1], given Si = {Mj : j ∈ [1, i]}, find
a c-maximum matching Mi+1 /∈ Si so that W (Si ∪Mi+1) is maximum among
all W (Si ∪M ′) for c-maximum matching M ′ /∈ Si. By Lemma 6, set the cost
function ci(e) for every e ∈ E as the number of times that edge e appears in
Mj for all j ∈ [1, i] and apply the algorithm for Lemma 6 to solve the instance
(G = (V,E), ci, c). This returns an c-maximum matching M† so that W (Si ∪M†)
is maximum among all W (Si ∪M ′) that M ′ is an c-maximum matching and may
or may not be contained in Si. Thus we need to guarantee self-avoidance.

To remedy, we enumerate the best i+ 1 candidates for Mi+1. Some of them
is not contained in Si. This enumeration can be done by running the algorithm
for Lemma 6 O(i|V |) times, each of which preselects some edges to be included
in and some to be excluded from Mi+1, as the Lawler’s approach [31]. For each
i ∈ [1, k−1], this step takes O(k3|V |7 log3 k|V |) time and may fail with probability
(k|V |)−Ω(1). The failure probability is (k|V |)−Ω(1) rather than a constant because
we can run the algorithm that may err O(log k|V |) times.

Summing up the running time for the k − 1 furthest insertions, the total
running time is O(k4|V |7 log3 k|V |), and the failure probability is 1/|V |Ω(1) by
the Union bound.
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