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Defects in crystals, such as dislocations, stacking faults, short-range order, and aggregates of point
defects, disrupt coherent Bragg scattering. Under suitable diffraction conditions, the disruption is large
enough to give rise to “diffraction contrast” in TEM images formed from a single Bragg beam, which
maps out the strain field around a defect [1-3]. At high resolution, using many beams, the atomic
arrangement of defects can be observed directly. Together, diffraction contrast imaging and HREM had
contributed much of our knowledge of defects in real materials [4]. However, recent developments in
advanced materials, such as multi-principal element alloys or high entropy alloys (HEAs), mixed phases
battery materials and three-dimensional nanodevices, have posed significant challenges for electron
imaging [5]. Additionally, characterization of highly defective materials has always been a challenge for
electron microscopy.

With recent developments in fast electron detectors and efficient computer algorithms, it now becomes
possible to collect unprecedently large datasets of diffraction patterns (DPs) [6, 7]. Data mining of DPs
has provided a rich field to explore new electron imaging techniques. Especially, extracting
crystallographic information to form images or tomograms based on crystal structural properties is a
powerful approach for quantitative analysis of materials microstructures.

This talk focuses on the principles of 4D-STEM based electron nanodiffraction techniques for defect,
strain and short-range ordering analysis using electron diffuse scattering [8, 9]. We review recent
progress made in scanning electron nanodiffraction (SEND) data collection, new algorithms based on
cepstral analysis [8], and machine learning based electron DP analysis [10]. These progresses will be
highlighted using defect detection, and short-range ordering analysis as application examples. The
materials of the study are the medium entropy alloy, CrCoNi, which has exceptional low-temperature
mechanical strength and ductility [11]. We will show how SEND helps our understanding of non-
random chemical mixing in a CrCoNi alloy, resulting from short-range ordering (Fig. 1), behind the
mechanical strength in CrCoNi and how these developments provide general opportunities for an
atomistic-structure study in advanced alloys.

Future opportunities based on smart sampling and machine learning of 4D-STEM datasets will also be
discussed. The example here is the metrology of 3D transistor devices. We will highlight the benefits of
combined defect, strain and orientation analyses.
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Figure 1 Data mining of SEND datasets for short range ordering analysis [5].
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