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Abstract

Many corporations and nations have pledged to reach net-zero emissions within a few decades. Meeting such targets for
greenhouse gases, plastics, etc. requires systematic methods to guide investment in technologies and value-chain alternatives,
and develop roadmaps. The proposed framework is a multi-period planning model to guide optimal reforms in cradle-to-cradle
life-cycle networks across the time horizon. It aims to meet environmental targets while minimizing the total annualized
marginal cost of natural resources and the investment cost associated with adoption of novel technologies. This considers the
evolution of technology readiness levels as S-curves or continuous time Markov-chains. Integrated Assessment models account
for climate change, decarbonization due to energy mix changes, and carbon taxes. Multiple climate change scenarios and shared
socioeconomic pathways are used to model the future. In addition to providing roadmaps, the outputs can also be used to

identify technologies that will be robust to future scenarios.
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Abstract

42 Many corporations and nations have pledged to reach net-zero emissions within
44 a few decades. Meeting such targets for greenhouse gases, plastics, etc. requires
46 systematic methods to guide investment in technologies and value-chain alterna-
tives, and develop roadmaps. The proposed framework is a multi-period planning
model to guide optimal reforms in cradle-to-cradle life-cycle networks across the
time horizon. It aims to meet environmental targets while minimizing the total an-
53 nualized marginal cost of natural resources and the investment cost associated with
55 adoption of novel technologies. This considers the evolution of technology readiness
57 levels as S-curves or continuous time Markov-chains. Integrated Assessment models

59 account for climate change, decarbonization due to energy mix changes, and carbon
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taxes. Multiple climate change scenarios and shared socioeconomic pathways are
used to model the future. In addition to providing roadmaps, the outputs can also

be used to identify technologies that will be robust to future scenarios.

Keywords: Multi-period Planning, Carbon Neutrality, Circular Economy, Life Cy-
cle Assessment, Integrated Assessment Models, Technology Evolution, Climate Change

Policy

1 Introduction

Increasing impact of human activities on Earth’s ecosystem goods and services, has
brought us to a new geological epoch, called the Anthropocene.! If these trends of
ecological degradation by natural resource exploitation and environmental pollution con-
tinue, Earth will cross the tipping points for environmental sustenance and exit the safe-
operating-space? for human well-being. To avoid and mitigate these adverse outcomes,
the world collectively needs new technologies, policies and supply-chains to facilitate sus-
tainability transitions to an economy with Net-zero emissions and recycling of waste.®*
Therefore, modeling and optimizing the implementation of sustainability transitions is
a subject of growing interest in academia, policy-making and corporate R&D. Several
organizations have pledged to achieve net-zero emissions and high sustainable content in
their products for as early as 2030. These include carbon neutrality targets set by govern-
ments according to the Paris Accord;® organizational net-zero emission targets for 2030
(by Apple, Alphabet, Microsoft, Walgreens, Kroger, etc.), 2040 (by Walmart, Amazon,
Target, Intel, FedEx, Pepsico, etc.) and 2050 (by ExxonMobil, BP, Dow Chemical, Mit-
subishi, etc.);®" and circularity targets by signatories of the Plastics Pact.® Actions and
interventions towards achieving these net-zero emissions and circularity targets present
a rare opportunity to not only achieve environmental sustainability but simultaneously
encourage ecosystem restoration and protection, address social inequities. If done right,
this can provide companies with the benefits of market leadership through innovation.

Meeting these challenges requires adoption of a trans-disciplinary or convergent sys-

2
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tems view to guide future developments, including approaches for developing integrated
value-chain and supply-chain networks. This alludes to an immediate need for (1) evaluat-
ing the performance of each organization from a holistic perspective, and (2) for creating
tools that facilitate transitions and build roadmaps towards achieving these targets. De-
spite ambiguous reporting mechanisms and system boundaries for many of these targets,
several standards and initiatives such as Science Based Targets Initiative (SBT1i), Task
Force for Climate-related Finance Disclosures (TCFD) and International Sustainability
& Carbon Certification (ISCC) are being developed and implemented. However, cur-
rent literature and corporate intellectual property lack a concrete framework to guide
these transitions holistically and find optimal roadmaps to invest in novel technologies
and partnerships. A lot of current work? is based on building localized models for tar-
geted use-cases, such as displacement of vendors in a supply-chain network or a singular
change of operations on the company’s economic performance. Kohler et al (2019)°
identify the state of the art methods and theories being proposed with regards to these
transitions. These include theoretical frameworks that borrow concepts from evolution-
ary economics, sociology and institutional dynamics, examples of which are Transition
Management framework, Multi-Level Perspective (MLP), Strategic Niche Management
framework, etc. These sophisticated methods study the substitution dynamics and re-
orientation trajectories of innovative product systems. However, these concern themselves
with adoption of singular innovations, often missing out on synergistic effects and impli-
cations on environmental impact of the entire system. Kohler et al. (2019) also identify
this short-coming in recent literature, suggesting that novel frameworks are needed which
allow selection and planning of innovations based on holistic environmental impact and
potential synergies with conventional systems currently in place and other innovations
being proposed. In the operations management and ecological economics domains, port-
folio management approaches to predict the odds of technology adoption are commonly

1,12 and market indicators,'® and often lack the holistic

described based on heuristics
environmental impact assessment for prioritization of investments. Another body of aca-

demic literature focuses on evaluation of novel technologies and product system in a

3
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futuristic context with marginal supply mixes of electricity, while calculating the holistic
environmental impact using consequential life cycle assessment approaches.!* However,
these articles do not extend their scope to include multiple alternatives and perform
planning to generate temporal roadmaps for the future. Little to no work has been done
on guiding and planning the adoption of novel solutions to meet the ambitious targets
to battle climate change and pollution. Particularly, adoption plans must account for
climate change phenomena such as evolving energy mix and policy towards decarboniza-
tion. These efforts must leverage Integrated Assessment Models which characterize global
environmental change through quantification of interactions between human and earth
systems.!?

In this manuscript, we develop a roadmapping framework that builds upon previous

16,17

work to design sustainable circular economies and utilizes concepts from process sys-

tems engineering such as superstructure optimization and multi-period planning'®!? to
identify optimal transition strategies to meet environmental targets. The roadmapping
framework involves selection of innovative value-chain solutions at different time-periods
to always meet consumer demand, while achieving the overall targets for life cycle envi-
ronmental emissions in the future. The solutions minimize investment costs by capturing
the evolution of technology readiness levels (TRLs) in the future through stochastic pro-
cesses. The framework also allows the setting of carbon caps or taxation to ensure that the
solution does not emit unfavorably in the duration leading to the targets being met. The
total life cycle emissions change along the time horizon due to upstream decarbonization
and climate change policy, accounted for, using Integrated Assessment Models (TAMs).
The manuscript is organized as follows. The next section describes the methods
employed to develop roadmaps to meet emissions and circularity targets. This includes
a brief description of previously developed multi-objective life-cycle optimization tool-
kits,'"20 which can be used to generate data to be used as input for the framework
proposed in this manuscript. Alternatively, users of the proposed framework can also
feed data corresponding to key value-chain configurations of interest for road-mapping

to meet their targets. The method section then describes the key elements of the road-

4
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Figure 1: Proposed workflow to efficiently integrate design of conventional and innovative
value-chains for generating roadmaps to meet environmental targets towards sustainable
circular economy.

mapping framework in sections 2.1 - 2.5. Next, the case study section describes the
problem statement for identifying optimal roadmaps for innovations and climate action
in the packaging industry for carbon-neutral and circular value-chains of grocery bags.
Finally, the results and discussion section provides insights on the general applicability

of the road-mapping framework and findings from applying it to the case study.

2 Method

The novel roadmapping framework developed in this manuscript is intended to design
strategies to invest in and adopt innovations and interventions in life-cycle networks of
products, which can ensure that environmental targets of sustainability and circularity
are met while satisfying stakeholder objectives such as cost and cumulative life-cycle en-
vironmental impact in the selected time horizon. The inputs consist of the emissions,
circularity and cost metrics for multiple value-chain configurations after introduction of

each innovation. The outcome is a roadmap or plan for investment and adoption of
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optimal innovations at different time-points based on sustainability targets, technology
evolution, integrated assessment models for climate change and carbon taxation. Cap-
turing the dynamics of how technologies are likely to evolve in terms of their readiness for
adoption and the imminent decarbonization of several activities beyond the influence of
a stakeholder is expected to yield holistically guided roadmaps for transitioning towards

net-zero emissions and circularity.

Data Generation and Consolidation

While it is recommended to follow the strategy and modeling techniques from previously
developed methods to generate data for the proposed framework (figure 1), users can also
use their own input dataset which has to contain the sustainability and circularity metrics
for innovative value-chain configurations. Using the proposed workflow from figure 1
would ensure building well-informed roadmaps with carefully screened innovations and
with due consideration given to trade-offs between circularity, greenhouse gas emissions
and costs. Each of the steps in the figure (red boxes), except ‘Develop a roadmap’
corresponds to an open-source framework developed and published, with the following

objectives.

1. Model available alternatives: Designing conventional value-chains by optimizing
cradle-to-cradle life-cycle networks of a consumer product.?’ To reduce the chance
of the proposed strategies causing shifting of environmental burdens to other parts
of the value-chain, we rely on life cycle assessments to quantify the environmental
impacts from the entire life-cycle of current and emerging solutions, ranging from
raw material extraction, manufacturing, processing, transport, usage, end-of-life

and recycling.?!

2. Identify best pathways: Obtaining Pareto fronts to quantify trade-offs between
objectives such as Sustainable Circular Economy (SCE), namely Circularity, Global
Warming Potential (GWP) of greenhouse-gas emissions, and cost of natural resource

use.'% Circularity is defined as the ratio of regenerated value through circular flows

6
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and the value of manufactured materials. Depending on the measure used for
quantifying value (money or bio-degradable mass), circularity can be defined in
monetary or ecological terms. GWP and natural resource use are calculated using
a life cycle system boundary and ReCiPe impact assessment factors®? to calculate
GWP from value-chain emissions in kgCO2 equivalents. While this manuscript
utilizes monetary circularity (6) and GWP for target-setting in roadmaps, it can

easily be replaced by a definition of user’s preference in the input data-set.

3. Identify hotspot and sensitive areas: Screening of large list of new technologies,
supply-chain strategies, policies, etc. based on sectors which are emission hotspots
and model parameters which can have optimal perturbations to best improve SCE

objectives.?3

4. Identify potential innovations: Ranking of selected alternatives, and generation of

Pareto-fronts corresponding to each alternative.!”

Once a selected subset of innovations is included in the life-cycle network, several Pareto-
fronts can be obtained for each innovation or combinations of those innovations which are
expected to show a synergistic effect. However, in order to create a roadmap to SCE, the
questions corresponding to what, when and how to invest and adopt these value-chain
solutions need to be answered. The roadmapping framework developed in the paper
aims to accomplish this by developing a sophisticated multi-period planning framework.
The schematic for all the processes involved to design roadmaps for SCE and to meet
environmental targets is demonstrated in figure 1.

The following sub-sections describe the math corresponding to each of the components
within the framework, as depicted in figure 2, including the long-term planning method,
stochastic evolution of technology readiness levels, accounting for upstream decarboniza-
tion through TAMs and carbon budget utilization. The case-study section will describe
the implementation of these components for a case study on packaging innovations to

have grocery bags value-chains with net-zero emissions and high circularity.

7
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Figure 2: Summary of the Multi-period planning framework to roadmap innovations
for meeting net-zero emissions and circularity targets. Notably, the most important
input data required are the multiple sets (for each innovation) of the values of objectives
such as life-cycle impact (e.g., greenhouse gas emissions), circularity and cost for one or
more value-chain configurations with the innovation. Ideally, these sets should be found
through the proposed strategy in figure 1, i.e. through multi-objective optimization of
life-cycle networks using previously developed open-source frameworks.
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Figure 3: Pareto-fronts for available innovations; The multi-period planning framework
selects which innovations to invest in during each time period, and ultimately how to
distribute the consumer demand (functional unit) between various compromise solutions
on the Pareto-fronts. Each point corresponds to a value-chain solution scaled according
to the volume carrying capacity of a single household. GHG emissions are expressed in
kgCO, equivalents, and Cost is estimated using the price of natural resources in USD.
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2.1 Multi-period Planning formulation

This section describes the general multi-period planning constraints, denoted as f; in
equation 1. These constraints represent the basis for making planning decisions depicted

in figure 3, and are described below.
e Which innovations to choose for investment and when?

e [f invested in, which compromise solution on the Pareto-front corresponding to

the chosen innovation to select for adoption and when?

e If multiple compromise solutions are favorable, how to distribute consumer de-

mand among favorable compromise solutions?

The decision variables of the planning problem which capture the above choices are as

follows.
e Whether an investment is made in the innovation ¢ within the time period 7, y;» € B.

e Whether a compromise value-chain solution k& € K; on the innovative Pareto-front
corresponding to ith innovation is chosen to satisfy consumer demand in time period
T, Yrr € B. The greenhouse gas (GHG) emissions from each value-chain solution is
recorded in the parameter Emy and circularity is measured in terms of monetary

regeneration factor and is recorded as 6.

e Fraction of consumer demand satisfied by a compromise value-chain solution (k) in

time period 7, 2 € R

The overall optimization formulation for the roadmapping framework depicted in figure
2 consists of the objective functions computed from decision variables, and correspond-

ing constraints on these variables to capture technology readiness evolution, changing

9
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upstream emissions and targets.

ynfntnf = Z Z OPEX; + Z R&D Cost; { RLyax — E[RL;]} | + Carbon Tax
Tl Ykrtkr 7€T LkeK; i€l

st. fi(x,y,t) >0, Multi-Period Planning Constraints
RL; = fi(ti,") >0 Evolution of Innovation TRLs
Alty) = f5 (Ao, RCP, 4, 1) Integrated Assessment Models
GHG (:c,y,tGHG:O) <0 Climate Change Target

Circularity (x,y, teze*) > 1.0 US Plastics Pact Target

Z fa (zg, i, A(tg)) < B Cumulative CO, emissions cap
k,7

Yiry Ykr € Z € {07 1}
Lpr — R e [O, 1]

tir, tir ER,T7 €2 ={1..7}
(1)
In order to ensure proper allocation of resources and define time periods of availability

of innovations, the following structural constraints are added upon the decision variables.

1. Once an innovation is invested in during a time period, it is activated and made

available for all time periods following this time period.

Yi(r+1) > Yir Vie ]I, T € {lN — 1} (2)

2. After investment in an innovation (i), all the value-chain solutions on the corre-
sponding Pareto-front (k € K;) become available for adoption. Only one such
Pareto-optimal (or compromise) solution is chosen in a particular time period for

adoption.

> oy <yir Viel 7€{l.N} (3)

keK;
3. If a Pareto-optimal solution (k) is chosen for adoption, the planning framework can

10
AIChE Journal

Page 11 of 35



Page 12 of 35

oNOYTULT D WN =

AIChE Journal

distribute the consumer demand (or functional unit) between all the chosen options.
This is denoted using a continuous variable bound between [0, 1], which is non-zero

for k only if it is chosen for adoption.

Ypr = Thr Vk’EK,TG{l..N} ()
4

OSZ’kTSl,R

. Selection of a Pareto-optimal solution (k) on a Pareto-front corresponding to the

innovation ¢ can happen only after investment is made in 7.

> b=ty Viel 7e{l.N} (5)

keK;

. If an investment is made in an innovation ¢ during a time period 7, value of the

continuous variable t;., indicating the time of investment, is allowed to be between
0 and (TTH/N). Here TH denotes the entire time horizon duration and N denotes
the number of time periods considered. This is ensured by imposing the following

constraint.
(TH/N)yi;r > t; Viel 7e {1} -
6
(TH/N) [yz'r - yi(f—n} >t Viel 7e€{2.N}

Notably, these constraints are valid across multiple time periods in the time horizon,
with few continuity and inventory type constraints to ensure all investment in innova-
tions results in future availability of value-chain solutions corresponding to the invested
innovations. In a way, this choice can be understood as traversal from one innovative
Pareto-front to the other in the objective domain, across different time periods as shown

in Figure 3.

2.2 Evolution of Eco-innovations

One of the major short-comings of recent research on planning for climate action ignores

the dynamic nature of each innovation’s readiness for adoption. This would have a major

11
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effect in estimating when it would become available for adoption in the network. The
framework proposed in this manuscript captures this attribute within the planning opti-
mization methodology. The investment needed in the innovation at any time is assumed
to be directly proportional to how far the RL of an innovation at that time is from the
RL corresponding to the diffusion stage (RLq:). The RL of an innovation is modeled
either deterministically or stochastically as a function of time, as described in detail in
this section. Therefore, as the RL evolves over time, the cost needed to bring the inno-
vation close to adoption changes too. Additionally, an investment is needed to make all
the Pareto-optimal solutions on the innovative Pareto-front available for adoption, so as
to meet the climate change and circularity targets set by the user. Thus, evolution of RL
of innovations is important for multiple reasons within the planning framework. Regard-
less of how one chooses to model this evolution, for solving the optimization problem,
we propose to surrogate these usually non-linear evolution profiles using piecewise linear

functions for easier integration with the multi-period planning constraints.

2.2.1 S-curves (deterministic)

Typically, consulting firms and venture capitalists use learning curves,?*

experience curves
and S-curves?” to estimate the cost and maturity of new ventures, technologies and pro-
grams. These are deterministic curves which depend on few parameters defined by experts
and stakeholders. For instance, Google Circularity Gap report® alludes to using S-curve
methodology to estimate market penetration of Circular Economy related innovations.
The report quantifies the market penetration as follows.

Y =Yo+ (7)

1 + e—clt=to)

Here, tg, yo denote the initial values of time and market share, and the coefficient ¢ is
found using a scoring method, given to experts. The score is found using the number of
competing technologies, stakeholder groups needed and disruption of current technologies.
These curves can be considered as heuristics to model evolution of technology readiness

levels of all innovations, which will be surrogate using piecewise linear functions and
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added to the planning optimization framework. While this is a simpler approach with
lower need for user parameters (3 scores), it is limited in terms of the behavior it can

model (only sigmoidal).

2.2.2 Options theory and Portfolio management approaches

Many approaches to find optimal portfolio strategies have been developed in recent lit-
erature, with applications to pharmaceutical and consumer goods industry. While some
of these approaches are based on heuristics and market surveys, others are more quan-
titative and mathematically rigorous. Trade-offs between higher rigor and number of
required parameters to be estimated is observed, as described in the previous section.
For instance, Rogers et al. (2002)?° propose a framework to create a roadmap for drug
development in a pharmaceutical company through different TRL stages while allowing
decision continuation/ abandonment and considering market risk. While we believe this
rigorous approach is extremely useful and robust, it requires a large number of stake-
holder inputs such as estimates of market volatility, risk-neutral probabilities, etc., and
also involves complex decomposition techniques for computational tractability. We pro-
pose a simpler and less data-intensive approach to model evolution of readiness levels
using Continuous-time Markov Chains (CTMC), which is needed to model diverse in-
novations that span across the value-chain unlike drug development specific to a single

stakeholder.

2.2.3 Markov Chains (stochastic technology forecasting)

Continuous Time Markov Chains (CTMCs) are a stochastic process which can be used
to model the probabilistic evolution of technology readiness levels, captured within a
discrete-state space (e.g., TRL = Z € [1,10]). CTMCs satisfy the Markovian property,
i.e. the transition probability between state A to B at a particular time is independent
how the process got to state A, and the time spent in a state (sojourn time) follows an
exponential distribution. Recognizing that there are several ways to model technology

forecasting, We justify the use of CTMCs for modeling Technology Readiness Levels
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(TRL) over time due to the following reasons:

1. TRL can be considered as discrete states, and evolution between TRL states can
be assumed to be Markovian. For instance, the probability of an innovation to
transition from pilot plant state (TRL=4) to commercialization state (TRL=6)
does not depend on how and when the innovation reached the pilot plant state

from R&D stage.

2. Sojourn times indicate the time spent by an innovation in each state, which can be

assumed to follow an exponential distribution.3°

Since CTMCs can be viewed as a collection of independent competing exponential

random variables, the next state S, from the initial state S, can be found as follows.

Se € argmin{Ty,b # a}, where Ty, ~ exp(vyPy), (8)

Here v, is the reciprocal of the expectation of the sojourn time at state S,, and P,
indicates the probability of transition between state S, to S, in an embedded Discrete-
time Markov Chain (DTMC). The instantaneous transition rates between any two states
(qap) in a CTMC (and subsequently the rate matrix @ = [gqs)) can therefore be found as

follows.

VaPaba if a 7é b
Gab = (9)
—v,, ifa=">

While the rate matrix (@) can characterize the CTMC completely, most of the parameters
that can be learnt/ estimated or provided are a) Mean of Sojourn times, and b) Transition
probabilities for embedded DTMCs. Chapman-Kolmogorov forward equation can be used
to derive the transient probabilities of the stochastic process to be in a particular state

at time ¢, given the initial state Sy, which is given by,
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The exponential of the rate matrix is difficult to calculate and compute, and there are
several ways including Euler expansion to obtain approximate solution. We use the
Eigen-decomposition method (if Q is diagonalizable) to express Q@ = ADA™! where
D = diag(\q, Xs...) and \’s are the eigenvalues. This allows for the following simplification

and Euler expansion of each of the scalars e*«* independently.

e@ = AeP'AT! Pt = diag(eM!, e, ....) (11)

The transient probabilities of the Markovian process being in several states S. given that

it is in state S, initially can be found from the following equation.

Pa(t) 1
piy = [P 20 e (12)
0

This probability distribution (P(¢)) can used to identify the expectation value of the
CTMC state (or TRL of innovation i) at time ¢, using the following equation, thereby
describing the expected behavior of the CTMC and the expected readiness level of inno-

vation ¢ at any time t.

E[RL)(t) =E[S](t) = Y Seps(t) (13)

sEstates

While these decomposition and Euler-expansion techniques make the computation/ sim-
ulation of the CTMCs much easier, these are still non-linearities which one would want to
avoid in a multi-period planning optimization model described in section 2.1. In addition,
since the CTMC attributes P, v,, @, etc. can be estimated beforehand, they would
just be parameters in the optimization model with the states indicating the TRL of a
particular innovation. Therefore, we simulate the evolution profiles of each innovation
before the optimization, as shown in figure 5 for a case study. Ultimately we surro-

gate these temporal profiles using piecewise linear functions with optimized breakpoints
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and introduce these functions in the multi-period planning problem, denoted by fa(+) in

equation 1.

2.2.4 Practical data acquisition limitations

Data collection for certain deterministic models is much easier than stochastic coun-
terparts mentioned in this section. However these models are usually nothing better
than heuristics for specific innovations and are very sensitive to inputs from industry
experts, sector of innovation, etc. Highly rigorous models such as real-options theory
are great for industry-specific problems with clearly defined parameters and uncertainty.
However, these are also very complex to include within the roadmapping optimization
framework. While the CTMC approach counters these short-comings or incompatibili-
ties and is promising to model technology evolution, it still requires numerous parameter

inputs in the form of mean sojourn times and transition probabilities.

2.3 Integrated Assessment Models for varying background emis-

sions

While creating roadmaps for future technologies and supply-chains, it is essential to con-
sider practical aspects such as changing policy around environmental change and inter-
ventions in the background life cycles. Integrated assessment modeling is a sophisticated
and complex branch of ecological economics, which integrates aspects from various sci-
entific disciplines to model earth systems, human interactions and policy. It has been
successfully applied to support many climate change decisions and policies, such as Mil-
lennium Ecosystem Assessment. In this manuscript, we use Integrated Assessment Mod-
els (IAMs), specifically IMAGE (Integrated Model to Assess the Global Environment),3!
developed to understand long-term impacts of global changes due to interacting socio-
economic and environmental factors. It has been used to simulate future emissions from
the electricity generation sector considering (a) growth of electricity demand for various
shared socioeconomic pathways (SSP 1-5), and (b) policy action to meet greenhouse gas

concentration targets set according to Representative Concentration Pathways for the fol-
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13 Figure 4: Emission intensity from electricity generation, projected for the USA in the
20 future considering Middle-of-the road (SSP2) scenario, constructed using the Integrated
21 Model to Assess the Global Environment (IMAGE) IAM model.
22
23
24 lowing radiative forcing values in 2050 - (RCP,¢) i.e., RCP 2.6, 3.4, 4.5, 6.0 W/m?. These
25
26 two parameters are then used to estimate the emission intensity of the electricity gener-
27
28 ation sector in the future for each of the combinations of SSP and RCP scenarios. The
29
30 simulated outcome for the SSP2 condition (indicating middle of the road climate action)
31
32 for various Representative Concentration Pathway (RCP) scenarios is shown in Figure
33
34 4. The scenarios are used to represent how decarbonization of energy systems will affect
35
36 the upstream life-cycles of various alternatives, thereby including future decisions. Math-
37
38 ematically, these emission intensities are surrogated within the planning optimization
39
40 framework as a piecewise linear function of time, TAM,=f3(RCP34,7) shown in equa-
41
42 tion 1), ultimately used as a time-dependent correction factor (IAM,) to the emissions
43
44 generated from electricity in the selected value-chain solution (Em$c).
45
46
47 . . . .
48 2.4 Carbon neutrality and Circularity targets as constraints
49
g? Since the goal of the proposed framework is to find optimal roadmaps towards meeting
g; future environmental targets, the constraints defined in this section are critical, and are
g: defined by the stakeholders. In certain cases when the targets are for near the end of the
g? time horizon, these targets may represent terminal constraints, however, an additional
gg time-period should be added to extend the time horizon and yield sensible yields for the
60 last time period. The carbon neutrality target can be ensured by adding a constraint
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such as the following,

GHG, =)z, (Emj —Em{*[l —IAM,]) V€T
k (14)
GHG,~ <0 V7" €T s.t. 7(r%) > t¢HE=0

Similarly, recycling/ up-cycling constraints can be imposed on circularity 6, abiding by
the Plastics Pact or other organizational constraints to have circularity higher than a
threshold (0*) for 7(7*) > 929", These terminal constraints ensure that the optimal
roadmap does satisfy the constraints around Net-zero emissions, carbon neutrality or

up-cycling after a user-defined point in the time horizon.

2.5 Carbon budget utilization

While determining the optimal roadmap to meet the emissions target at the end of
the time horizon, it is important to ensure that the solution roadmap does not lead
to large amounts of greenhouse gas emissions during the time horizon. It is for this
reason we formulate a variable tracking the cumulative (or accrued) GHG emissions
during the time horizon. As mentioned in the section 2.1, the multi-period planning
optimization framework allows for selection of Pareto-optimal solutions to distribute the
consumer demand. At each time period, a particular solution can either be selected,
deselected or retained. This information is stored in the y;4 binary variable. Based
on the relative importance of carbon budgets in the time horizon, the cumulative GHG
emissions objective can either be formulated as a linear approximation or a complex non-
linear objective which records the exact time of selection of a solution in a time-period.

In a linear formulation of cumulative greenhouse gas emissions (GHGcum. ), the average
emissions from two snapshots of chosen solutions at the beginning and end of any time

period (t = 7,_1 and t = 7,) are multiplied by the duration of each time period , i.e.,
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(TH)/N.

TH eLec
GHchm — W (; ka_l{Emk - Emkl [1 - IAMT—l]})

T

(15)
+ (Z 2 { Brng — Emle<[1 — IAMTH)

The non-linear formulation, on the other hand, would track each transition point over each
time period and accurately calculate the net emissions from various value-chain solutions
implemented for a non-zero time-span. However, this inclusion in the optimization model
would require additional constraints in the multi-period planning formulation to ensure
that the functional unit (or consumer demand) has to be met between two separate
transitions. This complexity can be avoided by shortening the duration of the time-
period without much computational load as the problem scales linearly with increase in
number of time periods (N). It can also be avoided through a slightly more complex time-
based weighted average of the two emission snapshots. The weights can be estimated as

an effective transition point, tt;, calculated as follows.

2(2 1)tt, = Z (Z l‘k;1> tir + (Z xk,ﬂ') tir

where, TAM, = f3(RCP, tt,)

(16)

Correspondingly, the non-linear formulation of cumulative GHG emissions can be formu-

lated as follows.

GHG(:um = Z ttT (Z ka—l{Emk _ Emzlec[l o IAMT_l]}>
k

T

(17)
+(5 —tt,) (Z 2 {Emy — Emg'e[1 — IAMT]}>

With the weight (ttx) being a bi-linear function of zx; and tg, the cumulative GHG emis-
sions becomes a cubic function of the decision variables. Many commercial solvers like
Gurobi, can now handle quadratic constraints, therefore the non-linearities in the ap-

proximated time-point of shift ¢¢, stemming from .z, in the above equation have been
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converted to quadratic constraints using McCormick Relaxations.?? Since, the variables
have comparable lower and upper bounds, these affine relaxations are expected to have
high convergence and satisfactory tightness.?> The modified equation for t¢, which makes

the previous equation quadratic is as follows.

a(itt, — 3 (z w) . (z w)
ko k2

k1

where, W'y, x,» = McCormick Relaxations(zx,,, Tk, .+ tr.r) (18)
w2k17k277 = McCormick Relaxations(zg, r—1, Tkyr—1, tir)

and, ki, ky € K

There are several ways we can penalize large cumulative GHG emissions, including intro-
ducing caps (or budgets), taxation, ecosystem capacity caps, etc.3* In the case study used
in this manuscript, we use taxation since it requires a single parameter input, namely
carbon tax per kg of CO2 equivalent emission. On the other had estimating carbon
budgets and understanding true carrying capacity are still research questions and have
considerable subjectivity. In our study, we impose a fixed carbon tax of 120$ per ton

5

CO, equivalent emissions emitted during the time horizon®® and include it within the

cost minimization objective.

2.6 Annualized investment cost for eco-innovation adoption

The cost of eco-innovation adoption at a particular time during the time horizon is as-
sumed to be directly proportional to the marginal difference between the expected readi-
ness level (E[RL;](t)) of the innovation ¢ at time ¢ and the maximum possible value of
readiness level (RLy0.). RLpa, usually corresponds to the diffusion/ adoption stage.
The multiplying factor is a parameter called the marginal cost to increase RL by 1 unit
(MCRL). Since, this investment to bring a particular innovation to the diffusion stage
happens at a future point in the time horizon, it needs to be discounted for time value of
money using a discounting rate of r. Ultimately the cost is incurred only if the innovation

is chosen for investment in the time period 7, given by the expression, (y;,+1 — ;). The
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resulting expression for the total investment cost for all chosen innovations is as follows,

MCRL;[RLax — E[RL;](t;)]
(I+r)t

Investment Cost = Z Z(yi,(f-i—l) — Yir)

TeT i€l

(19)

As mentioned earlier, inclusion of the detailed stochastic models for RL evolution within
optimization is not needed if the decision variables do not affect the transition probabil-
ities or sojourn times of the CTMC. This assumption is valid if climate change models
or external investments do not alter the natural evolution profile which may be obtained
from historical data. With this assumption, the non-linearity of the expression is elimi-
nated through simulation of CTMCs and creating a piecewise linear surrogate model for
each innovation describing the Investment Cost as a function of time (f3(¢)). The choice
of the continuous decision variable t; for time of adoption, thus depends on the developed
surrogate model. In addition to the investment cost, the cost objective also contains the
‘present’ value of the operating cost (OPEX) of the chosen compromise solutions on the
Pareto front in the time horizon, estimated using the Life-cycle cost of natural resources

(LCC) recorded in the input dataset.

3 Case Study

The multi-period planning framework is demonstrated for packaging eco-innovations
within the grocery bags value-chain of USA, intended towards net-zero emissions and
circularity. These innovations can disrupt any part of the value-chain, which comprises
of the cradle-to-cradle network involved in the production, use, re-use, recycling and
end-of-life of five types of grocery bags, made from, polyethylene (high and low density),
polypropylene, poly-lactic acid and paper. Each kind of bag has a unique volume carrying
capacity, weight and re-usability. Innovations can be from any domain including tech-
nologies for mechanical or chemical recycling, increasing re-use, segregation programs,
etc. A previously developed methodology on screening and ranking eco-innovations iden-
tifies 10 most promising alternatives based on a utopia point shift criteria, evaluated us-

ing a multi-objective optimization routine on cradle-to-cradle life-cycle networks.!” The
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screened innovations are (i) Municipal solid waste (MSW) pyrolysis to olefins, (ii) Source
Segregation Programs, (iii) Al-assisted image classification to sort MSW, (iv) Linear alkyl
benzenes from waste polyethylene, (v-vii) pyrolysis of segregated plastics, (viii) recycling
of poly-lactic acid (PLA) to polymer resin through mononitrile clay catalyst, (ix) alkaline
hydrolysis of PLA to lactic acid monomer and (x) alcoholysis of PLA to methyl lactate.
The outcome of this methodology is a range of innovative Pareto-fronts, with numerous
compromise solutions - choice of which determines the distribution of consumer demand,
i.e. annual volume carrying capacity of 100 million households in the USA for grocery
shopping. The Pareto-fronts for the 10 chosen innovations for this case-study are pre-
sented in figure 3. As described in section 2.1, the optimal roadmap essentially traverses
between several Pareto-optimal (or compromise solutions) points in the time dimension,
with a Pareto-front becoming available only after a one-time investment. This is achieved

using the multi-period formulation described in equation 1.

3.1 Evolution patterns

Technology forecasting of the 10 screened innovations is a critical aspect of the roadmap-
ping framework, as it determines the amount of investment required to make innovative
Pareto-optimal solutions adoptable at any particular time using the equation 13. As de-
scribed in section 2.2.3, this technology forecasting is modeled using stochastic processes,
specifically ‘Continuous Time Markov Chains’. Due the computational complexity of
the analytical solutions of CTMCs, we simulate them before hand for all innovations (or
typical categories of these), and surrogate them using piecewise linear functions. Figure
5 depicts the evolution of the 10 screened innovations. As described in section 2.2.3,
there are certain practical challenges in obtaining the parameters required to model these
CTMCs. Thus, we have relied on insights and values from several industrial stakehold-
ers and collaborators®® in this work. In the future, limiting behavior will be used to fit

CTMC parameters on academic and patent citation data about historic innovations.
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Figure 5: Simulated Continuous Time Markov Chains for the 10 innovations available
based on sector they constitute to.

3.2 Climate Change Scenarios

As stated in section 2.3 background decarbonization can drive, inspire and affect future
innovations during the long time horizon. In addition to choice of innovation for each
climate scenario, the potential of achieving Net-Zero is expected to rely heavily on growing
renewable content in electricity grids. Therefore, we have simulated multiple profiles of
expected emission intensity across the time horizon. This is calculated using the projected
emissions from electricity sector divided by the expected demand of electricity at any time,
for different Representative Concentration Pathways under the Middle of the road shared
socio-economic pathway (SSP2). The resulting emission intensity profiles are shown in
figure 4, and are used to update the upstream scope 2 emissions from electricity for

grocery-bags production and end-of-life treatment as described in section 2.3.

3.3 Results and Discussions

The multi-period planning model is implemented under several constraints and projec-
tions for reaching the targets set for the grocery bags value-chain. The targets are mainly

the following,
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o Net-Zero GHG Emissions by 2050, computed for a life-cycle system boundary.

e Up-cycling, 2035 onwards; indicated by the value of monetary circularity exceeding
1 (6 > 1). 0 is defined as the ratio of monetary value restored through circular

flows to the manufacturing cost.

While most of the aspects of the case study are real and can be introduced with high
confidence, some are educated guesses for the prototype, particularly R&D Marginal
cost per RL increase (MCRL), CTMC parameters, carbon tax rate, etc. For instance,
the MCRL has been arbitrarily set to 10 million USD per RL increase. This is done
due to lack of data, and is kept identical for all innovations to prevent it from biasing
the solution. In addition, modeling of CTMCs for several innovations relies on subjective
inputs from industrial stakeholders, and currently lack quantitative basis. Cost of Carbon
Dioxide emissions in the future is assumed to be a static 120$ per ton, which will most
likely not be the case and will evolve across the time horizon. Future work intends
to address these practical challenges in obtaining results with higher confidence using
uncertainty quantification, robust optimization, fitting CTMC parameters using historic
data and finally appropriate slab-wise carbon costing models. The results presented in
this manuscript, must therefore be viewed more as an application of the framework with
special attention to its ability to provide optimal roadmaps with numerous considerations,
instead of identifying the exact solutions and promising innovations for the grocery bags
case study.

The outcome of implementing the roadmap optimization framework is a gantt chart
denoting the adoption of various Innovative Pareto-optimal value-chain solutions at dif-
ferent points of time. For RCP 3.4 under the SSP2 scenario, the optimal gantt chart
(or roadmap) is shown in Figure 6. The corresponding GHG emissions, circularity and
operating cost profiles across the time horizon are shown in figure 7. It can be seen from
these results that Pyrolysis of sorted LDPE using FCC catalyst is chosen for immediate
investment, as it would reduce the exploitation of carbon budgets at the lowest expense.
Next, linear alkyl benzenes is chosen starting 2035, after which it gets to a high enough

TRL and is lucrative to ensure that the up-cycling requirements are being met. Ulti-
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Figure 6: Result for SSP2 RCP 3.4 Scenario: Optimal combination of innovations selected
during the time horizons to meet GHG Emissions and Circularity targets while minimizing
investment costs, value-chain operating costs and carbon taxes.
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Figure 7: Result for SSP2 RCP 3.4 Scenario: GHG Emissions, Circularity and Operating
cost (or Resource-use cost) profiles as a function of time for the optimal roadmap.
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mately, bio-based PLA bags start getting selected starting 2050, as they contribute to
emission reduction through displacing conventional lactic acid through alkaline hydrol-
ysis and biogenic carbon sequestration. Despite an initial low TRL, this innovation is
expected to have an upward evolution (according to CTMCs in figure 5). This, along
with time value of money being lower in the future, encourages a late investment and
shift to bio-based PLA alternatives. As seen from figure 7, Life-cycle GHG emissions
become net-zero starting 2050 and circularity targets are being met by 2035. Evidently,
this roadmap takes into account several phenomena including technology evolution, cli-
mate change policy, annualized operating and R&D costs, as stated in section 2, thereby
providing a holistic roadmap towards meeting environmental targets at lowest cost.
Multiple climate change and projected policy changes of the future are constructed
as scenarios using IAM models. Roadmaps corresponding to these scenarios are shown in
figure 8a. Evidently, net-zero GHG emissions are possible only for some of the scenarios
with more stringent climate action policy that ensure a Representative Concentration
Pathway (RCP) of at most 3.4 W/m?. Notably, even an intermediate scenario of RCP 4.5
W /m? will be able to mitigate only 91% of emissions from the grocery bags value-chain by
2050. This means that it will not be possible for grocery bags to meet a net-zero emission
goal due to high scope 2 and scope 3 emissions from upstream life-cycle processes. In
addition to this insight, the innovations robust to climate change policy are also found on

the basis of their selection for over 3 RCP radiative forcing scenarios, to be the following.
e Pyrolysis of LDPE using FCC-based catalyst
e Alkaline Hydrolysis of PLA to lactic acid
e Bio-based polyethylene at scale

This framework can therefore be used by companies and organizations to not only plan
their sustainability transitions to Net-zero at lowest cost, but also identify investment
alternatives which would help them be robust to future climate action policy. It is worth-
while to note that with worsening future scenarios, the cost objective also deteriorates

due to requirements of more expensive investments and higher carbon budget utiliza-
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tion (or taxation), as shown in figure 8b. This implies that an optimal roadmap to a
carbon-neutral sustainable circular economy would favor the industry (especially plastic
packaging) to promote and back sustainability-related climate action policy for the entire

supply chain.

4 Conclusions

The developed multi-period planning framework is capable of designing optimal roadmaps
towards meeting corporate or national environmental targets around greenhouse gas emis-
sions and circularity, at minimal investment and operating costs. It also considers ef-
fects of changing climate action policy and evolving technology readiness levels based on
stochastic models. The framework is general and applicable to any product system or
supply chain with input data in the form of either innovative Pareto-fronts developed us-
ing previous work!”?? or set of alternative value-chain alternatives corresponding to each
innovation. The outcomes of the framework include (a) minimal cost roadmap to meet
targets, (b) investment strategy with what and when decisions, (¢) potential of achieving
environmental targets given the background scenarios of climate change, and (d) innova-
tions which are robust to climate action policy. In this manuscript, the framework has
been applied for guiding sustainability transitions to the grocery bags value-chain network
with innovations from the packaging technology, social behavior, feedstock manufacturing
and several other domains. Ultimately, out of the 10 screened eco-innovations targeted
towards sustainable circular economy of grocery bags value-chain, optimal roadmap is
likely to choose the three alternatives to meet targets, namely advanced Pyrolysis of low-
density polyethylene waste to fuel, alkaline hydrolysis of polylactic acid to lactic acid,
and bio-based bio-polyethylene. These innovations are found to be robust to multiple
possible scenarios of climate change and corresponding policy. These also ensure mini-
mal utilization of carbon budgets through reduction in cumulative GHG emissions. As
demonstrated using the case study, the developed framework can be very useful to in-

dustry and policy-makers to guide future transitions towards Net-zero greenhouse gas
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emissions and circularity - while considering holistic life-cycle system boundaries, future
climate change scenarios and forecasts of technology evolution. In the future, models for
technology forecasting will be validated for clusters of similar technologies using historical
data. In addition, a detailed sensitivity analysis will be conducted to probe the effects
of parameters such as carbon tax (in USD per ton), R&D costs and discounting rates on

the optimal roadmap selection.
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