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Abstract
We are concerned with the Cahn–Hilliard/Navier–Stokes equations for the stationary
compressible flows in a three-dimensional bounded domain. The governing equations
consist of the stationary Navier–Stokes equations describing the compressible fluid
flows and the stationary Cahn–Hilliard-type diffuse equation for the mass concentra-
tion difference. We prove the existence of weak solutions when the adiabatic exponent
γ satisfies γ > 4

3 . The proof is based on the weighted total energy estimates and the
new techniques developed to overcome the difficulties from the capillary stress.

Keywords Stationary equations · Weak solutions · Navier–Stokes · Cahn–Hilliard ·
Mixture of fluids · Diffuse interface

Mathematics Subject Classification 35Q35 · 76N10 · 35Q30 · 34K21 · 76T10

1 Introduction

The Cahn–Hilliard/Navier–Stokes system is one of the important diffuse interface
models (cf. Anderson et al. 1998; Cahn and Hilliard 1958; Lowengrub and Truski-
novsky 1998) describing the evolution of mixing fluids. The mixture is assumed to be
macroscopically immiscible, with a partial mixing in a small interfacial region where
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the sharp interface is regularized by the Cahn–Hilliard-type diffusion in terms of the
mass concentration difference. Roughly speaking, the Cahn–Hilliard equation is used
for modeling the loss of mixture homogeneity and the formation of pure phase regions,
while the Navier–Stokes equations describe the hydrodynamics of the mixture that is
influenced by the order parameter, due to the surface tension and its variations, through
an extra capillarity force term.

In this paper, we are interested in the following stationary Cahn–Hilliard/Navier–
Stokes system for the mixture of compressible fluid flows in a three-dimensional
bounded domain � ⊂ R

3:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

div(ρu) = 0,

div(ρu ⊗ u) = div (Sns + Sc − PI) + ρg,

div(ρuc) = �μ,

ρμ = ρ
∂ f (ρ, c)

∂c
− �c,

(1.1)

where ρ denotes the total density, u the mean velocity field, c the mass concentration
difference of the two components, μ the chemical potential, and g the external force;
the tensor

Sns = λ1

(
∇u + (∇u)�

)
+ λ2divuI, (1.2)

is the Navier–Stokes stress tensor, where I is the 3× 3 identity matrix, and λ1, λ2 are
constants such that

λ1 > 0, 2λ1 + 3λ2 ≥ 0; (1.3)

the tensor

Sc = −∇c ⊗ ∇c + 1

2
|∇c|2I, (1.4)

is the capillary stress tensor; and

P = ρ2 ∂ f (ρ, c)

∂ρ
, (1.5)

is the pressure with the free energy density (cf. Abels and Feireisl 2008; Lowengrub
and Truskinovsky 1998)

f (ρ, c) = ργ−1 + H1(c) ln ρ + H2(c), (1.6)

where γ > 1 is the adiabatic exponent, and Hi (i = 1, 2) are two given functions. The
corresponding evolutionary diffuse interface model was derived in (Abels and Feireisl
2008, Section 2.2) where the existence of weak solutions was obtained for γ > 3

2 .
We refer the readers to Anderson et al. (1998), Cahn and Hilliard (1958), Lowengrub
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and Truskinovsky (1998), Abels and Feireisl (2008), Liang andWang (2020) for more
discussions on the physics and models of mixing fluids with diffuse interfaces.

We briefly review some related results in the literature. For the stationary Navier–
Stokes equations of compressible flows, the existence of weak solutions was studied
in Lions Lions (1998) with γ > 5

3 , Novotný-Strašcraba Novo and Novotný (2002)
with γ > 3

2 , Frehse-Steinhauer-Weigant Frehse et al. (2012) with γ > 4
3 , Plotnikov-

Weigant Plotnikov and Weigant (2015) with γ > 1, as well as in Jiang-Zhou Jiang
and Zhou (2011) and Bresch-Burtea Bresch and Burtea (2021) for periodic domains.
For the stationary Cahn–Hilliard/Navier–Stokes equations of incompressible flows,
the existence of weak solutions was obtained in Biswas-Dharmatti-Mahendranath-
Mohan Biswas et al. (2021), Ko-Pustejovska-Suli Ko et al. (2018), and Ko-Suli Ko
and Suli (2019). For the compressible Cahn–Hilliard/Navier–Stokes equations, Liang-
Wang in Liang and Wang (2020) proved the existence of weak solutions in case of the
adiabatic exponent γ > 2. See (Lions 1998; Novo and Novotný 2002; Feireisl 2004;
Frehse et al. 2012; Plotnikov and Weigant 2015; Jiang and Zhou 2011; Mucha et al.
2018; Mucha and Pokorný 2006; Biswas et al. 2021; Ko et al. 2018; Ko and Suli 2019;
Liang and Wang 2020; Bresch and Burtea 2021; Biswas et al. 2021; Chen et al. 2020)
and their references for more results.

In this paper, we shall continue our study on the existence of weak solutions and
improve our previous result obtained in Liang and Wang (2020) for γ > 2 to the
case of γ > 4

3 for the stationary equations (1.1) subject to the following boundary
conditions:

u = 0,
∂c

∂n
= 0,

∂μ

∂n
= 0, on ∂�, (1.7)

and the additional conditions:
∫

ρ(x)dx = m1 > 0,
∫

ρ(x)c(x)dx = m2, (1.8)

with two given constants m1 and m2, where n is the normal vector of ∂�.
Before stating our main results, we introduce some notation that will be used

throughout this paper. For two given matrices A = (ai j )3×3 and B = (bi j )3×3, we
denote their scalar product by A : B = ∑3

i, j=1 ai j bi j . For two vectors a, b ∈ R
3,

denote a ⊗ b = (aib j )3×3. We use
∫

f = ∫

�
f (x)dx for simplicity. For any

p ∈ [1,∞] and integer k ≥ 0, Wk,p(�) is the standard Sobolev space (cf. Adams
1975), and

Wk,p
0 = {

f ∈ Wk,p : f |∂� = 0
}
, Wk,p

n =
{
f ∈ Wk,p : ∂ f

∂n |∂� = 0
}

,

L p = W 0,p, Hk = Wk,2, Hk
0 = Wk,2

0 , Hk
n = Wk,2

n ,

L p = {
f ∈ L p : ( f )� = 0

}
,

where ( f )� = 1
|�|

∫
f is the average of f over �.

As in Liang and Wang (2020), we define the weak solution as follows.
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Definition 1.1 The vector of functions (ρ, u, μ, c) is called a weak solution to the
problem (1.1)-(1.8), if

ρ ∈ Lγ+θ (�), ρ ≥ 0 a.e. in �, u ∈ H1
0 (�), μ ∈ H1

n (�), c ∈ W 2,p
n (�),

for some p > 6
5 and θ > 0, and the following properties hold true:

(i) The system (1.1) is satisfied in the sense of distributions in �, and (1.8) holds for
the given constants m1 > 0 and m2 ∈ R.

(ii) If (ρ, u) is prolonged by zero outside �, then both the equation (1.11) and

div(b(ρ)u) + (
b′(ρ)ρ − b(ρ)

)
divu = 0

are satisfied in the sense of distributions inR3, where b ∈ C1([0,∞))with b′(z) =
0 if z is large enough.

(iii) The following energy inequality is valid:

∫ (
λ1|∇u|2 + (λ1 + λ2)(divu)2 + |∇μ|2

)
dx ≤

∫

ρg · u.

We now state our main result.

Theorem 1.1 Let � ⊂ R
3 be a bounded domain with C2 boundary. Assume that

γ >
4

3
, (1.9)

and

g ∈ L∞(�), |Hi (c)| + |H ′
i (c)| ≤ H ∀ c ∈ R, i = 1, 2, (1.10)

for some constant H < ∞. Then, for any given constants m1 > 0 and m2, the problem
(1.1)-(1.8) admits a weak solution (ρ, u, μ, c) in the sense of Definition 1.1.

The main contribution of this paper is to develop new ideas to improve the existence
result of Liang and Wang (2020) from the adiabatic exponent γ > 2 in Liang and
Wang (2020) to a wider range γ > 4

3 . Our approach is mainly motivated by the papers
(Jiang and Zhou 2011; Plotnikov and Weigant 2015) where the authors studied the
existence of weak solutions to the stationary Navier–Stokes equations of compressible
fluids. In order to prove Theorem 1.1, we start with the approximate solution sequence
(ρδ, uδ, μδ, cδ) stated in Proposition 2.1 in Sect. 2 and use the weighted total energy as
in Jiang and Zhou (2011); Plotnikov andWeigant (2015) together with new techniques
to handle the capillary stress to establish the uniform in δ bound on (ρδ, uδ, μδ, cδ)

in (3.1). Then, we shall be able to take the limit as δ → 0 and complete the proof of
Theorem 1.1 bymeans of the weak convergence arguments in Liang andWang (2020).
More precisely, our proof includes the following key ingredients and new ideas:
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(1) In light of Jiang and Zhou (2011), Plotnikov and Weigant (2015), for any given
x∗ ∈ � we estimate the weighted total energy

∫

�

(
δρ4 + P + ρ|u|2) (x)

|x − x∗|α dx,

instead of

∫

�

(
δρ4 + P

)
(x)

|x − x∗|α dx,

where the advantage is that the involved kinetic energy

∫

�

ρ|u|2(x)
|x − x∗|α dx

helps us relax the restriction on γ .
(2) In order to analyze the weighted total energy, we need to overcome the new diffi-

culties caused by the capillary stress Sc in (1.4), besides the Navier–Stokes stress
tensor Sns . In particular, we are required to control ‖ρμ‖2

L
3
2
appearing in (3.10)

and (3.11). For this purpose, we make the following estimate

∫

�∩Br0 (x∗)

(
δρ4 + P + ρ|u|2) (x)

|x − x∗|α2 dx

≤ Crα(1−α)
0

∫

�∩Br0 (x∗)

(
δρ4 + P + ρ|u|2) (x)

|x − x∗|α dx,

where r0 > 0 is small and α ∈ (0, 1). By virtue of the Finite Coverage Theorem,
� can be covered by a finite number of balls of radius r0 centered at x∗

1 , ..., x
∗
K ,

then

sup
x∗∈�

∫

�

(
δρ4 + P + ρ|u|2) (x)

|x − x∗|α2 dx

≤ max
1≤k≤K

∫

�∩Br0 (x∗
k )

(
δρ4 + P + ρ|u|2) (x)

|x − x∗|α2 dx

≤ Crα(1−α)
0 ‖ρμ‖2

L
3
2

+ · · · .

Next, we assume the following a priori bound

M = max{1, ‖ρ‖L2} < ∞ (1.11)
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that is uniform in δ > 0. If we select r0 = r0(α,M) small enough such that

rα(1−α)
0 ‖ρμ‖2

L
3
2

≤ Crα(1−α)
0 M

8
3 (‖∇μ‖2L2 + 1) ≤ C(‖∇μ‖2L2 + 1),

we are able to derive the following estimate

∫

�

(
δρ4 + P + ρ|u|2) (x)

|x − x∗|α2 dx ≤ C + C‖∇μ‖2L2 + · · · .

(3) With the above two key steps, we can show that there is a constant C that does not
rely on M, such that

‖ργ ‖Ls ≤ C + C‖ρμ‖2
L

3
2

≤ C + C‖ρ‖
4
3
L2 ≤ C + 1

2
‖ργ ‖Ls ,

as long as γ s > 2. This yields ‖ργ ‖Ls ≤ 2C , and then, we have the estimate
‖ρ‖L2 ≤ C0 for some positive constant C0 independent of M. By choosing the a
priori bound M = 2C0, one can close the a priori assumption (1.11) and prove
the existence of weak solutions in Theorem 1.1.

The rest of the paper is organized as follows. In Sect. 2, we present the approxi-
mate solutions constructed in Liang and Wang (2020) and provide some preliminary
lemmas. In Sect. 3, we prove Theorem 1.1

2 Approximate Solutions and Preliminaries

We start with the following approximate solutions constructed in Liang and Wang
(2020).

Proposition 2.1 (Theorem 4.1, Liang and Wang 2020) Under the assumptions of
Theorem 1.1, for any fixed parameter δ > 0 and any given constants m1 > 0 and m2,
the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

div(ρu) = 0,

div(ρu ⊗ u) + ∇
(

δρ4 + ρ2 ∂ f

∂ρ

)

= div (Sns + Sc) + ρg,

div(ρuc) = �μ,

ρμ = ρ
∂ f

∂c
− �c,

(2.1)

with the boundary conditions (1.7), admits a weak solution (ρδ, uδ, μδ, cδ) in the sense
of distributions such that

‖ρδ‖L1 = m1,

∫

ρδcδ = m2, (2.2)
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ρδ ∈ L5(�), ρδ ≥ 0 a.e. in �, uδ ∈ H1
0 (�), (μδ, cδ) ∈ H1

n (�) × H1
n (�),

(2.3)

and
∫ (

λ1|∇uδ|2 + (λ1 + λ2)(divuδ)
2 + |∇μδ|2

)
≤

∫

ρδg · uδ. (2.4)

Lemma 2.1 Let (ρδ, uδ, μδ, cδ) be the solution in Proposition 2.1. Then, we have

‖μδ‖L p ≤ C
(
1 + ‖∇μδ‖L2)(1 + ‖ρδ‖

L
6
5

)
, p ∈ [1, 6], (2.5)

where the constant C is independent of δ.

Proof Thanks to (1.6), (1.10), the boundary conditions (1.7), one has, from (2.14),

∫

ρδμδ =
∫ (

ρδ

∂ f

∂cδ

+ �cδ

)

=
∫

ρδ

∂ f

∂cδ

≤ C
(‖ρδ ln ρδ‖L1 + 1

)
. (2.6)

Using (2.6) together with (2.2) and the embedding inequality guarantees that

∫

μδ = |�|
m1

∫

ρδ (μδ)�

= |�|
m1

∫

ρδμδ − |�|
m1

∫

ρ (μδ − (μδ)�)

≤ C
(‖ρδ ln ρδ‖L1 + 1

) + C‖ρδ‖
L

6
5
‖∇μδ‖L2 ,

which implies

‖μδ‖L1 ≤ C‖∇μδ‖L2 + C
(‖ρδ ln ρδ‖L1 + 1

) + C‖ρδ‖
L

6
5
‖∇μδ‖L2

≤ C(1 + ‖∇μδ‖L2)(1 + ‖ρδ‖
L

6
5
).

(2.7)

From (2.7) and the interpolation inequality, we obtain (2.5). The proof of Lemma 2.1
is completed. ��

The next lemma gives an embedding from H1 to L2 in a three-dimensional bounded
domain, via the Green representation formula.

Lemma 2.2 Let � ⊂ R
3 be a bounded domain with C2 boundary and f ∈ L2(�)

satisfy

f ≥ 0 and
∫

�

f (x)

|x − x∗|dx ≤ E, ∀ x∗ ∈ �,

for some constant E > 0. Then, there is a constant C which depends only on �, such
that
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(i) If u ∈ H1
0 (�), then

∫

�

|u|2 f dx ≤ CE‖u‖2
H1
0 (�)

. (2.8)

(ii) If μ ∈ H1
n (�) and ( f )� = 0, then

∫

�

μ2 f dx ≤ CE‖∇μ‖2L2(�)
. (2.9)

Proof The proof of the case (i) can be found in (Plotnikov and Weigant 2015, Lemma
4). Here, we prove the case (ii). Let H be a solution to the Neumann boundary value
problem:

�H = f ∈ L2 in �, with
∂H

∂n
= 0 on ∂�. (2.10)

Recalling the Green representation formula H(x∗) = ∫

�
G(x∗, x) f (x)dx , we have

‖H‖L∞ ≤ C sup
x∗∈�

∫

�

f (x)

|x − x∗|dx ≤ CE. (2.11)

Thanks to (2.10), using integration by parts yields

∫

μ2 f =
∫

μ2�H = −2
∫

μ∇μ · ∇H ≤ 2‖∇μ‖L2

(∫

μ2|∇H |2
) 1

2

. (2.12)

From (2.12), we then derive the following estimate:

∫

μ2|∇H |2 = −
∫

μ2H�H − 2
∫

μ∇μH∇H

≤ ‖H‖L∞
∫

|μ|2 f + 2‖H‖L∞‖∇μ‖L2

(∫

|μ|2|∇H |2
) 1

2

≤ 4‖H‖L∞‖∇μ‖L2

(∫

|μ|2|∇H |2
) 1

2

,

which implies

(∫

|μ|2|∇H |2
) 1

2 ≤ 4‖H‖L∞‖∇μ‖L2 .

Substituting the above inequality into (2.12) gives that

‖μ2 f ‖L1 ≤ 8‖H‖L∞‖∇μ‖2L2 .
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Then, (2.9) follows from (2.11). The proof of Lemma 2.2 is completed. ��

Finally, we present the properties of the Bogovskii operator whose proof is available
in Galdi (1994); Novotný and Stras̆kraba (2004).

Lemma 2.3 (Bogovskii) Let � be a bounded Lipschitz domain. There is a linear oper-
ator B = (B1,B2,B3) : L p → W 1,p

0 for p ∈ (1,∞), such that, for f ∈ L p,

(i)

divB( f ) = f a.e. in �,

(ii)

‖∇B( f )‖L p ≤ C(p,�)‖ f ‖L p .

3 Proof of Theorem 1.1

For the approximate solution (ρδ, uδ, μδ, cδ) given in Proposition 2.1, if we can show
that there is a constant C uniform in δ such that

‖δρ4
δ + ργ ‖Ls + ‖uδ‖H1

0
+ ‖μδ‖H1

n
+ ‖cδ‖

W
2, 32
n

≤ C, γ s > 2, (3.1)

then from (3.1) we are able to control the possible oscillation of density and the
nonlinearity in the free energy density (1.6), and hence, we can take the limit as
δ → 0 to prove that the approximate solution (ρδ, uδ, μδ, cδ) converges weakly to
some limit function which satisfies (1.1)–(1.8) in the sense of Definition 1.1. This
convergence proof relies heavily on the compactness arguments in Feireisl (2004),
Liang andWang (2020), Lions (1998), Novotný and Stras̆kraba (2004), and the details
can be found in Liang and Wang (2020). Therefore, it suffices to prove the following
proposition in order to complete the proof of Theorem 1.1.

Proposition 3.1 Let the assumptions in Theorem 1.1 hold true. Assume that

2

γ
< s ≤ 3

2
and

4

3
< γ ≤ 2. (3.2)

Then, the solutions (ρδ, uδ, μδ, cδ) stated in Proposition 2.1 satisfy (3.1).

Remark 3.1 In case when γ > 2, the existence of weak solutions to the problem
(1.1)–(1.8) has been established in Liang and Wang (2020).

For the sake of simplicity of notation, in the proof of Proposition 3.1 we will drop
the subscript in (ρδ, uδ, μδ, cδ) and denote it by (ρ, u, μ, c).
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Lemma 3.1 Under the assumptions of Proposition 3.1, we have

∥
∥
∥
∥δρ4 + ρ2 ∂ f

∂ρ

∥
∥
∥
∥
Ls

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖Ls + ‖ρμ‖2
L

6s
3+2s

)

, (3.3)

where s is defined in (3.2). Here and below, the capital letter C > 0 denotes a generic
constant which may rely on m1,m2, γ, H , λ1, λ2, |�|, ‖g‖L∞ but is independent of δ.

Proof For any h ∈ L
s

s−1 , we test Eq. (2.12) against B(h − (h)�) and deduce that

∫ (

δρ4 + ρ2 ∂ f

∂ρ

)

h

= (h)�

∫ (

δρ4 + ρ2 ∂ f

∂ρ

)

−
∫

ρg · B (h − (h)�) +
∫

Sns : ∇B(h − (h)�)

−
∫

ρu ⊗ u : ∇B(h − (h)�) +
∫

Sc : ∇B(h − (h)�)

≤ C‖h‖
L

s
s−1

(

1 + ‖δρ4 + ρ2 ∂ f

∂ρ
‖L1 + ‖∇u‖L2 + ‖ρ|u|2‖Ls + ‖∇c‖2L2s

)

,

(3.4)

where we have used (2.2), Lemma 2.3, the fact s
s−1 > 2, and the following inequality:

‖h‖L2 + ‖B(h − (h)�)‖L∞ + ‖∇B(h − (h)�)‖L2 + ‖∇B(h − (h)�)‖
L

s
s−1

≤ C‖h‖
L

s
s−1

.

Now, we choose

h =
( |δρ4 + ρ2 ∂ f

∂ρ
|

‖δρ4 + ρ2 ∂ f
∂ρ

‖Ls

)s−1

∈ L
s

s−1

and derive from (3.4) that

∥
∥
∥
∥δρ4 + ρ2 ∂ f

∂ρ

∥
∥
∥
∥
Ls

≤ C

(

1 +
∥
∥
∥
∥δρ4 + ρ2 ∂ f

∂ρ

∥
∥
∥
∥
L1

+ ‖∇u‖L2 + ‖ρ|u|2‖Ls + ‖∇c‖2L2s

)

.

(3.5)

Next, by (1.6), (1.10), and the interpolation theorem, it holds that

∥
∥
∥
∥ρ

∂ f

∂c

∥
∥
∥
∥

2

L
6s

3+2s

≤ C + C‖ρ ln ρ‖2
L

6s
3+2s

≤ C + C‖ργ ‖
(4s−3)
3(γ s−1) +η

Ls

≤ C + C

∥
∥
∥
∥δρ4 + ρ2 ∂ f

∂ρ

∥
∥
∥
∥

(4s−3)
3(γ s−1) +η

Ls
.

(3.6)
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Since γ > 4
3 , if η > 0 is small, one has

(4s − 3)

3(γ s − 1)
+ η < 1.

Utilizing (1.7) and (3.6), we obtain

‖∇c‖2L2s ≤ C‖∇2c‖2
L

6s
3+2s

≤ C‖�c‖2
L

6s
3+2s

≤ C

∥
∥
∥
∥ρ

∂ f

∂c

∥
∥
∥
∥

2

L
6s

3+2s

+ C‖ρμ‖2
L

6s
3+2s

≤ C + 1

2

∥
∥
∥
∥δρ4 + ρ2 ∂ f

∂ρ

∥
∥
∥
∥
Ls

+ C‖ρμ‖2
L

6s
3+2s

.

(3.7)

Substituting (3.7) into (3.5), we conclude (3.3). The proof of Lemma 3.1 is completed.
��

Remark 3.2 Due to the boundary condition ∂μ
∂n = 0 and the coupling of the chemical

potential μ with the density ρ, the restriction γ > 4
3 seems critical in our proof

especially when closing a priori estimates on the pressure function. See also Lemmas
3.4, 3.5.

Next, we shall deduce some weighted estimates on the pressure and kinetic energy
together, i.e., the weighted total energymotivated by Jiang and Zhou (2011), Plotnikov
and Weigant (2015).

As in Frehse et al. (2012), we introduce

ξ(x) = φ(x)∇φ(x)
(
φ(x) + |x − x∗| 2

2−α

)α with x, x∗ ∈ �, α ∈ (0, 1), (3.8)

where the functionφ(x) ∈ C2(�) can be regarded as the distance functionwhen x ∈ �

is close to the boundary, smoothly extended to the whole domain �. In particular,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(x) > 0 in � and φ(x) = 0 on ∂�,

|φ(x)| ≥ k1 if x ∈ � and dist(x, ∂�) ≥ k2,

∇φ = x − x̃

φ(x)
= x − x̃

|x − x̃ | if x ∈ � and dist(x, ∂�) = |x − x̃ | ≤ k2,

(3.9)

where the constants ki > 0, i = 1, 2, are given. See, for example, (Ziemer 1989,
Exercise 1.15) for details.

Lemma 3.2 Let (ρ, u, μ, c) be the solutions stated in Proposition 2.1. Then, for α ∈
(0, 1), the following properties hold:
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(i) In case of x∗ ∈ ∂�, we have

∫

Bk2 (x∗)∩�

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α dx

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

,

(3.10)

where k2 is taken from (3.9), and C is independent of x∗.
(ii) In case of x∗ ∈ �, we have

∫

Br (x∗)

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α dx

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

,

(3.11)

where r = 1
3dist(x

∗, ∂�) > 0, and C is independent of r or x∗.

Proof In order to prove Lemma 3.2, we borrow some ideas developed in Frehse et al.
(2012), Mucha et al. (2018), Plotnikov and Weigant (2015) and modify the proof in
Liang and Wang (2020).

Write the function f (ρ, c) in (1.6) as

f (ρ, c) = ργ + (
H1(c) + H

)
ln ρ + H2(c) − H ln ρ = f̃ (ρ, c) − H ln ρ,

where

f̃ (ρ, c) = ργ + (
H1(c) + H

)
ln ρ + H2(c).

Then, we have

ρ2 ∂ f (ρ, c)

∂ρ
= ρ2 ∂ f̃ (ρ, c)

∂ρ
− ρH , (3.12)

and

ρ2 ∂ f̃ (ρ, c)

∂ρ
= (γ − 1)ργ + ρ

(
H1(c) + H

) ≥ (γ − 1)ργ ≥ 0, (3.13)

due to (1.10) and (2.3).
Step 1: Proof of (3.10): From (3.8) and (3.9), we see that ξ ∈ L∞ ∩ W 1,p

0 with
p ∈ [2, 3

α
). Furthermore, by (3.9) and the fact 2

2−α
> 1, one has

φ(x) < φ(x) + |x − x∗| 2
2−α ≤ C |x − x∗|. (3.14)
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With (3.9) and (3.14), one deduces that, for dist(x, ∂�) ≤ k2,

C + C

|x − x∗|α ≥ divξ(x) ≥ −C + (1 − α)

2

|∇φ(x)|2
(
φ(x) + |x − x∗| 2

2−α

)α

≥ −C + C

|x − x∗|α .

(3.15)

Thanks to (3.12), we multiply (2.12) by ξ to obtain
∫ (

δρ4 + ρ2 ∂ f̃

∂ρ

)

divξ +
∫

ρu ⊗ u : ∇ξ

= −
∫

ρg · ξ +
∫

(Sns + Sc) : ∇ξ + H
∫

ρdivξ.

(3.16)

By (1.10), (2.2), (2.3), (3.15), and the fact ξ ∈ L∞ ∩W 1,3
0 , we estimate the right-hand

side of (3.16) as

∣
∣
∣
∣−

∫

ρg · ξ +
∫

(Sns + Sc) : ∇ξ

∣
∣
∣
∣ ≤ C(α)

(
1 + ‖∇u‖L2 + ‖∇c‖2L3

)

≤ C(α)

(

1 + ‖∇u‖L2 + ‖�c‖2
L

3
2

)

,

(3.17)

and
∣
∣
∣
∣H

∫

ρdivξ

∣
∣
∣
∣ ≤ C

(

1 +
∫

ρ(x)

|x − x∗|α dx
)

. (3.18)

For the left-hand side of (3.16), it holds from (3.13) and (3.15) that

∫ (

δρ4 + ρ2 ∂ f̃

∂ρ

)

divξ ≥ − C
∫ (

δρ4 + ρ2 ∂ f̃

∂ρ

)

+ C
∫

�∩Bk2 (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ

)

|x − x∗|α .

(3.19)

By (3.9), one has

∂ j∂iφ = ∂i (x − x̃) j

φ
− ∂ jφ∂iφ

φ
.

Then,

∫
φρu ⊗ u∂ j∂iφ

(
φ + |x − x∗| 2

2−α

)α =
∫

ρ|u|2
(
φ + |x − x∗| 2

2−α

)α −
∫

ρ|u · ∇φ|2
(
φ + |x − x∗| 2

2−α

)α .
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Thus, we have the following computation and estimate:

∫

ρu ⊗ u : ∇ξ

=
∫

ρ|u|2
(
φ + |x − x∗| 2

2−α

)α − α

∫
φρ(u · ∇φ)2

(
φ + |x − x∗| 2

2−α

)α+1

− α

∫
φρ(u · ∇|x − x∗| 2

2−α )(u · ∇φ)
(
φ + |x − x∗| 2

2−α

)α+1

≥ (1 − α)

∫
ρ|u|2

(
φ + |x − x∗| 2

2−α

)α − α

∫
φρ(u · ∇|x − x∗| 2

2−α )(u · ∇φ)
(
φ + |x − x∗| 2

2−α

)α+1

≥ (1 − α)

2

∫
ρ|u|2

(
φ + |x − x∗| 2

2−α

)α − C
∫

φ2ρ|u|2|x − x∗| 2α
2−α

(
φ + |x − x∗| 2

2−α

)α+2

≥ C
∫

�∩Bk2 (x∗)

ρ|u|2
|x − x∗|α − C‖ρ|u|2‖L1 ,

(3.20)

where we have used (3.14) and the Cauchy inequality. Therefore, taking (3.17)–(3.20)
into account, using (3.7), (3.3), and 6s

3+2s < 3
2 , we deduce from (3.16) that

∫

�∩Bk2 (x∗)

δρ4 + ρ2 ∂ f̃
∂ρ

+ ρ|u|2
|x − x∗|α

≤ C

(

‖δρ4 + ρ2 ∂ f

∂ρ
‖L1 + ‖∇u‖L2 + ‖ρ|u|2‖L1 + ‖�c‖2

L
3
2

)

+ C
∫

ρ(x)

|x − x∗|α dx

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

+ C
∫

ρ(x)

|x − x∗|α dx .

(3.21)

Finally, thanks to (2.3) and (3.13), one has

C
∫

ρ(x)

|x − x∗|α dx = C

(∫

�\Bk2 (x∗)
+

∫

�∩Bk2 (x∗)

)
ρ(x)

|x − x∗|α dx

≤ C + C
∫

�∩Bk2 (x∗)

ρ(x)

|x − x∗|α dx

≤ C + 1

2

∫

�∩Bk2 (x∗)

ρ2 ∂ f̃
∂ρ

|x − x∗|α .

(3.22)
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Substituting (3.22) back into (3.21), we obtain (3.10).
Step 2: Proof of (3.11): Let dist(x∗, ∂�) = 3r > 0, and χ be the smooth cutoff
function satisfying

χ(x) = 1 if x ∈ Br (x
∗), χ(x) = 0 if x /∈ B2r (x

∗), |∇χ(x)| ≤ 2r−1. (3.23)

If we multiply (2.12) by x−x∗
|x−x∗|α χ2, we get

∫ (

δρ4 + ρ2 ∂ f̃

∂ρ

)
3 − α

|x − x∗|α χ2 +
∫

ρu ⊗ u : ∇
(

x − x∗

|x − x∗|α χ2
)

= −
∫

ρg · x − x∗

|x − x∗|α χ2 +
∫

(Sns + Sc) : ∇
(

x − x∗

|x − x∗|α χ2
)

− 2
∫ (

δρ4 + ρ2 ∂ f

∂ρ

)

χ
∇χ · (x − x∗)

|x − x∗|α + H
∫

ρ
3 − α

|x − x∗|α χ2.

(3.24)

From the following computation,

∂i

(
x j − (x∗) j

|x − x∗|α χ2
)

= ∂i (x j − (x∗) j )
|x − x∗|α χ2 − α

(x j − (x∗) j )(xi − (x∗)i )
|x − x∗|α+2 χ2 + 2χ

x j − (x∗) j

|x − x∗|α ∂iχ,

one sees that the second term on the left-hand side of (3.24) satisfies

∫

ρu ⊗ u : ∇
(

x − x∗

|x − x∗|α χ2
)

≥ (1 − α)

∫
ρ|u|2

|x − x∗|α χ2 + 2
∫

χρ(u · ∇χ)(u · (x − x∗))
|x − x∗|α

≥ 1 − α

2

∫
ρ|u|2

|x − x∗|α χ2 − C
∫

B2r (x∗)\Br (x∗)

ρ|u|2
|x − x∗|α ,

(3.25)

where the constant C is independent of r , and for the last inequality, we have used
|∇χ ||x − x∗| ≤ 4 for any x ∈ B2r (x∗)\Br (x∗). Owing to (3.23), (3.7), and the fact

∇
(

x − x∗

|x − x∗|α χ2
)

∈ L3,

we have the following estimates:

∣
∣
∣
∣−

∫

ρg · x − x∗

|x − x∗|α χ2 +
∫

(Sns + Sc) : ∇
(

x − x∗

|x − x∗|α χ2
)∣

∣
∣
∣

≤ C

(

1 + ‖∇u‖L2 + ‖�c‖2
L

3
2

)

,

(3.26)
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and

∣
∣
∣
∣−2

∫ (

δρ4 + ρ2 ∂ f

∂ρ

)

χ
∇χ · (x − x∗)

|x − x∗|α + H
∫

ρ
3 − α

|x − x∗|α χ2
∣
∣
∣
∣

≤ C
∫

B2r (x∗)\Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ

)

|x − x∗|α + C
∫

B2r (x∗)

ρ(x)

|x − x∗|α dx,
(3.27)

where C is independent of r .
With the above three estimates (3.25)-(3.27) in hand, we deduce from (3.24) that

∫

Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x∗|α dx

≤ C

(

1 + ‖∇u‖L2 + ‖�c‖2
L

3
2

)

+ C
∫

B2r (x∗)\Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x∗|α dx

+ C
∫

B2r (x∗)

ρ(x)

|x − x∗|α dx .

(3.28)

By (3.21)–(3.22) and the following estimate

C
∫

B2r (x∗)

ρ(x)

|x − x∗|α dx = C

(∫

Br (x∗)
+

∫

B2r (x∗)\Br (x∗)

)
ρ(x)

|x − x∗|α dx

≤ C + 1

2

∫
ρ2 ∂ f̃

∂ρ
(x)

|x − x∗|α + C
∫

B2r (x∗)\Br (x∗)

ρ2 ∂ f̃
∂ρ

(x)

|x − x∗|α dx,

we obtain from (3.28) that

∫

Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x∗|α dx

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

+ C
∫

B2r (x∗)\Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x∗|α dx .

(3.29)

It remains to deal with the last term in (3.29). To this end, we use the ideas developed
in Liang and Wang (2020) and divide the proof into two cases: (1) x∗ ∈ � is far away
from the boundary; (2) x∗ ∈ � is close to the boundary.
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Fig. 1 Near boundary points

(1) For the case of dist(x∗, ∂�) = 3r ≥ k2
2 > 0 with k2 being taken from (3.9), it is

clear that

∫

B2r (x∗)\Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x∗|α dx ≤ C(k2)

∥
∥
∥
∥δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

∥
∥
∥
∥
L1

.

(3.30)

With (3.30), as well as (3.12)-(3.13), (3.22), Lemma 3.1, we deduce from (3.29)
that

∫

Br (x∗)

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α dx

≤ C
∫

Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x∗|α dx

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

+ ‖δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2‖L1

)

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

.

(3.31)

(2) For the case of x∗ ∈ � close to the boundary, that is, dist(x∗, ∂�) = 3r < k2
2 , let|x∗ − x̃∗| = dist(x∗, ∂�) with x̃∗ ∈ ∂�. Then, one deduces (see Fig. 1) that

4|x − x∗| ≥ |x − x̃∗|, ∀ x /∈ Br (x
∗). (3.32)
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Making use of (3.32) and (3.21), (3.22), we have the following estimate

C
∫

B2r (x∗)\Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x∗|α dx

≤ C
∫

�∩Bk2 (x̃∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x̃∗|α dx

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

.

(3.33)

This inequality (3.33) and (3.12), (3.13) ensure that (3.29) leads to

∫

Br (x∗)

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α dx

≤ C
∫

Br (x∗)

(
δρ4 + ρ2 ∂ f̃

∂ρ
+ ρ|u|2

)
(x)

|x − x∗|α dx

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

.

(3.34)

Therefore, the desired estimate (3.11) follows immediately from (3.31) and (3.34).
The proof of Lemma 3.2 is completed. ��

The next lemma provides a refined estimate on the weighted energy obtained in
Lemma 3.2.

Lemma 3.3 Let the assumptions in Lemma 3.2 hold true. Assume that there is a con-
stant M uniform in δ, such that

M = max{1, ‖ρ‖L2} < ∞. (3.35)

Then,

sup
x∗∈�

∫

�

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α2 dx ≤ C
(
1 + ‖∇u‖L2 + ‖ρ|u|2‖

L
3
2

+ ‖∇μ‖2L2

)
.

(3.36)
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Proof If x∗ ∈ ∂�, it holds that, for any r ∈ (0, k2),

1

rα(1−α)

∫

Br (x∗)∩�

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α2 dx

≤
∫

Br (x∗)∩�

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α dx

≤
∫

Bk2 (x∗)∩�

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α dx .

(3.37)

Combining (3.37) with (3.10), we obtain for any r ∈ (0, k2),

∫

Br (x∗)∩�

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α2 dx

≤ Crα(1−α)

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

,

(3.38)

where the constantC is independent of r or x∗. Using (2.2), (2.5), and the interpolation
inequality, we have the following estimate:

‖ρμ‖2
L

3
2

≤ C‖ρ‖2L2‖μ‖2L6

≤ C‖ρ‖2L2

(
1 + ‖ρ‖

L
6
5
‖∇μ‖L2

)2

≤ CM
8
3

(
1 + ‖∇μ‖2L2

)
,

(3.39)

where, and in what follows, the constant C is independent of M. Choose r0 small so
that

r0 ≤ min

{
k2
2

, M
−8

3α(1−α)

}

. (3.40)

It follows from (3.38) that

∫

Br0 (x∗)∩�

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α2 dx

≤ C
(
1 + ‖∇u‖L2 + ‖ρ|u|2‖

L
3
2

)
+ Crα(1−α)

0 ‖ρμ‖2
L

3
2

≤ C
(
1 + ‖∇u‖L2 + ‖ρ|u|2‖

L
3
2

)
+ Crα(1−α)

0 M
8
3

(
1 + ‖∇μ‖2L2

)

≤ C
(
1 + ‖∇u‖L2 + ‖ρ|u|2‖

L
3
2

+ ‖∇μ‖L2

)
,

(3.41)

where, for the last two inequalities, we have used (3.39) and (3.40).
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If x∗ ∈ �, we use the similar arguments to obtain

∫

Br0 (x∗)

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α2 dx

≤ Crα(1−α)
0

∫

Br0 (x∗)

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α dx

≤ Crα(1−α)
0

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

≤ C
(
1 + ‖∇u‖L2 + ‖ρ|u|2‖

L
3
2

+ ‖∇μ‖2L2

)
.

(3.42)

As a result of (3.41) and (3.42), we conclude (3.36) by using the Finite Coverage
Theorem, as the domain � is bounded. The proof of Lemma 3.3 is completed. ��

The final two Lemmas 3.4 and 3.5 are devoted to proving the desired inequality
(3.1) and the a priori bound (3.35).

Lemma 3.4 Let the assumptions in Proposition 3.1 hold true. Then,

‖u‖H1
0

+ ‖∇μ‖L2 ≤ C . (3.43)

Proof Define

A =
∫

ρ|u|2|u|2(1−θ) with θ = 3γ − 4

8γ
. (3.44)

By (3.2), one has

θ ∈ (0,
1

8
]. (3.45)

Thanks to (2.2) and the Hölder inequality, it holds that

‖ρu‖L1 ≤ ‖ρ|u|2|u|2(1−θ)‖
1

2(2−θ)

L1 ‖ρ‖
3−2θ
2(2−θ)

L1 ≤ CA
1

2(2−θ) (3.46)

and

‖ρ|u|2‖
L

3
2

≤ ‖ρ|u|2|u|2(1−θ)‖
1

2−θ

L1 ‖ρ‖
(1−θ)
2−θ

L1 ≤ CA
1

2−θ . (3.47)

By means of (1.3), (1.10), (2.4), (3.46), we get

∫ (
|∇u|2 + |∇μ|2

)
≤ C‖ρu‖L1 ≤ CA

1
2(2−θ) . (3.48)
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Let

α2 = 1 − θ

2
. (3.49)

One calculates as the following,

ρ|u|2(1−θ)

|x − x∗| =
(

ρ|u|2
|x − x∗|α2

)1−θ (
ργ

|x − x∗|α2

) θ
γ

(
1

|x − x∗| γ
2(γ−1) +α2

) (γ−1)θ
γ

,(3.50)

where γ
2(γ−1) + α2 < 3 since γ > 4

3 . Hence, utilizing (3.36), (3.47), (3.48), we
integrate (3.50) and obtain

∫
ρ|u|2(1−θ)(x)

|x − x∗| dx ≤
∫

ρ|u|2(x)
|x − x∗|α2 dx +

∫
ργ (x)

|x − x∗|α2 dx + C

≤ C
∫

�

(
δρ4 + ργ + ρ|u|2) (x)

|x − x∗|α2 dx

≤ C
(
1 + ‖∇u‖L2 + ‖ρ|u|2‖

L
3
2

+ ‖∇μ‖2L2

)

≤ C
(
1 + A

1
2−θ

)
.

(3.51)

From (3.48), (3.51), and Part (i) in Lemma 2.2, one deduces

A ≤ ‖∇u‖2L2 sup
x∗∈�

∫
ρ|u|2(1−θ)(x)

|x − x∗| dx

≤ CA
1

2(2−θ)

(
1 + A

1
2−θ

)

≤ 1 + CA
3

2(2−θ) ,

which together with (3.45) yields

A ≤ C . (3.52)

Combining (3.52) with (3.48), we get (3.43). The proof of Lemma 3.4 is completed.
��

Lemma 3.5 Let the assumptions in Theorem 3.1 hold true. Then,

‖δρ4 + ργ ‖Ls + ‖μ‖L6 + ‖c‖
W

2, 32
n

≤ C . (3.53)

Proof Owing to (3.44) and (3.49), one has

3γ − 4α2

3γ − 4
∈ (0, 3).
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By (3.2), (3.51), (3.52), and the Hölder inequality, we have the following estimate,

∫
ρ

4
3 (x)

|x − x∗|dx ≤
(∫

ργ (x)

|x − x∗|α2 dx

) 4
3γ

⎛

⎝

∫
dx

|x − x∗| 3γ−4α2
3γ−4

⎞

⎠

3γ−4
3γ

≤ C

(∫
ργ (x)

|x − x∗|α2 dx

) 4
3γ

≤ C .

(3.54)

Hence, using (3.48), (3.52), (3.54), Part (ii) in Lemma 2.2, we find

‖
(
ρ

4
3 − (ρ

4
3 )�

)
μ2‖L1 ≤ ‖∇μ‖2L2

(

1 + sup
x∗

∫
ρ

4
3 (x)

|x − x∗|dx
)

≤ C . (3.55)

On the other hand, it follows from (2.2), (3.54), Lemma 2.1, Lemma 3.4, and the
interpolation inequality that

‖(ρ 4
3 )�μ2‖L1 ≤ (ρ

4
3 )�‖μ2‖L1 ≤ ‖μ‖2L2 ≤ C‖ρ‖

2
3
L2 . (3.56)

Therefore, utilizing (3.55), (3.56) and the fact 6s
3+2s ≤ 3

2 , we conclude

‖ρμ‖2
L

6s
3+2s

≤ C‖ρμ‖2
L

3
2

≤ C‖ρ 4
3 μ2‖L1‖ρ‖

2
3
L2

≤ C
(∥
∥
∥

(
ρ

4
3 − (ρ

4
3 )�

)
μ2

∥
∥
∥
L1

+
∥
∥
∥(ρ

4
3 )�μ2

∥
∥
∥
L1

)
‖ρ‖

2
3
L2

≤ C‖ρ‖
4
3
L2 .

(3.57)

Substituting (3.57) into (3.3), using (3.47), (3.48), (3.52), we get

‖δρ4 + ργ ‖Ls ≤
∥
∥
∥
∥δρ4 + ρ2 ∂ f

∂ρ

∥
∥
∥
∥
Ls

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖Ls + ‖ρμ‖2
L

6s
3+2s

)

≤ C

(

1 + ‖∇u‖L2 + ‖ρ|u|2‖
L

3
2

+ ‖ρμ‖2
L

3
2

)

≤ C

(

1 + ‖ρ‖
4
3
L2

)

.

(3.58)
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Thanks to (3.2), one has

C‖ρ‖
4
3
L2 ≤ C‖ργ ‖

4
3γ

L
2
γ

≤ C + 1

2
‖ργ ‖Ls ≤ C + 1

2
‖δρ4 + ργ ‖Ls . (3.59)

The combination of (3.58) with (3.59) gives rise to

‖δρ4 + ργ ‖Ls ≤ C, (γ s > 2), (3.60)

where C depends only on m1, γ, H , λ1, λ2, |�|, ‖g‖L∞ . From (3.60), there is a con-
stant C0 independent of δ, such that

‖ρ‖L2 ≤ C0,

and hence, we are allowed to select in (3.35)

M = 2C0 (3.61)

and close the a priori assumption in (3.35).
It only remains to derive the bound of ‖c‖

W
2, 32
n

. From (1.6), (3.57), (3.60), it follows

that

‖∇2c‖
L

3
2

≤ C‖�c‖
L

3
2

≤ C

∥
∥
∥
∥ρ

∂ f

∂c

∥
∥
∥
∥
L

3
2

+ C‖ρμ‖
L

3
2

≤ C .

(3.62)

From (2.3) and (3.60), the same argument as (2.7) yields

∫

c = |�|
m1

∫

ρ (c)� = |�|
m1

∫

ρc − |�|
m1

∫

ρ (c − (c)�)

= |�|m2

m1
− |�|

m1

∫

ρ (c − (c)�)

≤ C + C‖ρ‖
L

6
5
‖∇c‖L2

≤ C + C‖∇c‖L2 ,

which implies

‖c‖L1 ≤ ‖c − (c)� ‖L1 + ‖ (c)� ‖L1 ≤ C + C‖∇c‖L2 . (3.63)

Then, (3.63) and (3.62) provide us the following estimate:

‖c‖
W

2, 32
n

≤ C . (3.64)
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In conclusion, the desired estimate (3.53) follows from (2.5), (3.48), (3.52), (3.60),
and (3.64). The proof of Lemma 3.5 is completed. ��

Therefore, the proof of Proposition 3.1 and hence Theorem 1.1 is completed.
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