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ABSTRACT

Based on a recently developed approximate wave equation solver, we propose a
methodology to reduce the computational cost of seismic migration in the frequency domain.
The proposed approach divides the domain of interest into smaller subdomains, and the
wavefield is computed using a sequential process to determine the downward propagating and
upward propagating wavefields — hence named double sweeping solver. A sequential process
becomes possible using a special approximation of the interface conditions between
subdomains. The proposed method is incorporated into the least-squares migration framework
as an approximate solver. The associated computational effort is comparable to one-way wave
equation approaches, yet, as illustrated by numerical examples, the accuracy and convergence

behavior are comparable to that of the full-wave equation.
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INTRODUCTION

Migration is the process of converting seismic reflection data into an image of the
subsurface, given a background velocity model. Migration methods can be classified into three
major groups: Kirchhoff migrations (French, 1975; Schneider, 1978), one-way-wave-equation
(OWWE) migrations (Claerbout, 1970; Berkhout, 1979; Ristow and Riihl, 1997), and full-
wave-equation migrations such as reverse-time migration (RTM) (Baysal et al., 1983).
Kirchhoff methods are efficient migration algorithms that result in accurate images for simple

velocity models. The effectiveness of Kirchhoff methods is significantly reduced with velocity



models with large contrasts but are still useful in performing target-oriented imaging. As
indicated by the name, OWWE only allows wave propagation in a specific direction, either
downward or upward. OWWE-based migration methods can handle complex velocity models
efficiently, but they do not preserve amplitudes of the wavefield (Zhang et al., 2005) and cannot
handle multiples (Mulder and Plessix, 2004b). Although there are many ways to improve the
accuracy of OWWE migration (see, e.g., Joncour et al., 2005; Zhang et al., 2005;
Kiyashchenko et al.,2005 and 2007; and You, Wu, and Liu 2018), the most accurate migration
algorithms are based on the full-wave equation that accurately simulates wave propagation in
complex media. However, the computational cost of full-wave simulation is high, especially
for large-scale problems. Alternatively, a reflectivity model can be obtained based on
linearized least-squares optimization to minimize the error between modeled scattered
wavefields and observed data (Lailly, 1983; Tarantola, 1984; Schuster, 1993; Nemeth et al.,
1999; Chavent and Plessix, 1999; Mulder and Plessix, 2004b). Such least-squares migration
methods enable high-resolution imaging for complex structures, even in the presence of noise
or limited data (Nemeth et al., 1999). This method, however, requires multiple forward and
backward simulations at each iteration, leading to a significant computational expense.
Therefore, least-square migration may benefit from an approximate wave solver with the

accuracy close to the full-wave equation but with reduced computational cost.

Least-squares migration (LSM) is performed either in the frequency domain (e.g., see
Plessix and Mulder 2004c¢) or in the time domain, i.e., least-squares reversed time migration
(LSRTM, e.g., Dai, Fowler, and Schuster, 2012, Zeng, Dong, and Wang, 2014, and Chen and

Sacchi, 2017). If a proper subset of frequencies is used, a frequency-domain migration can be



computationally more efficient than in a time-domain approach (Mulder and Plessix, 2004a).
Frequency-domain computation has multiple additional advantages: numerical dispersion is
more easily controlled in the frequency domain (e.g., Guddati and Yue 2004). Wave
attenuation due to material damping is more accurately modeled with the help of complex-
valued, frequency-dependent wave velocity fields; and the discretization can be frequency-
dependent, resulting in computational efficiency. Despite these advantages, high-frequency
wave simulations are still computationally demanding for large-scale seismic imaging.
OWWEs provide an efficient framework to perform forward modeling in the frequency
domain, but the standard OWWE methods do not preserve the amplitudes of the wavefield;
thus, they are not effective for the least-square migration of field data. It would be ideal to
develop a method that has the efficiency of OWWE and the accurate amplitude predictability
of the full-wave equation so that it can be used as a solver in a least-squares migration

framework.

There are multiple approaches to improve the amplitude accuracy of OWWE-based
wave simulations; Kiyashchenko et al. (2005) proposed an iterative procedure to solve the full-
wave equation by applying multiple OWWE operators. This method introduces a new right-
hand side term to OWWE representing heterogeneities in the velocity model, and thus leading
to improved wave amplitudes. Also, Stanton and Sacchi (2017) proposed a least-squares
migration method where OWWE is used to improve the computation of the forward and adjoint
operators. In their method, the OWWE wavefield decomposition is based on the eigenvalues

and eigenvectors of the Christoffel equation associated with elastic media. The solution is



extended to heterogeneous cases using the phase-shift plus interpolation and split-step

correction methods (Gazdag and Sguazzero, 1984; Stoffa et al., 1990).

This paper proposes an alternative least-squares migration approach based on an
approximate solver in the frequency domain, which results in an accurate image close to that
from full-wave equation migration while being as computationally efficient as the OWWE.
The proposed approach is based on splitting the computational domain into horizontal
subdomains and then solving for the wavefield inside those subdomains using a two-step
procedure. The first step involves computing the downward propagating wavefield by solving
for the wavefield inside the subdomains sequentially from top to bottom (downward
sweeping); the key here is the use of special interface conditions that preserve the amplitude
during transmission at the subdomain interfaces. In the second step, the reflected wavefield
due to the material discontinuities is backpropagated by solving for the wavefield inside the
subdomains from bottom to top, again using special interface conditions. It is worth noting that
the upward sweeping may make it possible to model the diving and prismatic waves by adding
the upward going wavefield — which is not possible using the OWWE (including the diving

and prism waves may improve accuracy of subsalt migration and the full waveform inversion).

The idea of splitting the wavefield into upward and downward propagators is similar
to OWWEs, but the proposed method better preserves amplitudes and results in an accurate
yet efficient migration algorithm for complex velocity models. This method is already
implemented as a preconditioner to solve the Helmholtz equation (Eslaminia and Guddati

2016) and improve full-waveform inversion's computational efficiency (Eslaminia et al. 2022).



This study shows that the proposed approach also enables efficient 2D least-squares migration

with a convergence behavior similar to that of a full-wave equation method.

This paper is organized as follows. In the next section, the least-squares migration
formulation is briefly reviewed. We then present the proposed approximate solver. A 2D
numerical experiment is used to illustrate the accuracy of the proposed method as a forward
solver in the following section. Then, the effectiveness of the proposed method is demonstrated
for the least-squares migration using several synthetic examples. The paper is concluded with

some closing remarks.
LEAST-SQUARES MIGRATION

A least-squares migration formalism can be derived by minimizing the least-squares
error (misfit) between recorded data d and a synthetic wavefield u, extracted at the receiver
locations for all sources and frequencies (Lailly, 1983; Tarantola, 1984). An inverted image
can be determined by solving the following normal equation (e.g., see Nemeth et al., 1999 and

Chavent and Plessix 1999):
mg = (R{LTL})""R{LT(d — Puy)}, (1

In the context of LSM, R{LL} is the Hessian matrix, whereas the term R{L'(d — Pu,)}
corresponds to the gradient vector, where T denotes the conjugate transpose, P is a projection
operator to extract simulated wavefield at the location of receivers and ug is the wavefield
corresponding to the background velocity model my, i.e., Souy = f with S; = S(m,) where S
is the full-wave operator. Using the Born approximation, L is the linearized forward modeling

operator:
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The gradient term R{LT(d — Pug)} becomes the cross-correlation between the forward-
propagating wavefield uo and the back-propagated wavefield of the residual, which is
equivalent to the imaging principle in the conventional prestack depth migration methods (see,
e.g., Claerbout, 1985; Mulder and Plessix, 2004b). The inverse Hessian (R{LTL})~! in
equation 1 is an illumination operator that increases the accuracy of the subsurface image with
depth. However, computing and inverting the full Hessian matrix is practically impossible for
large-scale problems. Therefore, an iterative scheme must be used to perform least-squares
minimization. We can write the residual at the k™ iteration as
r* = Pu—d = Pu, + Lmf — d, 3)
and the iterative solution becomes
m{** = m{ — a(M*)"'g, “4)
where M* is an approximation of the Hessian at the current iteration, a is the step size, and g

is the current gradient vector given by:
gl = R{Lr*} = R{LT(Pu, + Lm¥ — d)}. (5)

While several methods exist for determining the approximate Hessian (e.g., Plessix and Mulder
2004), we utilize the BFGS method. The step size is also determined using a cubic line search
algorithm. An alternative approach is to use the preconditioned Conjugate Gradient (CG)

method but is not considered in this paper.



METHODOLOGY

At each iteration of LSM algorithm (defined by equations 3, 4 and 5), we need one
forward solve for computation of the misfit in equation 3, i.e., application of the forward
operator L, and another backward solve for the computation of the backpropagated misfit, i.e.,
application of the adjoint operator Lt. In addition, one forward solve is required per each
iteration of the cubic line search, i.e., application of the forward operator L. Although all wave
simulations involve a constant operator S, associated with the background velocity model, it
might not be practical to factorize, store, and reuse the LU factorization for large-scale
problems. An alternative is to solve the wave simulations iteratively using a preconditioned
generalized minimal residual (GMRES) method (Saad and Schultz, 1986; Erlangga ef al.,
2004; Engquist and Ying, 2011, Demanet ef al. 2012; Eslaminia and Guddati, 2016). However,
the computational cost associated with iterative solvers is still significant since each input
source must be simulated independently. The basic idea of the proposed framework is to
introduce an approximate solver with a computational cost comparable to conventional
OWWE:s to quickly perform all wavefield simulations without significant loss in accuracy of

the wavefield. The details are discussed in the remainder of this section.
Modeling approach

To simplify the discussion, we consider the case where the forward problem is modeled

using the time-harmonic acoustic (scalar) wave equation (Helmholtz equation),

wZ
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u=f in(x,z) € Q, (6)
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where u is the scalar wavefield, w is the temporal frequency, and c(x,z) is the wave velocity
within the domain of interest ). Absorbing boundary conditions (ABC) are utilized at the

boundaries as follows:

Ju
— = Au on 0Q, (7)
where n is a unit vector perpendicular to the boundary and 4 is the Dirichlet-to-Neumann (DtN)

map, which is essentially the half-space stiffness.

Before moving on to the proposed approach, we discuss on the choice of the DtN map 4, as it
plays an important role in interface conditions in the proposed method. For example, if we

consider the boundary parallel to the x-axis, the A is formally written as,

A=—i | Z 42 8)

x2 = c?’

which is nonlocal, computationally expensive and often approximated. The approximations
are typically classified into two categories: the first class is based on rational approximations
(Lindman, 1975; Engquist and Majda, 1979; Higdon, 1986), and the second is related to
perfectly matched layers (Berenger, 1994; Chew and Weedon, 1994). These seemingly
disparate classes are shown to be linked (Asvadurov et al. 2003), and the resulting
approximation, called Perfectly Matched Discrete Layers (PMDL, Guddati et al., 2008),
inherits the respective advantages of the two classes. While more details of PMDL can be
found in Guddati and Lim (2006), the basic idea is to replace the half-space with a small
number of complex-length finite element layers with midpoint integration. It is shown that

three to five PMDL layers are often sufficient to capture wide-angle propagations (Guddati,



2006; Guddati and Lim, 2006; Guddati and Heidari, 2007), and the idea is applicable to more
complicated elastic wave equations (Guddati, 2006; Savadatti and Guddati, 2012a 2012b).
Therefore, we adapt PMDL not only as the absorbing boundary condition but also as interface
conditions, as discussed in the next section. We emphasize, however, that the proposed
methodology is not limited to PMDL, can be used in conjunction with other DtN

approximations.
Approximate wave equation solver

The basic idea is to split the wavefield into a downward propagating component u and
an upward-propagating component u, and approximate each by ignoring multiple reflections.
Thus, us is the downward-propagating wavefield obtained by the proper transmission of
amplitudes across material interfaces, while u, is the upward propagating wavefield resulting
from primary reflections at the same interfaces. With such an approximation, us can be
obtained by a sequential solution from the top of the domain to the bottom. Then u, can be
calculated from the bottom of the domain to the top. A critical aspect of this procedure is to
compute the transmission and reflection amplitudes accurately. In what follows, we present

the mathematical framework for solving for both us and u,.

The domain of interest Q is divided into horizontal subdomains Q/ (for j = 1 to n,
starting from the top to the bottom) to facilitate a sequential solution. The horizontal boundaries
of O are denoted by th at the top and Flf at the bottom of a subdomain j. We use the superscript

j to represent entities associated with 1/, and subscripts ¢ and b to represent the variables at the

10



top and the bottom, respectively. The following boundary conditions are applicable for the j

subdomain:

j j-1 o’ ou™?
u = u —_— =
t b oz | ; oz
I Jj—1
‘ s ©)
j j+1 ou duitt
Z T VA [‘j+1
t

The conditions in equation 9 represent the continuity of the wavefield and traction
across the interfaces and cause the solution to be coupled across all the subdomains. The basic
idea of the proposed method is to approximate the interface conditions in equation 9 to relax
the coupling between interface conditions and facilitate a sequential solution of the wavefield.
This idea is not new, and in fact, is the basis for traditional OWWE (Guddati and Heidari,
2007). The key difference is that the proposed method preserves amplitudes associated with

transmission and primary reflections at material interfaces.

The proposed approximate solution is performed in two steps. First, the downward-
propagating (downward-continued) wavefield us is computed considering only downward
transmissions at the interfaces. Then the wavefields are corrected by adding the upward-
propagating (upward-continued) wavetfield u,, resulting from primary reflections at all the

interfaces. The details are discussed below.
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Downward propagating wavefield

The downward propagating wavetfield uqs is determined by solving the subproblems
from top to bottom, starting with the first subdomain. As illustrated in Figure 1, the basic idea
is to compute the wavefield in the /™ subdomain based on the full-wave equation while
assuming the only incoming wavefield is from the j-1% subdomain (u{;}l in Figure 1b). This

approximate solution is achieved by applying the following two conditions:

1. The incoming wavefield from the j-1% subdomain must be propagated into the current

subdomain without any reflections at the top interface.

2. The change in material properties (e.g., wave velocity) must be considered to get accurate
transmission effects of the wavefield at the bottom interface (and reflection, which will be

used for upward propagation in the next section).

The first condition is enforced by adding a half-space at the top interface, with materials

properties matching with the top boundary th . The second condition is enforced by using the

full-wave equation within the subdomain and adding another half-space at the bottom interface

but with material properties consistent with the top boundary of the next subdomain th i (to
obtain the appropriate reflection and transmission at the interface). This half-space
approximation eliminates the dependency on the wavefield from the next subdomains. It also
provides an accurate interface condition to model the reflections due to any material change
(e.g., a sharp change in the material or discretization of the velocity model) at the vicinity of

the bottom interface. Note that if the velocity changes and the half-space is matched with the

12



bottom boundary of the current subdomain Fg , there will be no reflection, and the transmission

will be inaccurate; thus, we would not get the desired downward propagating wavefield.

Mathematically, attaching the bottom half-space translates to
", 1
a—;+/1{+ u/ =0onT}, (10)

where /’l{ 1 is the stiffness of half-space matching with the top of the next subdomain. Equation
10 simplifies the bottom interface conditions in equation 9 by removing dependency on the
wave solution from the next subdomain. It is also worth noting that the equation 10 is in fact

the standard OWWE for the downward propagating wavefield.

The boundary condition at the top is slightly more involved. In addition to attaching a half-

space, we have an incident wave coming from the previous subdomain, which is the

downward-propagating wavefield at the bottom boundary of the previous subdomain Fl{ -
The top half-space can be modeled using half-space stiffness as in equation 7, while the
incident wave is modeled using standard scattering formalism (e.g., Colton and Kress, 2013).
Thus, the top interface condition can be written as

j-1
aud ouy

0z

+Hul, = — S AT (11)

0z j-1
Iy

. 1. ) )
where the scattered wave ug = ufi't - ufi' p satisfies one-way propagation at the interface,
. ou
ie., a—s = +Us. Using equation 10 from the previous subdomain, we have,

t

j-1
ouy

= 2 (12)

0z j-1
Iy
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and equation 11 simplifies to,
”d + Mul = 220u) on T (13)

In summary, the downward propagating wavefield is solved using the local boundary value

problem:
vz - (“’2)2 = f(x,2) inQ,
_a‘?—uZé‘l'A]ud —Z/Vu] 1on l"J (14)
aaLZ‘Ji + A{Hué =0 on Fg,

where j = 1...n and uzi'_bl is the downgoing wavefield at Flf - computed in the j-1" subdomain

and zero for j = 1.
Upward propagating wavefield

The body force and material discontinuities cause an upward propagating wavefield
that must be added to the downward propagating wavefield. The upward propagation step
discussed in this section essentially captures the effect of primary reflections and external
excitation from the subdomain below. As illustrated in Figure 2, the reflection is simply the

difference between the transmitted wave (downward propagating wavefield at the top of j+1%

subdomain,ugl;l) and the incident wave (downward propagating wavefield at the bottom of the

ji subdomain,ué‘b). This reflected wavefield should be added to the upward propagating

]+1

wavefield u; ;~ from the bottom subdomain to obtain the total upward incident wavefield for

the j™ subdomain umc as follows:

14



j Jj+1 j+1
Uine = Ug e udb+u .

(15)
Note that body forces are not considered here, since they are already included in generating

the downward sweeping step, which is included in uéjrtl, thus indirectly affecting the upward

propagating wavefield.

Once the incident wavefield is determined according to equation 15, the solution procedure for
the upward propagating wavefield is similar to the previous section but in the reverse direction
presented in Figure 1c. Specifically, at the top of the subdomain, we attach a half-space that
matches material properties with the bottom of the next (upper) subdomain. At the bottom of
the subdomain, the scattering formalism is applied by attaching a matching half-space with the

total incident wavefield given in equation 15.

Following equation 14, the upward propagating subproblem for subdomain j is written as:

2

_p2.,] _ j
Veu, — e Z)Z =0 inQ
af )
j- 1_ FJ
¥ +/1 0 on (16)
ou J

a—+/’l’ wl =24 (u)t —u), +ult) onT)

We reemphasize that the external body force is zero for upward sweeping since its effects are
already considered as part of the upward incident wavefield in the scattering boundary

condition.

15



Note that the sequence of downward and upward sweeps can be reversed, in which case body
force should be considered in the upward sweep. In addition, there are situations where only

single sweep is considered, where the body force effect must be accordingly included.

16



Implementation

Algorithm 1 illustrates the implementation of the double-sweeping solver. The
implementation consists of three main steps: initialization, downward sweeping, and upward
sweeping. The initialization step involves dividing the domain into smaller subdomains,
assembling the wave equation matrix (the dynamic stiffness matrix) associated with the sub-
domain interior and PMDL padding, and utilizing LU factorization to factorize the stiffness
matrix. This step is performed once per frequency.

Algorithm 1: Double-Sweeping Solver

Initialization (perform once for a given frequency)
1. Divide the domain into Ny horizontal subdomains
2. Add PMDL layers to represent the top and bottom interface boundary conditions.
3. Factorize the downward and the upward matrices using an efficient LU factorization
algorithm.
Downward sweeping (repeat for sources)
for j = 1to N;
1. Evaluate the right-hand side in equation 14.
2. Solve equation 14 for ué
Upward sweeping (repeat for sources)
forj =N;to1l
1. Evaluate the right-hand side in equation 16.
2. Solve equation 16 for ui.

Approximate Wavefield: uzlm,mx = u({l + uﬂ

Although the proposed (approximate) double-sweeping solver can be incorporated in any
least-squares migration algorithm to speed up the imaging process, in this study, we take
advantage of the LSM in the frequency domain and utilize a cascaded least-squares
algorithm. As shown in Algorithm 2, the target frequency range is divided into a series of

frequency groups, and the least-squares migration is progressively performed after updating
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the background image using the result from the lower frequency range. Also, to improve the
accuracy of the forward solver (especially for the lower frequency range), we utilize an
adaptive decomposition approach for dividing the computational domain, where a lower
number of the subdomains is used for the low frequencies.

Algorithm 2: Least-Squares Migration based on the Double Sweeping Solver

Preprocessing
1. Divide the target frequency range to Ny, frequency groups.
2. Setup number of sub-domains for each frequency group.
Least-squares migration
Initialization
- Given the background velocity model mg, and corresponding background wavefield uy,
compute the initial gradient g° defined in equation 5 given the scattering model resulted
from the preceding group of frequency m2, (for the first group, m? can be initialized as 0.
Minimization (BFGS iterations)
- Minimize the misfit iteratively over all frequencies in the group and all shots, i.e., update
model m¥ until convergence. Each iteration (k) involves the following steps:
1. Gradient g* computation
- Compute the gradient in equation 5 by approximating the action of operators L and L
using the double-sweeping solver in Algorithm 1.
2. BFGS step calculation
- Update the inverse of the Hessian operator using the algorithm described in Nocedal
and Wright (2006).
- Compute m¥.
3. If m¥ does not decrease the misfit significantly, backtrack on that using cubic line
search.
Minimize the misfit using cubic line search, each iteration () in the cubic line search
involves the following:

- Compute the misfit in equation 5 by evaluating ng using the double-sweeping solver
in Algorithm 1.
4. Update the current scattering model mf+1,

Repeat until convergence.

18



Computational cost

An effective way to solve the governing equation 6 (Helmholtz equation) in the full 2D
domain is using multifrontal direct LU factorization methods (Duff and Reid, 1983; Liu, 1992).
For a given n X n 2D mesh (total number of unknowns N = n?), multifrontal methods require
O(N3/2) = 0(n®) flops and O(N log N) = 0(n? log n) storage. In the case of OWWEs, the
solution to the wave equation is reduced to series of 1D or quasi 1D problems (i.e., for the n X
n mesh n systems with the size of n). These systems can be efficiently solved using banded
factorization methods with the total computational complexity of 0(n?) = O(N). For the
proposed method, each subdomain can also be factorized using banded LU methods assuming
the thickness of subdomains is small compare to n. For a given subdomain with a thickness of
m and p PMDL layers, the bandwidth is 2(m + 2p) and the computational cost of factorization
is 0(4n(m + 2p)?) with required storage of 0(2n(m + 2p)). Multiplying the cost of a single
subdomain by number of subdomains (i.e., n/m subdomains for the downward sweep and
n/m subdomains for the upward sweep), the total cost of the factorization becomes
(8n2(m + 2p)?/m) . If the same subdomains are used for both downward and upward sweeps,
the factorization cost becomes 0(4n?(m + 2p)?/m). Assuming n to be large, the
computational complexity of the proposed method (for all subdomains) becomes 0(n?) =
O(N), which is clearly in the same order of OWWEs, albeit with different constants of

multiplication that depend on the individual subdomain thickness.

Remarks on the frequency and the computational cost: Our numerical experiments show that
the double-sweeping solver produces a more accurate wavefield for lower frequencies if we

utilize thicker subdomains. The proposed method is more expensive for lower frequencies than
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for higher frequencies if the mesh resolution is kept constant. However, the grid resolution
gradually increases with frequency in practical applications. Therefore, if we use the same
number grid points per subdomains for all frequencies, the computational cost of the double-

sweeping solver increases with frequency, just like the full-wave equation.

Now, although the proposed method has not been implemented for 3D problems and
recognizing that the final computational cost would depend on implementation details, we can
estimate the computational cost for a n X n X n mesh with a total number of unknowns equal
to N = n3. Starting with the full-wave equation, the multifrontal methods for 3D problems
cost 0(N?) = 0(n®) flops and O(N*/3) = 0(n*) storage, which is impractical for large-scale
wave propagation simulations. For OWWE, the simulation is reduced to a series (essentially)
of 2D systems (n systems with n X n mesh for each system). Each 2D system may be solved
using multifrontal methods that require O(n3) flops and 0(n? log n?) storage. Thus, the total

cost of 3D OWWE becomes 0(n*) = O(N*/3) flops and 0(n® logn?) = O(N log N).

For the proposed approach, the factorization of a given subdomain can be done
efficiently using multifrontal methods. Assuming that the subdomains are thin, the

computational cost associated with each subdomain becomes similar to 2D multifrontal
methods. Therefore, the computation cost of the proposed method becomes 0(n*) = 0(N*/?)

flops and 0(n3 logn?) = O(N log N) — which is similar to OWWE, though with different

constants.

The parameterization of the subdomain thickness: To ensure that the overhead associated with

the half-space approximations for each subdomain does not dominate the computational cost,
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and to maximize accuracy by capturing intra-subdomain multiple reflections, it is better to
choose thicker subdomains. In fact, for practical (3D) applications, it may be best to choose
the largest subdomain thickness for which direct multifrontal solution can be efficiently

performed.
NUMERICAL ILLUSTRATION OF THE PROPOSED SOLVER

We demonstrate the accuracy of the proposed approximation using a 2D wave
propagation simulation with the velocity model shown in Figure 3a. The excitation force is a
Ricker pulse located at x = 0.5 km and z = 0 km with a central frequency of 20 Hz. For the full-
wave equation modeling approach, the domain of interest is discretized using a 200 x 200 finite
element mesh, while we use 20 horizontal subdomains with a thickness of ten finite element
layers. The modified integration rule proposed in Guddati and Yue (2004) is used to reduce
numerical dispersion errors. The stiffness of the half-space is approximated using five PMDL
layers. We perform a time-harmonic simulation for the frequency ranging from 0.4 to 100 Hz
with the increment of 0.4 Hz, and then time histories are computed using an inverse Fourier

transform.

Figure 3 and 4 compare the snapshots and wiggle plots of the wavefields from the full-
wave equation and the proposed methods. This comparison illustrates that the proposed double
sweeping method is in good agreement with the full-wave solution. It is worth noting that there
is a small phase-shift between the approximation solution and the full-wave wavefield. As
clearly seen in Figure 4, the time-shift gradually increases in the direction of the sweep.

Therefore, we hypothesize that the time-shifts are attributed to the sweeping process. An
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approximate way to think about sweeping (with thin slabs) is that it is like forward differencing,
while single coupled (full-wave) solutions are somewhat similar to central differencing;
naturally the former would have higher dispersion. Consequently, the error can be reduced by
increasing the thickness of the subdomains (reducing number of sweeping steps) but it will
lead to higher computational cost. Alternatively, the grid steps can be reduced, which too is

associated with increased computational cost.

In addition, the result from the single downward-sweep algorithm is also shown in
Figure 3¢ and 3e and the wiggle plots in Figure 4; as expected, the method captures the
downward propagation effect while preserving the amplitude, while the upward sweep adds
the primary reflections to the solution (the slight time-shift is likely due to numerical
dispersion). This difference can be seen at depth 0.2 km in Figures 4a and 4c, and between
depth 0.3 and 0.5 km in Figures 4b and 4d. While in some cases it may be beneficial to capture
all the multiples, we have observed through numerical experiments that capturing the primary
reflections is sufficient for migration purposes, as illustrated in the next section. Using thick
subdomains allows reflections within each subdomain, which do not propagate to the upper
subdomains, leading to a discontinuous wavefield as seen in Figure 3c. While this is not of
concern in our application to migration, to confirm this phenomenon, we repeat the numerical
example using one-element-thick subdomains to reduce this effect; as seen in Figure 3e, in
comparison to Figure 3c, the resulting wavefield appears more continuous, containing only

downward propagating modes.
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MIGRATION EXAMPLES

The approximate solver is implemented using an Intel C++ Compiler with Ox
optimization. The lightweight EIGEN library (Guennebaud, 2010) enhanced by the Intel Math
Kernel Library (Intel® MKL, 2018) is used to perform linear algebra operations. For the
reference solutions, all forward simulations at a given BFGS iteration of the least-squares
migration process utilizes the GMRES solver, where the proposed double-sweeping solver is
used as a preconditioner (Eslaminia and Guddati 2016). The relative tolerance for the GMRES
convergence is set to 0.001. For the proposed migration framework, we utilize the double-
sweeping solver as the main forward modeling step to speed up the gradient computation and
the cubic line-search step, as presented in Algorithm 2. The LU factorization of the subdomain
matrices (Initialization Step in Algorithm 1) is performed using the multi-core PARDISO
solver (Intel® PARDISO). The computation associated with multiple frequencies is distributed
over multiple processors using the Intel Message Passing Interface (MPI) library. All
numerical simulations have been carried on North Carolina State University "Henry 2" cluster.

For these numerical experiments, we have considered the following three scenarios:

1. Full-wave LSM: It represents the reference solution where the background wavefield
u, , the application of both the forward operator L, and the adjoint operator LT are all

computed using the full-wave equation.

2. Proposed LSM: The LSM based on the proposed double-sweep method, where the
background wavefield u,, the application of both the forward operator L, and the

adjoint operator Ltare all computed using the proposed double-sweep solver.
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3. One-way LSM: The LSM based on a one-way solver, where (a) the application of the
forward operator L is computed using a single upward sweep with m¥ acting as a body
force to bring primary reflections to the receivers, (b) the application of the adjoint
operator L is computed using a single downward sweep, while (c) the background
wavefield u, is computed using the proposed double-sweep solver to prevent any

interference of the background velocity on the residual calculation.

Migration of a 30° reflector

The first migration example involves a three-layer structure with a 30°-angle reflector,
as shown in Figure 5a. The domain is 4 km x 2 km, and the data acquisition is carried out using
61 shots and 124 receivers distributed uniformly at the top of the domain boundary. The
domain is extended on both sides by 0.5 km to have a wider aperture. A 0.4 km buffer layer is
added on the top boundary to remove first arrivals. The velocity model is defined on a 250 X
120 grid resulting in 30,000 parameters. The background velocity model is generated by
smoothing the true velocity model with a Gaussian filter with a window size of 10 pixels (see
Figure 5b). The true reflectivity shown in Figure 5c is computed as the difference between the
true and background velocity model. The domain is discretized using 500 x 240 bilinear
dispersion-reduced finite elements (Guddati and Yue, 2004). The sources are Ricker pulses
with a central frequency of 15 Hz, and the synthetic data are obtained for frequencies ranging
from 1 to 20 Hz with an increment of 0.25 Hz. The migration is performed progressively for
the same frequency range in four groups: 1-5 Hz, 6-10 Hz, 11-15 Hz, and 16-20 Hz. We limit

the maximum number of the BFGS iterations per frequency group to 50. To improve the
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inversion accuracy (especially for the lower frequency range), we utilize an adaptive
decomposition approach for dividing the computational domain. Specifically, we use three
subdomains for 1-5 Hz group, five subdomains for 6-10 Hz group, and ten subdomains for 11-
15 Hz and 16-20 Hz groups. The adaptive decomposition approach might also benefit a
multiscale inversion scheme by reducing the computational cost at higher frequency ranges
using a larger number of subdomains (otherwise, the subdomain mesh size increases with
frequency, making the forward solves increasingly expensive). The DtN map is approximated
using five PMDL layers with a constant length of 2c /w, where c is the velocity of the adjacent

finite element in the interior (physical subdomain).

The migrated images for all three scenarios and their convergence behaviors at different
frequency groups are shown in Figures 6 and 7, respectively. These results illustrate that the
proposed double-sweeping result is as accurate as the reference images without altering the
convergence behavior for the entire frequency range. In the case of one-way LSM, although
the single sweep approximation of L and LT has minimal effects on the convergence behavior
in the lower frequency range, it alters the convergence behavior in higher frequency ranges as
illustrated in Figure 7. We hypothesize that the reason for this is that the exclusion of the
upcoming wavetfield removes the contribution of the multiples from the residual — especially

in the presence of sharp velocity variation in this numerical experiment.

This numerical example shows that including the upward propagating wavefield
improves convergence behavior for velocity models with large velocity contrasts (for which

the full-wave equation is usually needed) with relatively small increase in computational cost.
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At the end, the CPU time for the proposed double-sweeping method is about 14 hours of CPU
time per processor, while the full-wave based LSM requires about 42 hours, representing a

67% reduction in the computational cost.

Migration of an inclusion

The second example involves the migration of inclusion with large velocity contrast,
embedded in a two-layered system as shown in Figure 8a. The migration velocity model is
generated by smoothing the true velocity model around the inclusion with a Gaussian filter
with a window size of 10 pixels shown in Figure 8b. The true reflectivity is shown in Figure
8c and the migration setup is the same as in the previous experiment. The migrated images in
Figures 8d, 8e, 8f respectively present the migrated images for the full-wave LSM, the
proposed method, and LSM with one-way. Similar to the previous example, the double-sweep
LSM is as accurate as the reference image from full-wave LSM. On the other hand, the one-
way LSM results in higher level of artifacts (see Figure 8f). This example illustrates that,
whenever multiples are significant, the proposed LSM would be a better alternative to the one-

way LSM while being computationally more efficient than the Full-wave LSM.

Migration of the Marmousi model

The third example involves the migration of the Marmousi model shown in Figure 9a.
The domain is 5.0 km x 2.5 km, and the data acquisition is carried out using 61 shots and 124
receivers distributed uniformly at the top of the domain boundary. To have a wider aperture,

the domain is extended on both sides by 0.625 km. Like the previous example, a 0.5 km buffer
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layer is added to the top boundary to remove the first arrivals. The final domain dimensions
are 6.25 km x 3.0 km. The velocity model is defined on a 250 x 150 grid (37,500 parameters).
The background velocity model is generated by smoothing the true velocity model with a
Gaussian filter with a window size of 15 pixels shown in Figure 9b. The true reflectivity is the
difference between the true and the background velocity models shown in Figure 9c. The
domain is discretized using 500 x 300 bilinear dispersion-reduced finite elements. The
synthetic data are obtained for the frequency range of 1 to 20 Hz with an increment of 0.25 Hz.
The sources are Ricker pules with the central frequency of 15 Hz. Similar to the previous
example, the migration is performed in four frequency groups: 1-5 Hz, 6-10 Hz, 11-15 Hz, and
16-20 Hz. We limit the maximum number of BFGS iterations per frequency group to 50. To
improve the inversion accuracy (especially for the lower frequency range), we utilize an
adaptive decomposition approach with three subdomains for 1-5 Hz group, five subdomains

for 6-10 Hz group, and ten subdomains for 11-15 Hz and 16-20 Hz groups.

The migrated images and the convergence behaviors at different frequency groups are
shown in Figures 10 and 11, respectively. Full-wave LSM takes about 81 hours CPU time per
processor, the proposed method requires only about 15 hours, leading to 80% reduction in
computational cost. As illustrated, both double-sweep and one-way LSM result in accurate
solutions, close to the reference image, without altering the convergence behavior. We
hypothesize that excluding the upcoming wavefield does not significantly impact the residual,
and the effect of the multiples is negligible in the specific case of the Marmousi model.

Accordingly, the proposed one-way LSM could be utilized in similar cases. However, if the
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upcoming wavefields are required for accurate imaging, e.g. the scenario in Figure 8, the

proposed double-sweep LSM is an efficient alternative to the full-wave LSM.
CONCLUSION

We develop a new least-squares migration algorithm in the frequency domain based on
an approximate sequential solver for the wave equation. The basic idea of the approximate
solver is to split the domain into smaller horizontal subdomains and solve separately for
downgoing and upcoming wavefields. Such a separation and sequential solutions are made
possible by approximating the interface conditions between the subdomains by neglecting the
multiples while preserving the amplitudes of primary reflections and transmissions. The
downward-propagating wavefield is first computed by solving subdomains from top to bottom,
followed by the solution of primary reflections and other upward propagating waves from
bottom to top. The resulting (approximate) double-sweeping solver is utilized as the primary
solver into the least-squares migration framework. As illustrated by 2D numerical examples,
the resulting least-squares migration algorithm is shown to be as accurate as the full-wave
equation-based migration. The proposed method also converges with almost the same behavior

as the full-wave equation approach while only requiring a fraction of computational effort.
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FIGURES’ CAPTION

Figure 1. Schematic representation of the proposed method: a) subdomains with color-coded

material properties, b) downward sweep sub problem where the top half space matches with

the top of the layer while bottom half-space matches with the top of the layer below, and c)

the upward sweep where the bottom half-space matches with the bottom of the layer, while
the top half-space matches with the bottom of the layer above.

Figure 2. Schematic illustrating the calculation of the incident wave. (a): The reflection u,,f
is the difference between the incoming wave ué’b from the upper subdomain and transmitted
wavefield uézlduring downward sweep, (b): The incident wave for the upward sweep is the

. . . i+1 .
reflection u,..¢ plus incoming wave u!”" from the lower subdomain.

Figure 3. (a) Velocity model. Comparison of the modeled wavefields at t = 0.6 sec. (b) full-
wave simulation, (c) downward sweeping with 10-element thick subdomains, (d) double
sweeping with 10-element thick subdomains, () downward sweeping with one-element thick
subdomains, and (f) double sweeping with one-element thick subdomains. Star represents
source and triangle represents trace location. All wavefields are plotted with the same color
scale and clipping values.

Figure 4. Traces of the wavefield, for (a) and (b) thick slabs and (c) and (d) thin slabs.

Figure 5. (a) The true velocity model of the 30° reflector. (b) background velocity model, and
(c) true reflectivity.

Figure 6. The migrated images of the 30° reflector at different frequency groups using (a) and
(b) full-wave LSM, (c) and (d) proposed migration method, (e) and (f) one-way.

Figure 7. Comparison of convergence behavior the full-wave LSM, the proposed method,
and one-way for the 30° reflector at different frequency groups.
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Figure 8. (a) The true velocity model, (b) background velocity model, (¢) true reflectivity,
and the migrated images using (d) full-wave LSM, (e) proposed method, and (f) one-way.

Figure 9. (a) The true velocity model of the Marmousi model. (b) background velocity
model, and (c) true reflectivity.

Figure 10. The migrated images of Marmousi model at different frequency groups using (a)
and (b) full-wave LSM, (c) and (d) proposed migration method, (¢) and (f) one-way.

Figure 11. Comparison of convergence behavior the full-wave LSM, the proposed method,

and one-way for the Marmousi model at different frequency groups.
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