2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-5519-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/FOCS54457.2022.00028

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

Fast Multivariate Multipoint Evaluation Over
All Finite Fields

Vishwas Bhargava
Dept. of Computer Science
Rutgers University
Piscataway, NJ, USA
vishwas1384 @gmail.com

Mrinal Kumar
Dept. of Computer Science & Engineering
IIT Bombay
Mumbai, India
mrinal @cse.iitb.ac.in

Abstract—Multivariate multipoint evaluation is the prob-
lem of evaluating a multivariate polynomial, given as a coef-
ficient vector, simultaneously at multiple evaluation points.
In this work, we show that there exists a deterministic
algorithm for multivariate multipoint evaluation over any
finite field I that outputs the evaluations of an m-variate
polynomial of degree less than d in each variable at N
points in time (d™ + N)'*°M . poly(m, d, log |F|) for all
m € N and all sufficiently large d € N.

A previous work of Kedlaya and Umans (FOCS 2008,
SICOMP 2011) achieved the same time complexity when
the number of variables m is at most d°") and had left the
problem of removing this condition as an open problem. A
recent work of Bhargava, Ghosh, Kumar and Mohapatra
(STOC 2022) answered this question when the underlying
field is not foo large and has characteristic less than d°(),
In this work, we remove this constraint on the number
of variables over all finite fields, thereby answering the
question of Kedlaya and Umans over all finite fields.

Our algorithm relies on a non-trivial combination of
ideas from three seemingly different previously known
algorithms for multivariate multipoint evaluation, namely
the algorithms of Kedlaya and Umans, that of Bjorklund,
Kaski and Williams (IPEC 2017, Algorithmica 2019), and
that of Bhargava, Ghosh, Kumar and Mohapatra, together
with a result of Bombieri and Vinogradov from analytic
number theory about the distribution of primes in an
arithmetic progression.

We also present a second algorithm for multivariate
multipoint evaluation that is completely elementary and
in particular, avoids the use of the Bombieri-Vinogradov
Theorem. However, it requires a mild assumption that
the field size is bounded by an exponential-tower in d of
bounded height.

Vishwas Bhargava’s research is supported in part by the Simons
Collaboration on Algorithms and Geometry and NSF grant CCF-
1909683. Zeyu Guo is supported by a Simons Investigator Award
(#409864, David Zuckerman). Mrinal Kumar is supported by a seed
grant from IIT Bombay.

978-1-6654-5519-0/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00028

Sumanta Ghosh
Dept. of Computing and Mathematical Sciences
Caltech
Pasadena, California, USA
besusumanta@ gmail.com

Zeyu Guo
Dept. of Computer Science
UT Austin
Austin, Texas, USA
zguotcs @ gmail.com

Chris Umans

Dept. of Computing and Mathematical Sciences

221

Caltech
Pasadena, California, USA
umans @cs.caltech.edu

Index Terms—polynomial evaluation, multivariate mul-
tipoint evaluation, finite fields

I. INTRODUCTION

We study the problem of multivariate multipoint eval-
uation: given an m-variate polynomial f(x) € F[x]
of degree less than d in each variable, and N points
aj,ag,...,ay € F™, output f(a1), f(az),..., f(an).
Here T is the underlying field. The input polynomial
f(x) is given by its coefficient vector. Therefore, the
overall input can be represented by a list of (d™ +mN)
elements in [F. A trivial algorithm for this problem is
to evaluate f(x) at each a; separately. Since evaluating
f(x) at each a; takes d™ - poly(d, m) operations over
F, this algorithm needs Nd" - poly(d, m) F-operations
in total. For N = ©(d™), the time complexity of
this algorithm is quadratic with respect to the input
size. Therefore, a natural algorithmic question here is
to seek faster algorithms for this problem. Of partic-
ular interest would be to have an algorithm for this
problem whose time complexity is nearly linear, more
specifically (d™ 4 N)'*°() (multiplied by lower-order
poly(d,n,log |F|) terms), with respect to the input size.

In addition to its innate appeal as a fundamental and
natural question in computational algebra, fast algo-
rithms for multivariate multipoint evaluation are closely
related to fast algorithms for other important algebraic
problems such as polynomial factorization and modular
composition. For a detailed discussion on these connec-
tions, we refer to the work of Kedlaya and Umans [1]. In
a recent work, Bhargava, Ghosh, Kumar and Mohapatra
[2] used the special structure of their algorithm for multi-
variate multipoint evaluation to show an upper bound on
the rigidity of Vandermonde matrices and very efficient

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

algebraic data structures for the polynomial evaluation
problem over finite fields.

For the setting of univariate polynomials, Borodin and
Moenck [3] showed that the multipoint evaluation can
be solved in nearly linear time. Their algorithm is short,
simple and elementary, and proceeds via an application
of the Fast Fourier Transform (FFT). However, this
approach does not seem to extend when the number of
variables exceeds one; in fact, even when the number
of variables is two. However, for the multivariate case,
when the input points form a product set, one can
naturally extend the ideas in Borodin and Moenck [3]
to get a nearly linear time algorithm for this problem.
But, when the input points are arbitrary, getting a sub-
quadratic algorithm for multipoint evaluation seems to be
significantly more difficult. In fact, about three decades
after Borodin and Moenck’s work, Niisken and Ziegler
[4] proved that multipoint evaluation can be solved in
most O(d*2/?*+1) operations for m = 2 and N = d?,
where wy is the exponent for multiplying a d x d and
a d x d? matrix. The work [4] extends to general m
and gives an algorithm for multipoint evaluation that
performs O(d«2/2(m=1+1) field operations.

Two significant milestones in this line of work are
the results of Umans [5] and Kedlaya and Umans [1].
Umans [5] gave a nearly linear time (that is, (d™ +
N)1HeM) . poly(m, d,log |F|)-time) algebraic algorithm
for this problem over finite fields, provided that the
characteristic of the field and the number of variables
are at most d°(). Later, Kedlaya and Umans [1] gave a
nearly linear time non-algebraic algorithm for all finite
fields, but they also need m = d°). In a recent work,
Bhargava, Ghosh, Kumar and Mohapatra [2] improve
the result of Umans [5] by removing the restriction on
m over finite fields whose characteristics are small and
sizes are not too large. More specifically, they gave a
nearly linear time algebraic algorithm for multivariate
multipoint evaluation, provided that the characteristic of
the field is d°(!) and the size of the field is at most
(exp(exp(- - - (exp(d))))), where the height of this tower
of exponentials is fixed. Another closely related result is
a recent work of Bjorklund, Kaski and Williams [6] who
(among other results) gave an algorithm for multivariate
multipoint evaluation, but their time complexity depends
polynomially on the field size (and not polynomially on
the logarithm of the field size), and instead of d™, their
time complexity is nearly linear in D™ where D is the
total degree of the polynomial. Nevertheless, their results
play a crucial role in proving the results of this paper
and we will discuss them in more detail in Section II-B.

Thus, from the context of previous work, a very
natural and interesting open question is to design an
algorithm for multivariate multipoint evaluation that runs
in nearly linear time and works for all finite fields and

222

all ranges of the number of variables. Indeed, Kedlaya
and Umans [1] mention this as an open problem.

In this work, we answer this question by giving two
different algorithms for multivariate multipoint evalua-
tion over finite fields. While our first algorithm works
over all finite fields, the second algorithm still requires
that the field size is not too large in terms of d. We now
state our results and discuss the pros and the cons of
the two algorithms and compare them to the algorithms
known in prior work. Both our algorithms happen to
be non-algebraic, i.e. we need more than just arithmetic
operations over the underlying field.

A. Our Results

We state our main result as follows.

Theorem 1.1. There is a deterministic algorithm
that given the coefficient vector of an m-variate
polynomial f(x) of degree less than d in each
variable over a finite field F and N points
ay,...,ay € F™ ouputs f(a1),...,f(an) in
time (d™ 4 N)"t°W poly(m, d,log [F|) for all m € N
and all sufficiently large d € N.

Remark. Throughout this paper, when we say d is
sufficiently large, it means d = w(1). O

The proof of the above theorem crucially relies on a
deep result from analytic number theory, known as the
Bombieri—Vinogradov Theorem [7], [8], related to the
distribution of primes in arithmetic progressions.

We also give a different algorithm for multivari-
ate multipoint evaluation that avoids the Bombieri—
Vinogradov Theorem and is completely elementary, but
it requires the finite field to be not too large: at most
(exp(exp(- - - (exp(d))))), where the height of this tower
of exponentials is fixed. In other words, it removes the
restriction on the characteristic of the field in the work
of Bhargava et.al. [2], but via a non-algebraic algorithm.

We remark that neither of our algorithms is algebraic,
and in particular, we crucially rely on working with the
bit representation of the inputs. To obtain an algebraic al-
gorithm for multivariate multipoint evaluation, for large
m, and over all finite fields is a fundamental algebraic
problem that continues to remain open.

II. AN OVERVIEW OF THE PROOFS

At a high level, our algorithms rely on ideas from
three of the recent prior works on multivariate multipoint
evaluation, namely that of Kedlaya and Umans [1], that
of Bjorklund, Kaski and Williams [6], and a recent work
of Bhargava, Ghosh, Kumar and Mohapatra [2]. We start
by giving a brief outline of these.

We start with some necessary notation. Let F be a
finite field and let f € F[x] be an m-variate polynomial
of degree less than d in each variable, and let {a; : i €

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

[N]} be a set of NV inputs in F™. Our goal is to evaluate
f on each a;. For simplicity, we focus on the case when
the underlying field I is a prime field, i.e. F =), for
some prime p. The case of extension fields is handled in
a very similar manner, with a few technicalities.

A starting observation is that multivariate multipoint
evaluation has a nearly linear time algorithm (over all
fields) when the set of evaluation points forms a product
set (see Lemma II1.7), and more generally when the
set of evaluation points is close to a product set. At
a high level, each of the algorithms in [1], [2], [6]
proceeds via a very efficient reduction from multivariate
multipoint evaluation over an arbitrary set of points
to multivariate multipoint evaluation over product sets.
However, despite this common high level structure, the
details of the reductions involved are fairly different
in each of the three algorithms, thereby giving these
algorithms their features, both desirable and undesirable.
We now elaborate a bit more on these reductions.

A. The Algorithm of Kedlaya and Umans

To solve the problem efficiently over a finite field
F, Kedlaya and Umans [1] first reduce an instance of
the multivariate multipoint evaluation problem over F
to an instance of the same problem over a ring of the
form Z/rZ. Then they use their efficient algorithm for
multivariate multipoint evaluation problem over Z/rZ to
solve it. Finally, from the evaluations over Z/rZ, they
recover the original evaluations over F. In the following,
we describe only their algorithm over Z/rZ.

The algorithm over Z/rZ: In their algorithm,
Kedlaya and Umans [1] start by lifting their problem
instance over Z/rZ to an instance over integers. They
do this by just viewing Z/rZ as the set of integers
{0,1,...,7 — 1} and this naturally maps a polynomial
f(x) over Z/rZ to a polynomial F(x) with coefficients
in Z. Similarly, this also gives a natural map from
an input point a € (Z/rZ)™ to a point a € Z™.
Clearly, for every a € (Z/rZ)™ and polynomial f,
f(a) = F(a) mod r. Thus, it suffices to solve this
lifted instance over integers. Yet another property of this
lifted instance is that the integer F'(a) is a non-negative
integer of magnitude less than M = d™(r — 1)%™ since
each coefficient of F' and each coordinate of a are in
{0,1,...,7 — 1}, and the total degree of F is less than
or equal to (d— 1)m. Thus, to compute F'(a), it suffices
to compute F'(a) mod M. Kedlaya and Umans now
proceed by finding distinct small primes pi1,pa, ..., Dk
such that Hie[k] p; > M, evaluating the polynomial
fj(x) = F mod p; at the point b; = & mod p; and
! then combining the values fi(by), fa(b2),. .., fi(b)

'In other words, f; is obtained from F' by reducing each of its
coefficients modulo p; and b; is obtained by reducing each of the
coordinates of a modulo p;.

223

using the Chinese Remainder Theorem. The correctness
follows from the observation that for every j € [k],
fj(b;) = F(a) mod p,. The advantage of this mulri-
modular reduction is that if the primes p; are very small
(for instance, if all these primes are close to d), then the
set of evaluation points of interest, that were initially
scattered sparsely in) are now mapped to points that
are packed densely in the space IP’”;, which is a product
set. Thus, we can use the simple multidimensional FFT
to evaluate f; on all of IF;; for every j, and then combine
the outcome using the Chinese Remainder Theorem.
For m < d°(!), this indeed gives a nearly linear time
algorithm for multivariate multipoint evaluation. This
constraint on the number of variables m is due to a
term of the form (dm)™ in the final running time of
the algorithm which is nearly linear in the input size
only if m is small. This (dm)™ essentially appears
because the product of primes pi,p2,...,pr chosen in
this reduction must exceed M, and hence, the largest of
these primes p; must be Q(log M) = Q(dmlogr), and
thus evaluating a polynomial f on all of I}/ requires
at least p;* = Q(d™m'™) time. Recursive application of
this process leads to smaller primes but the improved
dependence is on the log r factor and this (dm)™ factor
continues to persist in the eventual bound on the running
time. Thus, one approach towards a faster algorithm for
multipoint evaluation over Z/rZ would be to replace this
step of evaluating f; on all of FZ7 in [1] with a faster
subroutine, in particular, something that runs in nearly
linear time in the input size even for large m.

Our first algorithm in this paper does precisely this.
In order to obtain this gain, it crucially relies on ideas
in an algorithm of Bjorklund, Kaski and Williams [6]
which we discuss in Section II-B and a very careful
choice of primes to do Chinese Remaindering with, in
the multimodular reduction discussed above. Together,
these steps lead to an improvement in running time and
give us an algorithm that runs in nearly linear time even
when the number of variables is large.

For our second algorithm, we introduce a slightly
different modification in the framework of Kedlaya and
Umans. Instead of working modulo small primes as in
[1], which as discussed above, forces us to pick primes as
large as dm, we work modulo powers of distinct primes
in the multimodular reduction step. Thus, it seems con-
ceivable that we can now work with much smaller primes
than in the original algorithm, since instead of having
the condition that the product of these primes is larger
than M as in [I], we now need that the product of
powers of these primes is larger than M. However, we
still need efficient algorithms for multivariate multipoint
evaluation over rings of the form Z/p*Z for small primes
p and large k£ € N. To handle this subproblem, we extend
the derivative-based techniques used in the algorithm of

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

Bhargava et al. [2] for fields of small characteristic so
that they work over rings of the form Z/p*Z for small
primes p and large k € N.

The advantage of this strategy over our first algorithm
is that this gives us a completely elementary algorithm,
and the disadvantage is that for this algorithm to run
in nearly linear time, as desirable, the underlying ring
Z/rZ needs to be somewhat small. This issue also affects
the original algorithm of Bhargava et al. [2] and seems
somewhat inherent to this style of an argument.

B. The Algorithm of Bjorklund, Kaski and Williams

In a nutshell, the algorithm of Bjorklund et al. [6]
proceeds via constructing a set & C F)* such that

o The size of K is not too large and K is (close to)
a product set.

e Foreverya e IF;”, there is a curve C, of low degree
(in fact, a low degree univariate polynomial map)
that passes through the point a and intersects the

set K on at least p points .

These sets K can be thought of as a natural higher degree
analog of Kakeya sets over finite fields from discrete
geometry. Indeed, Bjorklund et al. refer to the set K as
high degree Kakeya sets, where the degree of the set
is defined to be the maximum over the degrees of the
curves C, over all a € F}.

Given such a Kakeya set K, Bjorklund et al.proceed
by evaluating f on all points in K fast, using the mul-
tidimensional FFT algorithm. This is the preprocessing
phase of the algorithm. Then, for an arbitrary point a €
', they compute f(a) by considering the univariate
polynomial R(y) obtained by taking the restriction f on
the curve Cj,. From the properties of the set K, we know
the curve Cj intersects the set K on at least p points.
Thus, if the degree of R < deg(f) - deg(Ca) is less
than p, then we can recover the polynomial R from the
evaluations of f on K computed in the preprocessing
step and using univariate polynomial interpolation. The
quantitative bounds for this approach are therefore cru-
cially determined by the size of the set K and the degree
of the curve Cj,.

Bjorklund et al. showed that for every u € N such
that u + 1 divides p — 1, there is a Kakeya set K of
degree u of size at most ((p — 1)/(u + 1) + 1)™*L,
This divisibility condition ensures the existence of a
multiplicative subgroup of Fy of size (p —1)/(u + 1)
and set K is based on this subgroup. Thus, if d denotes
(p—1)/(u+ 1), then we can evaluate the polynomial
f on the K in time ch, which is nearly linear in the
input size if d < d1+~"(1). However, note that in this
case, u is around p/d, and hence, the degree of the

2This notion of a curve passing through a point here is slightly
different to that in other related works like [2]. However, for the sake
of simplicity, we gloss over this technical detail right now.

224

restriction R of f on a curve of degree u has total degree
udm = pm - %. Thus, if pm - % > p, we cannot hope
to recover R from its evaluations on just p points. To
address this issue, we combine the above strategy in [6]
with an idea in [2] where instead of evaluating just f
on K, we evaluate all its (Hasse) derivatives of order at
most m - % on K in the preprocessing phase. There are
m+m.-4
m

d) such derivatives and this leads to an

additional multiplicative factor of (%) in the final
running time, but if d is not too small compared to d,
for instance, d = O(d), this binomial coefficient is at
most exp(O(m)) which is d°(™) for all growing d. Thus,
with this stronger guarantee in the preprocessing step, we
are guaranteed to have higher multiplicity information
available to us in the local computation step. So, we can
now hope to uniquely recover a univariate polynomial
of degree higher than p from this information (via
Hermite interpolation). However, since the degree of the
univariates we have here is larger than p, this Hermite
interpolation step runs in time polynomially bounded in
the underlying field size p and not just polynomially
bounded in logp as would have been desirable.

To summarise, if there exists an u € N such that
(p—1)/(u+1) = d, where d is close to d, e.g. d = O(d),
then we have an algorithm for evaluating m-variate
polynomials of degree less than d in each variable on any
N points in F7" in time poly(p,d,m) - (d™ + N+,
Thus, this is nearly linear time, when the field size p is
not too large.

Having discussed these prior results, we are now ready
to give an outline of our algorithms. We start with the
first algorithm.

at most (
m-+m-
™m

C. The First Algorithm

As discussed earlier in this section, the plan for our
algorithm is to somehow replace the multidimensional
FFT step in the algorithm of Kedlaya and Umans [1]
(over rings of the form Z/rZ) with the Kakeya-set-
based algorithm above over a field F,.. However, in
order to effectively use the Kakeya-set-based algorithm
outlined in the previous section to obtain nearly linear
time algorithms for multipoint evaluation, we need to
ensure two properties.

o The underlying field size p; is small. For instance,
we would need p; = (d™ + N)°!) for a nearly
linear time algorithm.

o There exists u € N such that v 4 1 divides p; — 1
and (p; —1)/(u+ 1) is an integer close to d.

In fact, instead of the second condition here, it suffices if
there is a small ¢ € N such that there exists a u € N such
that u+1 divides p® —1 and (p% —1)/(r+1) = d**°),
since we can always view the problem over F, as a
problem over an extension of IF,. However, we need the

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

degree of the extension to be small in order to get useful
final quantitative bounds.

The first condition about the primes p; being small
does not appear too difficult to ensure in isolation and
in particular, is also true for the algorithm of Kedlaya
and Umans. However, the second divisibility condition
seems trickier to guarantee even with the flexibility of
working over low degree extensions of IF,,. as outlined
earlier in this section. In particular, it is not clear to us
if for every pair d,p;, there always exists small ¢ such
that p; — 1 has a divisor in the vicinity of d.

Getting around these technical difficulties is the main
technical content of our algorithm. In a nutshell, we
proceed by following the multimodular reduction step
of Kedlaya and Umans, but via a careful choice of
primes pi,po,...,pr (as opposed to picking a suffi-
ciently large number of small primes as in [1]). This
careful choice preserves the fact that these primes are all
small (at most poly(d, m,logp)) and additionally guar-
antees that the divisibility condition needed to invoke
the Kakeya-set-based framework of [6]. More formally,
we choose pi1,pa,...,pr so that they are all at most
poly(d, m,logp), their product exceeds M = d™(p —
1)%™ and there exists a d € [0.8d, d] such that for every
Jj € [k], d divides p; — 1. Thus, we can use the Kakeya-
set-based framework outlined in Section II-B, with the
parameter u; to be set equal to (p; — 1)/d — 1. This
satisfies both the conditions highlighted earlier, and the
final running time of this algorithm does indeed turn out
to be nearly linear in the input size. The details can be
found in Section V. Once we have this algorithm for
multipoint evaluation over the rings of the form Z/rZ,
we use exactly the same strategy as Kedlaya and Umans
did to solve this problem over all finite fields. For details,
see the full version of this paper.

Thus, if we can find distinct primes pi,p2,..., Dk
with the properties outlined above, we would be done.
However, it is not immediately clear how to do find such
a set of numbers efficiently, or whether such a collection
of primes and the parameter d should even exist. The
appearance of the parameter d = ©(d) is also slightly
mygterious. For instance, it would be aesthetically nice
if d would have been equal to d. Perhaps surprisingly,
we do not know how to even show the existence of
primes p1,pa,...,p satisfying the desired properties
with d = d! We now outline our approach to finding
such primes and the parameter d. However, for a start,
let us attempt to do this with d = d and try to understand
the issues that arise.

The intuition on showing the existence of such primes
follows from the observation that if d divides p; — 1
for each j € [k] then, each of the primes py,po, ..., Pk
lies in the arithmetic progression (AP) A4 = (1,1 +
d,1 4+ 2d,...). It follows from a classical theorem

225

of Dirichlet (see Chapter 5 in [9] for more details)
that this arithmetic progression A, indeed contains an
infinite number of primes for every d € N. Thus,
if we take k£ to be sufficiently large, then there exist
primes py, P2, . . . , P, €ach congruent to 1 modulo d such
that their product is greater than M = d™(p — 1)4™.
However, it is not enough for our application. We also
need to show that these primes are not too large, e.g.
each p; < poly(d, m,logp), and that they can be found
efficiently. For this, it would be sufficient to show that
not only does the arithmetic progression A, contains an
infinite number of primes, but the set of primes in A is
also a sufficiently dense subset of A,4. The prime number
theorem gives such a statement for the progression Aj,
i.e. for the set of natural numbers and here, a similar
statement for arbitrary arithmetic progressions is needed.
An unconditional bound on the density of primes in an
arithmetic progression A, is given by the well-known
Siegel-Walfisz theorem [10], [11] which implies a lower
bound on the number of primes less than z in the AP
Ay for all x > 0 with z > 24° for any constant €.
However, this estimate does not appear to be sufficient
for us, since for the algorithm, we need the magnitude
of these primes to be at most poly(d, m,logp) and not
exponentially growing in d, and it is not clear if such
a guarantee can be obtained directly from this theorem.
An improved lower bound on the density of primes in
arithmetic progressions is known under the Generalized
Riemann Hypothesis, and this would have been sufficient
for our applications, except for the fact that the result
would be conditional. For the unconditional result in this
paper, we rely on the following theorem of Bombieri
and Vinogradov, which gives an improved lower bound
on the density of primes in an AP on average. For
x > 0,t € N, let w(x,t) be the number of primes
less than x in the AP starting at 1 and with common
difference ¢, w(x) denote the number of primes less than
x, and ¢ : N — N be the Euler Totient function. Various
versions of this theorem can be found in literature, for
instance, [7], [8], Theorem 18.1 in [9]. Here we rely on
the bound in equation 1.1. in [12].

Theorem II.1 (Bombieri—Vinogradov). For any fixed

a > 0, there exist constants ¢ = c(a) and b =
b(a) such that for all sufficiently large © > 0,
Ztgd‘ﬂ(z,t)—%f)) < cx(logz)~®, where d <

z'/2(log).

Thus, if x is sufficiently large compared to d, e.g.
x = d°, this theorem can be viewed as saying that
on average (over t € N,¢ < d), an AP with common
difference ¢ contains at least W((f)) — cxd 1 (logx)~@
primes less than x. Clearly, ¢(t) <t < d and 7(z) =
©(z/log x) by the prime number theorem. Thus, if we

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

take a > 1, the number of primes less than x is at least
Q(m(x)/d). For our final argument, we combine this
average-case statement about the density of primes in an
AP with a standard application of Markov’s inequality to
deduce that there exists a d € [0.8d, d] such that the AP
with common difference d has at least Q(7()/d) many
primes less than x. By choosing x to be a sufficiently
large polynomial in d,m,logp, we get precisely what
we want: sufficiently many primes pi,po,..., Pk, €ach
at most poly(d, m,logp) in absolute value such that
their product exceeds M and they are all congruent to 1
modulo d, for d = ©(d). This application of Markov’s
inequality is precisely why we have to settle for working
with the quantity d and not d itself.

D. The Second Algorithm

In this section, we give a brief overview of our
second algorithm. It implies that Theorem I.1 holds
as long as the size of the finite field is bounded by
(exp(exp(- - (exp(d))))), where the height of this tower
of exponentials is fixed via an elementary algorithm. In
particular, this algorithm does not rely on the Bombieri—
Vinogradov theorem necessary for the first algorithm.

For simplicity, we only explain our algorithm over
rings of the form Z/rZ, or Z/r*Z for some s < m. This
covers the case of prime finite fields I, by choosing
r = p and s = 1. The general case of arbitrary finite
fields (and certain extension rings of Z/rZ) is addressed
in the full version of this paper.

The algorithm over 7. /rZ: Recall that Kedlaya and
Umans [1] use multimodular reduction together with the
Chinese Remainder Theorem to reduce the multivariate
multipoint evaluation problem over Z/rZ to that over
IF,, for a collection of small primes p;. As discussed
in Section II-A, for the Chinese Remainder Theorem,
the primes p; need to be chosen such that Hie[k] pi >
M := d™(r — 1)%™. The problem here is that, as the
primes p; are distinct, the largest prime would have
order O(log M) = O(dmlogr). The logr factor can be
further reduced by repeating the multimodular reduction.
However, the dm factor persists. As a consequence, the
time complexity of the Kedlaya—Umans algorithm has a
factor (dm)™, which is nearly linear in d"™ only when
m = d°W),

In our algorithm, we introduce the new idea of using
the prime powers p’* as the moduli for Chinese remain-
dering instead of the primes p;. That is, we compute
the evaluations over the rings Z/p"*Z and then combine
them via Chinese Remainder Theorem to obtain the
evaluations over the integers. Assuming this can be done,
then we only need to choose the primes p; such that
Hie[k} pi* > M. So the largest prime may have order
O(X log M) = O(dlogr), which is independent of m.

226

Now, to make this idea work, we need a fast algorithm
for multivariate multipoint evaluation over Z/ p;”Z, for
small primes p;. In particular, if we have an algo-
rithm over Z/p"™Z that runs in time (p" + N)**o(),
then, overall, we have an algorithm that runs in time
(d™(logr)™ + N)°() Note that this has already
enabled us to get rid of the m™ factor in the running
time as in [1]. So, up to the factor of (logr)™ in the
running time, we seem to have made some progress and
we soon elaborate further on how to reduce this (log 7)™
factor further.

But first, we note that naively evaluating the poly-
nomial at all points in (Z/p}*Z)™ would be extremely
inefficient, as the size of (Z/p[*Z)™ is exponential in
m?2. So, we need a significantly faster algorithm for
multivariate multipoint evaluation over Z/p}'Z to have
any hope of making this strategy work.

In their algorithm, Kedlaya and Umans [1] deal with
the (logr)™ factor by recursively applying the mul-
timodular reduction a few times. So, to reduce the
(log 7)™ in the discussion above, we could also try to do
something similar. We already see that one application
of the reduction reduces the modulus r to p7* for a
collection of primes p;, where [[;cyypi > d(r — 1)d.
Fix a prime p; and suppose we want to apply the multi-
modular reduction again. We may lift the instance over
z/ p}'Z to an instance over the integers, and then reduce
it modulo p}™ for a collection of primes pj. The problem
here is that, if we simply lift the evaluation points from
(Z/pZ)™ to {0,1,...,pT" — 1}, we would have an
upper bound M’ = d"(p"* — 1)%™ for the evaluations
over the integers, which is too large for us. The primes
pl would have to satisfy [[, p} > M't/™ = d(p}* — 1)4,
and then the order of the largest prime must depend (at
least polynomially) on m.

We address the above two challenges, namely that
of obtaining a fast multipoint evaluation algorithm over
Z/p;?“Z that does not require evaluating on all of
Z/p]*Z™ and that of reducing the factor (log7)™ using
the following observation: over Z/r*Z, the evaluation of
an m-variate polynomial f(x) at a point a € (Z/r*Z)™
can be derived from the evaluations of the Hasse deriva-
tives of f(x) of sufficiently high order at another point
b € (Z/r*Z)™, provided that the coordinates of a — b
are all multiples of 7. Intuitively, this means if a and
b are “close enough,” then we can learn the evaluation
of f(x) at a from the evaluations at b of all the Hasse
derivatives of f of sufficiently high order.

Formally, for all e € N™, let 0.(f) € (Z/r°Z)[x]
be the Hasse derivative of f(x) with respect to x°.
For a,b € (Z/r*7Z)™, we get from Taylor’s expansion
of f(x) at b that f(a) = > .ym Je(f)(b)(a — b)*.
Suppose the coordinates of a — b are all multiples of r.
In this case, observe that (a —b)® = 0 in Z/r°Z for all

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

e € N™ with |e|; > s. Hence,

f(a) > Be(f)(b)(a—Db)°.

eeN™:le|1<s

11.2)

So we may compute f(a) from the evaluations of Hasse

derivatives (8e(f) (b))eeNm:\e\1<s.
We apply this idea to resolve the above two issues.

First, in a base case of the recursive algorithm, instead of
evaluating f(x) at all points in (Z/p}'Z)™, we evaluate
the Hasse derivatives Oo(f) at the points in S™ using
a fast evaluation algorithm for product sets, where S is
the subset of Z/p}'Z represented by {0,1,...,p; — 1}.
Note that for any a € (Z/p"Z)™, we may find b € S™
such that the coordinates of a — b are multiples of p;.
Then f(a) can be computed from de(f)(b) using (I1.2).
The advantage of this is that the size of S™ is only p7",

which is much smaller than the size p§”2 of the whole
set (Z/p]*Z)™.

Similarly, when applying the multimodular reduction
over a ring Z/p}”Z, the idea above allows us to use
a small yet non-exact lift of each evaluation point a;.
Namely, suppose a; € Z™ is the unique lift of a; €
(Z/pj*Z)™ with coordinates in {0, 1,...,p7" —1}. We
compute a; € {0,1,...,p; —1}"™ whose coordinates are
obtained by reducing the corresponding coordinates of a;
modulo p;. Then aj is a lift of some aj € (Z/p]*Z)™
such that the coordinates of a; — a are all multiples of
p;. We compute the evaluation d(f)(a}) at the point
a (instead of a), and then f(a;) can be computed from
Oe(f)(al) using (I1.2). The advantage of evaluating at
a) instead of a; is that the coordinates of its lift a} are
bounded by p; — 1 instead of p;" — 1. This translates
into a better bound for the primes that we choose in
multimodular reduction, thereby resolving the second
issue.

Finally, at each level of the recursive algorithm, we
need to evaluate not only f(x), but also the Hasse
derivatives Je(f) of order less than m. In addition, we
need to solve the subproblem for each prime p;. This
means the number of subproblems blows up by a factor
of 200m) . O(dlogr) each time. However, as we assume
the original r (= the field size when r is prime) is
reasonably bounded in terms of d, it takes only a constant
number of rounds to reduce r to d't°(1). So the total
blow-up is reasonably controlled, and we obtain a nearly
linear time algorithm when d is sufficiently large. For
details, see Section VI.

a) Comparison with the first algorithm: Compared
to our first algorithm, which uses the ideas of generalized
Kakeya sets and the Bombieri—Vinogradov theorem,
our second algorithm uses a different idea, namely the
Chinese Remainder Theorem with prime powers as the
moduli. At a high level, this may be seen as an analogue
of the “method of multiplicities” applied to the ring

227

Z and polynomial rings over Z. To see this, note that
for a univariate polynomial f(z) over a field, knowing
the evaluations of all (Hasse) derivatives f()(x) of
order < s at a point a is equivalent to knowing the
remainder of f modulo the power (z — a)®. So from
an ideal-theoretic point of view, the idea of applying
the Chinese Remainder Theorem to learn an integer
from its remainders modulo prime powers is analogous
to applying Hermite interpolation to learn a univariate
polynomial from the evaluations of its Hasse derivatives,
the latter playing a crucial role in [2].

III. PRELIMINARIES

Define N = {0,1,...}, Nt = {1,2,...}, [n]
{1,2,...,n}, and [n] = {0,1,...,n — 1}. The cardi-
nality of a set .S is denoted by |S]|.

All rings in this paper are commutative rings with
unity. For univariate polynomials f(z), g(x) over a ring
R such that g(z) is monic of positive degree, there exist
unique h(z),r(z) € R[z] such that f(z) = g(z)h(z) +
r(z) and deg(r) < deg(g) [13, Theorem 1.1]. Define
f(x) mod g(x) := r(x), which can be computed using
polynomially many R-operations via long division.

By x and z, we denote the variable tuples
(1,...,2m) and (z1,...,2m), respectively. For any
e = (e1,...,6y,) € N, x° denotes the monomial
HZ’;I z;'. By |e|1, we denote the sum eq + - - - + €.

For every positive integer k, k! denotes Hle 1. For
k =0, k! is defined as 1. For two non-negative integers
i and k with k > i, (’:) denotes ﬁ For k < 1,
" =0.Fora=(ai,...,am), b= (b1,...,by) € N,

8T, (3.

All logarithms in this paper are with respect to base
2. For a non-negative integer ¢, log”“(n) denotes the c-
times composition of the logarithm function with itself.
For example, log®*(n) loglog(n). We denote by
log*(n) the smallest non-negative integer ¢ such that
log®“(n) < 1.

We need the following number-theoretic result.

Lemma IIL.1 ([1, Lemma 2.4]). For all N > 2, the
product of the primes p < 16log N is greater than N.

A. Chinese Remainder Theorem

For our algorithms, we crucially use the Chinese
Remainder Theorem. For completeness, we formally
state the version we use and refer to Chapter 10 of [14]
for a proof.

Theorem IIL.2 (Chinese Remainder Theorem). Let
ni,Na, ..., Nt be pairwise relatively prime natural num-
bers greater than or equal to 2 and let uy,ua, ..., us be
arbitrary natural numbers such that for every i € [t],
u; < n; — 1. Then, there is a unique v € N with

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

v < [I'_,ni such that for every i € [t], v
(mod n;).

Moreover, there is a deterministic algorithm, that
when given ni,ng,...,nt and Ui, Us,...,Us as input,
outputs v in time at most poly(3_;c(,ylogn), ie., in
time polynomial in the input size.

Uq

B. Hasse Derivatives

In this section, we briefly discuss the notion of Hasse
derivatives that plays a crucial role in our results.

Definition IIL.3 (Hasse derivative). Let f(x) be an m-
variate polynomial over a commutative ring R. Let e =
(e1,...,em) € N™. Then, the Hasse derivative of f with
respect to the monomial x€ is the coefficient of z€ in the
polynomial f(x + z) € (R[x])[z]. O

Notations: Suppose that f(x) is an m-variate poly-
nomial over a commutative ring R. For a € N, denote
by Oa(f) the Hasse derivative of f(x) with respect to
the monomial x®. For any non-negative integer k, define
=<k

0
a

(f):=={0a(f) | ae N" s.t. |]al; <k}, and
(f) :={0a(f) | ac N™ s.t. |a|; < k}.

<k

For a univariate polynomial h(t) over F and a non-
negative integer k, denote by h(¥)(t) the Hasse deriva-
tive of h(t) with respect to the monomial t*, that is,
coeff .« (h(t + z)).

The following lemma states that Hasse derivatives of
polynomials can be computed efficiently. We defer its
proof to the full version of this paper.

Lemma II1.4. Let R be either a finite field or a ring
of the form Z]rZ. There exists an algorithm that given
an m-variate polynomial f(x) of individual degree less
than d over R and e € N™ with |e|; < dm, computes
Oe(f) in time O(d™) - poly(m, d,log|R|).

We now state a lemma that gives an algorithm for fast
evaluation of all the Hasse derivatives of h(t) = f(g(t))
over a finite field IF,.

Lemma IILS5. Let f(x) be an m-variate, individual
degree less than d polynomial over a finite field F, and
g(t) = (91,92,---,9m) where g; € F,[t] with degree
bounded by r. Then, given access to evaluations of
—=<2m . .

0~ (f) onIFy, there exists an algorithm that computes
the evaluations of all < 2m order Hasse derivatives of
the polynomial h(t) = f(g(t)) at all points in F in time
o)™ - poly(q,r,d,m).

The proof of the above lemma (and its promised
algorithm) follows directly from Algorithm 4 in [2] and
its correctness, thus is skipped here. The only change
is that Algorithm 4 looked at < m-th order Hasse
derivatives, and here we look at < 2m-th order Hasse

228

derivatives. It is an easy exercise to see that the analysis
of the algorithm in [2] extends as it is to this case.

C. Hermite Interpolation

The following lemma gives a stronger version of
univariate polynomial interpolation, known as Hermite
interpolation. To interpolate a univariate polynomial of
degree d, we need its evaluations at d + 1 distinct
points. However, for Hermite interpolation, the number
of evaluation points can be less than d, provided that
evaluations of Hasse derivatives of the polynomial are
available up to a certain order.

Lemma III.6 (Hermite interpolation). Let R be either
a finite field or a ring of the form Z/rZ. Let f(x) be a
univariate polynomial over R and ey, ..., ey be positive
integers such that d .= ey + --- + ey is greater than
deg(f). Let ay,as,...,ap € R such that for distinct
i,j €[], a; —a; has multiplicative inverse in R. For all
i € [() and j € [e;], let Bij = fYU)(a;). Then given
(a;, Bij) for all i € [{) and j € [e;], f(x) can be
computed in time poly(d,log|R|). Equivalently, given
(ai, f(x) mod (z — a;)%) for all i € [{], f(x) can be
computed in time poly(d, log |R)|).

We refer to the full version of the paper for the proof.

D. Fast Multivariate Multipoint Evaluation for Product
Sets

The following lemma states that multivariate multi-
point evaluation can be solved very efficiently if the set
of evaluation points is a product set. We defer its proof
to the full version of this paper.

Lemma IIL7. Let R be either a finite field or a ring
of the form Z/rZ. There exists an algorithm that given
an m-variate polynomial f(x) of individual degree less
than d over R and a finite subset S of R, outputs the
evaluations f(a) for all a € S™ in time O(d™ + |S|™) -
poly(m,d,log |R)).

IV. THE NECESSARY BUILDING BLOCKS

In this section, we set up some of the necessary build-
ing blocks for our algorithm. Due to space constraints,
the proofs have been skipped here and can be found in
the full version of the paper [15].

A. Primes in an Arithmetic Progression

The first ingredient we need is the existence of
sufficiently many primes in the arithmetic progression
Aqg={1,14d,1+2d,...} that are not too large. When
d is small, and x tends to infinity, a well-known result of
Dirichlet (Theorem 5.5 in [9]) shows that the density of
primes less than z in the arithmetic progression A4 tends
to @(m), where ¢ is the Euler totient function.
However, for our application, we will need = and d to

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

be close to each other and hence it becomes important
to carefully look at the error term in the prime counting
function for the progression Ay.

While we do not know how to show such a statement,
we end up working with a weaker statement that turns
out to be sufficient for our application. This weaker
statement that we use follows (immediately) from a deep
result of Bombieri and Vinogradov that we state now. But
first, we need some notation. For any = > 0, we denote
by 7(z) the number of primes less than or equal to x.
For z > 0 and ¢t € N, we also use 7(z,t) to denote the
number of primes less than or equal to z in the arithmetic
progression A; = {1,1+¢,14+2¢,...,}

We are now ready to state the theorem of Bombieri
and Vinogradov that we use. Various versions of the
theorem can be found in literature, for instance, [7],
[8], Theorem 18.1 in [9]. Here we rely on the bound
in Equation 1.1 in [12].

Theorem IV.1 (Bombieri—Vinogradov). For any fixed
a > 0, there exist constants c cla) and b =
b(a) such that for all sufficiently large © > 0,

doi<q |T(@,t) — @ | < cxp(logz)~®, where Q <
z'/2(log x) .

»(t)

Semantically, Theorem IV.1 says that on average (over
t < @), the quantity ’W(%t) _ n(@)

3(t)
(cx(logx)~*). For our application, we would require a
similar statement in the worst-case choice of ¢. This,
however, is not known unconditionally when ¢ is large
compared to z° (which will turn out to be the case here),
unless we assume the Generalized Riemann Hypothesis.
Thankfully, it turns out that we have some wriggle room,
and we can in fact work with the average-case statement
above (up to some small loss in the parameters). More
formally, we need the following immediate consequence
of Theorem IV.1.

‘ is bounded by

Lemma IV.2. For any fixed a > 1, there exist constants
¢ = c(a) and b = b(a) such that for all sufficiently large
>0 Q< w1/2(logx)_b and 6 > 1, there is a to € N
with Q(1 —2/6) <to < Q and w(x,ty) >

=z
4Q log x*
We now state the following consequence of this lemma

that will be directly useful for us in the Chinese Remain-
dering step of our algorithm.

Lemma IV.3. Let D, M be natural numbers and let D
be sufficiently large. Then, there exists a natural number
D € [0.8D, D] such that there are distinct primes
P1,P2,-- -, Pk Iin_ the arithmetic progression Ap,

(1,14+D,1+2D, ...,) with the following properties.
1) k< D?(log M)?

3More specifically, we would like z and t to be polynomially related
to each other.

229

2) For every i € [k], p; < (Dlog M)3

3) Hf:l pi > M
Moreover, there is a deterministic algorithm that on input
D, M outputs p1,...,pi, D in time poly(D,log M).

B. Explicit Kakeya Sets of Higher Degree

We start with the definition of Kakeya sets of high
degree.

Definition IV.4 ([0]). Let F be a finite field and let
u,m € N. A set K CF™ is said to be a Kakeya set of
degree w in F™ if there exist functions 9o, g1, - -, Qu—1:
F™ — "™ such that for every a € ™, the set of points

{g0(a)+g1(a) 7+ '+gu—1(a)-7“71+a~7“ 7 eF}

is a subset of K. O

For ease of notation, we denote the curve
{go(@)+g1(a)-y+--+gu_1(a)y" ' +a-y* : y € F}

of degree u by Ga(y).

In their work [6], Bjorklund, Kaski and Williams gave
an explicit construction of Kakeya sets of degree u of
non-trivially small size, provided that the degree u and
the field size I satisfy an appropriate divisibility condi-
tion. This construction will be crucial for our algorithm.

Theorem IV.5 (Explicit Kakeya sets of degree u [0]).
Let F be a finite field of size q, and let u € N be such
that u + 1 divides q — 1. Then, for every m € N, there
is a Kakeya set K of degree u in F™ of size at most

q—1 m+1
(m +1

Moreover, this set K is a union of at most q product
sets in F™ and there is a deterministic algorithm that
on input u, m,F, outputs K and the associated functions

905Gy -+, Gu—1 in time O(q|K|).

Using the property that the set K in Theorem IV.5 is
a union of product sets and that for product sets we have
nearly linear algorithms for multipoint evaluation using
Lemma II1.7, we get the following.

Lemma IV.6. Let [be a finite field of size q, u € N be
such that v+ 1 divides ¢ — 1, and m € N be a natural
number. Let K be the Kakeya set of degree u given by
Theorem IV.5 over F™ and let f(x) be a polynomial
of degree less than d in each variable with coefficients
in . Then there is a deterministic algorithm that takes
as input the set K and the coefficient vector of f and
outputs the evaluation of f at every point in K in time

C. Fast Multipoint Evaluation over Nice Finite Fields

Theorem IV.7. Let F be a finite field of size q and
let d,d,m € N be such that d € [0.8d,d] and d — 1
divides q — 1. Then there is an algorithm that given a

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

homogeneous m-variate polynomial in F[x] of degree
less than d in every variable and a set of N input points
in ™, outputs the evaluation of this polynomial on these
inputs in time (d™ + N) - ©(1)™ - poly(q, m, d).

Proof. Let f be the input polynomial and a;,...,ay €
F™ be the input points of interest.

At a high level, the algorithm here is similar in
structure to that in [2]. We first evaluate the polynomial
on an appropriate product set P in nearly linear time
using Lemma II1.7 in the preprocessing phase. Next, in
the local computation step, we look at the restriction
of f on a curve C, through any point a € F™ of
interest. Based on the construction of the aforementioned
product set P, we will guarantee that there is a curve Cj,
through a such that the intersection of C, with the set
P is sufficiently large, so that the univariate polynomial
obtained by restricting f to C, can be uniquely decoded
using the evaluation of f on PP. We then use this decoded
polynomial to obtain f(a).

Despite this high-level similarity, there are some tech-
nical differences between the algorithm here and that in
[2]. Primarily, these differences arise due to the fact that
unlike the setting in [2], we are no longer working over
fields of small characteristic. So, the construction of the
set P is different here and is based on the ideas in [6].
We now specify the details, starting with the description
of the algorithm.

a) The algorithm:

1) From the coefficient vector of f, compute each of
Hasse derivatives of f of order at most 2m.

2) Using Theorem IV.5, we construct a Kakeya set K
of degree u = (¢—1)/(d—1)—1. As is necessary,
u + 1 divides ¢ — 1. Note that, |K| < d(™+1),

3) For every Hasse derivative f of f of order at most
2m, evaluate f on K using Lemma IV.6.

4) For every i € [N]:

a) We consider the univariate polynomial R;(y)
obtained by the restriction of f on the curve
Ga,(y). This is a univariate polynomial of
degree at most (d —1)m-(q—1)/(d—1) <
2m(q — 1). Using Lemma IIL.5, compute the
evaluation of R;(y) and all its < 2m order
Hasse derivatives on F.

b) Since degree of R; is less than 2m(q — 1),
and we have the evaluation of R; and all its
derivatives of order at most 2m on ¢ points,
we can recover I?; uniquely from this infor-
mation. In particular, we use Lemma III.6 to
recover R;(y).

c) We output f(a;) to be equal to the coefficient
of ydeel) v in R;(y).

Due to space constraints, we skip the proofs of correct-
ness and the analysis of the running time of the algorithm

here, and defer these details to the full version of the
paper [15].
O

V. THE FIRST ALGORITHM OVER Z/rZ

With the necessary background in place, we are now
ready to describe our first algorithm for fast multivariate
multipoint evaluation over rings of the form Z/rZ. This
already handles the case of prime fields, and contains
most of our main ideas.

The case of extension rings as well as many of the
proofs can be found in the full version of this paper

[15].
A. The Description of the Algorithm

Algorithm 1 The First Algorithm over Z/rZ
Algorithm MME-A(f,ay,...,ay,r)

where f is an m-variate homogeneous polynomial
over Z/rZ of individual degree less than d and
aj,as,...,ay € (Z/rZ)™ are evaluation points.

1) Let F' € Z[x] be the m-variate homogeneous poly-
nomial of individual degree less than d obtained
from f by replacing each of its coefficients with
its natural lift in the set [r] of integers.

2) For every i € [N], let &, € [r]™ be the lift of
a; € (Z/rZ)™ to the integers.

3) Let M = d™r%. We invoke Lemma IV.3 with
parameters d and M and obtain a natural number
d € [0.8d,d] and primes pi,ps,...,pr Where
k < d?*(log M)3, each p; < d*(log M)? and is
congruent to 1 modulo d, and Hie[k] pi > M.

4) For j € [k], let f;(x) € F,,[x] be the m-variate
homogeneous polynomial of individual degree less
than d obtained by reducing each of the coeffi-
cients of F' modulo the prime p;. Similarly, for
every i € [N], let a;; € F}! be obtained by
reducing each of the coordinates of a; modulo p;.

5) For every j € [k], invoke the algorithm in The-
orem IV.7 for the polynomial f;, input points
{a;; : i € [N]} and parameters d,d as above,
and get f;(a; ;) for all j € [k] and i € [N]. Note
that each f; is a homogeneous polynomial, and
from the guarantees of Lemma IV.3, d is in the
range [0.8d, d] and d — 1 divides p; — 1 as needed
by Theorem IV.7.

6) For every i € [N], use the Chinese Remainder
Theorem (Theorem II1.2) to compute F'(a;) from
{fi(ag) g € [k},

7) For every i € [N], output f(a;) = F(a;) mod 7.

We summarize the correctness and the time complex-
ity of the algorithms in the following theorem, and refer
to the full version of the paper [15] for the proof.

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

Theorem V.1. Let f(x) be a homogeneous m-variate
polynomial over Z/rZ of individual degree less than
d. Let ay,...,ay be N points from (Z/rZ)™. Then,
given (f,a1,...,an,r) as the input to Algorithm 1, it
computes f(a;) forall i € [N] in time (d™+N)-©(1)™-
poly(m, d,logr).

VI. THE SECOND ALGORITHM OVER RINGS OF THE
FORM Z/rZ

The main result of this section is the following theo-
rem.

Theorem VL. Over Z/rZ, for all m € N and
sufficiently large d € N, there exists a deterministic
algorithm that outputs the evaluation of an m-variate
polynomial of degree less than d in each variable on N
points in time (d™+N)'*T°M) .poly(m, d, log r) provided
that 1og®® r < d°V) for some fixed constant ¢ € N.

We need the following lemma. It gives a way of
computing the evaluation of f(x) over a ring R at a point
a from the evaluations of Hasse derivatives of f(x) at
another point b, provided that the coordinates of a — b
are in a nilpotent ideal of R.

Lemma VIL.2. Let f(x) be an m-variate polynomial
over a commutative ring R. Let I be an ideal of R
and s be a positive integer such that I° = 0. Let
a = (a1,...,am),b = (b1,...,bm) € R™ such that
a; = b; (mod I) for i € [m]. Then

flay=" > 9e(f)(b)-(a—Db)°.

eceN™:le|1<s

Q|

A. A Basic Algorithm

We first describe a basic algorithm, MME-PRODUCT-
SET, that evaluates a polynomial f(x) € (Z/r*Z)[x] at
N points in (Z/r*Z)™ simultaneously.

Algorithm 2 Basic Algorithm
Algorithm MME-PRODUCT-SET(f, a1, ..

.,aN,’I",S)

where f(x) is an m-variate polynomial over Z/r°Z
of individual degree at most d — 1, aj,as...,ay are
evaluation points in (Z/r°Z)™, and s € [m).

1) For all e € N™ with |e|; < s, use Lemma II1.4 to
compute fe(x) 1= Je(f)(x).

2) For all e € N™ with |e|; < s, use Lemma III.7
to compute fe(a) for a € [r]™, where [r] is
identified with a subset of Z/r*Z via i — i+1r°Z.

3) For all ¢ € [N], compute a; € [r]™ C (Z/r*Z)™
such that the coordinates of a; are the remainders
of the corresponding coordinates of a; modulo 7.

4) For all i € [N], compute and output

fla) = Y fe(@)-(ai—a;)° (VL3)

eeN™:le[1<s

Lemma VIL4. Given the input (f,ay,...,ay,r,s), the
algorithm MME-PRODUCT-SET computes f(a;) for
all i € [N] in time O((m:_s;l)(dm + 7™ 4+ N)) -
poly(m,d,logr).

B. The Description of the Algorithm

We describe the second algorithm MME-B now.

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 The Second Algorithm over Z/r°Z
Algorithm MME-B(f,ay,...,ay,7,s,t)

where f(x) is an m-variate polynomial over Z/r°Z
of individual degree at most d — 1, aj,as...,ay are
evaluation points in (Z/r*Z)™, s € [m], and t > 0 is
the depth of the reduction tree.

1) If ¢ =0, invoke MME-PRODUCT-SET with input
(f(x),a1,as,...,ay,r,8) to compute f(a;) for
i € [N], and return.

2) For all e € N™ with |e|; < s, use Lemma 1.4
to compute fe(x) := de(f)(x), and then compute
a lift fo(x) € Z[x] of fo(x) with coefficients in
[]-

3) For all i € [N], compute a; € [r]™ such that
the coordinates of a; are the remainders of the
corresponding coordinates of a; modulo 7, and
compute a; := &; mod r* € (Z/r5Z)™

4) Let M := d(r—1)%. Find primes p; < py < -++ <
pr < 16log M such that H?Zl p; > M.

5) Forall e € N™ with |e|; < s and j € [k], compute
fe,j (x) := fe(x) mod p;ﬂ € (Z/p;nZ)[X]

6) For all i« € [N] and j € [k], compute a;; :=
a; mod p}* € (Z/p]Z)™

7) For e € N™ with |e|; < s and j € [k], invoke
MME-B on input (fe j,a1,j,...,an,;,p;,m,t —
1) to compute fe j(a; ;) for i € [N].

8) For all e € N™ with |e|; < s and i € [N], use
the Chinese Remainder Theorem (Theorem II1.2
to compute fo(&;) as the unique Q; € [[H?Zl P
such that Q; mod pT* = fe j(a; ;) for j € [k], and
then compute fo(a;) = fo(a;) mod r® € Z/r 7.

9) For all i € [N], compute and output

fla)= Y fe(a)-(ai—a;)° (VLS)

eeN™:le|1<s

We refer to the full version of the paper [15] for the
correctness and time complexity of the algorithm.

ACKNOWLEDGMENT

Mrinal is thankful to Swastik Kopparty for introducing

him to the question of multipoint evaluation and the

[2] V. Bhargava, S. Ghosh, M. Kumar, and C. K.
Mohapatra, “Fast, algebraic multivariate multipoint evaluation
in small characteristic and applications,” arXiv preprint
arXiv:2111.07572, 2021, to appear in STOC 2022. [Online].
Available: https://arxiv.org/abs/2111.07572

232

work of Kedlaya—Umans [1] and to Prahladh Harsha and
Ramprasad Saptharishi for many helpful discussions.

(1]

(3]

[4]

[3]

[6

=

(71

[8]

[9

—

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

REFERENCES

K. Kedlaya and C. Umans, “Fast polynomial factorization
and modular composition,” SIAM Journal on Computing,
vol. 40, no. 6, pp. 1767-1802, 2011. [Online]. Available:
https://doi.org/10.1137/08073408X

A. Borodin and R. Moenck, “Fast modular transforms,” Journal
of Computer and System Sciences, vol. 8, no. 3, pp. 366—
386, 1974. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0022000074800292

M. Niisken and M. Ziegler, “Fast multipoint evaluation of bi-
variate polynomials,” in Algorithms — ESA 2004, S. Albers and
T. Radzik, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 544-555.

C. Umans, “Fast polynomial factorization and modular
composition in small characteristic,” in Proceedings of the
40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008,
C. Dwork, Ed. ACM, 2008, pp. 481-490. [Online]. Available:
https://doi.org/10.1145/1374376.1374445

A. Bjorklund, P. Kaski, and R. Williams, “Generalized
kakeya sets for polynomial evaluation and faster computation of
fermionants,” Algorithmica, vol. 81, no. 10, pp. 4010-4028, 2019.
[Online]. Available: https://doi.org/10.1007/s00453-018-0513-7

E. Bombieri, “On the large sieve,” Mathematika, vol. 12, pp.
201-225, 1965.

A. 1. Vinogradov, “The density hypothesis for the dirichlet [-
series,” Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematich-
eskaya, vol. 29, pp. 903-934, 1965.

K. Kedlaya, “Lecture notes for the course ‘Analytic Number
Theory’,” 2015. [Online]. Available: https://kskedlaya.org/papers/
ant-overall.pdf

C. Siegel, “Uber die classenzahl quadratischer zahlkorper,” Acta
Arithmetica, vol. 1, no. 1, pp. 83-86, 1935. [Online]. Available:
https://eudml.org/doc/205054

A. Walfisz, “Zur additiven Zahlentheorie. I1.” Mathematische
Zeitschrift, vol. 40, no. 1, pp. 592-607, 1936.

J. Maynard, “Primes in arithmetic progressions to large moduli
I: Fixed residue classes,” arXiv preprint arXiv:2006.06572,
2020. [Online]. Available: https://arxiv.org/abs/2006.06572

S. Lang, Algebra, 3rd ed. Springer-Verlag, New York Inc., 2002.
J. von zur Gathen and J. Gerhard, Modern Computer Algebra,
3rd ed. Cambridge University Press, 2013.

V. Bhargava, S. Ghosh, Z. Guo, M. Kumar, and C. Umans,
“Fast multivariate multipoint evaluation over all finite fields,”
2022. [Online]. Available: https://arxiv.org/abs/2205.00342

M. Agrawal, N. Kayal, and N. Saxena, “Primes is in P,” Annals
of Mathematics, vol. 160, no. 2, pp. 781-793, 2004.

V. Shoup, A Computational Introduction to Number Theory and
Algebra, 2nd ed. New York: Cambridge University Press, 2008,
available from https://shoup.net/ntb/.

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore. Restrictions apply.

