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Abstract—Multivariate multipoint evaluation is the prob-
lem of evaluating a multivariate polynomial, given as a coef-
ficient vector, simultaneously at multiple evaluation points.
In this work, we show that there exists a deterministic
algorithm for multivariate multipoint evaluation over any
finite field F that outputs the evaluations of an m-variate
polynomial of degree less than d in each variable at N
points in time (dm + N)1+o(1) · poly(m, d, log |F|) for all
m ∈ N and all sufficiently large d ∈ N.

A previous work of Kedlaya and Umans (FOCS 2008,
SICOMP 2011) achieved the same time complexity when
the number of variables m is at most do(1) and had left the
problem of removing this condition as an open problem. A
recent work of Bhargava, Ghosh, Kumar and Mohapatra
(STOC 2022) answered this question when the underlying
field is not too large and has characteristic less than do(1).
In this work, we remove this constraint on the number
of variables over all finite fields, thereby answering the
question of Kedlaya and Umans over all finite fields.

Our algorithm relies on a non-trivial combination of
ideas from three seemingly different previously known
algorithms for multivariate multipoint evaluation, namely
the algorithms of Kedlaya and Umans, that of Björklund,
Kaski and Williams (IPEC 2017, Algorithmica 2019), and
that of Bhargava, Ghosh, Kumar and Mohapatra, together
with a result of Bombieri and Vinogradov from analytic
number theory about the distribution of primes in an
arithmetic progression.

We also present a second algorithm for multivariate
multipoint evaluation that is completely elementary and
in particular, avoids the use of the Bombieri–Vinogradov
Theorem. However, it requires a mild assumption that
the field size is bounded by an exponential-tower in d of
bounded height.
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1909683. Zeyu Guo is supported by a Simons Investigator Award
(#409864, David Zuckerman). Mrinal Kumar is supported by a seed
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I. INTRODUCTION

We study the problem of multivariate multipoint eval-

uation: given an m-variate polynomial f(x) ∈ F[x]
of degree less than d in each variable, and N points

a1,a2, . . . ,aN ∈ F
m, output f(a1), f(a2), . . . , f(aN ).

Here F is the underlying field. The input polynomial

f(x) is given by its coefficient vector. Therefore, the

overall input can be represented by a list of (dm+mN)
elements in F. A trivial algorithm for this problem is

to evaluate f(x) at each ai separately. Since evaluating

f(x) at each ai takes dm · poly(d,m) operations over

F, this algorithm needs Ndm · poly(d,m) F-operations

in total. For N = Θ(dm), the time complexity of

this algorithm is quadratic with respect to the input

size. Therefore, a natural algorithmic question here is

to seek faster algorithms for this problem. Of partic-

ular interest would be to have an algorithm for this

problem whose time complexity is nearly linear, more

specifically (dm + N)1+o(1) (multiplied by lower-order

poly(d, n, log |F|) terms), with respect to the input size.

In addition to its innate appeal as a fundamental and

natural question in computational algebra, fast algo-

rithms for multivariate multipoint evaluation are closely

related to fast algorithms for other important algebraic

problems such as polynomial factorization and modular

composition. For a detailed discussion on these connec-

tions, we refer to the work of Kedlaya and Umans [1]. In

a recent work, Bhargava, Ghosh, Kumar and Mohapatra

[2] used the special structure of their algorithm for multi-

variate multipoint evaluation to show an upper bound on

the rigidity of Vandermonde matrices and very efficient
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algebraic data structures for the polynomial evaluation

problem over finite fields.

For the setting of univariate polynomials, Borodin and

Moenck [3] showed that the multipoint evaluation can

be solved in nearly linear time. Their algorithm is short,

simple and elementary, and proceeds via an application

of the Fast Fourier Transform (FFT). However, this

approach does not seem to extend when the number of

variables exceeds one; in fact, even when the number

of variables is two. However, for the multivariate case,

when the input points form a product set, one can

naturally extend the ideas in Borodin and Moenck [3]

to get a nearly linear time algorithm for this problem.

But, when the input points are arbitrary, getting a sub-

quadratic algorithm for multipoint evaluation seems to be

significantly more difficult. In fact, about three decades

after Borodin and Moenck’s work, Nüsken and Ziegler

[4] proved that multipoint evaluation can be solved in

most O(dω2/2+1) operations for m = 2 and N = d2,

where ω2 is the exponent for multiplying a d × d and

a d × d2 matrix. The work [4] extends to general m
and gives an algorithm for multipoint evaluation that

performs O(dω2/2·(m−1)+1) field operations.

Two significant milestones in this line of work are

the results of Umans [5] and Kedlaya and Umans [1].

Umans [5] gave a nearly linear time (that is, (dm +
N)1+o(1) · poly(m, d, log |F|)-time) algebraic algorithm

for this problem over finite fields, provided that the

characteristic of the field and the number of variables

are at most do(1). Later, Kedlaya and Umans [1] gave a

nearly linear time non-algebraic algorithm for all finite

fields, but they also need m = do(1). In a recent work,

Bhargava, Ghosh, Kumar and Mohapatra [2] improve

the result of Umans [5] by removing the restriction on

m over finite fields whose characteristics are small and

sizes are not too large. More specifically, they gave a

nearly linear time algebraic algorithm for multivariate

multipoint evaluation, provided that the characteristic of

the field is do(1) and the size of the field is at most

(exp(exp(· · · (exp(d))))), where the height of this tower

of exponentials is fixed. Another closely related result is

a recent work of Björklund, Kaski and Williams [6] who

(among other results) gave an algorithm for multivariate

multipoint evaluation, but their time complexity depends

polynomially on the field size (and not polynomially on

the logarithm of the field size), and instead of dm, their

time complexity is nearly linear in Dm where D is the

total degree of the polynomial. Nevertheless, their results

play a crucial role in proving the results of this paper

and we will discuss them in more detail in Section II-B.

Thus, from the context of previous work, a very

natural and interesting open question is to design an

algorithm for multivariate multipoint evaluation that runs

in nearly linear time and works for all finite fields and

all ranges of the number of variables. Indeed, Kedlaya

and Umans [1] mention this as an open problem.

In this work, we answer this question by giving two

different algorithms for multivariate multipoint evalua-

tion over finite fields. While our first algorithm works

over all finite fields, the second algorithm still requires

that the field size is not too large in terms of d. We now

state our results and discuss the pros and the cons of

the two algorithms and compare them to the algorithms

known in prior work. Both our algorithms happen to

be non-algebraic, i.e. we need more than just arithmetic

operations over the underlying field.

A. Our Results

We state our main result as follows.

Theorem I.1. There is a deterministic algorithm
that given the coefficient vector of an m-variate
polynomial f(x) of degree less than d in each
variable over a finite field F and N points
a1, . . . ,aN ∈ F

m, outputs f(a1), . . . , f(aN ) in
time (dm + N)1+o(1) poly(m, d, log |F|) for all m ∈ N

and all sufficiently large d ∈ N.

Remark. Throughout this paper, when we say d is
sufficiently large, it means d = ω(1). ♦

The proof of the above theorem crucially relies on a

deep result from analytic number theory, known as the

Bombieri–Vinogradov Theorem [7], [8], related to the

distribution of primes in arithmetic progressions.

We also give a different algorithm for multivari-

ate multipoint evaluation that avoids the Bombieri–

Vinogradov Theorem and is completely elementary, but

it requires the finite field to be not too large: at most

(exp(exp(· · · (exp(d))))), where the height of this tower

of exponentials is fixed. In other words, it removes the

restriction on the characteristic of the field in the work

of Bhargava et.al. [2], but via a non-algebraic algorithm.

We remark that neither of our algorithms is algebraic,

and in particular, we crucially rely on working with the

bit representation of the inputs. To obtain an algebraic al-

gorithm for multivariate multipoint evaluation, for large

m, and over all finite fields is a fundamental algebraic

problem that continues to remain open.

II. AN OVERVIEW OF THE PROOFS

At a high level, our algorithms rely on ideas from

three of the recent prior works on multivariate multipoint

evaluation, namely that of Kedlaya and Umans [1], that

of Björklund, Kaski and Williams [6], and a recent work

of Bhargava, Ghosh, Kumar and Mohapatra [2]. We start

by giving a brief outline of these.

We start with some necessary notation. Let F be a

finite field and let f ∈ F[x] be an m-variate polynomial

of degree less than d in each variable, and let {ai : i ∈
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[N ]} be a set of N inputs in F
m. Our goal is to evaluate

f on each ai. For simplicity, we focus on the case when

the underlying field F is a prime field, i.e. F = Fp for

some prime p. The case of extension fields is handled in

a very similar manner, with a few technicalities.

A starting observation is that multivariate multipoint

evaluation has a nearly linear time algorithm (over all

fields) when the set of evaluation points forms a product

set (see Lemma III.7), and more generally when the

set of evaluation points is close to a product set. At

a high level, each of the algorithms in [1], [2], [6]

proceeds via a very efficient reduction from multivariate

multipoint evaluation over an arbitrary set of points

to multivariate multipoint evaluation over product sets.

However, despite this common high level structure, the

details of the reductions involved are fairly different

in each of the three algorithms, thereby giving these

algorithms their features, both desirable and undesirable.

We now elaborate a bit more on these reductions.

A. The Algorithm of Kedlaya and Umans

To solve the problem efficiently over a finite field

F, Kedlaya and Umans [1] first reduce an instance of

the multivariate multipoint evaluation problem over F

to an instance of the same problem over a ring of the

form Z/rZ. Then they use their efficient algorithm for

multivariate multipoint evaluation problem over Z/rZ to

solve it. Finally, from the evaluations over Z/rZ, they

recover the original evaluations over F. In the following,

we describe only their algorithm over Z/rZ.

The algorithm over Z/rZ: In their algorithm,

Kedlaya and Umans [1] start by lifting their problem

instance over Z/rZ to an instance over integers. They

do this by just viewing Z/rZ as the set of integers

{0, 1, . . . , r − 1} and this naturally maps a polynomial

f(x) over Z/rZ to a polynomial F (x) with coefficients

in Z. Similarly, this also gives a natural map from

an input point a ∈ (Z/rZ)m to a point ã ∈ Z
m.

Clearly, for every a ∈ (Z/rZ)m and polynomial f ,

f(a) = F (ã) mod r. Thus, it suffices to solve this

lifted instance over integers. Yet another property of this

lifted instance is that the integer F (ã) is a non-negative

integer of magnitude less than M = dm(r− 1)dm since

each coefficient of F and each coordinate of ã are in

{0, 1, . . . , r − 1}, and the total degree of F is less than

or equal to (d−1)m. Thus, to compute F (ã), it suffices

to compute F (ã) mod M . Kedlaya and Umans now

proceed by finding distinct small primes p1, p2, . . . , pk
such that

∏
i∈[k] pi > M , evaluating the polynomial

fj(x) = F mod pj at the point bj = ã mod pj and
1 then combining the values f1(b1), f2(b2), . . . , fk(bk)

1In other words, fj is obtained from F by reducing each of its
coefficients modulo pj and bj is obtained by reducing each of the
coordinates of ã modulo pj .

using the Chinese Remainder Theorem. The correctness

follows from the observation that for every j ∈ [k],
fj(bj) = F (ã) mod pj . The advantage of this multi-
modular reduction is that if the primes pj are very small

(for instance, if all these primes are close to d), then the

set of evaluation points of interest, that were initially

scattered sparsely in F
n
p are now mapped to points that

are packed densely in the space F
m
pj

, which is a product

set. Thus, we can use the simple multidimensional FFT

to evaluate fj on all of Fm
pj

for every j, and then combine

the outcome using the Chinese Remainder Theorem.

For m < do(1), this indeed gives a nearly linear time

algorithm for multivariate multipoint evaluation. This

constraint on the number of variables m is due to a

term of the form (dm)m in the final running time of

the algorithm which is nearly linear in the input size

only if m is small. This (dm)m essentially appears

because the product of primes p1, p2, . . . , pk chosen in

this reduction must exceed M , and hence, the largest of

these primes pk must be Ω(logM) = Ω(dm log r), and

thus evaluating a polynomial fk on all of F
m
pk

requires

at least pmk = Ω(dmmm) time. Recursive application of

this process leads to smaller primes but the improved

dependence is on the log r factor and this (dm)m factor

continues to persist in the eventual bound on the running

time. Thus, one approach towards a faster algorithm for

multipoint evaluation over Z/rZ would be to replace this

step of evaluating fj on all of F
m
pj

in [1] with a faster

subroutine, in particular, something that runs in nearly

linear time in the input size even for large m.

Our first algorithm in this paper does precisely this.

In order to obtain this gain, it crucially relies on ideas

in an algorithm of Björklund, Kaski and Williams [6]

which we discuss in Section II-B and a very careful

choice of primes to do Chinese Remaindering with, in

the multimodular reduction discussed above. Together,

these steps lead to an improvement in running time and

give us an algorithm that runs in nearly linear time even

when the number of variables is large.

For our second algorithm, we introduce a slightly

different modification in the framework of Kedlaya and

Umans. Instead of working modulo small primes as in

[1], which as discussed above, forces us to pick primes as

large as dm, we work modulo powers of distinct primes

in the multimodular reduction step. Thus, it seems con-

ceivable that we can now work with much smaller primes

than in the original algorithm, since instead of having

the condition that the product of these primes is larger

than M as in [1], we now need that the product of

powers of these primes is larger than M . However, we

still need efficient algorithms for multivariate multipoint

evaluation over rings of the form Z/pkZ for small primes

p and large k ∈ N. To handle this subproblem, we extend

the derivative-based techniques used in the algorithm of
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Bhargava et al. [2] for fields of small characteristic so

that they work over rings of the form Z/pkZ for small

primes p and large k ∈ N.

The advantage of this strategy over our first algorithm

is that this gives us a completely elementary algorithm,

and the disadvantage is that for this algorithm to run

in nearly linear time, as desirable, the underlying ring

Z/rZ needs to be somewhat small. This issue also affects

the original algorithm of Bhargava et al. [2] and seems

somewhat inherent to this style of an argument.

B. The Algorithm of Björklund, Kaski and Williams

In a nutshell, the algorithm of Björklund et al. [6]

proceeds via constructing a set K ⊆ F
m
p such that

• The size of K is not too large and K is (close to)

a product set.

• For every a ∈ F
m
p , there is a curve Ca of low degree

(in fact, a low degree univariate polynomial map)

that passes through the point a and intersects the

set K on at least p points 2.

These sets K can be thought of as a natural higher degree

analog of Kakeya sets over finite fields from discrete

geometry. Indeed, Björklund et al. refer to the set K as

high degree Kakeya sets, where the degree of the set

is defined to be the maximum over the degrees of the

curves Ca over all a ∈ F
m
p .

Given such a Kakeya set K, Björklund et al.proceed

by evaluating f on all points in K fast, using the mul-

tidimensional FFT algorithm. This is the preprocessing

phase of the algorithm. Then, for an arbitrary point a ∈
F
m
p , they compute f(a) by considering the univariate

polynomial R(y) obtained by taking the restriction f on

the curve Ca. From the properties of the set K, we know

the curve Ca intersects the set K on at least p points.

Thus, if the degree of R ≤ deg(f) · deg(Ca) is less

than p, then we can recover the polynomial R from the

evaluations of f on K computed in the preprocessing

step and using univariate polynomial interpolation. The

quantitative bounds for this approach are therefore cru-

cially determined by the size of the set K and the degree

of the curve Ca.

Björklund et al. showed that for every u ∈ N such

that u + 1 divides p − 1, there is a Kakeya set K of

degree u of size at most ((p − 1)/(u + 1) + 1)m+1.

This divisibility condition ensures the existence of a

multiplicative subgroup of F
∗
p of size (p − 1)/(u + 1)

and set K is based on this subgroup. Thus, if d̃ denotes

(p − 1)/(u + 1), then we can evaluate the polynomial

f on the K in time d̃m, which is nearly linear in the

input size if d̃ ≤ d1+o(1). However, note that in this

case, u is around p/d̃, and hence, the degree of the

2This notion of a curve passing through a point here is slightly
different to that in other related works like [2]. However, for the sake
of simplicity, we gloss over this technical detail right now.

restriction R of f on a curve of degree u has total degree

udm = pm · d
d̃

. Thus, if pm · d
d̃
> p, we cannot hope

to recover R from its evaluations on just p points. To

address this issue, we combine the above strategy in [6]

with an idea in [2] where instead of evaluating just f
on K, we evaluate all its (Hasse) derivatives of order at

most m · d
d̃

on K in the preprocessing phase. There are

at most
(
m+m· d

d̃
m

)
such derivatives and this leads to an

additional multiplicative factor of
(
m+m· d

d̃
m

)
in the final

running time, but if d̃ is not too small compared to d,

for instance, d̃ = Θ(d), this binomial coefficient is at

most exp(O(m)) which is do(m) for all growing d. Thus,

with this stronger guarantee in the preprocessing step, we

are guaranteed to have higher multiplicity information

available to us in the local computation step. So, we can

now hope to uniquely recover a univariate polynomial

of degree higher than p from this information (via

Hermite interpolation). However, since the degree of the

univariates we have here is larger than p, this Hermite

interpolation step runs in time polynomially bounded in

the underlying field size p and not just polynomially

bounded in log p as would have been desirable.

To summarise, if there exists an u ∈ N such that

(p−1)/(u+1) = d̃, where d̃ is close to d, e.g. d̃ = Θ(d),
then we have an algorithm for evaluating m-variate

polynomials of degree less than d in each variable on any

N points in F
m
p in time poly(p, d,m) · (dm +N)1+o(1).

Thus, this is nearly linear time, when the field size p is

not too large.

Having discussed these prior results, we are now ready

to give an outline of our algorithms. We start with the

first algorithm.

C. The First Algorithm

As discussed earlier in this section, the plan for our

algorithm is to somehow replace the multidimensional

FFT step in the algorithm of Kedlaya and Umans [1]

(over rings of the form Z/rZ) with the Kakeya-set-

based algorithm above over a field Fpj
. However, in

order to effectively use the Kakeya-set-based algorithm

outlined in the previous section to obtain nearly linear

time algorithms for multipoint evaluation, we need to

ensure two properties.

• The underlying field size pj is small. For instance,

we would need pj = (dm + N)o(1) for a nearly

linear time algorithm.

• There exists u ∈ N such that u+ 1 divides pj − 1
and (pj − 1)/(u+ 1) is an integer close to d.

In fact, instead of the second condition here, it suffices if

there is a small t ∈ N such that there exists a u ∈ N such

that u+1 divides ptj−1 and (ptj−1)/(r+1) = d1+o(1),

since we can always view the problem over Fp as a

problem over an extension of Fp. However, we need the
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degree of the extension to be small in order to get useful

final quantitative bounds.

The first condition about the primes pj being small

does not appear too difficult to ensure in isolation and

in particular, is also true for the algorithm of Kedlaya

and Umans. However, the second divisibility condition

seems trickier to guarantee even with the flexibility of

working over low degree extensions of Fpj as outlined

earlier in this section. In particular, it is not clear to us

if for every pair d, pj , there always exists small t such

that puj − 1 has a divisor in the vicinity of d.

Getting around these technical difficulties is the main

technical content of our algorithm. In a nutshell, we

proceed by following the multimodular reduction step

of Kedlaya and Umans, but via a careful choice of

primes p1, p2, . . . , pk (as opposed to picking a suffi-

ciently large number of small primes as in [1]). This

careful choice preserves the fact that these primes are all

small (at most poly(d,m, log p)) and additionally guar-

antees that the divisibility condition needed to invoke

the Kakeya-set-based framework of [6]. More formally,

we choose p1, p2, . . . , pk so that they are all at most

poly(d,m, log p), their product exceeds M = dm(p −
1)dm and there exists a d̃ ∈ [0.8d, d] such that for every

j ∈ [k], d̃ divides pj − 1. Thus, we can use the Kakeya-

set-based framework outlined in Section II-B, with the

parameter uj to be set equal to (pj − 1)/d̃ − 1. This

satisfies both the conditions highlighted earlier, and the

final running time of this algorithm does indeed turn out

to be nearly linear in the input size. The details can be

found in Section V. Once we have this algorithm for

multipoint evaluation over the rings of the form Z/rZ,

we use exactly the same strategy as Kedlaya and Umans

did to solve this problem over all finite fields. For details,

see the full version of this paper.

Thus, if we can find distinct primes p1, p2, . . . , pk
with the properties outlined above, we would be done.

However, it is not immediately clear how to do find such

a set of numbers efficiently, or whether such a collection

of primes and the parameter d̃ should even exist. The

appearance of the parameter d̃ = Θ(d) is also slightly

mysterious. For instance, it would be aesthetically nice

if d̃ would have been equal to d. Perhaps surprisingly,

we do not know how to even show the existence of

primes p1, p2, . . . , pk satisfying the desired properties

with d̃ = d! We now outline our approach to finding

such primes and the parameter d̃. However, for a start,

let us attempt to do this with d̃ = d and try to understand

the issues that arise.

The intuition on showing the existence of such primes

follows from the observation that if d divides pj − 1
for each j ∈ [k] then, each of the primes p1, p2, . . . , pk
lies in the arithmetic progression (AP) Ad = (1, 1 +
d, 1 + 2d, . . .). It follows from a classical theorem

of Dirichlet (see Chapter 5 in [9] for more details)

that this arithmetic progression Ad indeed contains an

infinite number of primes for every d ∈ N. Thus,

if we take k to be sufficiently large, then there exist

primes p1, p2, . . . , pk each congruent to 1 modulo d such

that their product is greater than M = dm(p − 1)dm.

However, it is not enough for our application. We also

need to show that these primes are not too large, e.g.

each pi ≤ poly(d,m, log p), and that they can be found

efficiently. For this, it would be sufficient to show that

not only does the arithmetic progression Ad contains an

infinite number of primes, but the set of primes in Ad is

also a sufficiently dense subset of Ad. The prime number

theorem gives such a statement for the progression A1,

i.e. for the set of natural numbers and here, a similar

statement for arbitrary arithmetic progressions is needed.

An unconditional bound on the density of primes in an

arithmetic progression Ad is given by the well-known

Siegel-Walfisz theorem [10], [11] which implies a lower

bound on the number of primes less than x in the AP

Ad for all x ≥ 0 with x > 2d
ε

for any constant ε.

However, this estimate does not appear to be sufficient

for us, since for the algorithm, we need the magnitude

of these primes to be at most poly(d,m, log p) and not

exponentially growing in d, and it is not clear if such

a guarantee can be obtained directly from this theorem.

An improved lower bound on the density of primes in

arithmetic progressions is known under the Generalized

Riemann Hypothesis, and this would have been sufficient

for our applications, except for the fact that the result

would be conditional. For the unconditional result in this

paper, we rely on the following theorem of Bombieri

and Vinogradov, which gives an improved lower bound

on the density of primes in an AP on average. For

x > 0, t ∈ N, let π(x, t) be the number of primes

less than x in the AP starting at 1 and with common

difference t, π(x) denote the number of primes less than

x, and φ : N → N be the Euler Totient function. Various

versions of this theorem can be found in literature, for

instance, [7], [8], Theorem 18.1 in [9]. Here we rely on

the bound in equation 1.1. in [12].

Theorem II.1 (Bombieri–Vinogradov). For any fixed
a > 0, there exist constants c = c(a) and b =
b(a) such that for all sufficiently large x > 0,∑

t≤d

∣∣∣π(x, t)− π(x)
φ(t)

∣∣∣ ≤ cx(log x)−a, where d ≤
x1/2(log x)−b.

Thus, if x is sufficiently large compared to d, e.g.

x = d3, this theorem can be viewed as saying that

on average (over t ∈ N, t ≤ d), an AP with common

difference t contains at least
π(x)
φ(t) − cxd−1(log x)−a

primes less than x. Clearly, φ(t) ≤ t ≤ d and π(x) =
Θ(x/ log x) by the prime number theorem. Thus, if we
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take a > 1, the number of primes less than x is at least

Ω(π(x)/d). For our final argument, we combine this

average-case statement about the density of primes in an

AP with a standard application of Markov’s inequality to

deduce that there exists a d̃ ∈ [0.8d, d] such that the AP

with common difference d̃ has at least Ω(π(x)/d̃) many

primes less than x. By choosing x to be a sufficiently

large polynomial in d,m, log p, we get precisely what

we want: sufficiently many primes p1, p2, . . . , pk, each

at most poly(d,m, log p) in absolute value such that

their product exceeds M and they are all congruent to 1
modulo d̃, for d̃ = Θ(d). This application of Markov’s

inequality is precisely why we have to settle for working

with the quantity d̃ and not d itself.

D. The Second Algorithm

In this section, we give a brief overview of our

second algorithm. It implies that Theorem I.1 holds

as long as the size of the finite field is bounded by

(exp(exp(· · · (exp(d))))), where the height of this tower

of exponentials is fixed via an elementary algorithm. In

particular, this algorithm does not rely on the Bombieri–

Vinogradov theorem necessary for the first algorithm.

For simplicity, we only explain our algorithm over

rings of the form Z/rZ, or Z/rsZ for some s ≤ m. This

covers the case of prime finite fields Fp by choosing

r = p and s = 1. The general case of arbitrary finite

fields (and certain extension rings of Z/rZ) is addressed

in the full version of this paper.

The algorithm over Z/rZ: Recall that Kedlaya and

Umans [1] use multimodular reduction together with the

Chinese Remainder Theorem to reduce the multivariate

multipoint evaluation problem over Z/rZ to that over

Fpj for a collection of small primes pj . As discussed

in Section II-A, for the Chinese Remainder Theorem,

the primes pj need to be chosen such that
∏

i∈[k] pi >

M := dm(r − 1)dm. The problem here is that, as the

primes pj are distinct, the largest prime would have

order O(logM) = O(dm log r). The log r factor can be

further reduced by repeating the multimodular reduction.

However, the dm factor persists. As a consequence, the

time complexity of the Kedlaya–Umans algorithm has a

factor (dm)m, which is nearly linear in dm only when

m = do(1).

In our algorithm, we introduce the new idea of using

the prime powers pmj as the moduli for Chinese remain-

dering instead of the primes pj . That is, we compute

the evaluations over the rings Z/pmj Z and then combine

them via Chinese Remainder Theorem to obtain the

evaluations over the integers. Assuming this can be done,

then we only need to choose the primes pj such that∏
i∈[k] p

m
i > M . So the largest prime may have order

O( 1
m logM) = O(d log r), which is independent of m.

Now, to make this idea work, we need a fast algorithm

for multivariate multipoint evaluation over Z/pmj Z, for

small primes pj . In particular, if we have an algo-

rithm over Z/pmj Z that runs in time (pmj + N)1+o(1),

then, overall, we have an algorithm that runs in time

(dm(log r)m + N)1+o(1). Note that this has already

enabled us to get rid of the mm factor in the running

time as in [1]. So, up to the factor of (log r)m in the

running time, we seem to have made some progress and

we soon elaborate further on how to reduce this (log r)m

factor further.

But first, we note that naively evaluating the poly-

nomial at all points in (Z/pmj Z)m would be extremely

inefficient, as the size of (Z/pmj Z)m is exponential in

m2. So, we need a significantly faster algorithm for

multivariate multipoint evaluation over Z/pmj Z to have

any hope of making this strategy work.

In their algorithm, Kedlaya and Umans [1] deal with

the (log r)m factor by recursively applying the mul-

timodular reduction a few times. So, to reduce the

(log r)m in the discussion above, we could also try to do

something similar. We already see that one application

of the reduction reduces the modulus r to pmj for a

collection of primes pj , where
∏

i∈[k] pi > d(r − 1)d.

Fix a prime pj and suppose we want to apply the multi-

modular reduction again. We may lift the instance over

Z/pmj Z to an instance over the integers, and then reduce

it modulo p′mi for a collection of primes p′i. The problem

here is that, if we simply lift the evaluation points from

(Z/pmj Z)m to {0, 1, . . . , pmj − 1}m, we would have an

upper bound M ′ = dm(pmj − 1)dm for the evaluations

over the integers, which is too large for us. The primes

p′i would have to satisfy
∏

i p
′
i > M ′1/m = d(pmj − 1)d,

and then the order of the largest prime must depend (at

least polynomially) on m.

We address the above two challenges, namely that

of obtaining a fast multipoint evaluation algorithm over

Z/pmj Z that does not require evaluating on all of

Z/pmj Z
m and that of reducing the factor (log r)m using

the following observation: over Z/rsZ, the evaluation of

an m-variate polynomial f(x) at a point a ∈ (Z/rsZ)m

can be derived from the evaluations of the Hasse deriva-

tives of f(x) of sufficiently high order at another point

b ∈ (Z/rsZ)m, provided that the coordinates of a − b
are all multiples of r. Intuitively, this means if a and

b are “close enough,” then we can learn the evaluation

of f(x) at a from the evaluations at b of all the Hasse

derivatives of f of sufficiently high order.

Formally, for all e ∈ N
m, let ∂e(f) ∈ (Z/rsZ)[x]

be the Hasse derivative of f(x) with respect to xe.

For a,b ∈ (Z/rsZ)m, we get from Taylor’s expansion

of f(x) at b that f(a) =
∑

e∈Nm ∂e(f)(b)(a − b)e.
Suppose the coordinates of a−b are all multiples of r.

In this case, observe that (a−b)e = 0 in Z/rsZ for all
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e ∈ N
m with |e|1 ≥ s. Hence,

f(a) =
∑

e∈Nm:|e|1<s

∂e(f)(b)(a− b)e. (II.2)

So we may compute f(a) from the evaluations of Hasse

derivatives (∂e(f)(b))e∈Nm:|e|1<s.
We apply this idea to resolve the above two issues.

First, in a base case of the recursive algorithm, instead of

evaluating f(x) at all points in (Z/pmj Z)m, we evaluate

the Hasse derivatives ∂e(f) at the points in Sm using

a fast evaluation algorithm for product sets, where S is

the subset of Z/pmj Z represented by {0, 1, . . . , pj − 1}.

Note that for any a ∈ (Z/pmj Z)m, we may find b ∈ Sm

such that the coordinates of a − b are multiples of pj .

Then f(a) can be computed from ∂e(f)(b) using (II.2).

The advantage of this is that the size of Sm is only pmj ,

which is much smaller than the size pm
2

j of the whole

set (Z/pmj Z)m.
Similarly, when applying the multimodular reduction

over a ring Z/pmj Z, the idea above allows us to use

a small yet non-exact lift of each evaluation point ai.
Namely, suppose ãi ∈ Z

m is the unique lift of ai ∈
(Z/pmj Z)m with coordinates in {0, 1, . . . , pmj − 1}. We

compute ã′i ∈ {0, 1, . . . , pj−1}m whose coordinates are

obtained by reducing the corresponding coordinates of ãi
modulo pj . Then ã′i is a lift of some a′i ∈ (Z/pmj Z)m

such that the coordinates of ai − a′i are all multiples of

pj . We compute the evaluation ∂e(f)(a
′
i) at the point

a′i (instead of a), and then f(ai) can be computed from

∂e(f)(a
′
i) using (II.2). The advantage of evaluating at

a′i instead of ai is that the coordinates of its lift ã′i are

bounded by pj − 1 instead of pmj − 1. This translates

into a better bound for the primes that we choose in

multimodular reduction, thereby resolving the second

issue.
Finally, at each level of the recursive algorithm, we

need to evaluate not only f(x), but also the Hasse

derivatives ∂e(f) of order less than m. In addition, we

need to solve the subproblem for each prime pj . This

means the number of subproblems blows up by a factor

of 2O(m) ·O(d log r) each time. However, as we assume

the original r (= the field size when r is prime) is

reasonably bounded in terms of d, it takes only a constant

number of rounds to reduce r to d1+o(1). So the total

blow-up is reasonably controlled, and we obtain a nearly

linear time algorithm when d is sufficiently large. For

details, see Section VI.
a) Comparison with the first algorithm: Compared

to our first algorithm, which uses the ideas of generalized

Kakeya sets and the Bombieri–Vinogradov theorem,

our second algorithm uses a different idea, namely the

Chinese Remainder Theorem with prime powers as the

moduli. At a high level, this may be seen as an analogue

of the “method of multiplicities” applied to the ring

Z and polynomial rings over Z. To see this, note that

for a univariate polynomial f(x) over a field, knowing

the evaluations of all (Hasse) derivatives f (i)(x) of

order < s at a point a is equivalent to knowing the

remainder of f modulo the power (x − a)s. So from

an ideal-theoretic point of view, the idea of applying

the Chinese Remainder Theorem to learn an integer

from its remainders modulo prime powers is analogous

to applying Hermite interpolation to learn a univariate

polynomial from the evaluations of its Hasse derivatives,

the latter playing a crucial role in [2].

III. PRELIMINARIES

Define N = {0, 1, . . . }, N
+ = {1, 2, . . . }, [n] =

{1, 2, . . . , n}, and �n� = {0, 1, . . . , n − 1}. The cardi-

nality of a set S is denoted by |S|.
All rings in this paper are commutative rings with

unity. For univariate polynomials f(x), g(x) over a ring

R such that g(x) is monic of positive degree, there exist

unique h(x), r(x) ∈ R[x] such that f(x) = g(x)h(x) +
r(x) and deg(r) < deg(g) [13, Theorem 1.1]. Define

f(x) mod g(x) := r(x), which can be computed using

polynomially many R-operations via long division.

By x and z, we denote the variable tuples

(x1, . . . , xm) and (z1, . . . , zm), respectively. For any

e = (e1, . . . , em) ∈ N
m, xe denotes the monomial∏m

i=1 x
ei
i . By |e|1, we denote the sum e1 + · · ·+ em.

For every positive integer k, k! denotes
∏k

i=1 i. For

k = 0, k! is defined as 1. For two non-negative integers

i and k with k ≥ i,
(
k
i

)
denotes k!

i!(k−i)! . For k < i,(
k
i

)
= 0. For a = (a1, . . . , am),b = (b1, . . . , bm) ∈ N

m,(
a
b

)
=

∏m
i=1

(
ai

bi

)
.

All logarithms in this paper are with respect to base

2. For a non-negative integer c, log◦c(n) denotes the c-
times composition of the logarithm function with itself.

For example, log◦2(n) = log log(n). We denote by

log�(n) the smallest non-negative integer c such that

log◦c(n) ≤ 1.

We need the following number-theoretic result.

Lemma III.1 ( [1, Lemma 2.4]). For all N ≥ 2, the
product of the primes p ≤ 16 logN is greater than N .

A. Chinese Remainder Theorem

For our algorithms, we crucially use the Chinese

Remainder Theorem. For completeness, we formally

state the version we use and refer to Chapter 10 of [14]

for a proof.

Theorem III.2 (Chinese Remainder Theorem). Let
n1, n2, . . . , nt be pairwise relatively prime natural num-
bers greater than or equal to 2 and let u1, u2, . . . , ut be
arbitrary natural numbers such that for every i ∈ [t],
ui ≤ ni − 1. Then, there is a unique v ∈ N with
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v <
∏t

i=1 ni such that for every i ∈ [t], v ≡ ui

(mod ni).
Moreover, there is a deterministic algorithm, that

when given n1, n2, . . . , nt and u1, u2, . . . , ut as input,
outputs v in time at most poly(

∑
i∈[t] log ni), i.e., in

time polynomial in the input size.

B. Hasse Derivatives

In this section, we briefly discuss the notion of Hasse

derivatives that plays a crucial role in our results.

Definition III.3 (Hasse derivative). Let f(x) be an m-
variate polynomial over a commutative ring R. Let e =
(e1, . . . , em) ∈ N

m. Then, the Hasse derivative of f with
respect to the monomial xe is the coefficient of ze in the
polynomial f(x+ z) ∈ (R[x])[z]. ♦

Notations: Suppose that f(x) is an m-variate poly-

nomial over a commutative ring R. For a ∈ N
m, denote

by ∂a(f) the Hasse derivative of f(x) with respect to

the monomial xa. For any non-negative integer k, define

∂
≤k

(f) :=
{
∂a(f) | a ∈ N

m s.t. |a|1 ≤ k
}
, and

∂
<k

(f) := {∂a(f) | a ∈ N
m s.t. |a|1 < k}.

For a univariate polynomial h(t) over F and a non-

negative integer k, denote by h(k)(t) the Hasse deriva-

tive of h(t) with respect to the monomial tk, that is,

coeffzk(h(t+ z)).

The following lemma states that Hasse derivatives of

polynomials can be computed efficiently. We defer its

proof to the full version of this paper.

Lemma III.4. Let R be either a finite field or a ring
of the form Z/rZ. There exists an algorithm that given
an m-variate polynomial f(x) of individual degree less
than d over R and e ∈ N

m with |e|1 ≤ dm, computes
∂e(f) in time O(dm) · poly(m, d, log |R|).

We now state a lemma that gives an algorithm for fast

evaluation of all the Hasse derivatives of h(t) = f(g(t))
over a finite field Fq .

Lemma III.5. Let f(x) be an m-variate, individual
degree less than d polynomial over a finite field Fq and
g(t) = (g1, g2, . . . , gm) where gi ∈ Fq[t] with degree
bounded by r. Then, given access to evaluations of
∂
≤2m

(f) on Fq , there exists an algorithm that computes
the evaluations of all ≤ 2m order Hasse derivatives of
the polynomial h(t) = f(g(t)) at all points in Fq in time
Θ(1)

m · poly(q, r, d,m).

The proof of the above lemma (and its promised

algorithm) follows directly from Algorithm 4 in [2] and

its correctness, thus is skipped here. The only change

is that Algorithm 4 looked at ≤ m-th order Hasse

derivatives, and here we look at ≤ 2m-th order Hasse

derivatives. It is an easy exercise to see that the analysis

of the algorithm in [2] extends as it is to this case.

C. Hermite Interpolation

The following lemma gives a stronger version of

univariate polynomial interpolation, known as Hermite

interpolation. To interpolate a univariate polynomial of

degree d, we need its evaluations at d + 1 distinct

points. However, for Hermite interpolation, the number

of evaluation points can be less than d, provided that

evaluations of Hasse derivatives of the polynomial are

available up to a certain order.

Lemma III.6 (Hermite interpolation). Let R be either
a finite field or a ring of the form Z/rZ. Let f(x) be a
univariate polynomial over R and e1, . . . , e� be positive
integers such that d := e1 + · · · + e� is greater than
deg(f). Let a1, a2, . . . , a� ∈ R such that for distinct
i, j ∈ [�], ai−aj has multiplicative inverse in R. For all
i ∈ [�] and j ∈ �ej�, let βij = f (j)(ai). Then given
(ai, βij) for all i ∈ [�] and j ∈ �ej�, f(x) can be
computed in time poly(d, log |R|). Equivalently, given
(ai, f(x) mod (x − ai)

ei) for all i ∈ [�], f(x) can be
computed in time poly(d, log |R|).

We refer to the full version of the paper for the proof.

D. Fast Multivariate Multipoint Evaluation for Product
Sets

The following lemma states that multivariate multi-

point evaluation can be solved very efficiently if the set

of evaluation points is a product set. We defer its proof

to the full version of this paper.

Lemma III.7. Let R be either a finite field or a ring
of the form Z/rZ. There exists an algorithm that given
an m-variate polynomial f(x) of individual degree less
than d over R and a finite subset S of R, outputs the
evaluations f(a) for all a ∈ Sm in time O(dm+ |S|m) ·
poly(m, d, log |R|).

IV. THE NECESSARY BUILDING BLOCKS

In this section, we set up some of the necessary build-

ing blocks for our algorithm. Due to space constraints,

the proofs have been skipped here and can be found in

the full version of the paper [15].

A. Primes in an Arithmetic Progression

The first ingredient we need is the existence of

sufficiently many primes in the arithmetic progression

Ad = {1, 1+d, 1+2d, . . .} that are not too large. When

d is small, and x tends to infinity, a well-known result of

Dirichlet (Theorem 5.5 in [9]) shows that the density of

primes less than x in the arithmetic progression Ad tends

to Θ( x
φ(d) log x ), where φ is the Euler totient function.

However, for our application, we will need x and d to
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be close to each other and hence it becomes important

to carefully look at the error term in the prime counting

function for the progression Ad.

While we do not know how to show such a statement,

we end up working with a weaker statement that turns

out to be sufficient for our application. This weaker

statement that we use follows (immediately) from a deep

result of Bombieri and Vinogradov that we state now. But

first, we need some notation. For any x ≥ 0, we denote

by π(x) the number of primes less than or equal to x.

For x ≥ 0 and t ∈ N, we also use π(x, t) to denote the

number of primes less than or equal to x in the arithmetic

progression At = {1, 1 + t, 1 + 2t, . . . , }
We are now ready to state the theorem of Bombieri

and Vinogradov that we use. Various versions of the

theorem can be found in literature, for instance, [7],

[8], Theorem 18.1 in [9]. Here we rely on the bound

in Equation 1.1 in [12].

Theorem IV.1 (Bombieri–Vinogradov). For any fixed
a > 0, there exist constants c = c(a) and b =
b(a) such that for all sufficiently large x > 0,∑

t≤Q

∣∣∣π(x, t)− π(x)
φ(t)

∣∣∣ ≤ cx(log x)−a , where Q ≤
x1/2(log x)−b.

Semantically, Theorem IV.1 says that on average (over

t ≤ Q), the quantity
∣∣∣π(x, t)− π(x)

φ(t)

∣∣∣ is bounded by

(cx(log x)−a). For our application, we would require a

similar statement in the worst-case choice of t. This,

however, is not known unconditionally when t is large

compared to x3 (which will turn out to be the case here),

unless we assume the Generalized Riemann Hypothesis.

Thankfully, it turns out that we have some wriggle room,

and we can in fact work with the average-case statement

above (up to some small loss in the parameters). More

formally, we need the following immediate consequence

of Theorem IV.1.

Lemma IV.2. For any fixed a > 1, there exist constants
c = c(a) and b = b(a) such that for all sufficiently large
x > 0, Q ≤ x1/2(log x)−b and δ > 1, there is a t0 ∈ N

with Q(1− 2/δ) ≤ t0 ≤ Q and π(x, t0) ≥ x
4Q log x .

We now state the following consequence of this lemma

that will be directly useful for us in the Chinese Remain-

dering step of our algorithm.

Lemma IV.3. Let D,M be natural numbers and let D
be sufficiently large. Then, there exists a natural number
D̃ ∈ [0.8D,D] such that there are distinct primes
p1, p2, . . . , pk in the arithmetic progression AD̃ =
(1, 1 + D̃, 1 + 2D̃, . . . , ) with the following properties.

1) k ≤ D2(logM)3

3More specifically, we would like x and t to be polynomially related
to each other.

2) For every i ∈ [k], pi ≤ (D logM)3

3)
∏k

i=1 pi > M

Moreover, there is a deterministic algorithm that on input
D,M outputs p1, . . . , pk, D̃ in time poly(D, logM).

B. Explicit Kakeya Sets of Higher Degree

We start with the definition of Kakeya sets of high

degree.

Definition IV.4 ( [6]). Let F be a finite field and let
u,m ∈ N. A set K ⊆ F

m is said to be a Kakeya set of
degree u in F

m if there exist functions g0, g1, . . . , gu−1 :
F
m → F

m such that for every a ∈ F
m, the set of points

{g0(a)+g1(a)·τ+· · ·+gu−1(a)·τu−1+a·τu : τ ∈ F}
is a subset of K. ♦

For ease of notation, we denote the curve

{g0(a)+g1(a)·y+· · ·+gu−1(a)·yu−1+a·yu : y ∈ F}
of degree u by Ga(y).

In their work [6], Björklund, Kaski and Williams gave

an explicit construction of Kakeya sets of degree u of

non-trivially small size, provided that the degree u and

the field size F satisfy an appropriate divisibility condi-

tion. This construction will be crucial for our algorithm.

Theorem IV.5 (Explicit Kakeya sets of degree u [6]).
Let F be a finite field of size q, and let u ∈ N be such
that u + 1 divides q − 1. Then, for every m ∈ N, there
is a Kakeya set K of degree u in F

m of size at most(
q−1
u+1 + 1

)m+1

.
Moreover, this set K is a union of at most q product

sets in F
m and there is a deterministic algorithm that

on input u,m,F, outputs K and the associated functions
g0, g1, . . . , gu−1 in time O(q|K|).

Using the property that the set K in Theorem IV.5 is

a union of product sets and that for product sets we have

nearly linear algorithms for multipoint evaluation using

Lemma III.7, we get the following.

Lemma IV.6. Let F be a finite field of size q, u ∈ N be
such that u+ 1 divides q − 1, and m ∈ N be a natural
number. Let K be the Kakeya set of degree u given by
Theorem IV.5 over F

m and let f(x) be a polynomial
of degree less than d in each variable with coefficients
in F. Then there is a deterministic algorithm that takes
as input the set K and the coefficient vector of f and
outputs the evaluation of f at every point in K in time
O(|K|+ dm) · poly(m, d, q).

C. Fast Multipoint Evaluation over Nice Finite Fields

Theorem IV.7. Let F be a finite field of size q and
let d, d̃,m ∈ N be such that d̃ ∈ [0.8d, d] and d̃ − 1
divides q − 1. Then there is an algorithm that given a
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homogeneous m-variate polynomial in F[x] of degree
less than d in every variable and a set of N input points
in F

m, outputs the evaluation of this polynomial on these
inputs in time (dm +N) ·Θ(1)m · poly(q,m, d).

Proof. Let f be the input polynomial and a1, . . . ,aN ∈
F
m be the input points of interest.

At a high level, the algorithm here is similar in

structure to that in [2]. We first evaluate the polynomial

on an appropriate product set P in nearly linear time

using Lemma III.7 in the preprocessing phase. Next, in

the local computation step, we look at the restriction

of f on a curve Ca through any point a ∈ F
m of

interest. Based on the construction of the aforementioned

product set P , we will guarantee that there is a curve Ca

through a such that the intersection of Ca with the set

P is sufficiently large, so that the univariate polynomial

obtained by restricting f to Ca can be uniquely decoded
using the evaluation of f on P . We then use this decoded

polynomial to obtain f(a).
Despite this high-level similarity, there are some tech-

nical differences between the algorithm here and that in

[2]. Primarily, these differences arise due to the fact that

unlike the setting in [2], we are no longer working over

fields of small characteristic. So, the construction of the

set P is different here and is based on the ideas in [6].

We now specify the details, starting with the description

of the algorithm.

a) The algorithm:
1) From the coefficient vector of f , compute each of

Hasse derivatives of f of order at most 2m.

2) Using Theorem IV.5, we construct a Kakeya set K
of degree u = (q−1)/(d̃−1)−1. As is necessary,

u+ 1 divides q − 1. Note that, |K| ≤ d̃(m+1).

3) For every Hasse derivative f̃ of f of order at most

2m, evaluate f̃ on K using Lemma IV.6.

4) For every i ∈ [N ]:

a) We consider the univariate polynomial Ri(y)
obtained by the restriction of f on the curve

Gai(y). This is a univariate polynomial of

degree at most (d− 1)m · (q− 1)/(d̃− 1) <
2m(q− 1). Using Lemma III.5, compute the

evaluation of Ri(y) and all its ≤ 2m order

Hasse derivatives on F.

b) Since degree of Ri is less than 2m(q − 1),
and we have the evaluation of Ri and all its

derivatives of order at most 2m on q points,

we can recover Ri uniquely from this infor-

mation. In particular, we use Lemma III.6 to

recover Ri(y).
c) We output f(ai) to be equal to the coefficient

of ydeg(f)·u in Ri(y).

Due to space constraints, we skip the proofs of correct-

ness and the analysis of the running time of the algorithm

here, and defer these details to the full version of the

paper [15].

V. THE FIRST ALGORITHM OVER Z/rZ

With the necessary background in place, we are now

ready to describe our first algorithm for fast multivariate

multipoint evaluation over rings of the form Z/rZ. This

already handles the case of prime fields, and contains

most of our main ideas.
The case of extension rings as well as many of the

proofs can be found in the full version of this paper

[15].

A. The Description of the Algorithm

Algorithm 1 The First Algorithm over Z/rZ

Algorithm MME-A(f,a1, . . . ,aN , r)

where f is an m-variate homogeneous polynomial

over Z/rZ of individual degree less than d and

a1,a2, . . . ,aN ∈ (Z/rZ)m are evaluation points.

1) Let F ∈ Z[x] be the m-variate homogeneous poly-

nomial of individual degree less than d obtained

from f by replacing each of its coefficients with

its natural lift in the set �r� of integers.

2) For every i ∈ [N ], let ãi ∈ �r�m be the lift of

ai ∈ (Z/rZ)m to the integers.

3) Let M = dmrdm. We invoke Lemma IV.3 with

parameters d and M and obtain a natural number

d̃ ∈ [0.8d, d] and primes p1, p2, . . . , pk where

k ≤ d2(logM)3, each pi ≤ d3(logM)3 and is

congruent to 1 modulo d̃, and
∏

i∈[k] pi > M .

4) For j ∈ [k], let fj(x) ∈ Fpi [x] be the m-variate

homogeneous polynomial of individual degree less

than d obtained by reducing each of the coeffi-

cients of F modulo the prime pj . Similarly, for

every i ∈ [N ], let ai,j ∈ F
m
pj

be obtained by

reducing each of the coordinates of ãi modulo pj .

5) For every j ∈ [k], invoke the algorithm in The-

orem IV.7 for the polynomial fj , input points

{ai,j : i ∈ [N ]} and parameters d, d̃ as above,

and get fj(ai,j) for all j ∈ [k] and i ∈ [N ]. Note

that each fj is a homogeneous polynomial, and

from the guarantees of Lemma IV.3, d̃ is in the

range [0.8d, d] and d̃− 1 divides pi − 1 as needed

by Theorem IV.7.

6) For every i ∈ [N ], use the Chinese Remainder

Theorem (Theorem III.2) to compute F (ãi) from

{fj(ai,j) : j ∈ [k]}.

7) For every i ∈ [N ], output f(ai) = F (ãi) mod r.

We summarize the correctness and the time complex-

ity of the algorithms in the following theorem, and refer

to the full version of the paper [15] for the proof.

230

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2023 at 08:54:34 UTC from IEEE Xplore.  Restrictions apply. 



Theorem V.1. Let f(x) be a homogeneous m-variate
polynomial over Z/rZ of individual degree less than
d. Let a1, . . . ,aN be N points from (Z/rZ)m. Then,
given (f,a1, . . . ,aN , r) as the input to Algorithm 1, it
computes f(ai) for all i ∈ [N ] in time (dm+N)·Θ(1)m ·
poly(m, d, log r).

VI. THE SECOND ALGORITHM OVER RINGS OF THE

FORM Z/rZ

The main result of this section is the following theo-

rem.

Theorem VI.1. Over Z/rZ, for all m ∈ N and
sufficiently large d ∈ N, there exists a deterministic
algorithm that outputs the evaluation of an m-variate
polynomial of degree less than d in each variable on N
points in time (dm+N)1+o(1)·poly(m, d, log r) provided
that log◦c r ≤ do(1) for some fixed constant c ∈ N.

We need the following lemma. It gives a way of

computing the evaluation of f(x) over a ring R at a point

a from the evaluations of Hasse derivatives of f(x) at

another point b, provided that the coordinates of a− b
are in a nilpotent ideal of R.

Lemma VI.2. Let f(x) be an m-variate polynomial
over a commutative ring R. Let I be an ideal of R
and s be a positive integer such that Is = 0. Let
a = (a1, . . . , am),b = (b1, . . . , bm) ∈ Rm such that
ai ≡ bi (mod I) for i ∈ [m]. Then

f(a) =
∑

e∈Nm:|e|1<s

∂e(f)(b) · (a− b)e.

A. A Basic Algorithm

We first describe a basic algorithm, MME-PRODUCT-

SET, that evaluates a polynomial f(x) ∈ (Z/rsZ)[x] at

N points in (Z/rsZ)m simultaneously.

Algorithm 2 Basic Algorithm

Algorithm MME-PRODUCT-SET(f,a1, . . . ,aN , r, s)

where f(x) is an m-variate polynomial over Z/rsZ
of individual degree at most d − 1, a1,a2 . . . ,aN are

evaluation points in (Z/rsZ)m, and s ∈ [m].

1) For all e ∈ N
m with |e|1 < s, use Lemma III.4 to

compute fe(x) := ∂e(f)(x).
2) For all e ∈ N

m with |e|1 < s, use Lemma III.7

to compute fe(a) for a ∈ �r�m, where �r� is

identified with a subset of Z/rsZ via i �→ i+rsZ.

3) For all i ∈ [N ], compute āi ∈ �r�m ⊆ (Z/rsZ)m

such that the coordinates of āi are the remainders

of the corresponding coordinates of ai modulo r.

4) For all i ∈ [N ], compute and output

f(ai) =
∑

e∈Nm:|e|1<s

fe(āi) · (ai− āi)
e. (VI.3)

Lemma VI.4. Given the input (f,a1, . . . ,aN , r, s), the
algorithm MME-PRODUCT-SET computes f(ai) for
all i ∈ [N ] in time O(

(
m+s−1
s−1

)
(dm + rm + N)) ·

poly(m, d, log r).

B. The Description of the Algorithm

We describe the second algorithm MME-B now.
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Algorithm 3 The Second Algorithm over Z/rsZ

Algorithm MME-B(f,a1, . . . ,aN , r, s, t)

where f(x) is an m-variate polynomial over Z/rsZ
of individual degree at most d − 1, a1,a2 . . . ,aN are

evaluation points in (Z/rsZ)m, s ∈ [m], and t ≥ 0 is

the depth of the reduction tree.

1) If t = 0, invoke MME-PRODUCT-SET with input

(f(x),a1,a2, . . . ,aN , r, s) to compute f(ai) for

i ∈ [N ], and return.

2) For all e ∈ N
m with |e|1 < s, use Lemma III.4

to compute fe(x) := ∂e(f)(x), and then compute

a lift f̃e(x) ∈ Z[x] of fe(x) with coefficients in�rs�.

3) For all i ∈ [N ], compute ãi ∈ �r�m such that

the coordinates of ãi are the remainders of the

corresponding coordinates of ai modulo r, and

compute āi := ãi mod rs ∈ (Z/rsZ)m.

4) Let M := d(r−1)d. Find primes p1 < p2 < · · · <
pk ≤ 16 logM such that

∏k
j=1 pj > M .

5) For all e ∈ N
m with |e|1 < s and j ∈ [k], compute

fe,j(x) := f̃e(x) mod pmj ∈ (Z/pmj Z)[x].
6) For all i ∈ [N ] and j ∈ [k], compute ai,j :=

ãi mod pmj ∈ (Z/pmj Z)m.

7) For e ∈ N
m with |e|1 < s and j ∈ [k], invoke

MME-B on input (fe,j ,a1,j , . . . ,aN,j , pj ,m, t −
1) to compute fe,j(ai,j) for i ∈ [N ].

8) For all e ∈ N
m with |e|1 < s and i ∈ [N ], use

the Chinese Remainder Theorem (Theorem III.2)

to compute f̃e(ãi) as the unique Qi ∈
�∏k

j=1 p
m
j

�
such that Qi mod pmj = fe,j(ai,j) for j ∈ [k], and

then compute fe(āi) = f̃e(ãi) mod rs ∈ Z/rsZ.

9) For all i ∈ [N ], compute and output

f(ai) =
∑

e∈Nm:|e|1<s

fe(āi) · (ai− āi)
e. (VI.5)

We refer to the full version of the paper [15] for the

correctness and time complexity of the algorithm.
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