1

In this article, we consider formal languages that are subsets of {0, 1}* = {so, s1, . .
Sp = A (the empty string), s; = 0, sy = 1, s3 = 00 etc. in the standard order on {0, 1}*, where
short strings precede long strings, and strings of the same length are placed in lexicographic
order. Any such language A can be identified with its characteristic sequence ya = bgb1bs . . .

On the Complexity of Algebraic Numbers, and the

Bit-Complexity of Straight-Line Programs*
Eric Allender Nikhil Balaji
Department of Computer Science Indian Institute of Technology
Rutgers University, USA Delhi, India
allender@cs.rutgers.edu nbalaji@cse.iitd.ac.in
Samir Datta Rameshwar Pratap
Chennai Mathematical Institute & Indian Institute of Technology
UMI-ReLaX, India Hyderabad, Telangana, India
sdatta@cmi.ac.in rameshwar@cse.iith.ac.in

January 11, 2023

Abstract

We investigate the complexity of languages that correspond to algebraic real num-
bers, and we present improved upper bounds on the complexity of these languages.
Our key technical contribution is the presentation of improved uniform TC® circuits
for division, matrix powering, and related problems, where the improvement is in terms
of “majority depth” (initially studied by Maciel and Thérien). As a corollary, we obtain
improved bounds on the complexity of certain problems involving arithmetic circuits,
which are known to lie in the counting hierarchy, and we answer a question posed by
Yap.

Introduction

!Preliminary versions of this material appeared in [ABD14] and [DP12].

.} (where

where b; = 1if s; € A and b; = 0 otherwise. The sequence Y 4 is also the binary representation
of a real number in the interval [0, 1]. Thus, it is not uncommon to equate languages with
real numbers. (The computability literature contains many investigations of this sort; see,
for example, [Mil04, YDD04, DHNS03, NST05].)

Viewed in this light, the finite and co-finite languages correspond exactly to dyadic ra-
tional numbers. For instance, the sequences 1000... and 0111... (corresponding to the
languages {\} and {z : # A}, respectively) both denote the number 3 = >°>°, 27", Any
real number in [0, 1] that is not a dyadic rational has exactly one binary representation,
and hence corresponds to exactly one language. The literature in computability theory
(dating back to Turing’s original work [Tur36]) has tended to focus on the placement of
various classes of reals in the hierarchy of (non-)computability classes. (See, for example,
[Mil04, YDD04, DHNS03, NST05].)

In contrast, the literature in computational complexity theory has tended to focus on the
more “practical” questions of either computing approximations of various real numbers to a
desired accuracy, or of obtaining all of the first n bits of their binary representations. For
example, the original investigations of Hartmanis and Stearns [HS65], which can be said to
have given birth to the field of computational complexity theory, focused on the question of
classifying the complexity of various real numbers, in terms of computing the first n bits of
their binary representations. Most other papers that have dealt with the complexity of real
numbers (such as [Ko83, YK13, Jer12, ACLG20, NV18]) have continued in a related vein
(focusing more often on approximations), as has most of the significant work formalizing
the notions of computability and complexity of real functions (e.g., [KF82, Wei00, BH21]).
We do not dispute the motivations for defining the “complexity” of a real number in this
way. After all, there are many applications that require knowing the bits of v/2 to desired
accuracy, whereas we struggle to conceive of a practical application that requires us to take
a large string z as input (such as = 10'°°) and return the 2" bit of /2.

Nonetheless, there are important theoretical considerations that argue in favor of pre-
cisely this sort of investigation. Freivalds [Frel2] provides a very compelling survey of the
history of mathematical considerations that have led investigators over the centuries to study
“normal” reals and “automatic” reals. (Briefly, a real number corresponding to a language
A is automatic if and only if A is regular. For more on this topic, we refer the reader to the
book by Allouche and Shallit [AS03].) It was viewed as a very significant achievement when
Adamczewski, Bugeaud, and Luca proved that no irrational algebraic number is automatic
[ABLO04, AB07]. (It is an easy exercise to see that every rational number corresponds to a
regular language, and hence is automatic.)

In this paper, we give an upper bound on the complexity of languages corresponding to
algebraic real numbers. We show that all such languages? lie in CHs: the fifth level of the
“counting hierarchy”, whose levels are defined as follows.

e CH; =PP

21t is mistakenly claimed in [DP12] that these languages lie in PHH2. We do not know how to obtain
that stronger upper bound.

o CHyy, = PPCH:,

A real number is algebraic if it is a root of some (non-zero) univariate polynomial with
integer coefficients. Jerabek [Jer12] showed that, for any given constant d, there is a uniform
family of TC? circuits that will take as input a degree d univariate polynomial p (represented
by its sequence of integer coefficients), along with 1", and produce as output the first n bits
of the binary representation of each of the roots of p. Because of well-known connections
between TCY and the counting hierarchy (see Proposition 2), this easily implies that every
algebraic number lies in the counting hierarchy. However, Jerabek’s techniques yield thresh-
old circuits whose depth depends on the degree of the polynomial p, and consequently his
approach does not provide any constant k such that every algebraic real would lie® in CHy;
we show that this does hold, for k¥ = 5. (We actually prove a better upper bound: PH:,

which (by Toda’s theorem [Tod91]) is contained in pCH C CHs;.) It is fair to ask how
tight this upper bound is. Thus we also consider lower bounds, although the lower bounds
we present are quite weak. For every prime modulus m, we show that there are algebraic
numbers (in fact, rational numbers) that lie outside of AC°[m]). For rational numbers, this
lower bound is rather tight; the language corresponding to any rational number lies in ACC®
(and hence lies in AC°[m] for some m € N). Although it seems reasonable to conjecture that
irrational algebraic numbers are even more difficult than rational ones, we currently do not
know of any irrational algebraic number that lies outside of AC? nor do we know of any
irrational algebraic number that lies in AC®. Our upper bound of PH™ is the best upper
bound that we know of, for any irrational algebraic number.

Our techniques also apply to certain transcendental numbers, such as 7. Yap [Yapl0]
showed that there is a logspace-computable function that, on input 1", will output the first
n bits of w. (This theorem is also discussed by Lipton in [LR13, Chapter 31].) Thus the
language corresponding to 7 lies in PSPACE. We improve this, to show that 7 € PHHs
(and we show that the first n bits of 7 can be computed in uniform TC?). We also answer a
question posed by Yap, by showing that, for any base b, the first n digits of 7= expressed in
base b can be produced in TC®, and hence in logspace.

The main technical contribution of our work consists of improved algorithms for integer
division and related problems. The chain that connects integer division and the complexity
of algebraic numbers consists of the following links:

1. Our PH®Ms upper bound on algebraic numbers relies on an improved upper bound
on the problem of computing a given bit of a number represented by an arithmetic

circuit (or straight-line program). This problem, known as BitSLP was introduced in
[ABKPMO09], where it was shown to be hard for #P [ABKPMO09], and was also shown

3 A referee points out that the argument of [Jef12] requires depth related to the degree d primarily because
it takes a polynomial p as input (specified by its coefficients), whereas in our work here the polynomial is
fixed. The referee asserts that the algorithm in [Jef12] can be modified, by hardwiring information related
to a specific root of p, to show that every algebraic number lies in PH®M4 not quite matching the bound
that we present.

to lie in the counting hierarchy.* The best previously-known upper bound for the
complexity of BitSLP is the bound mentioned in [ABKPMO09] and credited there to
[AS05]: PH .

2. That bound of PH follows via a straightforward translation of a uniform TC® algo-
rithm for division and for conversion to and from Chinese Remainder Representation,
which was presented in [HABO02]. The algorithms presented in [HAB02] also play a cen-
tral role in the TC? root-finding algorithm of [Jef12]. We give improved uniform TC°
algorithms for these problems, which in turn yield a PH" upper bound on BitSLP,
and on algebraic reals.

The rest of the paper is organized as follows. In Section 2 we present the necessary
background and definitions for our theorems that deal with (arithmetic and Boolean) circuits.
In Section 3 we give improved algorithms for a variety of problems, including integer division,
iterated product, and matrix powering, and we show how these algorithms yield improved
upper bounds in the Counting Hierarchy for some fundamental problems about arithmetic
circuits. In Section 4 we review background material about algebraic numbers and root-
finding algorithms. Then in Section 4.2 we present our upper bound on the complexity of
languages A whose characteristic sequence y 4 is an algebraic number, and we also present
related results about certain transcendental numbers (including 7). We conclude with a
discussion of open problems in Section 5.

2 Arithmetic and Boolean Circuits

The algorithms that we present depend on Chinese Remainder Representation (CRR). Let
us fix the notation that we will use. Given a list of primes Il = (py,...,p,) and a number
X € N, the CRRy; representation of X is the list (X mod pq,..., X mod p,,). We omit the
subscript II when it is clear from context.

We need to refer (repeatedly) to the binary expansion of a rational number. Furthermore,
we want to avoid possible confusion caused by the fact that some numbers have more than

one binary expansion (e.g. 1 =Y, 27%). Thus the following definition fixes a unique binary
representation for every rational number.

Definition 1

The binary expansion of a nonnegative rational number X /Y is the unique expression X/Y =
Yoo a;i2', where each a; € {0,1}, and where the binary exzpansion of any integer multiple

of 29 has a; = 0 for all i < j.
The binary expansion of X/Y correct to m places is the sequence of bits representing

Z [log(X/Y)] a; 2t

i=—m

4This connection between numerical computation and arithmetic circuits has also been exploited in other
work, such as [COW13, OW14b, OW14a, LOW15].

A circuit is a directed acyclic graph, whose nodes are called gates and whose edges are
called wires. Gates with indegree zero are input gates. We usually restrict attention to
circuits with exactly one gate of outdegree zero; this gate is called the output gate. In this
paper, all input gates will be connected either to constants or to input variables, which can
be assigned values in {0, 1}.

In an arithmetic circuit, all gates other than input gates are labeled with an operation
in {+, x}, and the constants that we will allow are {0, 1, —1}. Thus each wire leading from
gate g to gate h will “carry” the integer value that is computed at g to be fed into gate h.

Arithmetic circuits of polynomial size can produce numbers that require exponentially-
many bits to represent in binary. The problem® known as BitSLP is the problem of deter-
mining a given bit of this binary representation. Formally, BitSLP is

BitSLP = {(C,4,b) : the i-th bit of the number represented by arithmetic circuit C' is b}.
A related problem,
PosSLP = {C': the number represented by arithmetic circuit C' is > 0})

and a host of other problems on inferring properties of succinctly represented numbers were
introduced in an article by Allender, Biirgisser, Kjeldgaard-Pedersen and Miltersen [ABKPMO09].
The main goal of [ABKPMO09] was to provide a complexity-theoretic framework to study
problems arising in numerical analysis. It is shown in [ABKPMO09] that BitSLP is hard for
#P, and it also conjectured there that PosSLP ¢ P /poly.

It is important to note that the arithmetic circuits considered in PosSLP and BitSLP do
not have any input variables. Let us emphasize this point: In this paper, we focus on
arithmetic circuits without input variables. Thus an arithmetic circuit is a (possibly
very compact) representation of an integer.

The Boolean circuits that we will consider will have gates (other than input gates) labeled
with an operation in {NOT, AND, OR, MAJORITY}. These gates (which have unbounded
fan-in, except for NOT gates, which have fan-in 1) produce as output the logical NOT, AND,
OR, and MAJORITY of their inputs, respectively (where MAJORITY (z1, ..., z,) evaluates
to 1 iff strictly more than n/2 of the input bits are 1).

The depth of a circuit is the length of the longest path from an input gate to the output
gate. A circuit family is a set {C,, : n € N} where each C,, has n input gates. A circuit family
is dlogtime-uniform if there is a Turing machine takes an input string (n, g, h) of length m
and determines in time O(m) the labels of g and h in C,, and also reports if there is a wire
in C, from g to h. A circuit family is said to be nonuniform if no uniformity condition is
imposed. TC is the set of languages that are recognized by dlogtime-uniform circuit families
of polynomial size and depth O(1). AC is the set of languages that are recognized by such
circuit families that have no MAJORITY gates.

We also need to refer to functions computable in circuit classes. The function f is said
to be in C (such as C = AC? or TC?) if the length of f(z) is polynomial in the length of z,
and the language {(x,4,b) : the i*® bit of f(z) is b} is in C.

5“SLP” stands for “straight-line program”; which is a model equivalent to arithmetic circuits. Throughout
the rest of the paper, we will stick with the arithmetic circuit formalism.

For more on circuit complexity classes such as ACY and TC?, as well as a discussion of
dlogtime uniformity, see [Vol99]. For background on other standard complexity classes such
as PP, #P, NP, P etc., consult a standard text such as [AB09].

There are several possible variants of “depth” that one could choose to study. For in-
stance, several papers have studied circuits consisting only of MAJORITY gates, and tight
bounds are known for the depth required for several problems, in that model. (See, for in-
stance [GK98, SR94, Weg93, She07] and other work referenced there.) Since our motivation
comes largely from the desire to understand the complexity of problems in the counting
hierarchy, it turns out that it is much more relevant to consider the notion of majority depth

—~0
that was considered by Maciel and Thérien [MT98]. The class TC, consists of functions
computable by families of threshold circuits of polynomial size and constant depth such that
no path from an input to an output gate encounters more than d MAJORITY gates. Thus

—~0
the class of functions with majority depth zero, TC,, is precisely AC’. In order to explain

—~0
the connection between TC, and the counting hierarchy, recall how the levels of the counting
hierarchy are defined:

CH, = PP, and CHj,, = PP,

The counting hierarchy is analogous in some ways to the polynomial hierarchy PH = NP U
npNP U The following proposition can be interpreted as saying that pHCH. is an

exponential analog of ﬁd.

Proposition 2 (Implicit in [ABKPMO09, Theorem 4.1].) Let A be a set such that, for some

k, some polynomial-time computable function f and for some dlogtime-uniform ﬁg circuit
family C,,, it holds that x € A if and only if C|m\+2\w\’“ (x, f(z,1)f(z,2)... f(x, 2|”|k)) accepts.

Then A € PHCHa,

(One important part of the proof of Proposition 2 is the fact that, by Toda’s theorem [Tod91],

A A —~0
for every oracle A, ppPH C PPP” Thus all of the ACO circuitry inside the TC, circuit can
be swallowed up by the PH part of the simulation.)
Note that the dlogtime-uniformity condition is crucial for Proposition 2. Thus, for the

—~0
remainder of this paper, all references to TC; will refer to the dlogtime-uniform version of
this class, unless we specifically refer to nonuniform circuits.

3 Overview of the New Algorithmic Results

In this section, we present new uniform TC? algorithms for integer division, converting from
CRR to binary, computing a power of a given integer, and computing a power of a given
matrix (of bounded dimension). Table 1 compares the complexity bounds that Maciel and
Thérien obtained in the nonuniform setting with the bounds that we are able to obtain in the
uniform setting. (Maciel and Thérien also considered several problems for which they gave

Nonuniform Uniform
Problem Majority-Depth [MT98] | Majority-Depth [This Paper]
Iterated multiplication 3 3
Division 2 3
Powering 2 3
CRR-to-binary 1 3
Matrix powering O(1) [MP00, HABO2] 3

Table 1: Prior bounds and new bounds on Majority-depth for various problems.

uniform circuit bounds; the problems listed in Table 1 were not known to lie in dlogtime-
uniform TC until the subsequent work of [HAB02].) All previously-known dlogtime-uniform
TC? algorithms for these problems rely on the CRR-to-binary algorithm of [HAB02], and
thus have at least majority-depth 4 (as analyzed by [AS05]); no other depth analysis beyond
O(1) was attempted.

In all of the cases where our uniform majority-depth bounds are worse than the nonuni-
form bounds given by [MT98], our algorithms also give rise to nonuniform algorithms that
match the bounds of [MT98] (by hardwiring in some information that depends only on the
length), although in all cases the algorithms differ in several respects from those of [MT98].

The most efficient previously-known TC? algorithms for the problems considered in this
paper all make use of clever decompositions of the problem at hand, in terms of partial
evaluations or approximations. The technical innovations in our improved algorithms rely
on introducing yet another approximation, as discussed in Lemmas 7 and 10.

Table 1 also lists one problem that was not considered by Maciel and Thérien: the
problem of taking as input 1™ and a k& X k matrix A, and producing A™. For any fixed
k, this problem was shown to be in nonuniform TC® by Mereghetti and Palano® [MP00]; it
follows from [HABO02| that their algorithm can be implemented in dlogtime-uniform TCP.
The corresponding problem of computing large powers of a k x k matrix (i.e., when m is
given in binary) has been discussed recently [OW14b, GOW15]. We show that this version
of matrix powering is in PH" | by making use of the improved algorithm for CRR-to-binary,
which plays an important role in our PH*" algorithm for BitSLP.

In addition to BitSLP, there has also been interest in the related problem PosSLP [EY10,
KP07, KS12, KP11]. PosSLP € PH®2 and is not known to be in PH [ABKPMO09], but in
contrast to BitSLP, it is not known (or believed [EY10]) to be NP-hard. Our theorems do not
imply any new bounds on the complexity of PosSLP, but we do conjecture that BitSLP and
PosSLP both lie in PHPP. This conjecture is based mainly on the heuristic that says that, for
problems of interest, if a nonuniform circuit is known, then corresponding dlogtime-uniform
circuits usually also exist. Converting from CRR to binary can be done nonuniformly in
majority-depth one, and there is no reason to believe that this is not possible uniformly —
although it seems clear that a different approach will be needed, to reach this goal.

6The reader should be cautioned that it is stated in [MPO00] that iterated matrix product of k x k integer
matrices is computable in NC!. In fact, the best known upper bound is GapNC! [CMTV98].

The well-studied Sum-of-Square-Roots problem reduces to PosSLP [ABKPMO09], which
in turn reduces to BitSLP. But the relationship between PosSLP and the matrix powering
problem (given a matrix A and an n-bit integers (k, j), output the k'™ bit of a given entry
of A7) is unclear, since matrix powering corresponds to evaluating very restricted arithmetic
circuits. Note that some types of arithmetic involving large numbers can be done in P; see
[HKR10, GOW15]. Might matrix powering also lie in PH?

In Section 3.5, we provide a very weak “hardness” result for the problem of computing
the bits of large powers of 2-by-2 matrices, to shed some dim light on this question. We
show that the Sum-of-Square-Roots problem reduces to matrix powering via PH?P-Turing
reductions.

3.1 Improved Uniform Circuits for Division

Our new algorithm for division makes use of several useful subroutines that are computable

0
in AC® and TC,. These are summarized in the following lemma:
Lemma 3 Let z,y,1, j, k,x; be numbers in the interval (0,n°) (where ¢ > 3 is a constant).
Let X, X; € 10,2") and let p < n® be prime. Then the following operations have the indicated
complexities:
—~0
1. p > first n® bits of 1/p is in TC, = ACP.
k NP
2. pk, X1, X — 23:1 X; mod p is in TC,.
. —~0
3. x> x' mod p is in TC) = ACC.
—~0
4. p— gy is in TCy = AC where g, is a generator of the multiplicative group modulo p.
—~0
5. X — X mod p s in TC,.
—~0
6. z,y— xy mod p is in TC, = ACC.
—~0

7 (x1,...,28) — H§:1 x; mod p is in TC,.

Proof: We list the proofs of items in the Lemma above:

1. Follows from Lemma 4.2 and Corollary 6.2 in [HAB02]. In Section 4.3, we will also
need the fact that the base-f3 representation of 1/p is also computable in ACY. (See
also Note 12.) Thus we present the details here.

Claim 4 The language {(1",p,0) : p < n° and the n'™ symbol in the base-3 represen-
tation of 1/p is o} is in ACP.

Proof: Let a and b be such that 8" = ap + b with b = 8" mod p. The n'* digit of the
base-f expansion of the rational number 1/p is equal to the low-order digit of a. Since
ap + b is congruent to zero modulo 3, it follows that the low-order digit of a is equal
to —p~!'bmod B, where p~! is the multiplicative inverse of p mod 3. The result now
follows from the fact that computing 4" mod p is in AC® [HAB02], and that p~* mod 3
can be computed in ACY. O

2. Follows from Corollary 3.4.2 in [MT98].
3. Follows from Corollary 6.2 in [HABO02].

4. Follows from testing each integer = € [1,n— 1] for being a generator by checking if Vi <

-1 27 # 1 mod p and reporting the first successful (implicit in [HAB02, ABKPMO09)).

5. Follows from (the proof of) Lemma 4.1 in [HABO02].

6. Follows from Proposition 3.7 in [MT98] and the fact that two log n-bit integers can be
multiplied in ACC.

7. Follows from the reduction of multiplication to addition of discrete logs and the previ-
ous parts.

3.2 A New Division Algorithm

We now give a construction of efficient threshold circuits for division.

Theorem 5 The function taking as input X € [0,2"),Y € [1,2"), and 0™ and producing as

—0

output the binary expansion of X/Y correct to m places is in TCj.

Proof: This task is trivial if Y = 1; thus in the rest of this argument assume that Y > 2.

Computing the binary expansion of Z/Y correct to m places is equivalent to computing
12" Z/Y |. Thus we will focus on the task of computing | X/Y |, given integers X and Y.

The basic structure of all known TC® algorithms for division (reducing the problem to
iterated product, and computing iterated product via a reduction to iterated addition, via
conversion to and from Chinese Remainder Representation) has remained unchanged since
the pioneering work of [BCH86]. Subsequent improvements [CDL01, HAB02, MT98, SR94]
have focused on finding more efficient implementations of these various tasks.

Our approach will be to compute V(X,Y), a strict underestimate of X /Y, such that
X/Y —V(X,Y) <1/Y. Since Y > 1, we have that | X/Y| # |(X +1)/Y | if and only if

(X +1)/Y = |X/Y |+ 1. It follows that in all cases | X/Y | = |[V(X +1,Y)], since
{XJ<X_X+1 I X+1

_ X+1Y —_
v <V(X+1Y)<

Y Y Y Y

9

Note that, in order to compute |2], we actually compute an approximation to (X +1)/Y.
The approximation XN/(X ,Y') is actually defined in terms of another rational approxima-
tion W (X,Y), which will have the property that V(X,Y) < W(X,Y) < X/Y. (W(X,Y)
is easier to compute, which is why we introduce it.) We postpone the definition of ‘7(X Y,
and focus for now on W (X,Y'), an under approximation of % with error at most 2-("+1),
Using AC circuitry, we can compute a value ¢t > 2 such that” 27! <Y < 2!,
Let u=1—27"". Then u € (0,3]. Thus, Y ' =271 —w)' =271 +u+u>+...).
Set Y/ =2""1+u+u*+...+u*") then

O<Y 1y <2t Z 97 < 9= (2n+1)

j>2n+1

Define W(X,Y) to be XY”’. Hence, 0 < & — W(X,Y) < 27",
We find it useful to use this equivalent expression for W(X,Y):

y 2] v [2t
_ 2N — t jo(2n+1—7)t
W(X.Y) = ot Z (1 ot) = 92(n+1)t Z X2 -y .
=0 =0

Define W;(X,Y) to be X (2! = V)7 (2@m+1=0%) Thus W(X,Y) = ok Yome! Wi(X,Y).

Lemma 6 Let I be any set of primes such that the product M of these primes lies in
(27, Q”d) for somed > c¢ > 3. Then, given X,Y Il we can compute the CRRy representations

of the 2(n + 1) numbers W;(X,Y) (for j € {0,...,2n+1}) in -I/'E{;

Proof: With the aid of Lemma 3, we see that using AC° circuitry, we can compute
o 2l Y
e 2/ mod p for each prime p € II and various powers j, and

e a generator mod p for each prime p € II.

In 'I/'E(l) we can compute X mod p and (2" — YY) mod p (each of which has O(logn) bits).
Using those results, with AC® circuitry we can compute the powers (2! — Y')/ mod p and
then do additional arithmetic on numbers of O(logn) bits to obtain the product X (2 —
Y')7 (227170t mod p for each p € II. (The condition that ¢ > 3 ensures that the numbers
that we are representing are all less than M.) O

“In Section 4.3, we will need to consider a variant algorithm, where, in this first step, a value t is
computed such that 3*~! <Y < B%. Observe that this is easy to do, if Y is expressed in base-3 notation.
Also, in this case, if we set u = 1 — 37'Y. Then u € (0, %], and Y1 = 71 — u)~t. This will
also involve changing the definition of W and W;, so that W;(X,Y) is X (8¢ — Y)7 (83" *+1=)%) and hence
W(X,Y) = m ?Z&Ll W;(X,Y). We will refer to this variant of the algorithm as the S-variant. The

analysis of the g-variant differs from that of the binary version in only trivial respects.

10

Having the CRRy; representation of the number W;(X,Y'), our goal might be to convert
the W;(X,Y) to binary, and take their sum. In order to do this efficiently, we instead first
show how to obtain an approximation (in binary) to W(X,Y)/M where M = [[;; p, and

then in Lemma 10 we build on this to compute our approximation V(X,Y) to W (X,Y).
Recall that W (X,Y) = 5amyr 23131 W;(X,Y). Thus the number 22"V} (X Y) is an
integer with the same significant bits as W (X,Y).

Lemma 7 Let Il be any set of primes such that the product M of these primes lies in

(2"C,2”d) for a fized constant d > ¢ > 3, and let b be any natural number. Then, given
22D (X,Y)
o M

in TC, (where by good we mean that it under-estimates the correct value by at most an

additive term of 1/2"").

X, Y 1T we can compute the binary representation of a good approximation to

Proof: Let hH (M/p)~! mod p for each prime p € II.
If we were to first compute a good approximation Ay to the fractional part of:

22(n+1)tW XY d p Al
PR (.Y) mod

pell

i.e. if Ay were a good approximation to Ay — [Ap], then AyM would be a good approx-
imation to 22™+VV (X, Y). This follows from observing that the fractional part of Ay is

exactly 2 WY (a5 in [HABO2, Lemma 4.3] and [ABKPMO09, Theorem 4.2]).
Instead of working with Ay, we will work with

Ah—z%zﬂ W;(X,Y) modp)h ‘

pell j=0

Note that the exact magnitudes of the two quantities Ay, Aj; are not the same but their
fractional parts will be the same. Thus we will compute Ap as a good approximation to the
fractional part of Af;. Since we are adding up 2(n + 1)|II| approximate quantities it suffices
to compute each of them to b, = 2n® + 2(n + 1)|II| bits of accuracy to ensure:

22(n+1)tW XY 5 1

Now we analyze the complexity. By Lemma 6, we obtain in ﬁ? the CRRyj representation
of W;(X,Y) € 10,2") for j € {0,...,0(n)}. Also, by Lemma 3, each hg can be computed
in ﬁ(l), and polynomially-many bits of the binary expansion of 1/p can be obtained in ACY.

Using AC? circuitry we can multiply together the O(logn)-bit numbers W;(X,Y") mod
p and hy, and then obtain the binary expansion of ((W;(X,Y) mod p)h;') - (1/p) (since
mult1ply1ng an n-bit number by a logn bit number can be done in AC?).

11

Thus, with one more layer of majority gates, we can compute a good approximation to

Ah—zznzﬂ W;(X,Y) modp)h

pell j=0

and strip off the integer part, to obtain the desired approximation Ay, O

Corollary 8 Let II be any set of primes such that the product M of these primes lies in
(Q"C,Q"d) for a fized constant d > ¢ > 3. Then, given Z in CRRy representation and the
numbers hg for each p € 11, we can compute the binary representation of a good approzi-

—0
mation to 17 in TC,.

Proof: This follows from the analysis presented in the proof of Lemma 7, in the special case
when Wy = Z and W; =0 forall j > 1. O

Before presenting our approximation ‘7(X, Y'), first we present a claim, which helps
motivate the definition. In the claim, and in the subsequent discussion, let II; for i €
{1,...,n"} be n’ pairwise disjoint sets of primes such that M; = [Len,p € (27, 2"") (for

some constants ¢,d : 3 <l <c¢<d). Let I = Uil II

Claim 9 For any value A, it holds that

A(1—”—i) AH“(—D_4
2 Hle

Proof: It suffices to show that

J4

n' TS (M- 1)
B 7”LZ TLZ
2 Hz’:l M;

<1

where the final inequality is trivial. Let m = nf and let 2 = 2*°. Then (1— Z”TZ) =1-=

and (1 —)™ < % Thus the claim holds if we show that, for all x > 1 and for all

=1
1 m
1—T<(1——) .
e X

This holds by induction. Assume that 1 —m/z < (1 —1/x)™. (This holds for m = 1.) Then
1—(m+1)/x =1-m/z+m/xz—(m+1)/z < (1-1/z)"—1/z < (1-1/x)"—(1—1/2)"1/z =
(1 —1/z)™(1 — 1/z). This completes the induction, and the proof of the claim. O

integers m > 1,

12

Now, finally, we present our desired approximation. 17(X,Y) is 2 V/(X,Y), where
V/(X,Y) is an approximation (within 1/2") of

V(X,Y) = WX YT, (M —1)/2

Note that

WX YT, (M, —1)/2

1

nl
Hi:l M;
£
WX T, (M, -1
iy WIS (4 - 1)
Hi:l M;
V4 22n V4
< W(X, Y)% < 2—117]

W(X,Y) - 2"V(X,Y) = W(X,Y) -2

and

2" V(X,Y) = V(X,Y)=2"V(X,Y) - 2"V'(X,Y)
= 2" (V(X,Y) = V/(X,Y))

1

nt
S 2 <2n2£)

4

o2’
Thus X/Y — V(X,Y) is equal to
(XY —W(X,Y))+ (W(X,Y) = 2"V(X,Y)) + 2" V(X,Y) = V(X,Y))

and hence

L
né 22n on

o o

XY —V(X,Y) <270 4
<1/Y,
for all n > 2.

Lemma 10 Let II; for i € {1,...,n"} be n* pairwise disjoint sets of odd primes such that
c nl
M; = 1len,p € (2 .27 (for some constants ¢,d : 3 < ¢ < d). Let Il = Ui, II;. Then,

~ —~0
given X, Y and the I1;, we can compute V(X,Y) in TC,.
—~0
Proof: Via Lemma 3, in TC; we can compute the CRRy; representation of each M;, as well
as the numbers W; mod p (using Lemma 6). Also, as in Lemma 7, we can compute the

values th for each prime p.

13

Then, via Lemma 3, with one more layer of majority gates we can compute the CRR
representation of [], (M; —1)/2, as well as the CRR representation of 22DV (X|Y) =
Z?gl W;(X,Y). The CRR representation of the product 22"+V'W (X, Y) - [[. (M; — 1)/2
can then be computed with AC? circuitry to obtain the CRR representation of the numerator
of the expression for V(X,Y). (It is important to note that 22"+ VtW (X, V)., (M; — 1)/2 <
1, M;, so that it is appropriate to talk about this CRR representation. Indeed, that is the
reason why we divide each factor M; — 1 by two.)

This value can then be converted to binary with one additional layer of majority gates,
via Corollary 8, to obtain V(X,Y). O

This completes the proof of Theorem 5. O

It is occasionally useful to assume that the CRR basis I can be decomposed into pairwise
disjoint sets II; as in Lemma 10. We shall refer to such a basis Il as a structured CRR.

Corollary 11 Let IT be any set of primes that is the union of pairwise disjoint sets I1;, such
that, for all i, M; = Hpenip lies in (2, Z”d) for fized constants d > ¢ > 3. Then, given Z

—~0
in CRRy representation, the binary representation of Z can be computed in TCs.

Proof: Recall from the proof of Theorem 5 that, in order to compute the bits of Z/2, our
circuit actually computes an approximation to (Z +1)/2. Although, of course, it is trivial to
compute Z/2 if Z is given to us in binary, let us consider how to modify the circuit described
in the proof of Lemma 10, if we were computing V(Z + 1,2), where we are given Z in CRR
representation.

With one layer of majority gates, we can compute the CRRy; representation of each M;
and the values hg for each prime p. (We will not need the numbers W; mod p.)

Then, with one more layer of majority gates we can compute the CRR representation
of [[, (M; —1)/2. In place of the gates that store the value of the CRR representation of
22+ (X Y), we insert the CRR representation of Z (which is given to us as input) and
using AC? circuitry store the value of Z+1. The CRR representation of the product (Z+1)-
[1; (M; —1)/2 can then be computed with ACY circuitry to obtain the CRR representation
of the numerator of the expression for V(Z + 1,2).

Then this value can be converted to binary with one additional layer of majority gates,
from which the bits of Z can be read off. O

Note 12 Although we have stated our results in terms of converting from CRR to binary
notation, there is nothing special about base 2. As observed in [HABO02, All04], the approach
from Lemma 10 (and in Lemma 7) carries over with only trivial adjustments, to convert
from CRR to base ten or to representation in any other base. The only “new” ingredient
that is required is that the base-f expansion of 1/p can be computed to a polynomial number
of bits of accuracy in AC°. (See Claim 4.8)

8Tt should be mentioned that the B-variant of the division algorithm is not required, for conversion from
CRR to base-. The S-variant is introduced for other considerations that arise in Section 4.3.

14

It is rather frustrating to observe that the input values Z are not used until quite late in

the ﬁg computation (when just one layer of majority gates remains). However, we see no
simpler uniform algorithm to convert CRR to binary.

For our application regarding problems in the counting hierarchy, it is useful to consider
the analog to Theorem 5 where the values X and Y are presented in CRR notation.

Theorem 13 The function taking as input X € [0,2"),Y € [1,2") (in structured CRR) as
well as 0™, and producing as output the binary expansion of X/Y correct to m places is in

—0
TC,.

Proof: We assume that the CRR basis consists of pairwise disjoint sets of primes II;, as in
Lemma 10.

The algorithm is much the same as in Theorem 5, but there are some important differences
that require comment. The first step is to determine if Y = 1, which can be done using AC°
circuitry (since the CRR of 1 is easy to recognize). The next step is to determine a value
t such that 207! <Y < 2. Although this is trivial when the input is presented in binary,
when the input is given in CRR it requires the following lemma:

Lemma 14 (Adapted from [AADOO0, DMS94, ABKPM09]) Let X and Y be integers from
~0
[0,2"] specified by their residues modulo each p € 11. Then, the predicate X >Y is in TC,

Since we are able to determine inequalities in majority-depth two, we will carry out the
initial part of the algorithm from Theorem 5 using all possible values of ¢, and then select
the correct value between the second and third levels of MAJORITY gates.

Thus, for each ¢, and for each j, we compute the values W; (X + 1,Y) = (X + 1)(2" —
V)7 (2@7+1=0)t) in CRR, along with the desired number of bits of accuracy of 1/p for each p
in our CRR basis.

With this information available, as in Lemma 10, in majority-depth one we can compute
hg, as well as the CRR representation of each M;, and thus with ACY circuitry we obtain
(W;+(X +1,Y) and the CRR for each (M; —1)/2.

Next, with our second layer of majority gates we sum the values W; (X +1,Y) (over all
j), and at this point we also will have been able to determine which is the correct value of
t, so that we can take the correct sum, to obtain 22"V (X 4+ 1,Y).

Thus, after majority-depth two, we have obtained the same partial results as in the proof
of Lemma 10, and the rest of the algorithm is thus identical. O

The following generalization of Theorem 13 will be useful for us in Section 4.3.

—~0
Theorem 15 There is a function computable in TCy that takes as input the structured
CRR representation of a sequence X1,Y1, X5,Ys, ..., X,,Y,, as well as as 0™ and 1* with the
property that, for each i, 271 <Y; < 2!, and produces as output the binary expansion of

T X
>ie1 3+ correct to m places.

15

Proof: The naive approach, of simply taking the sum of the circuits that result from The-
orem 13, would be too expensive in terms of majority-depth. Thus we dive deeper into the
details of how each quotient is computed.

Recall the definition of W;(X,Y’) (immediately before Lemma 6), and recall also that 5-
is approximated by W(X +1,Y) = 55 ngl W;(X +1,Y).

Thus ., % ~Y 22(71—1“),5 Z?igl W;(X;+1,Y;), where the approximation is a correct
underapproximation to n®™) bits

As in the proof of Theorem 13, after one level of majority gates, we can have computed the
values of W;(X;+1,Y;) (in CRR notation), and with another level of majority gates, we can
compute the CRR of Y7/ sy Z?Zgl W;(X;+1,Y;), and (as in the proof of Theorem 13)
with one more level of majority gates, we obtain the binary encoding of the desired result.
O

—~0
Proposition 16 [terated product is in uniform TC,.

Proof: The overall algorithm is identical to the algorithm outlined in [MT98], although the
implementation of the basic building blocks is different. In majority-depth one, we convert
the input from binary to CRR. With one more level of majority gates, we compute the CRR
of the product.

Simultaneously, in majority-depth two we compute the bottom two levels of our circuit
that converts from CRR to binary, as in Corollary 11.

Thus, with one final level of majority gates, we are able to convert the answer from CRR
to binary. O

Remark The theorems and proofs in this section are stated in terms of inputs and out-
puts that are non-negative integers. But many of our results in subsequent sections deal
with computation involving arithmetic circuits, which produce negative numbers as output.
But in all such cases, the arithmetic circuits under consideration produce numbers in a pre-
determined range [—2%,2" — 1] (where the arithmetic operations produce no intermediate
results that would “overflow” by falling outside this range). Using the usual two’s comple-
ment representation of negative numbers thus allows us to use the natural bijection between
[—2¢ 28 — 1] and [0,2'"! — 1] and view the entire computation as taking place with natural
numbers (where values in the range [2¢,2!7! — 1], with leading bit 1, correspond to the neg-
ative numbers, in 2’s complement notation). This bijection is an isomorphism with respect
to + and x. Thus the algorithms in this section apply equally well in the setting where the
inputs may take on negative values.

3.3 Consequences for the Counting Hierarchy
Corollary 17 BitSLP € PH®Hs,

16

Proof: This is immediate from Proposition 2 and Corollary 11.
Let f be the function that takes as input a tuple (C, (p, j)) and if p is a prime, evaluates
the arithmetic circuit C' mod p and outputs the j-th bit of the result. This function f, taken

together with the f\Cg circuit family promised by Corollary 11, satisfies the hypothesis of
Proposition 2. (There is a minor subtlety, regarding how to partition the set of primes into
the groupings M;, but this is easily handled by merely using all of the primes of a given
length, at most polynomially-larger than |C|.) O

Via essentially identical methods, using Theorem 13, we obtain:

Corollary 18 {(Cx,Cy,N) : the N bit of the quotient XY, where X and Y are repre-
sented by arithmetic circuits Cx and Cy, respectively} is in PHHs.

Proof: We will appeal to Proposition 2 and Theorem 13. Let f be the polynomial-time-
computable function that, on input (z,y) = ((Cx, Cy, N), (b,p)) outputs “p not prime” if p
is not prime, and otherwise outputs the value of Cx mod p if b = 0, and outputs the value
of Cy mod p if b = 1. Note that the string (z, f(z,1)f(z,2) ... f(z,2#")) can be viewed as
providing the CRR representation of the numbers represented by C'y and Cy. (Technically,
in order to directly appeal to Proposition 2 and Theorem 13, the definition of f will need
to be modified slightly, so that (x, f(x,1)f(z,2)... f(x,2|“’|k)) also ends in a sequence of
exponentially-many zeros. This is conceptually quite easy — by only considering numbers p
whose length, in bits, is polynomially-related to the length of N, and making some minor
formatting changes. In order to avoid introducing distracting technicalities, we leave these
minor details to the interested reader.)

—~.0

Now, let A be the language in TC, that takes the CRR representation of X and Y as input,
along with the number 0V, and outputs the N'* bit of X/Y, as follows from Theorem 13.
The theorem now follows from Proposition 2. O

3.4 Integer Matrix Powering

In this section, we continue presenting our algorithmic results, concentrating on the problem
of computing powers of integer matrices.

Theorem 19 Let d > 2 be a natural number. The function MPOWy(A, m,p,q,i) taking as
input a d X d integer matriz A with n-bit integer entries, p,q, 1°, where p,q € [d], i € [O(n)]

0
and producing as output the i-th bit of the (p,q)-th entry of A™ is in TC,.

For a (d x d) matrix A, the characteristic polynomial y4(z) : Z — Z is a univariate
polynomial of degree at most d. Let ¢,r : Z — 7Z be univariate polynomials of degree at
most (m—d) and (d—1) such that 2™ = q(x)xa(z)+r(z). By the Cayley-Hamilton theorem,
we have that xa(A) = 0. So, in order to compute A™, it suffices to compute r(A).

17

Lemma 20 Given a (d X d) matriz A with entries that are n-bit integers, the coefficients of

—~0
the characteristic polynomial of A in CRR can be computed in TC,.

Proof: We convert the entries of A to CRR and compute the determinant of (z/ — A).
This involves an iterated sum of O(2%d!) integers each of which is an iterated product of d

—~.0
n-bit integers. The conversion to CRR is in TC,; by item 5 in Lemma 3. Since addition,
multiplication, and powering of O(1) numbers of O(logn) bits is computable in AC® (by
Lemma 3, items 3,4 and 6), it follows that the coefficients of the characteristic polynomial

—~0
can be computed in TC;. O

Lemma 21 Given the coefficients of the polynomial r, in CRR, and given A in CRR, we
can compute A™ in CRR using ACY circuitry.

Proof: Recall that A™ = r(A). Let r(z) = rg + riz + ... + rg_1z%!. Computing any
entry of 7(A) in CRR involves an iterated sum of O(1) many numbers which are themselves
an iterated product of O(1) many O(logn)-bit integers. The claim follows by appeal to
Lemma 3. O

Lemma 22 (Adapted from [HVO06]) Let p be a prime of magnitude poly(m). Let g(x) of

degree m and f(x) of degree d be monic univariate polynomials over GF,, such that g(z) =

q(z) f(x)+r(z) for some polynomials q(x) of degree (m—d) and r(x) of degree (d—1). Then,
0

given the coefficients of g and f, the coefficients of r can be computed in TC,.

Proof: Following [HV06], let f(z) = S0, i, g(z) = S0, bat, rv(x) = 20 ra® and
q(z) = Z;Z)d ¢;x'. Since f, g are monic, we have ag = b,, = 1. Denote by fr(x), gr(z),rr(z)
and qg(z) respectively the polynomial with the i-th coefficient ag_;, bp—i, 74—i—1 and ¢m—a—;
respectively. Then note that 2?f(1/x) = fr(z), 2™g(1/x) = gr(z), 2™ %q(1/x) = qr(z) and
24 (1/2) = rr(z).

We use the Kung-Sieveking algorithm (as implemented in [HV06]). The algorithm is as
follows:

1. Compute fr(x) = Zggd(l — fr(x))? via interpolation modulo p.

2. Compute h(z) = fR(x)gR(x) =c+cr+... + cd(m_d)+mxd(m_d)+m. from which the
coefficients of ¢(x) can be obtained as ¢; = Cd(m—d)+m—i-

3. Compute r(z) = g(z) — q(x) f(z).

To prove the correctness of our algorithm, note that we have g(1/x) = q(1/z)f(1/x) +
r(1/x). Scaling the whole equation by 2™, we get gr(x) = qr(z) fr(z)+2™ *rg(z). Hence
when we compute h(z) = fr(x)gr(x) in step 2 of our algorithm, we get

hz) = fr(z)gr(z) = fr(z)qr(z) fr(z) + 2™ fr(z)ra(z).

18

Note that fr(2)fr(®) = fr(@)(1 = (1 = fr(2))) = 21 = fr(@)) = S (1 -
fr(z))* =1 — (1 — fr(x))™ 4! (a telescoping sum). Since f is monic, fr has a con-
stant term which is 1 and hence (1 — fr(x))™ ?*! does not contain a monomial of degree less
than (m —d+1). This is also the case with 2% fr(z)rz(z), and hence all the monomials
of degree less than (m — d + 1) belong to qr(z).

Now we justify why the algorithm above is amenable to a ﬁ? implementation: Firstly,
note that given f(z) and g(z), the coefficients of fr(z) and ggr(x) can be computed in
NC% To compute the coefficients of fR(x), we use interpolation via the discrete Fourier
transform (DFT) using arithmetic modulo p. Find a generator w of the multiplicative group
modulo p and substitute = {w!', w? ..., wP™'} to obtain a system of linear equations in
the coefficients F of fr(x): V- F =Y, where Y is the vector consisting of fr(w’) evaluated
at the various powers of w. Since the underlying linear transformation V(w) is a DFT, it
is invertible; the inverse DFT V~1(w) is equal to V(w™!) - (p — 1), which is equivalent
to —V (w™') mod p. We can find each coefficient of fr(x) by evaluating V'Y i.e., by an
inner product of a row of the inverse DFT-matrix with the vector formed by evaluating
ZEZ{dH)(l — fr(x))1 at various powers of w and dividing by p — 1. The terms in this
sum can be computed in ACY, and then the sum can be computed in majority-depth one,
to obtain the coefficients of fr(z). The coefficients of h(z) in step 2 can be obtained by
iterated addition of the product of certain coefficients of fz and gg, but since the coefficients
of fR are themselves obtained by iterated addition of certain terms ¢, we roll steps 1 and
2 together by multiplying these terms ¢ by the appropriate coefficients of gr. Thus steps 1
and 2 can be accomplished in majority-depth 1. Then step 3 can be computed using ACY
circuitry. O

Proof:(of Theorem 19)

—~0
Our TC, circuit C' that implements the ideas above is the following:

0. At the input, we have the d* entries A;;, i,j € [d] of A, a set II of short primes (such
that I can be partitioned into n¢ sets II; that are pairwise disjoint, i.e., IT = U™, II;),
and the numbers [= {1,2,...,(m —d+1)}.

1. In majority-depth one, we obtain (1) A;; mod p for each prime p in our basis, and (2)
M; = [cn, p for each of the n° sets II; that constitute II, and (3) the CRR of the
characteristic polynomial of A (via appeal to Lemma 20).

2. In the next layer of threshold gates, we compute (1) [T (M; —1)/2 in CRR, and (2)

2

the coefficients of the polynomial r in CRR, by appeal to Lemma 22.

3. At this point, by Lemma 21, AC circuitry can obtain r(A4) = A™ in CRR, and with one
more layer of MAJORITY gates we can convert to binary, by appeal to Corollary 11.

Now we consider the “succinct” versions of the problems of computing powers of integers
and matrices (i.e., where the power is given in binary, instead of in unary notation), and

19

show that these problems reduce to BitSLP. (We do not consider taking powers of integers
as a separate problem; an integer can be viewed as a 1-by-1 matrix.) Define:

Bit — k — MatPow = {(A, N,p,q,I) : the I'! bit of entry (p,q) of the (k x k) matrix AV is 1 }
(Here, the matrix A is represented by k? arithmetic circuits, with one circuit for each entry.)
Theorem 23 For every k € N, Bit-k-MatPow polynomial time reduces to BitSLP.

Proof: It is sufficient to produce arithmetic circuits computing AY. This is easily obtained
via repeated squaring:

Since M is a (k x k) matrix with entries that are represented as arithmetic circuits, we
can again compute A" using n®1) additional arithmetic gates, by repeated squaring (where
N is an n-bit number). Again, it is easy to construct this circuit, in polynomial time. O

3.5 Reducing Sum-of-square-roots to Matrix Powering

In this section, we digress slightly from our presentation of efficient algorithms (in TC°
or in CH), in order to address the question of whether the problems that we have shown
to lie in CH might have much more efficient algorithms. Evidence for the intractability of
PosSLP and BitSLP is presented in [ABKPMO09]. But there is much less evidence that matrix
powering is difficult. Here, we show that if one could power 2-by-2 matrices in PH, then
it would yield an improved upper bound on the well-known Sum-of-Square-Roots problem.
More formally, we present a reduction, showing that the Sum-of-Square-Roots problem is
reducible to the problem of computing large powers of 2-by-2 integer matrices, where the
power of the reduction lies low in CH.

Definition 24 [The Sum-of-Square-Roots Problem] Let a = (aq,...,a,) be a list of
n-bit positive integers, and let o = (oy,...,0,) € {—1,4+1}". Define SSQRT (a, o) to be the
problem of determining if:

i ai\/a_i >0
=1

I:,PBit—2—MatF’ow
Theorem 25 SSQRT € PH)

Our proof makes use of Linear Fractional Transformations (LFTs), which in turn corre-
spond directly to 2-by-2 matrices. We introduce LFTs in the next subsection.

20

3.6 Linear Fractional Transformations (LFTs)

Here we give a brief introduction to LFTs based on the expositions in [EP97, Pot97, Pot99],
concentrating only on the aspects required in this paper.

A linear fractional transformation is a function mapping y > %<

by+d

for reals (and prefer-

a c
b d
thing about LFTs is that the matrix corresponding to the composition of two LFTs is the
usual product of the matrices corresponding to the two LFTs. In other words, if the matrix
a; G
Lo d;
(which abbreviates ¢1(¢2(y))) is

ably integers) a, b, ¢, d; we associate the matrix () to this mapping. The interesting

corresponding to ¢;(y) i (for i = 1,2), then a matrix corresponding to ¢1¢2(y)

ap € az C2
by d by dy
paper we deal only with nonsingular LFTs (i.e., LFTs whose matrices have non-zero de-
terminant). An LFT is said to be positive if all four entries in its matrix have the same
sign.

Let ¢ be an LFT and let M = (

, as can be easily verified. In this

a c
b d
any interval [p,¢| and a subset of the extended reals R U {oco}. Further, this subset is also
an “interval” (in the sense formally described in [EP97]) — where this “interval” possibly
includes 00): either [¢(p), d(q)] or [¢(q), d(p)]. (If b < a, then the “interval” [a,b] is equal
to (—o0,b] U [a,00) U {oo}.) Notice that we do not claim that there is a linear order on the
reals augmented with co. Instead, as in [EP97], we refer to these sets as “intervals” in the
same sense that connected subsets of the unit circle can be called intervals.

For a concrete example, ¢[0,00] is the interval [§, 5] if det(M) < 0 and the interval
[5, %] if det(M) > 0. Notice that ¢(oco) is taken to be lim, . ¢(y) = §. Notice also that
(—1/x)[—1,1] is the interval [1, —1] containing co.

An LFT is said to be refining for an interval [p, q] if ¢[p,q] C [p,q]. We will need the
following two propositions from [Pot97]:

be its matrix. Then ¢ acts as a bijection between

Proposition 26 Given two intervals [p,q] and [r,s| with p # q and r # s, there exists an
LFT ¢ with ¢[p, q] = [r, s].

Proposition 27 For LFTs ¢ and 1 we have ¢[0,00] 2 1[0, 00| iff v = ¢y for a positive
LFT ~.

Thus for any sequence of nested intervals [po,qo] 2 [p1,q1] 2 ... 2 [Pn, @] 2 ... we have
[P Gn] = God1 - . . 6,[0, 00] where ¢q is an LFT and all other ¢;’s are positive LFTs.? Thus,
given any sequence [po, o] 2 [p1,¢q1] 2 ... of nested intervals that converges to a real number
r, and given any infinite sequence of positive LFTSs ¢y, ¢o,... and LFT ¢y (represented by
matrices My, Ms, ... and My, respectively) such that, for all n, [p,, ¢,] = ¢od1 ... P,[0, 0],
then the infinite product of matrices II; represents r; and the initial finite subsequence of
LFTs applied to the interval [0, co] yields increasingly finer approximations to 7.

We call [p,,, qn], the n*™ convergent of the LFT sequence ¢.

21

LFTs are closely related to continued fractions; in fact, the continued fraction
bo

CLO+
a1+b—1

1 0 1 0
An LFT for the square root function is:

= T0(7)

for x € (1,00]. This differs slightly from the LFT specified in [Pot97, Pot99]. We establish
its correctness below.

To see that this LFT ¢ is an LF'T for the square root function, we first establish a bound
on the length of the n'" convergent. We use the following notation: ||[p, ¢]|| = ¢ — p denotes
the length of the interval [p, q]. Next we show that ||¢"[0, oc]|| — 0 as n — oc.

corresponds to the LFT % bo) (ar b)

Length of the n'" convergent Let M, (l) and P, = HZ ! M; = (gl g’)
Then the length of the interval [p,, ¢,| = = P, M,[0, 0] is given by:

1P My [0, 00| =

(& S:z) (z: ;::) (0.5

= B,a, + D,b, B,c,+ D.d, » 0

Aya, +CLb, A,c, + Chd,
Bnay + Dyby Bucy + Dyd,
(AnD,, — B, Cy)(and, — bycy)
(Bnan + Dpby,)(Bnen + Did,y)

Length of the n'" convergent for the Square Root Using the notation above with

x T
Mi(l x),weget

lpmgalll = |{AnDn = BuCa)e” — @)

(xBy, + Dy,)(xB,, + xD,,)
(A, D, — B,C,,)(x* — z)
(xBp)(xD,)

- |&-5)0-2)]
= |(¢a-1 — Pn-1) (1 - é)‘

22

Thus, inductively, ¢, — p, < (g0 — po) (1 — %)n |.
Thus ¢"(y) — yo for some yp and all y € [0,00]. In particular, ¢"(yo) — yo and thus
" y) — d(yo) as n — oco. Thus, ¢(yo) = Yo, so that

Yo +
Yo+

= Yo

Hence = = y3.
This establishes that ¢ is a LF'T for the square root function.

Lemma 28 If [p,(a), q.(a)] denotes the n'™ convergent for the matriz sequence My, My, . ..
where each M; = L(a) = Cll Z), then qn(a) — pa(a) < a(1— %)nﬂ. Thus if a € [1,2],
then 0 < gn(a) — pp(a) < 27", and for all n,\/a € [pu(a),q.(a)]. Furthermore, p,(a) =

(L(a)")12/(L(a)")2,2-

Proof:
From the foregoing, we have that g,(z) — pn(z) < [(q(z) — po(z)) (1 —21)"|. But
r x

[po(x), qo(z)] = (|) [0,00] = [1,z]. This yields ¢,(z) — py(x) < (z — 1) (1 — %)n <

P-1) (-1 = (0=
The other parts of the lemma follow immediately. O

Proof:(of Theorem 25) Let (a,o) be an input instance for SSQRT. Let «a; be a positive
integer satisfying 2% < a; < 2%7T!. Further, let a; = a;/2% be a rational in (1,2]. Hence,
by an application of Lemma 28, any number, say py(a}) in the M convergent interval of
L(a;) approximates \/a_; with an error of at most 2=. To obtain an approximation of Vi
from this we need to multiply pas(a}) by 212! (and if o; is odd then we must also multiply
this by an approximation to v/2 — which can also be approximated in this way by setting
a=2and a=0).

How good an approximation is needed?” That is, how large must M be? Tiwari has
shown [Tiw92] that if a sum of n square roots +,/a; is not zero, where each a; has binary
representation of length at most s, then the sum is bounded from below by

2—(54—1)2”

Thus taking M = 2(logn)(s + 1)2" and obtaining an approximation of each /a; to within
2=M provides enough accuracy to determine the sign of the result. By Lemma 28, a suitable
approximation is provided by (L(a;)™)12/(L(a;)*)s2 (or — if a; is odd — by the expression
(L(ai)™)12(L(2)M) 1 2/(L(a;)™)29(L(2)M)35). Denote this fraction by C;/D;. (Note that
each D; > 0.)

23

Note that
iai\/a_i>0 & io—ig >0
i=1 i=1 D;

i=1 i

We will need to re-write the expression)., 0,C; Hj 4 Dj in order to make it easier
to evaluate. First, note that this expression is of the form Z?:l H?zl Z; ; for integers Z;

whose binary representation is of length less than 2"°. Thus this expression can written in

n2
the form > 7" | [T7_, S22 bijx2¥ where each by, € {—1,0,1} is easily computable from the
input and from the oracle Bit-2-MatPow. Via the distributive law, this can be rewritten as
i1 Z(kl,kg,...,kn)€[2”2]" H?:I bi.jik; 2%

Thus there is a function f computable in polynomial time with an oracle for Bit-2-MatPow
that, on input (a,o,i, ki, ko, ..., kn, j,¢) outputs the ¢*" bit of the number | bi g, 2.
(Namely, the algorithm queries the n oracle bits corresponding to b; jx, and combines this
information with o to obtain the sign € {—1,0,1}, and computes the value of the exponent
>_; k;j, and from this easily determines the value of bit £ of the binary representation.)

Since addition of m numbers, each consisting of m bits is computable in ﬁ(l), it is now
immediate that the bits of this expression are computable in PHPP?. Thus in PH, using the
bits of this expression as an oracle, one can determine if the number represented in this
manner is positive or not. (Namely, is there some bit that is non-zero, and is the sign bit
positive?) O

4 Computing Bits of Algebraic Numbers

In this section, we use the tools developed in the previous section to derive upper bounds
on the problem of computing bits of algebraic numbers.

4.1 Mathematical Preliminaries

Definition 29 (Algebraic number, Minimal Polynomial, Degree) A real number «
is called algebraic if there is a univariate polynomial p with rational (or — equivalently —
integer) coefficients such that p(a)) = 0. There is a unique monic'® univariate polynomial
of minimal degree (and rational coefficients) p,(x) such that p,(a) = 0; p, is said to be the
defining polynomial or the minimal polynomial of the algebraic number o. The degree of «
1s the degree of p,. The roots of p, are called the Galois conjugates of «.

10A univariate polynomial p(z) = Z?:o a;x' is monic if ag = 1.

24

The minimal polynomial p, is irreducible; all of the Galois conjugates of o have the same
degree d. In particular, no root of p = p, is also a root of the first derivatives of p (denoted
).

The Newton-Raphson method is a well-known algorithm for computing an approximation
to a root of a univariate polynomial. For background, the reader can consult a textbook
that explains the method, such as [Sta70, FB93|.

Definition 30 (Newton-Raphson) Given a polynomial p and a starting point xq, recursively
define:

p(x;)
(i)

Lit1 = Li —

9

whenever x; is defined and p'(x;) is non-zero.

Note that if p is an irreducible polynomial (such as the minimal polynomial p, for an
algebraic number «), then there is an interval I = [a — 3, + (5] around « such that p’ has
no roots in I, since p’(a) # 0 and p’ has only finitely-many roots. In fact, it is known that
if 8 is small enough, then for any starting point xq in I, the sequence xg, z1, ... not only is
infinite (because p'(x;) # 0), but it converges “rapidly” to «. Let us make precise the notion
of “rapid” convergence.

Let ¢; denote the error in the i iteration of Newton-Raphson: ¢ = |z; — a|. We say
that the Newton-Raphson sequence (with starting point zg) converges quadratically (with
parameter M > 0) if, for all 1 > 0, ¢;,1 < Me?. Note that we can assume (pessimistically)
that M > 1.

Much more is known about sufficient conditions on the size of the interval I = [a—/f, a+[]
that are sufficient to guarantee quadratic convergence (for every choice of xy € I, for the
same parameter M), but for our purposes it is sufficient to know that this interval exists,
and hence there is a rational number zy that we can use as the starting point for a Newton-
Raphson sequence that converges quadratically to . The constant zy will be hard-wired
into our algorithm. We will impose some additional requirements on x; in particular, we will
pick zg so that ¢y = |29 — o] < min(i, ﬁ) With this restriction on xy, a simple induction
shows that, for all i > 0, ¢; < 22}M < 5

Since the Newton-Raphson sequence converges quadratically, this means that the number
of bits of accuracy is doubling with each iteration (so that, after a polynomial number of
iterations, the approximation is accurate to an exponential number of bits). But if the !
bit of z,c is 0 (for example), do we really know that the i*® bit of « is 07 If the next 100
bits of x,. are all 1, it could still be possible that in our next underestimate x,c,, the i-th
bit would be 1, followed by 100 0’s and then a 1. How far do we need to “look ahead”, in
order to be confident about the value of the " bit of a?

The answer is provided by Liouville’s Theorem, which provides useful bounds on approx-
imating algebraic numbers by rational numbers (see e.g. Shidlovskii[Shi89] or Yap [Yap00]).

25

Fact 31 (Liouville’s Theorem) If « is a real algebraic number of degree d > 1, then there
exists a constant ¢ = c(a) > 0 such that the following inequality holds for any v € Z and

BeN, v/ #a:

Roth’s theorem sharpens the inequality in Liouville’s theorem:

Fact 32 (Roth’s Theorem [Rot55]) If « is a real irrational algebraic number then for every
€ > 0 there exists a constant ¢ = c(a, €) > 0 such that the following inequality holds for any

v E€Z and § €N,
c

gl (a,€)
/82+6

TR

Roth’s theorem is optimal, in some ways: the number 2 in the exponent cannot be decreased.

The rest of this subsection is an adaptation of the corresponding material in [Yap10],
which gives a logspace algorithm to compute the digits of 7. In contrast to the development
in [Yap10], we choose to utilize Liouville’s Theorem for algebraic numbers, instead of the ad-
vanced arguments required for bounding the irrationality measure of 7. We could throughout
replace the use of Liouville’s theorem by the much stronger and deeper Roth’s theorem, but
we prefer not to do so, in order to retain the elementary nature of the arguments. We now
introduce some terminology and notation that we will be using (some of which is standard,
and some of which was introduced in [Yap10]).

>

Definition 33 Let o be a real number. Let {a} = o — |a| be the fractional part of «.
Further, let {a}, = {2"a} and let o, be the n-th bit after the binary point.

It is clear that a,, = 1 iff {a},—1 > % For algebraic numbers we can sharpen this:

Lemma 34 (Adapted from [Yap10]) Let o be an irrational algebraic number of degree d,
and let ¢ = c(a) be the constant guaranteed by Liouville’s theorem. Let 6, = sa=t5r- Then
we have:

o o, =1 iﬁ{a}n,l > %—Fén
e a, =0 iff {a},-1 < %—(5n.

Proof: Taking f§ = 2", and letting v € N be the number whose binary representation
corresponds to the first n bits in the binary representation of «, Liouville’s theorem implies
that |a — 27"y > 55, so |2"a —] > 5uShn = 20,. Also, we have that v = 29 + a,,, where
~" is the first n — 1 bits of the binary representation of a.

Thus {a},—1 = {2"'a} = 2" 'a — v = 1(2"a — 7) + % . This is greater than + §,, if
a, = 1. A similar calculation establishes the claim also in the case when «,, = 0. O

As a consequence of Lemma 34, in order to be confident that our approximation to « is
giving us the correct value for the " bit of «, it is sufficient to have an approximation with

26

error at most ﬁ. In other words, there is a constant b such that, if the i*" bit of v is 1, then
the binary representation of o will have another 1 appearing no later than position number
di + b; there is a bound on how many consecutive 1’s can appear in the binary representation
of a. (And similarly, if the i*" bit of « is 0, there will be another 0 that appears not too
much later.) More specifically, recalling that our starting point zg is in the interval I where
Newton-Raphson converges quadratically to «, and where ¢y = |zg — o < mim(i7 ﬁ), this
means that there is a constant ¢ € N such that, given an n-bit number N, the N'*" bit of a
is equal to the N*" bit of z.,.

4.2 Algebraic Numbers in CHj;

In this section, we prove our main result concerning algebraic numbers.

Theorem 35 Let v =) . a;270*Y be an algebraic number, where each a; € {0,1}. Then
the language Ay = {j : a; = 1} is in PH s,

Proof: Let xy be the starting point for the Newton-Raphson method as described in Sec-
tion 4.1. Since x is rational, let xy = ¢ for integers a and b. Let p be the minimal polynomial

for a. Recall that the Newton-Raphson sequence is defined as z;,1 = f(z;) = x; — & (@) _

plzi)
20 (@) =p(i) for all . Thus @5 = f(f(z0)) and more generally z; = f1l(z), where 1 denotes

(z:)

the i-fold composition of f.
Consider an input string j of length n. As discussed in Section 4, j € A, if and only bit

j of z., is equal to 1 (for some constant ¢). Our algorithm will create arithmetic circuits N
N(a,b)
D(a,b)
use our PH® algorithm from Corollary 18, to obtain the j* bit of z., = fl*(a/b).

First, note that any polynomial ¢(x) = Z?:o a;xt, with rational coefficients, when applied

to a rational input x = ¥, (where z # 0) can be written as the quotient of two bivariate

integer polynomials ny(y, z) and d,(z):

and D (in polynomial time) so that the rational number z., is equal to . Then we will

d i —i d i d—i
0(L) =20l 27 g Lay's ny(y.2)
~ zzi Zd—z' de dq(z))

=0

where L is the least common multiple of the denominators of the rational coefficients a;.

27

We are especially interested in the polynomials n,, d,, n,y and d,y. Thus

(/2)p'(y/2) = p(y/2)
P'(y/2)
YN, (y,2) _ np(y,2)
zd,y (2) dp(z)
Ny (Y,2)
4y (2)

Yny (y,2)dp(2) —2d,y (2)np(y,2)
(2)dp(2)
)

fly/z) =

for integer bivariate polynomials F' and G.

Definition 36 For a positive integer t, let the t-bicomposition of (F,G) be the pair of bi-
variate polynomials (FM, GM) defined as follows:

Fl(y, 2) = F(y,2),GM(y, 2) = G(y, 2),

and,
FlHI(y, 2) = F(FU(

Ty, 2), Gy, 2)),
GI'(y, z) = G(F(y, 2

,G(
), Gl(y, 2)).

A straightforward induction shows that fl(y/z) = %

Recall that p is the minimal polynomial for «, and it does not depend on the input j
to A,. Similarly, the starting point zg = ¢ is a fixed constant. Thus there are arithmetic
circuits Ny (a,b) and D;(a,b) of size O(1) computing F(a,b), and G(a,b), respectively. For
each t > 1, the circuit N,(a,b) computing F"(a,b) can be constructed by running wires
from the output gates of N;_; and D;_; to the a, b input gates, respectively, of a copy of the
circuit for Ny(a,b). The circuit for Dy(a,b) is constructed similarly.

In this way, we construct in polynomial time the circuits N(a,b) = N, (a,b) and D(a,b) =

N(a,b)
D(a,b)

D, (a,b) so that the rational number z., is equal to , as desired. This completes the

proof. O

4.3 Certain Transcendentals in CHs

Our results on algebraic numbers made use of Liouville’s Theorem, which shows that al-
gebraic numbers can not be “too close” to rational numbers with small denominators. A
similar property holds for several important transcendental numbers. This motivates the
following definition:

28

Definition 37 The irrationality measure of a transcendental number « is the infimum of

v L }
a—=|>—=
il
The irrationality measure of 7 is no more than 7.10321 [Z2Z20]. The irrationality measure
of e is equal to 2 (see [BB87]).

Yap took as his starting point a remarkable expression for m, discovered by Borwein,
Borwein, and Plouffe [BBP97]:

{k’ : for all but finitely many (v,3) € Z x N

120k? + 151k + 47

— (16)%(29k + 210k3 + T12k2 + 194k + 15)

m =

Borwein, Borwein, and Plouffe exhibited similar series for other transcendental numbers,

such as log;y2 and 72. Yap defined a series > .~ t, to be BBP-like if there are integer

polynomials p and ¢ and an integer ¢ so that ¢, = —2£(;()k).

With these definitions in hand, we can state Yap’s theorem:

Theorem 38 [Yap10] If o = apajas . .. is a transcendental real number that
e has finite irrationality measure, and
e can be expressed as a BBP-like series,

then there is a logspace-computable function f, such that f,(1") = apay ... a,.

We note that some of the motivation for the algorithms presented in [BBP97], as well as
some of the exposition in [Yap10], comes from the ability to compute individual bits, without
having to compute all of the earlier bits. In spite of this, the algorithm presented in [Yap10]
does yield a logspace algorithm computing all of the first n bits.

We improve on Theorem 38, by placing the function f, in the (seemingly) smaller com-
plexity class TC®. (We discuss additional improvements to Theorem 38 later in this section.)

Theorem 39 If a = agaqas ... is a transcendental real number that
e has finite irrationality measure, and
e can be expressed as a BBP-like series,

then there is a TC-computable function f. such that fo(1") = a,a; ... ay,.

Proof: Yap showed in [Yapl0] that the finite irrationality measure condition on « implies
. Lo . < < k
that, in order to compute aga; . .. a,, it is sufficient to compute > ;_ tx = > 1_, 26’;(—(1()@ (for

some constant ¢’) to n® bits of accuracy, and then output the first n + 1 bits.

Let T = [Tqicpiny 27 a(k). Then Y30t = Skt

”Cl ck '
k=0 2 q(k)

29

The numerator and denominator are both computable in TCY. Thus the theorem follows
immediately by an application of Theorem 5. O

Both [Yapl0] and [BBP97] explicitly ask if the algorithms that they present for 7 and
similar numbers hold only for the binary representation, or if they can be modified to yield
algorithms for the base-b representations for other bases b. But, as observed in Note 12, our
techniques work equally well for base 10 or any other base.

Similarly, our proof of Theorem 39 applies not only to series that satisfy Yap’s BBP-like
criterion, but for any series Y, ¢ that converges rapidly to a transcendental number with
bounded irrationality measure, if t;, = % and the functions n and d are computable by
TCO circuits of size polynomial in n. They do not need to be polynomials (or polynomials
multiplied by b*). For example, to the best of our knowledge, no BBP-like series is known to
converge to Euler’s constant e, but sincee = >~ % where the error term e, = e—> ;_, % <
%, and where the numerator n(k) = 1 and denominator d(k) = k! are easily computable by
TCO circuits of size polynomial in n if & = n®®), this shows that the bits of e can also be
computed in TC® (This can also be derived from the earlier work of Reif and Tate [RT92],
who showed that various numerical computations can be performed in P-uniform TC?; their
algorithms can be made dlogtime-uniform by appeal to [HAB02].)

Much of the motivation in [BBP97] (and, to a lesser extent, in [Yapl0]) comes from
efficient implementations of programs to compute various constants. We do not claim that
the algorithms presented here lend themselves to efficient implementation. They merely
show that certain computations can be performed in TC.

We now wish to prove a result that is analogous to Theorem 35, for various important
transcendental numbers. However, in Theorem 35 we equate the characteristic sequence of a
language with a real number in [0, 1], whereas the constants such as 7 and e that we consider
lie outside of this interval. Thus, when we say “r € CH,” and “e € CH,”, we mean that the
languages corresponding to the fractional parts of m and e ({w} and {e}, respectively, using
the notation introduced above) lie in CHy.

First, we show that the transcendental numbers that Yap studied in [Yapl0] all lie in
PHMs

Theorem 40 Let o = Y .-t be a transcendental real number having finite irrationality
measure and a BBP-like series. Then o € PH M3,

Proof: We follow the same basic strategy as in the proof of Theorem 35, but we make use
of the TCO circuits constructed in Theorem 15.

Given an input string j of length n, our goal is to compute the ;" bit of the fractional part
of a. As in Theorem 39, because of bounded irrationality measure and the rapid convergence

of our series
= t. =
@ Z k Z 2k (k)’
k=0 k=0

(for integer polynomials p and ¢), it suffices to compute the ;'™ bit of Zi:& ty, for some
constant ¢. As in the proof of Corollary 18, we first make use of some polynomial-time

30

computation (in this case, it will be PH computation), to prepare the CRR-representation
of an exponentially-large input instance for a TC? circuit.

First, let us assume that t; > 0 for all k. (This is true for the series for .) Then we will
modify the algorithm for more general BBP-like series.

The input instances for Theorem 15 need to be of the form Y, %,
natural number ¢ such that 27! < Y; < 2¢ for all i. The numerators of the terms t; are of
the form 2%g(k) where there is some kg such that the polynomial ¢(k) is increasing for all
k > ko. Thus, for all large n, the number B = max{2%¢(k) : 1 < k < 2¢"} will be equal to
2¢" (and for smaller n, B can be computed via table look-up). Then, with B in hand, we
can compute ¢ such that 201 < B < 2! (and for all large n, ¢ will simply be ¢'n).!!

p(k)

Given k, we can compute p(k) and ¢(k) such that t;, = el and can compute a number

by such that 2%~ < 2%¢(k) < 2%. Let e, =t — b,. Note that ¢, = %, and for every
k, 207t < 2er2kq (k) < 2t

Now, similar to the proof of Corollary 18, we can let f be the function that, on input
(x,y) = ((j,t), (k,b,p)) outputs “p is not prime” if p is not prime, and otherwise outputs
2¢p(k) mod p if b = 0 and outputs 2¢2%¢(k) mod p if b = 1. Thus, we now have the CRR
representation that satisfies the input requirements of Theorem 15, and we can appeal to
Proposition 2.

This completes the argument, in the case when ¢, > 0 for all £. Now we consider the
more general case.

Since p and ¢ are polynomials, they each tend to either co or —oo for large k. If they
are both positive or both negative for large k, then t;, > 0 for all large k, and the analysis
is very similar to what appears above. Namely, let ¢, > 0 for all £ > K Let Q) = Zf:o .
Then we can compute an approximation to Y - - .1tk as above, and then simply add @ to
the result.

In the remaining case, t, < 0 for all large k. In that case, we can compute () as above,
and compute our underestimate A to > " .., |tx| as above, and then the desired answer is
Q — > pe k41 |te] — but note that Q — A is an overestimate to o, which means that, if the
5 bit of Q — A is 1, it is still possible that the j* bit of o is 0. However, here we can once
again appeal to the bounded irrationality measure of a. If we increase the accuracy of our

where there is a

approximation A (by summing up to k = 27" for some ¢ > ¢), we are guaranteed to obtain
an approximation that yields the correct bit for j. O

Corollary 41 7 € PH s,

There has been considerable progress using the BBP framework since the original paper
[BBP97] appeared. An extensive list can be found in [Bail7]. Many of the “BBP-like”

series presented in [Bail7] do not actually fit Yap’s definition of “BBP-like”; the definition

in [Yapl0] requires that t; be of the form 26’;(—:()@, whereas many of the series presented

"1 This simplified argument was pointed out to us by an anonymous referee.

31

in [Bail7] have t; of the form % for some integer 8 where 5 # 2. With some minor
adjustments, we can accommodate this broader definition, too.

Corollary 42 Let o = Y .-ty be a transcendental real number having finite irrationality
measure, where there are integer polynomials p and q and integer B with |f| > 2, and
by = s Then o € PHO,
Proof: First we deal with the case when g > 0.

As above, given an input string j of length n, our goal is to compute the ;' bit of

the fractional part of «, and once again it suffices to compute the j* bit of Ziio ty, for
some constant ¢, and once again we begin with a PH computation, to prepare the CRR-
representation of an exponentially-large input instance for a TC? circuit.

Now, however, we will compute p(k) and ¢(k) in S-ary notation, and begin by computing
B = max{f*q(k): 1 <k < 2”6,}, and then find ¢ such that 8~! < B < 3!, and let f be the
function that, on input (z,y) = ((4,t), (k,b,p)) outputs “p is not prime” if p is not prime,
and otherwise outputs 5% p(k) mod p if b = 0 and outputs S*q(k) mod p if b = 1. Instead
of the circuits that were presented in the proof of Theorem 15, we make use of the S-variant
of those circuits (as defined in the footnotes to the proof of Theorem 5). This is because
determining if a number B is less than 3! is easy in base 3, but less easy in base 2. Note
that these [-variant circuits still produce the final answer in binary; it is merely the case
that some of the intermediate computations take place using powers of g rather than powers
of 2.

The analysis proceeds precisely as in the preceding theorem.

Now, we consider the case where § < 0. In this case, note that v = Y 7t = Z;Oo(t%) +

20+1) (2¢ 1 20+1 (2¢
t2£+1> Zz 0(521’ (20) + 524’11(1 +2ng1) Zé 0(/324;)(27)’((2j+)1/5q)> Zé 0 ~¢ s(@ for T =

(3% > 0 and integer polynomlals r and s. Thus this case reduces to the previous case.
O

We can, in principle, handle even more general terms ;. Our proof requires only that
ty = "(k for numerator and denominator functions n and d, such that S'n(k) mod p and
Btd(k) mod p be “easy” to compute (in PH), and also that it be possible (in PH) to find ¢
such that 57! < d(k) < B'. We have no examples at hand, to show that this generalization
is useful for transcendental reals of interest. In particular, we do not see how to give a PH™
upper bound for e.

It is clear from the discussion after Theorem 39 that e € CH. The “naive approach”
mentioned at the start of the proof of Theorem 15 leads to a proof that e € PH s,

4.4 Lower Bound

In this section, we complement our upper bounds on algebraic numbers by giving (rather
weak) lower bounds for certain algebraic numbers. We emphasize that our lower bounds are
only for rational numbers; we do not have any lower bounds at all for irrational algebraic

32

numbers. Our lower bounds for rational numbers are fairly tight; we observe that all such
numbers lie in ACC® = J, AC°[m], and for any prime m there is a rational number that lies
outside AC°[m).

First, we show membership in ACC®. The binary expansion of any rational number
a € [0,1] is ultimately periodic, meaning that it has the form a = > 2 ;2= Y where the
sequence ag, a1, ds, . .. has the property that there is some k& and some N such that, for all
Jj>N,a; =ajs Let S={0: N <l <N+k,a =1} = {l1,0s,...¢,} for some r < k.
Thus the language A, = {z : a, = 1} is equal to FFU L; U ... U L,, where F is a finite
set (of some strings that lexicographically precede N) and L; = {¢; + ck : ¢ € N}. Each
L; is therefore a linear set, and A is a semi-linear set (defined as the union of linear sets).
Barrington and Corbett [BC91] showed that all semi-linear sets lie in ACCY. Thus we have
shown:

Theorem 43 [BC91] Let « be a rational number in [0,1]. Then the language A, € ACCP.

Now we turn to a lower bound.

Lemma 44 For a given odd modulus m, there is a rational number o, whose language A,
is hard for AC°[m] under AC®-Turing reductions. More precisely, the MOD,, function reduces
to A,,, under Dlogtime-uniform projections.

Proof: Let m be an odd number, m > 1, and let «,, be the rational corresponding to the
language A,,, = {cm :c € N}.

The well-known Carmichael function A(m) from number theory has the property that,
for any odd m > 1, A(m) > 1 and 2*(™ =1 (mod m).

The MOD,,, function is defined so that MOD,,(z) = 1 if the number of 1’s in z is a
multiple of m, and MOD,,(x) = 0 otherwise. Thus our goal is to take z as input and
produce as output a number f(z) that is a multiple of m if and only if the number of 1’s in
x is a multiple of m. We make use of a construction that was used earlier in [ASS01, BL87].
If © = xoxy...2,, let f(z) be the number with binary representation

2,0%,10%,_ . . .xQOd:L'lOd:I:O
where d +1 = A(m). Thus f(z) = Y1, 2™z, which is equivalent to Y7 ,z; mod m. It
is clear that f is easy to compute via a Dlogtime-uniform projection. The lemma follows,
since the MOD,,, language is complete for AC°[m] under AC’-Turing reductions. O

Corollary 45 For every prime m, there is a rational number B, such that Ag, & AC°[m].

Proof: Let p be any prime other than m. If the language A,, from Lemma 44 were in
AC°[m], then the MOD,, language would also be in AC%[m], contrary to the lower bounds of
[Raz87, Smo87]. O

33

The restriction to prime moduli in Corollary 45 is essential, given the current state of
lower bound techniques. Tt is still not known whether NP = AC°[6]. The best lower bounds
against AC[m] for composite m are those of [A1199, MW20].

It should perhaps be mentioned that there are rationals in ACY, other than dyadic ra-
tionals. For instance, % = 010101 ... corresponds to the set given by the regular expression
(0 U 1)*1, which is clearly in AC®. Since every rational number corresponds to a regu-
lar language, and since there are nice characterizations of the regular languages in AC®
[BCST92, CS01], there is probably a very crisp characterization of the rational numbers in

ACP.

5 Open Questions and Discussion

—~0
Is conversion from CRR to binary in dlogtime-uniform TC,? This problem has been known

to be in P-uniform 'I/'\C(l) starting with the seminal work of Beame, Cook, and Hoover [BCH86],
but the subsequent improvements on the uniformity condition [CDLO01, HABO02] introduced
additional complexity that translated into increased depth. We have been able to reduce
the majority-depth (relative to the construction in [HABO02]) by rearranging the algorithmic
components introduced in this line of research, but it appears to us that a fresh approach
will be needed, in order to decrease the depth further.

Is BitSLP in PHPP 2 An affirmative answer to the first question implies an affirmative

answer to the second, and this would pin down the complexity of BitSLP between P#P and
PHPP. We have not attempted to determine a small value of k such that BitSLP € (XF)4
for some set A € CHj, because we suspect that BitSLP does reside lower in CH, and any
improvement in majority-depth will be more significant than optimizing the depth of AC®
circuitry, since PH C pPP.

Is PosSLP in PH? Some interesting observations related to this problem were announced
recently [Etel3, JS12].

Is it easy to compute bits of large powers of small matrices? We remark in this regard,
that there are some surprising things that one can compute, regarding large powers of integers
[HKR10] and the most significant bits of 2 x 2 matrices [GOW15].

Does every transcendental real with a BBP-like series have finite irrationality measure?

Is e € PH™ 2 Is there any fundamental reason why e should be more complex than 7
in this sense?

Is any irrational algebraic number in PH? Is every irrational algebraic number in AC°?
We strongly conjecture that the answer to the second question is “no”, and we suspect that
the answer to the first question is also “no”, although there is absolutely no evidence to
support either conjecture. We think that it would be very instructive see an example of an
irrational algebraic number that is outside of AC?. It would be remarkable and important,
if it should turn out that irrational algebraic numbers reside in PHHs — PH.

34

Acknowledgments

The first author acknowledges the support of NSF grants CCF-1909216 and CCF-1909683.
The second and the third authors were partially funded by a grant from Infosys Foundation.
We would like to thank anonymous referees for help in improving the presentation of the
paper, and we thank Howard Straubing and Bruno Grenet for helpful comments.

References

[AADOO]

[ABO7]

[ABOY]

[ABD14]

[ABKPMO9]

[ABLO4]

[ACLG20]

[A1199)]

[A1104]

[AS03]

Manindra Agrawal, Eric Allender, and Samir Datta. On TC?, AC?, and Arith-
metic circuits. Journal of Computer and System Sciences, 60(2):395-421, 2000.

Boris Adamczewski and Yann Bugeaud. On the complexity of algebraic num-
bers 1. expansions in integer bases. Annals of Mathematics, pages 547565,
2007.

S. Arora and B. Barak. Computational complexity: a modern approach, vol-
ume 1. Cambridge University Press, 2009.

Eric Allender, Nikhil Balaji, and Samir Datta. Low-depth uniform thresh-
old circuits and the bit-complexity of straight line programs. In Mathemat-
ical Foundations of Computer Science (MFCS), volume 8635, pages 13-24.
Springer, 2014.

Eric Allender, Peter Biirgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Mil-
tersen. On the complexity of numerical analysis. SIAM J. Comput., 38(5):1987—
2006, 2009.

Boris Adamczewski, Yann Bugeaud, and Florian Luca. Sur la complexité des
nombres algébriques. Comptes Rendus Mathematique, 339(1):11-14, 2004.

Boris Adamczewski, Julien Cassaigne, and Marion Le Gonidec. On the com-
putational complexity of algebraic numbers: the Hartmanis—Stearns problem
revisited. Transactions of the American Mathematical Society, 373(5):3085—
3115, 2020.

Eric Allender. The permanent requires large uniform threshold circuits.
Chicago J. Theor. Comput. Sci., 1999, 1999.

Eric Allender. The division breakthroughs. In Gheorghe Paun, Grzegorz Rozen-
berg, and Arto Salomaa, editors, Current Trends in Theoretical Computer Sci-
ence, The Challenge of the New Century, Vol. 1: Algorithms and Complexity,
pages 147-164. World Scientific, 2004.

Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences : theory, applica-
tions, generalizations. Cambridge University Press, 2003.

35

[AS05]

[ASSO1]

[Bail7]

[BB8YT]

[BBP97]

[BCO1]

[BCHS6]

[BCST92]

[BH21]

[BL&7]

[CDLO1]

[CMTV98]

[COW13]

Eric Allender and Henning Schnorr. The complexity of the BitSLP problem.
Unpublished Manuscript, 2005.

Eric Allender, Michael E. Saks, and Igor E. Shparlinski. A lower bound for
primality. Journal of Computer and System Sciences, 62(2):356-366, 2001.

David H. Bailey. A compendium of BBP-type formulas for mathematical con-
stants. Report, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,
August 2017.

Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM: a study in
the analytic number theory and computational complexity. Wiley-Interscience,
1987.

David Bailey, Peter Borwein, and Simon Plouffe. On the rapid computation of
various polylogarithmic constants. Mathematics of Computation, 66(218):903—
913, 1997.

David A. Mix Barrington and James C. Corbett. A note on some languages in
uniform ACC®. Theor. Comput. Sci., 78(2):357-362, 1991.

Paul W. Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits
for division and related problems. SIAM Journal on Computing, 15:994-1003,
1986.

David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis
Thérien. Regular languages in NC1. Journal of Computer and System Sciences,
44(3):478-499, 1992.

Vasco Brattka and Peter Hertling. Handbook of Computability and Complexity
i Analysis. Springer, 2021.

Ravi B. Boppana and J. C. Lagarias. One-way functions and circuit complexity.
Information and Computation, 74(3):226-240, 1987.

Andrew Chiu, George I. Davida, and Bruce E. Litow. Division in logspace-

uniform NCL. RAIRO Theoretical Informatics and Applications, 35(3):259—
275, 2001.

Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. Non-
deterministic NC' computation. Journal of Computer and System Sciences,
57:200-212, 1998.

Ventsislav Chonev, Joél Ouaknine, and James Worrell. The orbit problem in
higher dimensions. In Proc. Symposium on Theory of Computing Conference

(STOC), pages 941-950. ACM, 2013.

36

[CS01]

[DHNS03]

[DMS94]

[DP12]

[EP97]

[Etel3]

[EY10]

[FB93]

[Fre12]

(GK9S]

(GOW15]

[HAB02]

Kevin J. Compton and Howard Straubing. Characterizations of regular lan-
guages in low level complexity classes. In Gheorghe Paun, Grzegorz Rozenberg,
and Arto Salomaa, editors, Current Trends in Theoretical Computer Science,
Entering the 21th Century, pages 235-246. World Scientific, 2001.

Rod G Downey, Denis R Hirschfeldt, André Nies, and Frank Stephan. Trivial
reals. In Proceedings of the 7th and 8th Asian Logic Conferences, pages 103—
131. World Scientific, 2003.

Paul Dietz, loan Macarie, and Joel Seiferas. Bits and relative order from
residues, space efficiently. Information Processing Letters, 50(3):123-127, 1994.

Samir Datta and Rameshwar Pratap. Computing bits of algebraic numbers. In
Proc. 9th Theory and Applications of Models of Computation (TAMC), volume
7287 of Lecture Notes in Computer Science, pages 189-201. Springer, 2012.

A. Edalat and Peter M. Potts. A new representation for exact real numbers.
Electronic Notes in Theoretical Computer Science, 6:119-132, 1997.

Kousha Etessami. Probability, recursion, games, and fixed points. Talk pre-
sented at Horizons in TCS: A Celebration of Mihalis Yannakakis’ 60th Birthday,
2013.

Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria
and other fixed points. SIAM J. Comput., 39(6):2531-2597, 2010.

J. Douglas Faires and Richard L. Burden. Numerical Methods. PWS Publish-
ing, Boston, 1993.

Rusins Freivalds. Hartmanis-Stearns conjecture on real time and transcen-
dence. In Michael J. Dinneen, Bakhadyr Khoussainov, and André Nies, edi-
tors, Computation, Physics and Beyond - International Workshop on Theoret-
ical Computer Science, WTCS 2012, Dedicated to Cristian S. Calude on the
Occasion of His 60th Birthday, Revised Selected and Invited Papers, volume
7160 of Lecture Notes in Computer Science, pages 105-119. Springer, 2012.

Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by ma-
jority circuits. SIAM J. Comput., 27(1):230-246, 1998.

Esther Galby, Joél Ouaknine, and James Worrell. On matrix powering in low
dimensions. In Proc. 32nd International Symposium on Theoretical Aspects
of Computer Science (STACS), volume 30 of LIPIcs, pages 329-340. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2015.

William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Journal of
Computer and System Sciences, 65:695-716, 2002.

37

[HKR10]

[HS65]

[HV06]

[Jer12]

[1S12]

[KF82]

[Ko83]

[KP07]

[KP11]

KS12]

[LOW15]

[LR13]

IMil04]

Mika Hirvensalo, Juhani Karhuméki, and Alexander Rabinovich. Computing
partial information out of intractable: Powers of algebraic numbers as an ex-
ample. Journal of Number Theory, 130:232-253, 2010.

Juris Hartmanis and Richard E Stearns. On the computational complexity of
algorithms. Transactions of the American Mathematical Society, 117:285-306,
1965.

Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic
in finite fields of characteristic two. In Proc. 23rd International Symposium
on Theoretical Aspects of Computer Science (STACS), volume 3884 of Lecture
Notes in Computer Science, pages 672—683. Springer, 2006.

Emil Jefdbek. Root finding with threshold circuits. Theoretical Computer
Science, 462:59-69, 2012.

Gorav Jindal and Thatchaphol Saranurak. Subtraction makes computing inte-
gers faster. CoRR, abs/1212.2549, 2012.

Ker-I Ko and Harvey Friedman. Computational complexity of real functions.
Theor. Comput. Sci., 20:323-352, 1982.

Ker-I Ko. On the definitions of some complexity classes of real numbers. Math-
ematical Systems Theory, 16(2):95-109, 1983.

Pascal Koiran and Sylvain Perifel. The complexity of two problems on arith-
metic circuits. Theor. Comput. Sci., 389(1-2):172-181, 2007.

Pascal Koiran and Sylvain Perifel. Interpolation in Valiant’s theory. Compu-
tational Complezity, 20(1):1-20, 2011.

Neeraj Kayal and Chandan Saha. On the sum of square roots of polynomials
and related problems. ACM Transactions on Computation Theory, 4(4):9:1-
9:15, 2012.

Antonia Lechner, Joél Ouaknine, and James Worrell. On the complexity of
linear arithmetic with divisibility. In 30th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 667-676. IEEE Computer Society,
2015.

Richard J. Lipton and Kenneth W. Regan. People, Problems, and Proofs -
Essays from Gaodel’s Lost Letter: 2010. Springer, 2013.

Joseph S. Miller. Every 2-random real is Kolmogorov random. Journal of
Symbolic Logic, 69(3):907-913, 2004.

38

[MP00]

[MT98]

IMW20]

[NSTO5]

INV1§]

[OW14a)]

[OW14b)

[Pot97]

[Pot99]

[Raz87]

[Rot55]

[RT92]

[She07]

Carlo Mereghetti and Beatrice Palano. Threshold circuits for iterated matrix
product and powering. ITA, 34(1):39-46, 2000.

Alexis Maciel and Denis Thérien. Threshold circuits of small majority-depth.
Inf. Comput., 146(1):55-83, 1998.

Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeter-
ministic quasi-polytime from a new easy witness lemma. SIAM Journal on
Computing, 49(5), 2020.

André Nies, Frank Stephan, and Sebastiaan A Terwijn. Randomness, rela-
tivization and Turing degrees. The Journal of Symbolic Logic, 70(2):515-535,
2005.

Masaki Nakanishi and Marcos Villagra. Computational complexity of space-
bounded real numbers. CoRR, abs/1805.02572, 2018.

Joél Ouaknine and James Worrell. On the positivity problem for simple linear
recurrence sequences,. In Proc. 41st International Colloguium on Automata,
Languages, and Programming (ICALP), Part II, volume 8573 of Lecture Notes
in Computer Science, pages 318-329. Springer, 2014.

Joél Ouaknine and James Worrell. Positivity problems for low-order linear
recurrence sequences. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 366-379. Society for Industrial and
Applied Mathematics, 2014.

Peter M. Potts. Efficient on-line computation of real functions using exact
floating point. Manuscript, Dept. of Computing, Imperial College, London,
1997.

Peter M. Potts. FEzact Real Arithmetic using Mobius Transformations. PhD
thesis, Imperial College, University of London, 1999.

Alexander A. Razborov. Lower bounds on the size of bounded depth net-
works over a complete basis with logical addition. Matematicheskie Zametk:,
41:598-607, 1987. In Russian. English translation in Mathematical Notes of the
Academy of Sciences of the USSR 41:333-338, 1987.

Klaus Friedrich Roth. Rational approximations to algebraic numbers. Mathe-
matika. A Journal of Pure and Applied Mathematics, 2:1-20, 1955.

John H. Reif and Stephen R. Tate. On threshold circuits and polynomial
computation. SIAM J. Comput., 21(5):896-908, 1992.

Alexander A. Sherstov. Powering requires threshold depth 3. Inf. Process.
Lett., 102(2-3):104-107, 2007.

39

[Shis9]
[Smo87]

[SRO4]

[Sta70]

[Tiw92]

[Tod91]

[Tur36]

[Vol99)
[Weg93]

[Wei00]

[Yap00]

[Yap10]

[YDDO04]

[YK13)]

[Z720]

Andrei B. Shidlovskii. Transcendental Numbers. de Gruyter, New York, 19809.

R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In Proceedings, 19th ACM Symposium on Theory of Com-
puting, pages 77-82, 1987.

Kai-Yeung Siu and Vwani P. Roychowdhury. On optimal depth threshold
circuits for multiplication and related problems. SIAM J. Discrete Math.,
7(2):284-292, 1994.

Peter Stark. Introduction to Numerical Methods. Macmillan, 1970.

Prasoon Tiwari. A problem that is easier to solve on the unit-cost algebraic
RAM. J. Complexity, 8(4):393-397, 1992.

Seinosuke Toda. PP is as hard as the polynomial time hierarchy. SIAM J.
Comput., 20:865-877, 1991.

Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., 2(42):230-265, 1936.

H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.

Ingo Wegener. Optimal lower bounds on the depth of polynomial-size threshold
circuits for some arithmetic functions. Inf. Process. Lett., 46(2):85-87, 1993.

Klaus Weihrauch. Computable Analysis - An Introduction. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2000.

Chee Yap. Fundamental Problems in Algorithmic Algebra. Oxford University
Press, 2000.

Chee Yap. Pi is in log space. manuscript available at
https://cs.nyu.edu/exact /doc/pi-log.pdf, June 2010.

Liang Yu, Decheng Ding, and Rodney Downey. The Kolmogorov complexity
of random reals. Annals of Pure and Applied Logic, 129(1-3):163-180, 2004.

Fuxiang Yu and Ker-I Ko. On logarithmic-space computable real numbers.
Theoretical Computer Science, 469:127-133, 2013.

Doron Zeilberger and Wadim Zudilin. The irrationality measure of 7 is at most
7.103205334137.... Moscow Journal of Combinatorics and Number Theory,
9(4):407-419, 2020.

40

	Introduction
	Arithmetic and Boolean Circuits
	Overview of the New Algorithmic Results
	Improved Uniform Circuits for Division
	A New Division Algorithm
	Consequences for the Counting Hierarchy
	Integer Matrix Powering
	Reducing Sum-of-square-roots to Matrix Powering
	Linear Fractional Transformations (LFTs)

	Computing Bits of Algebraic Numbers
	Mathematical Preliminaries
	Algebraic Numbers in CH5
	Certain Transcendentals in CH5
	Lower Bound

	Open Questions and Discussion

