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Abstract

TheCondorcet criterion (CC) is a classical and well-accepted
criterion for voting. Unfortunately, it is incompatible with
many other desiderata including participation (PAR), half-
way monotonicity (HM), Maskin monotonicity (MM), and
strategy-proofness (SP). Such incompatibilities are often
known as impossibility theorems, and are proved by worst-
case analysis. Previous work has investigated the likelihood
for these impossibilities to occur under certain models, which
are often criticized of being unrealistic.
We strengthen previous work by proving the first set of semi-
random impossibilities for voting rules to satisfy CC and the
more general, group versions of the four desiderata: for any
sufficiently large number of voters n, any size of the group
1 ≤ B ≤

√
n, any voting rule r, and under a large class

of semi-random models that include Impartial Culture, the
likelihood for r to satisfy CC and PAR, CC and HM, CC
and MM, or CC and SP is 1 − Ω( B√

n
). This matches exist-

ing lower bounds for CC&PAR (B = 1) and CC&SP and
CC&HM (B ≤

√
n), showing that many commonly-studied

voting rules are already asymptotically optimal in such cases.

1 Introduction
The Condorcet criterion of voting (Condorcet 1785) is
a classical desideratum that has “nearly universal accep-
tance” (Saari 1995, p. 46). It requires a voting rule to choose
the Condorcet winner—the alternative who beats other alter-
natives in head-to-head competitions—whenever it exists.

Unfortunately, it is well-known that the Condorcet crite-
rion (CC for short) is incompatible with many other desider-
ata (a.k.a. axioms) when the number of alternatives m is at
least 3. Such incompatibilities are often called impossibility
theorems. For example, no voting rule satisfies
• CC and participation (PAR for short, which requires that
no voter has incentive to abstain from voting), whenm ≥
4 (Moulin 1988);

• CC and half-way monotonicity (HM for short, which
requires that no voter has incentive to reverse his/her
vote (Sanver and Zwicker 2009));

• CC and Maskin monotonicity (MM for short, which re-
quires that any voter raising the position of the winner

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

relative to other alternatives does not change the win-
ner (Maskin 1999)), as a special case of the Muller-
Satterthwaite theorem (1977); or

• CC and strategy-proofness (SP for short, which requires
that no agent has incentive to lie), as a special case of the
Gibbard-Satterthwaite theorem (1973; 1975).

The four combinations of axioms are therefore denoted
by CC&PAR, CC&HM, CC&MM, and CC&SP, respec-
tively. Proofs for these impossibility theorems are based on
worst-case analysis, by identifying a single instance of vi-
olation. Therefore, they do not preclude the possibility that
such violations are rare in practice. Indeed, if so, “then one
need not be unduly worried” (Pattanaik 1978).

Studying how rare such impossibilities are in practice has
been a popular and active field of research (Gehrlein and Le-
pelley 2011; Diss and Merlin 2021). Recently, the topic was
investigated using smoothed analysis (Spielman and Teng
2009; Baumeister, Hogrebe, and Rothe 2020; Xia 2020),
which can be viewed as a worst average-case analysis un-
der semi-random models (Feige 2021), following the fre-
quentists’ principle: the likelihood of violation of axioms
is estimated under an adversarially chosen (i.e., worst-case)
distribution for the votes from a given set of distributions.
For example, the likelihood for CC or PAR to be violated
is Θ( 1√

n
) for many voting rules for n voters, under a large

class of semi-random models (Xia 2021b).
While this is good news, as violations vanish at a Θ( 1√

n
)

rate, they are not rare enough when the cost of violation is
high. For example, if a violation of CC or PAR leads to a
revote, whose social cost is Θ(n), then the expected social
cost is Θ(

√
n), which is non-negligible. As another exam-

ple, if everyone complaints on social media about the vio-
lation and gets −1 utility every time when seeing a com-
plaint, then the social cost can be as high asΘ(n2), meaning
that the expected social cost is Ω(n1.5), or in other words,
Ω(
√
n) per person. In such situations, voting rules with rarer

violations are desirable.
But can any voting rule do better, and if so, by how

much? The answer lies in the lower bound on the likeli-
hood of violations (under all rules), or equivalently, the up-
per bound on the likelihood of satisfying the axioms. In this
paper, we address this question for the four combinations of
axioms involving CC mentioned earlier, by proving semi-
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random impossibilities (Xia 2020) under a large class of
semi-random models that are more general and realistic than
the commonly-used i.i.d. uniform distribution, known as the
Impartial Culture (IC). Therefore, the research question of
this paper can be phrased as:

What are the semi-random impossibilities of CC?
More precisely, we consider the more general, group ver-
sions of X ∈ {CC&PAR,CC&HM,CC&MM,CC&SP}.
For any B ≥ 1, any collection of votes P (called a profile),
and any voting rule r, we let X(r, P,B) = 1 if r satisfies
CC at P and no group of at most B voters in P can collabo-
ratively violateX; otherwiseX(r, P,B) = 0. Then, given a
set of distributions Π over the votes and n agents, the semi-
random version of X (Xia 2020, 2021b) is defined as:

X̃min
Π (r, n,B) ! inf!π∈Πn PrP∼!π (X(r, P,B) = 1) (1)

That is, X̃min
Π (r, n,B) is the worst-case (lower bound) on

the probability for X to be 1 under the profile P generated
from a vector !π of n distributions in Πn, one for each agent.
Notice that while agents’ votes are independently generated,
their underlying distributions are adversarially chosen and
can be different. A high X̃min

Π value is desirable, because
it implies that the expected satisfaction of X is high even
under the worst distribution !π ∈ Πn.

1.1 Our Contributions
The main results of this paper are four semi-random im-
possibility theorems: for X = CC&PAR (Theorem 1),
CC&HM (Theorem 2), CC&MM (Theorem 3), or CC&SP
(Theorem 4), any m ≥ 4 (m ≥ 3 for CC&MM and
CC&SP), any sufficiently large n, any 1 ≤ B ≤

√
n, any

voting rule r, and any Π satisfying certain conditions (As-
sumption 1),

X̃min
Π (r, n,B) = 1− Ω

(
B√
n

)

In other words, no voting rule can guarantee that X is
violated with probability smaller than Ω( B√

n
). The results

also imply that every additional member in the group (up to√
n) roughly increase the likelihood of violation by Θ( 1√

n
).

Specifically, when B = Ω(
√
n), the likelihood of violation

does not vanish even in large elections (n→∞).
Our results match the lower bound for CC&PAR when

B = 1 (Xia 2021b) and for CC&SP and CC&HM1 for
every B ≤

√
n (Xia 2022), which are achieved by many

voting rules that satisfies CC, such as Copeland, maximin,
ranked pairs, and Schulze—in contrast, for CC&PAR, posi-
tional scoring rules and STV are much worse, as their satis-
factions are 1−Θ(1) (Xia 2021b).

Good or bad news? On the positive side, it is the first time,
to the best of our knowledge, that the optimal likelihood of
avoiding impossibility theorems that involve CC is known.
It is surprising to us that many existing rules are already opti-
mal. On the negative side, the tightness suggests that there is

1This is because an upper bound for CC&SP is also an upper
bound of CC&HM. We thank Dominik Peters for pointing this out
to us.

little room for improvement, which can be a critical concern
when the cost of violation is high. After all, we believe that
these semi-random impossibility theorems are useful and in-
formative in theory, as they reveal limitations of the optimal
rules, as well as in practice, for the decision maker to choose
the voting rule and decide the policies when a violation of
axioms occurs.

Generality and limitations. The generality of the semi-
random impossibilities proved in this paper largely depends
on the restrictiveness of Assumption 1. We defer the formal
technical definition and discussions to Section 2, and feel
that the assumption is mild in practice, because it is satisfied
by many single-agent preference models, including IC, the
single-agent Mallows and single-agent Plackett-Luce with
bounded parameters (Xia 2020). As a result, the 1−Ω( B√

n
)

upper bound naturally holds under IC (Corollary 1).
The major limitations are, first, the constant in Ω( B√

n
)

may be exponentially large in m, though it does not depend
on n, B, or r. Second, the semi-random model in this paper
assumes that the votes are statistically independent (but not
necessarily identically distributed). These are common limi-
tations/assumptions in preference modeling, see, e.g., (Thur-
stone 1927; Berry, Levinsohn, and Pakes 1995; Train 2009).
Addressing them may require breakthroughs in probability
theory and are important and challenging directions.

Proof overview. The high-level idea is surprisingly sim-
ple: for each X studied in this paper, in step 1, we lever-
age existing proof of the (worst-case) impossibility theorem
to identify sufficiently many profiles where X is violated.
Then, in step 2, we prove that there exists !π ∈ Πn under
which with Ω( B√

n
) probability, a profile falls in the set iden-

tified in step 1.
Nevertheless, the actual calculations are technical chal-

lenging due to the generality of r. In step 1, we introduce
a rotated template by scaling up an existing proof diagram
(e.g., (Peters 2019, Chapter 1)) to identify profiles where X
is violated, and prove that there are sufficiently many such
violation profiles by upper-bounding the number of times
each of them is identified by the rotated template. Then in
step 2, we use an averaging argument over all n! permu-
tations of a carefully chosen !π to convert the problem to
the likelihood about the histogram of profiles, which is then
tackled by applying the point-wise concentration bound (Xia
2021a, Lemma 1).

The idea and techniques have the potential to leverage
other (worst-case) impossibility theorems to their semi-
random versions. See Section 4 for more discussions.

1.2 Related Work and Discussions
Condorcet criterion (CC) is satisfied by many commonly-
studied voting rules. Prominent exceptions are positional
scoring rules (Fishburn 1974b) and multi-round-score-based
elimination rules, such as STV. Much previous work aimed
at theoretically characterizing the Condorcet efficiency,
which is the probability for the Condorcet winner to win
conditioned on its existence (Fishburn 1974c,a; Paris 1975;
Gehrlein and Fishburn 1978; Newenhizen 1992).
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Participation (PAR) was introduced to study voting rules
that avoid the no-show paradox (Fishburn and Brams 1983).
Moulin (1988) proved that when m ≥ 4 and n ≥ 25, no
voting rule satisfies CC and PAR simultaneously. The bound
on n was characterized to be 12 by simplified, SAT-solver-
based proofs (Brandt, Geist, and Peters 2017; Peters 2019).
The likelihood of PAR satisfaction by popular voting rules
under IC was investigated in a series of work as summarized
by Gehrlein and Lepelley (2011, Chapter 4.2.2), and also
more recently by Brandt, Hofbauer, and Strobel (2021).

Half-way monotonicity (HM) was introduced to study vot-
ing rules that avoid the preference reversal paradox, and was
proved to be incompatible with CC (Sanver and Zwicker
2009). Peters (2017) used SAT solvers to characterized the
number of voters under which the impossibility holds.

Maskin monotonicity (MM) was introduced to charac-
terize Nash implementability (Maskin 1999). The Muller-
Satterthwaite theorem (Muller and Satterthwaite 1977) es-
tablishes the equivalence between MM and SP in the worst-
case sense: a voting rule satisfies MM if and only if it satis-
fies SP.

Strategy-proofness (SP) cannot be satisfied by any non-
dictatorial and unanimous voting rules when m ≥ 3, due
to the Gibbard-Satterthwaite theorem (Gibbard 1973; Sat-
terthwaite 1975). SP is stronger than HM, because the latter
uses a special form of manipulation (by reversing the truth-
ful vote). At a high-level, PAR can be viewed as a weak form
of SP that prevents manipulation by abstention, though PAR
is not weaker than SP by definition, because PAR reasons
about elections of different sizes. A quantitative Gibbard-
Satterthwaite theorem (under IC) was proved for m = 3
by Friedgut et al. (2011), and was subsequently developed
in (Dobzinski and Procaccia 2008; Xia and Conitzer 2008;
Isaksson, Kindler, and Mossel 2010), and the case for gen-
eralm was resolved by Mossel and Racz (2015).

Semi-random CC&PAR, CC&HM, CC&MM, and
CC&SP. We are not aware of any semi-random impossibil-
ity theorem about the satisfaction of CC&PAR, CC&HM,
or CC&MM, even under IC. For SP, the quantitative
Gibbard-Satterthwaite theorem by Mossel and Racz (2015)
establishes an 1 − Ω( 1

n67 ) upper bound under IC for any
voting rule that is sufficiently different from dictatorships.
Therefore, the same bound holds for CC&SP for any rule
that satisfies CC. The 1− Ω( B√

n
) upper bound for CC&SP

in our Theorem 4 also applies to all CC rules, which is
stronger than the special case of (Mossel and Racz 2015),
because our bound is lower and works for every B ≤

√
n

under more general models.
For possibility results (i.e., lower bound for optimal

rules), as discussed in Section 1.1, our results imply that
the bounds are tight for CC&PAR (when B = 1) and for
CC&SP (when B ≤

√
n). We conjecture that they are tight

for other axioms studied in this paper with all B ≤
√
n.

Quantitative and semi-random impossibilities. There is a
large body of literature on quantitative impossibility theo-
rems in social choice under IC. For example, quantitative

versions of Arrow’s impossibility theorem (Arrow 1963)
were proved (Kalai 2002; Mossel 2012; Keller 2012; Mos-
sel, Oleszkiewicz, and Sen 2013). In judgement aggregation,
Nehama (2013) and Filmus et al. (2020) developed quantita-
tive characterizations of AND-homomorphism as oligarchy,
whose worst-case version was due to List and Pettit (2002,
2004). Xia (2020) proved a semi-random version of the
ANR impossibility theorem on anonymity and neutrality,
whose worst-case version was proved by Moulin (1983).

Other smoothed/semi-random results. Semi-random
models have been widely adopted to analyze the per-
formance of algorithms in practice in combinatorial
optimization (Blum and Spencer 1995), mathematical
programming (Spielman and Teng 2004), machine learn-
ing (Blum and Dunagan 2002), and algorithmic game theory
(Chung et al. 2008; Psomas, Schvartzman, and Weinberg
2019; Boodaghians et al. 2020; Blum and Gölz 2021), etc.
We refer the readers to recent surveys on semi-random
models (Feige 2021) and general approaches beyond worst-
case analysis (Roughgarden 2021). In addition to the work
discussed above, semi-random/smoothed analysis has been
applied to other social choice problems, e.g., likelihood of
ties (Xia 2021a), complexity of winner determination (Xia
and Zheng 2021), judgement aggregation (Liu and Xia
2022), and fair division (Bai et al. 2022).

2 Preliminaries
For any q ∈ N, we let [q] = {1, . . . , q}. LetA = [m] denote
the set of m ≥ 3 alternatives. Let L(A) denote the set of
all linear orders over A. Let n ∈ N denote the number of
voters (agents). Each voter uses a linear order R ∈ L(A) to
represent his or her preferences, called a vote, where a (R b
means that the agent prefers alternative a to alternative b.
The vector of n voters’ votes, denoted by P , is called a (pref-
erence) profile, sometimes called an n-profile. A voting rule
r maps any profile to a single winner. For any profile P , let
Hist(P ) ∈ Rm!

≥0 denote the anonymized version of P , also
called the histogram of P , which contains the total number
of each linear order in L(A) according to P .

Weighted majority graphs and the Condorcet winner.
For any profile P and any pair of alternatives (a, b), let
P [a ( b] denote the number of votes in P where a is
preferred to b. Let WMG(P ) denote the weighted majority
graph of P , whose vertices areA and whose weight on edge
a → b is wP (a, b) = P [a ( b] − P [b ( a]. The Condorcet
winner of a profile P is the alternative whose outgoing edges
in WMG(P ) are positively weighted.

Axioms. All axioms studied in this paper are per-profile ax-
ioms (Xia 2020), each of which is modeled as a function
X that maps a voting rule r, a profile P , and a group size
B ≥ 1 to {0, 1}, where 0 (respectively 1) means that r vio-
lates (respectively, satisfies) the axiom at P w.r.t. group size
B. Then, the classical (worst-case) satisfaction of the axiom
under r becomesminP X(r, P ).

For any voting rule, any profile P , and any B ≥ 1,
Condorcet criterion is modeled as a function CC such that
CC(r, P,B) = 1 if and only if either (1) there is no Con-
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Figure 1: Proof diagram of CC&PAR impossibility (Peters 2019, Chapter 1). WMGs of the root and the leaves are shown
(where all unweighted edges in the leaves have weight 1). Each edge represents a sequence of operations conditioned on the
winner of the source profile being a highlighted alternative. Condorcet winners in the leaf nodes are highlighted.

dorcet winner under P , or (2) the Condorcet winner is
the winner of P under r. Notice that technically CC does
not depend on B, which is included for notational con-
sistency. Participation is modeled by a function PAR such
that PAR(r, P,B) = 1 if and only if no group of at most
B voters have incentive to abstain from voting; otherwise
PAR(r, P,B) = 0. Formally, PAR(r, P,B) = 0 if and only
if there exists a subvector P ′ of P such that |P ′| ≤ B and
for all R ∈ P ′, r(P ′) (R r(P ). The simultaneous satis-
faction of CC and PAR is denoted by CC&PAR, such that
CC&PAR(r, P,B) = 1 if and only if CC(r, P,B) = 1 and
PAR(r, P,B) = 1.
Due to the space constraint, we focus on presenting the re-

sult about CC&PAR in the main text. The formal definitions
of other axioms, i.e., half-way monotonicity (HM), Maskin
monotonicity (MM), and strategy-proofness (SP), and the
simultaneous satisfaction of CC and them, i.e., CC&HM,
CC&MM, and CC&SP, are deferred to Appendix ?? of the
full version of this paper (Xia 2023).

Proof diagram of the CC&PAR impossibility. We briefly
recall the proof diagram by Peters (2019, Chapter 1) in Fig-
ure 1 to show that when m = 4, no voting rule r sat-
isfies CC&PAR, which will play an important role in our
proofs later. Each edge represents a sequence of operations,
conditioned on the winner of the source profile being high-
lighted. Peters (2019, Chapter 1) proved that a violation of
CC and/or PAR exists in the diagram. Take the leftmost
branch for example. If r(P0) ∈ {1, 2}, then two copies of
[1234] are added one by one. If the winner is no longer 1
or 2 during this process, then PAR is violated. Otherwise,
starting from P{1,2}, if r(P{1,2}) = {1}, then three votes of
[2431] are subtracted one by one. If the winner is not 1 at
any point, then PAR is violated. However, 3 is the Condorcet
winner in the leaf node, which means that CC is violated if
PAR has not been violated on the leftmost branch so far.

Semi-random satisfaction of axioms. Given a per-profile
axiom X , a set Π of distributions over L(A), a voting rule
r, n ∈ N, and a group size B, the semi-random satisfaction
of X under r with n agents, denoted by X̃min

Π (r, n,B), is
defined in Equation (1) in the Introduction. We note that the

“min” in the superscript means that the adversary aims at
minimizing the satisfaction of X .

The semi-random analysis generalizes the classical quan-
titative analysis in social choice (under IC). To see this,
let πuni denote the uniform distribution over L(A) and let
ΠIC = {πuni}. Then, X̃min

ΠIC
becomes the likelihood of satis-

faction of X under IC. Throughout the paper, we make the
following assumptions on Π.
Assumption 1 We assume that Π is
• strictly positive, which means that there exists ε > 0 such
that for every π ∈ Π and every R ∈ L(A), π(R) ≥ ε;

• closed, which means thatΠ is a closed subset of the prob-
ability simplex in Rm!; and

• πuni ∈ CH(Π), where CH(Π) is the convex hull of Π.
The first part of Assumption 1 requires that no distribution
in Π is too “deterministic”. The second part is a mild techni-
cal assumption. The first two parts guarantee that the semi-
random analysis using Π is sufficiently different from the
worst-case analysis. The third part requires that the uniform
distribution πuni is in the convex hull of Π, though πuni itself
may not be in Π.

We believe that Assumption 1 is mild, because it is sat-
isfied by many classical models for preferences. For exam-
ple, it is satisfied by IC, which corresponds to Π = {πuni},
and the models in the following example, which is taken
from (Xia 2020).
Example 1 In the single-agent Mallows with bounded dis-
persion, given ϕ > 0, each distribution is parameterized by
a central ranking W ∈ L(A) and a dispersion ϕ ∈ [ϕ, 1],
such that the probability for R ∈ L(A) is proportional to
ϕKT(R,W ), where KT(R,W ) is the total number of pairwise
differences betweenR andW , i.e., theKendall-Tau distance.

In the single-agent Plackett-Luce with bounded parame-
ters, given ϕ > 0, each distribution is parameterized by a
vector !θ ∈ [ϕ, 1]m such that !θ · !1 = 1. The probability for
R = a1 ( a2 ( · · · ( am is

∏m−1
i=1 (θai/

∑m
#=i θa!).

If ϕ = 0 is allowed in Example 1, then the semi-random
analysis degenerates to worst-case analysis, which trivial-
izes the question.
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! "# ×flip(B×[2431])
$ "# ×flip(B×[4312])! "# ×flip(B×[3124])

$ "# ×flip(B×[1243])! "# ×flip(B×[2431])
! "# ×flip(B×[3124])

$ "# ×flip(B×[4321]) $ "# ×flip(B×[1234])

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

P∈ "!

1 2

3 4

(12±1) !
±
! ± ! (12±1) !
(8±1) !

(8±1) !

Figure 2: The violation template. “±” represents the upper and lower bounds on the weight. & × flip(B × R) represents &
operations, each of which flips B votes that are R. In the leaves, weights are not shown and Condorcet winners are highlighted.

3 Semi-random Impossibility of CC and PAR
Theorem 1 (CC+Participation) For any fixed m ≥ 4, any
Π that satisfies Assumption 1, any voting rule r, any n ≥ 12,
and any 1 ≤ B ≤

√
n,

˜CC&PAR
min

Π (r, n,B) = 1− Ω
(

B√
n

)

The theorem is more general than its classical, worst-case
counterpart, as the likelihood is strictly smaller than 1. It is
also more general than its quantitative counterparts (under
IC), because the latter is a special case of the former, where
Π = {πuni}, as discussed in the last section.

3.1 Proof sketch of Theorem 1

Overview. To illustrate the idea, we make the following as-
sumptions in the proof sketch: (i) m = 4, (ii)

√
n is an inte-

ger, (iii) B |
√
n, and (iv) m! | n. In addition, it suffices to

prove the theorem when n ≥ 12 and is sufficiently large, be-
cause the (worst-case) impossibility theorem holds for every
n ≥ 12 (Brandt, Geist, and Peters 2017; Peters 2019). The
proof for the general case can be found in Appendix ??.

Let PARB denote the group version of participation with

size B. Instead of upper-bounding ˜CC&PAR
min

Π , we will

lower-bound its complement ˜¬(CC&PAR)
max

Π as Ω( B√
n
),

which is the max-semi-random likelihood for CC or PARB

to be violated and is defined similarly to X̃min
Π in (1), except

that inf is replaced by sup. The theorem then follows after
noticing

˜CC&PAR
min

Π (r, n,B) = 1− ˜¬(CC&PAR)
max

Π (r, n,B)
As discussed in Section 1.1, the proof proceeds in two

steps. In step 1, we identify a set of n-profiles, denoted by
Vn,B , where CC or PARB is violated, and prove that Vn,B

contains sufficiently many profiles. This will be achieved by
first scaling the (worst-case) proof diagram in (Peters 2019,
Chapter 1), i.e., Figure 1 in Section 2, by a factor of

√
n

to define a violation template, and then implementing it at
profiles whose histograms are in anO(

√
n) neighborhood of

n
m! ·!1. Each implementation leads to a violation tree, which
contains at least one violation of CC or PARB . Then, we
upper-bound the number of violation trees any profile P ∗ ∈
Vn,B can be on, by considering the rotated trees generated
by the rotated template rooted at P ∗.

Then in step 2, we prove that there exists !π ∈ Πn so that
the likelihood of Vn,B found in step 1 is lower-bounded by
Ω( B√

n
). This is achieved by starting with a !π ∈ Πn such that

∑n
j=1 πj isO(1) away from n

m! ·!1, and then considering the
sum of likelihood of Vn,B under all n! permutations of com-
ponents in !π. This converts the likelihood of Vn,B to the like-
lihood about the histogram of a randomly-generated profile.
Finally, we apply the point-wise concentration bound (Xia
2021a, Lemma 1) to derive the desired lower bound.

Step 1. We first formally define the violation template illus-
trated in Figure 2.

Definition 1 (Violation template) Given any n-profile P
with at least 7

√
n copies of L(A) and any 1 ≤ B ≤

√
n,

a violation template is defined by modifying the proof dia-
gram (Figure 1) as follows, where Rev (R) denote the re-
verse ranking of R, also called the flip of R:
• every +R operation on an edge in Figure 1 is replaced
by a sequence of

√
n

B operations, each of which flips B×
Rev (R) votes and is denoted by flip(B × Rev (R));

• every−R operation on an edge in Figure 1 is replaced by
a sequence of

√
n

B operations, each of which flips B ×R
votes and is denoted by flip(B ×R).

The violation template will be implemented multiple times,
by letting its root to be n-profiles whose WMGs are similar
to the WMG at the root in Figure 1 (scaled by a factor of√
n) and whose histograms are close to n

m! ·!1. Formally, we
define the set of such profiles P , denoted by Pn, as follows.
Let w(e) denote the weight on edge e in the root of Figure 1.

Definition 2 Let Pn denote the set of n-profiles P such that
• for every edge e ∈ [4]× [4], |wP (e)−

√
n ·w(e)| ≤

√
n;
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! "# ×flip(B×[1342]) $ "# ×flip(B×[3124])

! "# ×flip(B×[1234]) ! "# ×flip(B×[1234])

"# ×flip(B×[2431])

! "# ×flip(B×[1243])$ "# ×flip(B×[2431])P*

! "# ×flip(B×[4312])$ "# ×flip(B×[3124])

Figure 3: A rotated template rooted at P ∗. Reversed edges and rankings are highlighted.

• |Hist(P )− n
m! ·!1|∞ ≤ 4

√
n.

We note that any flip operation in the violation template
does not completely specify the set of voters whose votes
should be flipped (except that their votes must be the same
as the designated ranking). Consequently, different combi-
nations of votes when implementing the violation template
lead to different violation trees, formally defined as follows.
Definition 3 (Violation trees) For any P ∈ Pn and any
1 ≤ B ≤

√
n, a violation tree is a tree of 20

√
n

B + 1 profiles
obtained from implementing the violation template rooted at
P . Let TP,B denote the set of all violation trees rooted at P .
For example, in a violation tree rooted at P ∈ Pn,
the leftmost branch of Figure 2 consists of profiles
P, P1, . . . , P 2

√
n

B
, . . . , P ∗

1 , . . . , P
∗
3
√

n
B

, such that each Pj is

obtained from Pj−1 by flipping B votes of [4321] (where
P0 = P ); and each P ∗

j is obtained from P ∗
j−1 by flipping B

votes of [2431] (where P ∗
0 = P 2

√
n

B
). The following claim

lower-bounds the size of TP,B . All missing proofs can be
found in the appendix.
Claim 1 For any P ∈ Pn and any 1 ≤ B ≤

√
n, |TP,B | =

Ω(( n
m! B√B!

)20
√
n).

The next claim states that each violation tree contains a
violation of CC or PARB .
Claim 2 For every P ∈ Pn and every T ∈ TP,B , CC or
PARB is violated in T .
Let Vn,B denote the set of all profiles on violation trees⋃
P∈Pn

TP,B , where CC or PARB is violated. The next
claim upper-bounds the number of violation trees that each
profile in Vn,B can possibly be on.

Claim 3 Every P ∗ ∈ Vn,B is on no more than O(
√
n

B ·
( n
m! B√B!

)20
√
n) violation trees rooted in Pn.

Proof sketch. The proof is done by defining a rotated tem-
plate rooted at every node V in the violation template, which
reverses all edges along the path from the root to V . That is,
an edge V1 → V2 along the path that flips B × R becomes
V1 ← V2 in the rotated template that flips B × Rev (R).
Consequently, the rotated template is a diagram rooted at V .
Because each violation template has 20

√
n

B + 1 nodes, there

are 20
√
n

B + 1 rotated templates. Figure 3 illustrates a ro-
tated template rooted at a node in the leftmost branch. Then,
Claim 3 is proved by upper-bounding the number of rotated
trees obtained by applying the rotated template, which pro-
vides an upper bound on the violation trees rooted in Pn that
contains P ∗. "

We are now ready to lower-bound |Vn,B |. To this end, we
count the number of (profile, violation tree) pairs, denoted
by (P, T ), where T is rooted at a profile in Pn, P is on
T , and CC and/or PARB is violated at P . By Claim 1 and
Claim 2, the total number of such (profile, violation tree)

pairs is at least |Pn| × Ω

((
n

m! B√B!

)20
√
n
)
. By Claim 3,

the total number of such (profile, violation tree) pairs is at

most |Vn,B |×O

(√
n

B ·
(

n
m! B√B!

)20
√
n
)
. Therefore,

|Vn,B |
|Pn|

≥
Ω

((
n

m! B√B!

)20
√
n
)

O

(√
n

B ·
(

n
m! B√B!

)20
√
n
) = Ω

(
B√
n

)
(2)

Step 2. Let !π ∈ Πn be such that
∑n

j=1 πj isO(1) away from
n
m! · !1, which can be defined by rounding as shown in (Xia
2021a). Let Sn denote the set of all permutations over [n].
For any permutation η ∈ Sn, let η(!π) denote the vector of
distributions where the indices are permuted according to
η. That is, η(!π) = (πη(1), . . . ,πη(n)). We prove that there
exists a permutation η over [n], such that

PrP∼η(!π)(P ∈ Vn,B) = Ω(
B√
n
) (3)

It suffices to prove that the sum of the left hand side of (3)
for all η ∈ Sn is at least n! times the right hand side of (3),
that is,

∑
η∈Sn

PrP∼η(!π)(P ∈ Vn,B) = Ω(n! · B√
n
) (4)

Nevertheless, (4) is still hard to prove due to the lack of in-
formation about the profiles in Vn,B . The key insight of our
proof is to convert the left hand side of (4) to probabilities
for the histogram of P to be the histograms of profiles in
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Vn,B . Notice that the left hand side of (4) is equivalent to
∑

η∈Sn

∑
P∗∈Vn,B

PrP∼η(!π)(P = P ∗)

=
∑

P∗∈Vn,B

∑
η∈Sn

PrP∼!π(P = η−1(P ∗))

=
∑

P∗∈Vn,B

∏
R∈L(A)

(n∗
R!)×

PrP∼!π(Hist(P ) = Hist(P ∗)), (5)
where n∗

R is the number of R votes in P ∗. (5) follows the
following claim, whose proof can be found in Appendix ??.
Claim 4 For any P ∗ ∈ Vn,B ,

∑
η∈Sn

PrP∼!π(P = η−1(P ∗)) =
∏

R∈L(A)
(n∗

R!)× PrP∼!π(Hist(P ) = Hist(P ∗))

Because Hist(P ∗) is 7
√
n away from n

m! · !1, we have∏
R∈L(A)(n

∗
R!) = Θ

((
n
m!

)
!
)
. By the point-wise concentra-

tion lemma (Xia 2021a, Lemma 1), the likelihood for the
histogram of P to be any !x in an O(

√
n) neighborhood

of
∑n

j=1 πj is Ω(n(1−m!)/2). Recall that
∑n

j=1 πj is O(1)

away from n
m! ·!1. Therefore, for every P

∗ ∈ Vn,B ,

PrP∼!π(Hist(P ) = Hist(P ∗)) = Ω(n(1−m!)/2) (6)
Combining (2), (5), and (6), the left hand side of (4) becomes

Ω
(
|Vn,B | ·

( n

m!

)
! · n(1−m!)/2

)

=Ω

(
B√
n
·
( n

m!

)
! · |Pn| · n(1−m!)/2

)
(7)

Next, we lower-bound |Pn| in the following claim, whose
proof is in Appendix ??.
Claim 5 |Pn| = Ω( n!

( n
m! )!

· n(m!−1)/2).

Finally, (4) follows after (7) and Claim 5, which completes
the proof for the special case of Theorem 1.

4 Other Semi-random Impossibilities
The proof of Theorem 1 can leverage any proof diagram like
Figure 1, that has the following three high-level features:
1. The diagram consists of constantly many nodes.
2. The diagram works all slightly perturbed root profiles.
3. X is violated in each violation tree (scaled by

√
n) .

Therefore, any existing proof diagram for CC&PAR, e.g.,
the one used in (Brandt, Geist, and Peters 2017), can be used
to prove Theorem 1. We chose the diagram in (Peters 2019,
Chapter 1) for its simplicity.

In this section, we prove semi-random impossibilities
for the other three combinations of axioms, i.e., CC&HM,
CC&MM, and CC&SP, by leveraging existing proof dia-
grams that have the three aforementioned features.
Theorem 2 (CC+half-way monotonicity) For any fixed
m ≥ 4, any Π that satisfies Assumption 1, any voting rule r,
any n ≥ 24, and any 1 ≤ B ≤

√
n,

˜CC&HM
min

Π (r, n,B) = 1− Ω
(

B√
n

)

The proof leverages the same diagram (Peters 2019, Chap-
ter 1) as in the proof of Theorem. The only difference is to
verify that it has the third feature above. The full proof can
be found in Appendix ??.
Theorem 3 (CC+Maskin monotonicity) For any fixed
m ≥ 3, any Π that satisfies Assumption 1, any voting rule
r, any n ∈ N, and any 1 ≤ B ≤

√
n,

˜CC&MM
min

Π (r, n,B) = 1− Ω
(

B√
n

)

The theorem is proved by leveraging a simple proof diagram
rooted at profiles that have a (Condorcet) cycle over 3 alter-
natives in the WMG, where votes are changed to make cer-
tain alternatives the Condorcet winner in the leaves. The full
proof can be found in Appendix ??.
Theorem 4 (CC+strategy-proofness) For any fixed m ≥
3, any Π that satisfies Assumption 1, any voting rule r, any
n ∈ N, and any 1 ≤ B ≤

√
n,

C̃C&SP
min

Π (r, n,B) = 1− Ω
(

B√
n

)

When m ≥ 4, Theorem 4 follows after Theorem 2, as SP is
stronger than HM. The proof (for all m ≥ 3) uses the same
diagram for Theorem 3 and can be found in Appendix ??.

Recall that IC corresponds to Π = {πuni}. Therefore, all
semi-random impossibilities in this paper hold for IC.
Corrollary 1 (Quantitative Impossibilities under IC)
For any X ∈ {CC&PAR,CC&HM,CC&MM,CC&SP},
anym ≥ 4 (m ≥ 3 for CC&MM and CC&SP), any voting
rule r, any sufficiently large n ∈ N, and any 1 ≤ B ≤

√
n,

PrP∼IC X(r, P,B) = 1− Ω
(

B√
n

)

Corollary 1 also implies that for any voting rule that satisfies
CC, the likelihood for r to satisfy PAR, HM, MM, or SP,
respectively, is Ω

(
B√
n

)
under IC.

5 Summary and Future Work
We prove the first set of semi-random impossibility results
involving CC, showing that many existing voting rules are
already optimal for CC&PAR (for B = 1) and CC&SP
(for every B ≤

√
n). The proof technique has potential

to strengthen other worst-case impossibilities to their semi-
random variants. For future work, we conjecture that all
bounds for the axioms are tight and can be achieved by
many rules that satisfy CC. How to strengthen the theo-
rems by studying variable m and allowing ε to depend on
n are natural open questions. Other promising directions in-
clude addressing the limitations discussed in Section 1.2 and
proving semi-random variants of other worst-case impos-
sibility results, such as Arrow’s, Gibbard-Satterthwait (for
non-CC rules), and various impossibility theorems in judge-
ment aggregation. The proof technique developed in this pa-
per (see Section 4) does not seem to be directly applica-
ble, because existing proofs use diagrams that containsΘ(n)
nodes. Studying the empirical likelihood of the impossibil-
ity results in practice, for example on Preflib data (Mattei
and Walsh 2013) and considering probabilistic versions of
domain restrictions are promising future directions as well.
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