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Abstract. We consider the Cauchy problem for the inhomogeneous incompressible log-
arithmical hyper-dissipative Navier-Stokes equations in higher dimensions. By means of
the Littlewood-Paley techniques and new ideas, we establish the existence and uniqueness
of the global strong solution with vacuum over the whole space Rn. Moreover, we also
obtain the exponential decay-in-time of the strong solution. Our result holds without
any smallness on the initial data and the initial density is allowed to have vacuum.

1. Introduction

This paper is concerned with the unique global strong solution with vacuum to the
generalized inhomogeneous incompressible Navier-Stokes equations of the form:

∂tρ+ div(ρu) = 0, x ∈ Rn, t > 0,

∂t(ρu) + div(ρu⊗ u) + L2u+∇p = 0,

∇ · u = 0,

(1.1)

where ρ = ρ(x, t) denotes the density, u = u(x, t) ∈ Rn the fluid velocity and p(x, t) the

scalar pressure; L is multiplier operator with the symbol |ξ|
1
2+n

4

g(ξ) , namely

L̂u(ξ) = |ξ|
1
2
+n

4

g(ξ)
û(ξ), (1.2)

where g = g(ξ) > 0 is a non-decreasing, radially symmetric function. We consider the
Cauchy problem of (1.1) with (ρ, u) vanishing at infinity and satisfying the following initial
condition:

ρ(x, 0) = ρ0(x), ρu(x, 0) = ρ0u0(x), (1.3)

where ρ0(x) and u0(x) are the prescribed initial values for the density and velocity such
that ∇ · u0 = 0.

When L =
√
−∆, the system (1.1) becomes the standard inhomogeneous incompressible

Navier-Stokes equations, which can describe the motion of two miscible and incompress-
ible fluids with different densities and can also describe the motion of the fluid containing
a melted substance. For detailed derivation and physical meaning of this system, we refer
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to [23]. On account of the physical importance and the mathematical challenges, many
physicists and mathematicians have investigated the standard inhomogeneous incompress-
ible Navier-Stokes equations. Let us recall some known results for this system. When the
initial density is strictly positive, Kazhikov [19] proved that the system has at least one
global weak solution in the energy space. Later, Antontesv-Kazhikov-Monakhov [3] and
Ladyzhenskaya-Solonnikov [20] gave the first result on the local existence and uniqueness
of strong solutions, while globally defined in two-dimensional case. Similar results were
established in a series of works; see for example [1,2,6,9–12,25,26]. However, for the initial
data that permits the region of vacuum, the problem becomes much more complicated,
especially the higher regularity is difficult to derive since ∂tu in the momentum equations
is multiplied by ρ possibly vanishing in some region. Simon [27] first proved the global
existence of weak solutions with finite energy, which was later extended later by Lions [23]
to the case of density-dependent viscosity. Under the initial compatibility assumption,
Choe-Kim [7] successfully established the local existence of the strong solution in dimen-
sions three, which was later improved by Craig-Huang-Wang [8] for global strong small
solutions (see [15,17,33] for the case of density-dependent viscosity). The global existence
of strong solution with the general initial data in dimension two was proved by [16, 24]
for the initial-boundary value problem and the Cauchy problem. However, the global ex-
istence of strong or smooth solutions with general initial data in higher dimensions is full
of challenges and remains an outstanding open problem. As a matter of fact, one notable
difficulty is that the Laplacian dissipation is insufficient to control the nonlinearity when
applying the standard techniques to establish global a priori bounds.

When the hyper-dissipation (1.2) is considered, the global strong solutions to the Navier-
Stokes equations (1.1) have been studied in the literature on both homogeneous and in-
homogeneous fluids. When ρ is a constant, the system (1.1) becomes the homogeneous
incompressible Navier-Stokes equations, which admit a unique global smooth solution as
long as g(ξ) ≡ 1 in (1.2). This result dates back to Lions’s book [22] (see also [18, 31]).
In Barbato-Morandin-Romito [5] and Tao [28] the global regularity of the Navier-Stokes
equations with logarithmically supercritical hyper-dissipation was obtained. Recently, sev-
eral works are devoted to generalizing these results of [5, 28] to the inhomogeneous case.
More precisely, Fang-Zi [13] established the global well-posedness for the system (1.1) with
g(ξ) ≡ 1 by using the arguments in [10]. Following the work [13], Han-Wei [14] attempt-
ed to prove the corresponding logarithmically improved result of the system (1.1) with

g(ξ) = ln
1
4 (e+ |ξ|2). It should be noted that both [13] and [14] require the restriction that

the initial density ρ0 is bounded away from zero, which implies that the density cannot
contain vacuum state. Very recently, in Wang-Ye [30] we established the unique global
strong solution with vacuum to the Cauchy problem of system (1.1) under the assumption
g(ξ) ≡ 1 with n ≥ 3. Moreover, the corresponding strong solution admits the exponential
decay-in-time property. The goal of this paper is to improve the global existence result

of [30] by reducing the dissipation (−∆)
1
2
+n

4 through a logarithmic factor.
We first give the definition of weak and strong solutions to the system (1.1).

Definition 1.1. We call (ρ, u) a weak solution to the system (1.1) if (ρ, u) satisfies (1.1) in
the sense of distributions. Moreover, a weak solution is called strong if all the derivatives
involved in the system (1.1) are regular distributions and the system (1.1) holds almost
everywhere in Rn × (0, T ).
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Now our main result of this paper can be stated as follows.

Theorem 1.1. Assume that n ≥ 3 and the initial data (ρ0, u0) satisfies the following
conditions:

0 ≤ ρ0 ∈ L
2n
n+2 (Rn) ∩ L∞(Rn), ∇ρ0 ∈ Lq(Rn),

∇ · u0 = 0, Lu0 ∈ L2(Rn),
√
ρ0u0 ∈ L2(Rn),

with some q > 4n
n+6 . Let g = g(ξ) > 0 be a non-decreasing, radially symmetric function

and satisfy ∫ ∞

1

dτ

τg4(τ)
= ∞. (1.4)

Then the Navier-Stokes system (1.1) has a unique global strong solution (ρ, u) satisfying,
for any given T > 0 and for any 0 < τ < T ,

0 ≤ ρ ∈ L∞(0, T ;L
2n
n+2 (Rn) ∩ L∞(Rn)), ∇ρ ∈ L∞(0, T ;Lq(Rn)),

√
ρu, Lu ∈ L∞(0, T ;L2(Rn)),

√
ρ∂tu, L2u ∈ L∞(τ, T ;L2(Rn)),

∂tLu, L2u ∈ L2(τ, T ;L2(Rn)), p ∈ L∞(τ, T ;H1(Rn)),

L2u, ∇p ∈ L2(τ, T ;Lr(Rn)), ∀ r ∈
(
2, 4n

n−2

)
.

(1.5)

Moreover, there exists some positive constant γ depending only on ∥ρ0∥
L

2n
n+2 ∩L∞

such that,

for all t ≥ 1,

∥Lu(t)∥2L2 + ∥√ρ∂tu(t)∥2L2 + ∥L2u(t)∥2L2 + ∥p(t)∥2H1 ≤ C0e
−γt,

where C0 depends only on ∥ρ0∥
L

2n
n+2∩L∞

, ∥√ρ0u0∥L2 and ∥Lu0∥L2.

Remark 1.1. Some typical examples of g, besides g ≡ 1, satisfying (1.4) include

g(τ) =
[
ln(1 + τ)

] 1
4 ;

g(τ) =
[
ln(1 + τ) ln(1 + ln(1 + τ))

] 1
4 ;

g(τ) =
[
ln(1 + τ) ln(1 + ln(1 + τ)) ln(1 + ln(1 + ln(1 + τ)))

] 1
4 .

We now explain the difficulties and strategy for the proof of Theorem 1.1. Since the
local existence of strong solutions to the system (1.1) follows from the works in literature
such as [7, 21, 30], our efforts are devoted to obtaining global a priori estimates on strong
solutions in suitable higher-order norms. To this end, we may encounter several difficulties.
The first one is that the density has no positive lower bound and the velocity has no
smallness or compatibility conditions. Consequently, new ideas are needed to overcome
these difficulties. First, thanks to the estimate on the density, we have the following
observation: for ε < n+2

4 ,

∥√ρu∥L2 ≤ ∥√ρ∥
L

4n
n+2−4ε

∥u∥
L

4n
n−2+4ε

≤ C∥ρ0∥
1
2

L
2n
n+2 ∩L∞

∥Lu∥L2 ,
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which implies that ∥√ρu(t)∥2L2 decays with the rate of e−γt for some γ > 0 depending only
on ∥ρ0∥

L
2n
n+2∩L∞

. Unfortunately, the above energy estimate is insufficient to complete the

proof of Theorem 1.1 as it is far from reaching the critical level∫ t

0
∥Λ1+n

2 u(τ)∥2L2 dτ < ∞. (1.6)

In order to overcome this difficulty, the next natural step is to increase the regularity
of u. More precisely, invoking the Littlewood-Paley technique, we are able to show the
inequality of the following form

d

dt
∥Lu(t)∥2L2 + ∥√ρ∂tu∥2L2 ≤ C∥Lu∥2L2g

4
(
[e+ ∥Lu∥2L2 ]

1
σ

)
∥Lu∥2L2 + C∥Lu∥4L2 ,

which along with (1.4) and the basic energy estimate yield the following key estimate:

∥Lu(t)∥2L2 +

∫ t

0
(∥L2u(τ)∥2L2 + ∥√ρ∂τu(τ)∥2L2) dτ < ∞. (1.7)

We point out that the similar arguments in dealing with the logarithmic reduction type
case were also used for tackling other fluid dynamic equations; we refer the readers to
our recent papers [29, 32]. Moreover, based on the proof of (1.7), we show the following
exponential decay estimate that improves (1.7),

eγt∥Lu(t)∥2L2 +

∫ t

0
(eγt∥L2u(τ)∥2L2 + eγt∥√ρ∂τu(τ)∥2L2) dτ < ∞.

At this stage, we are still not able to show that (1.6) is valid via (1.7), because (1.7)
includes a logarithmic reduction. To solve this difficulty, we appeal to derive the bound
of ∥√ρ∂tu(t)∥2L2 . However, it is hard to achieve this goal due to the absence of the
compatibility condition for the initial velocity u0. To overcome this difficulty, we need to
derive the following crucial time-weighted estimate:

t∥√ρ∂tu(t)∥2L2 +

∫ t

0
τ∥L∂τu(τ)∥2L2 dτ ≤ C0, ∀ t ≥ 0, (1.8)

where the positive constant C0 is independent of the initial data of
√
ρ∂tu. Consequently,

(1.8) allows us to derive that for any t > 0,

t∥L2u∥2L2 + t∥p(t)∥2H1 ≤ C0,∫ t

0
(τ∥L2u(τ)∥2Lr + τ∥∇p(τ)∥2Lr) dτ ≤ C0, ∀ r ∈

[
2,

4n

n− 2

)
.

Moreover, for any t ≥ 1, the following estimates hold true,

eγt∥√ρ∂tu(t)∥2L2 +

∫ t

1
eγτ∥L∂τu(τ)∥2L2 dτ ≤ C0,

eγt∥L2u∥2L2 + eγt∥p(t)∥2H1 ≤ C0,∫ t

1
(eγτ∥L2u(τ)∥2Lr + eγτ∥∇p(τ)∥2Lr) dτ ≤ C0, ∀ r ∈

(
2,

4n

n− 2

)
.

We remark that all these exponential decay-in-time estimates and the time-weighted es-

timate (1.8) allow us to derive the desired uniform-in-time bound of
∫ t
0 ∥∇u(τ)∥L∞ dτ .
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Once this key bound is at our disposal, we can continue to complete the proof of Theorem
1.1.

The rest of the paper is organized as follows. In Section 2, we shall give the detailed
proof of the main results in Theorem 1.1 through energy estimates. The Appendix will
recall some basic information on the Besov spaces.

2. Energy Estimates and the Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof consists of the local
existence, basic energy estimates, a priori estimates that are uniform in time, exponential
decay estimates, gradient estimates, and uniqueness.

We shall use C to denote a generic positive constant that may change from line to line.
For any two quantities A and B, we use A ≈ B to denote the inequality C−1B ≤ A ≤ CB
for a generic positive constant C.

2.1. Local existence and basic energy estimates. Inspired by the previous works
[7,21], one may obtain the local existence and uniqueness of strong solution, and we omit
the proof.

Lemma 2.1 (Local strong solution). Under the conditions in Theorem 1.1, there exists
a small time T ∗ and a unique strong solution (ρ, u) to the system (1.1) in Rn × (0, T ∗)
satisfying (1.5).

With the local well-posedness at hand, it suffices to establish a priori estimates for
strong solutions for any given t > 0. We begin with the basic energy estimates.

Lemma 2.2. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the system
(1.1) admits the following bound for any t ≥ 0,

eγt∥√ρu(t)∥2L2 +

∫ t

0
eγτ∥Lu(τ)∥2L2 dτ ≤ ∥√ρ0u0∥2L2 , (2.1)

∥ρ(t)∥
L

2n
n+2 ∩L∞

≤ ∥ρ0∥
L

2n
n+2∩L∞

, (2.2)

where γ depends on ∥ρ0∥
L

2n
n+2∩L∞

.

Proof. First, the non-negativeness of ρ is a direct consequence of the maximum principle
and ρ0 ≥ 0. Multiplying (1.1)1 by |ρ|p−2ρ and integrating it over Rn, one has

d

dt
∥ρ(t)∥Lp = 0,

which implies

∥ρ(t)∥Lp ≤ ∥ρ0∥Lp .

Letting p → ∞, it yields

∥ρ(t)∥L∞ ≤ ∥ρ0∥L∞ .

Thus (2.2) follows. We multiply the equation (1.1)2 by u, integrate it over Rn and use
Plancherel’s theorem to obtain

1

2

d

dt
∥√ρu(t)∥2L2 + ∥Lu∥2L2 = 0.
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According to the assumptions on g (more precisely, g grows logarithmically), one may
conclude that for any fixed ε > 0, there exists C = C(ε) satisfying

g(ξ) ≤ C|ξ|ε. (2.3)

As a matter of fact, throughout our arguments, ε > 0 can be arbitrarily small. In our
proof, it actually needs to satisfy ε < F (n), where the function F (n) > 0 depends only
the space dimensions n. Without loss of generality, we may assume ε < 1

8 . Thanks to
(2.3), it follows that

∥Λ
1
2
+n

4
−εu∥2L2 =

∫
Rn

g2(ξ)

|ξ|2ε
|ξ|1+

n
2

g2(ξ)
|û(ξ)|2 dξ

≤ C

∫
Rn

|ξ|1+
n
2

g2(ξ)
|û(ξ)|2 dξ

= C∥Lu∥2L2 ,

which implies that, for ε < n+2
4 ,

∥√ρu∥L2 ≤ ∥√ρ∥
L

4n
n+2−4ε

∥u∥
L

4n
n−2+4ε

≤ C⋆∥ρ∥
1
2

L
2n

n+2−4ε
∥Λ

1
2
+n

4
−εu∥L2

≤ C⋆∥ρ0∥
1
2

L
2n
n+2∩L∞

∥Lu∥L2 ,

where C⋆ = C⋆(n) > 0 is a constant. Taking γ as

γ =
1

C2
⋆∥ρ0∥

L
2n
n+2∩L∞

,

one has

d

dt
∥√ρu(t)∥2L2 + γ∥√ρu(t)∥2L2 + ∥Lu∥2L2 = 0.

Then the Gronwall inequality yields the desired estimate (2.1). This completes the proof
of Lemma 2.2. �

2.2. Uniform estimates in time. Next we will establish the time-independent estimate
on the L∞(0, T ;L2(Rn))-norm of Lu, which plays a key role in proving our main result.

Lemma 2.3. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the system
(1.1) admits the following bound for any t ≥ 0,

∥Lu(t)∥2L2 +

∫ t

0
(∥L2u(τ)∥2L2 + ∥√ρ∂τu(τ)∥2L2) dτ ≤ C0, (2.4)

where the constant C0 depends only on the initial data.

Proof. Multiplying (1.1)2 by ∂tu, using ∇ · u = 0 and integrating by parts, one has

1

2

d

dt
∥Lu(t)∥2L2 + ∥√ρ∂tu∥2L2 = −

∫
Rn

ρu · ∇u · ∂tu dx.
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In view of the Gagliardo-Nirenberg inequality, it follows that

−
∫
Rn

ρu · ∇u · ∂tu dx ≤∥√ρ∥L∞∥u · ∇u∥L2∥√ρ∂tu∥L2

≤C∥ρ0∥
1
2
L∞∥u∥

L
4n
n−2

∥∇u∥
L

4n
n+2

∥√ρ∂tu∥L2

≤C∥Λ
1
2
+n

4 u∥2L2∥
√
ρ∂tu∥L2 .

We thus get

1

2

d

dt
∥Lu(t)∥2L2 + ∥√ρ∂tu∥2L2 ≤ C∥Λ

1
2
+n

4 u∥2L2∥
√
ρ∂tu∥L2 . (2.5)

Now let us denote

A(t) := ∥Λ
1
2
+n

4 u∥2L2 .

By the high-low frequency technique, we derive

A(t) ≤ ∥SNΛ
1
2
+n

4 u∥2L2 +
∑
j≥N

∥∆jΛ
1
2
+n

4 u∥2L2 ,

where the operators Sj and ∆j are defined in the Appendix and N will be specified later.
By Plancherel’s theorem and Sobolev’s embedding, we obtain

∥SNΛ
1
2
+n

4 u∥2L2 =C∥χ(2−Nξ)|ξ|
1
2
+n

4 û(ξ)∥2L2

=C
∥∥∥χ(2−Nξ)g(ξ)

|ξ|
1
2
+n

4

g(ξ)
û(ξ)

∥∥∥2
L2

≤Cg2(2N )∥Lu∥2L2 ,

where χ and φ are associated with the definition of Besov spaces (see Appendix for details).
By Lemma A.1, it follows that, for 0 < σ < min{n+2−8ε

4 , n+2−12ε
8 } with 0 < ε < n+2

12 ,∑
j≥N

∥∆jΛ
1
2
+n

4 u∥2L2 ≤C
∑
j≥N

2−2jσ∥∆jΛ
1
2
+n

4
+σu∥2L2

≤C
∑
j≥N

2−2jσ∥Λ
1
2
+n

4
+σu∥2L2

≤C2−2Nσ

∫
Rn

|ξ|1+
n
2
+2σ|û(ξ)|2 dξ

≤C2−2Nσ

∫
|ξ|≤r

|ξ|2σg2(ξ) |ξ|
1+n

2

g2(ξ)
|û(ξ)|2 dξ

+ C2−2Nσ

∫
|ξ|≥r

g4(ξ)

|ξ|1+
n
2
−2σ

|ξ|2+n

g4(ξ)
|û(ξ)|2 dξ

≤C2−2Nσ

(
r2σg2(r)∥Lu∥2L2 +

g4(r)

r1+
n
2
−2σ

∥L2u∥2L2

)
≤C2−2Nσ

(
r2σ+2ε∥Lu∥2L2 +

1

r1+
n
2
−2σ−4ε

∥L2u∥2L2

)
≤C2−2Nσ∥Lu∥2−λ

L2 ∥L2u∥λL2 ,
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where we have fixed r as

r =

(
∥L2u∥L2

∥Lu∥L2

) 4
2+n−4ε

,

and

λ =
8(σ + ε)

2 + n− 4ε
∈ (0, 1).

As a result, we arrive at

A(t) ≤ Cg2(2N )∥Lu∥2L2 + C2−2Nσ∥Lu∥2−λ
L2 ∥L2u∥λL2 . (2.6)

Let us rewrite the equation (1.1)2 as the Stokes type{
L2u+∇p = −ρ∂tu− ρu · ∇u,

∇ · u = 0.
(2.7)

It thus follows that

∥L2u∥L2 ≤C∥ρ∂tu∥L2 + C∥ρu · ∇u∥L2

≤C∥√ρ∥L∞∥√ρ∂tu∥L2 + C∥ρ∥L∞∥u · ∇u∥L2

≤C∥√ρ∂tu∥L2 + C∥u∥
L

4n
n−2

∥∇u∥
L

4n
n+2

≤C∥√ρ∂tu∥L2 + C∥Λ
1
2
+n

4 u∥2L2 , (2.8)

which further implies

∥L2u∥L2 ≤ C∥√ρ∂tu∥L2 + CA(t). (2.9)

Combining (2.6) and (2.9), we deduce

A(t) ≤Cg2(2N )∥Lu∥2L2 + C2−2Nσ∥Lu∥2−λ
L2 (∥√ρ∂tu∥λL2 +Aλ(t))

≤1

2
A(t) + Cg2(2N )∥Lu∥2L2 + C2−2Nσ∥Lu∥2−λ

L2 ∥√ρ∂tu∥λL2 + C2−
2Nσ
1−λ ∥Lu∥

2−λ
1−λ

L2 ,

which implies

A(t) ≤ Cg2(2N )∥Lu∥2L2 + C2−2Nσ∥Lu∥2−λ
L2 ∥√ρ∂tu∥λL2 + C2−

2Nσ
1−λ ∥Lu∥

2−λ
1−λ

L2 . (2.10)

This along with (2.9) gives

∥L2u∥L2 ≤C∥√ρ∂tu∥L2 + Cg2(2N )∥Lu∥2L2 + C2−2Nσ∥Lu∥2−λ
L2 ∥√ρ∂tu∥λL2

+ C2−
2Nσ
1−λ ∥Lu∥

2−λ
1−λ

L2 . (2.11)

Substituting (2.10) into (2.5) ensures that

1

2

d

dt
∥Lu(t)∥2L2 + ∥√ρ∂tu∥2L2 ≤Cg2(2N )∥Lu∥2L2∥

√
ρ∂tu∥L2

+ C2−2Nσ∥Lu∥2−λ
L2 ∥√ρ∂tu∥1+λ

L2

+ C2−
2Nσ
1−λ ∥Lu∥

2−λ
1−λ

L2 ∥√ρ∂tu∥L2 . (2.12)

Now taking N such that

22Nσ ≈ e+ ∥Lu∥L2 , (2.13)



GLOBAL SOLUTION AND EXPONENTIAL DECAY OF NAVIER-STOKES EQUATIONS 9

we deduce from (2.12) that

1

2

d

dt
∥Lu(t)∥2L2 + ∥√ρ∂tu∥2L2 ≤1

2
∥√ρ∂tu∥2L2 + Cg4

(
[e+ ∥Lu∥2L2 ]

1
σ

)
∥Lu∥4L2

+ C∥Lu∥2L2 . (2.14)

We therefore obtain

d

dt
(e+ ∥Lu(t)∥2L2) + ∥√ρ∂tu∥2L2 ≤C∥Lu∥2L2g

4
(
[e+ ∥Lu∥2L2 ]

1
σ

)
(e+ ∥Lu∥2L2)

+ C∥Lu∥2L2 .

Making use of (2.1) and setting

X(t) := e+ ∥Lu(t)∥2L2 ,

one derives

X(t) +

∫ t

0
∥√ρ∂τu(τ)∥2L2 dτ ≤ C0 + C

∫ t

0
∥Lu(τ)∥2L2g

4
(
X

1
σ (τ)

)
X(τ) dτ, (2.15)

where the constant C0 depends only on initial data, independent of t. We denote

Z(t) := C0 + C

∫ t

0
∥Lu(τ)∥2L2g

4
(
X

1
σ (τ)

)
X(τ) dτ, Z(0) = C0 ≥ e,

then we obtain

d

dt
Z(t) = C∥Lu(t)∥2L2g

4
(
X

1
σ (t)

)
X(t) ≤ C∥Lu(t)∥2L2g

4
(
Z

1
σ (t)

)
Z(t).

Therefore, it follows that

σ

∫ Z
1
σ (t)

Z
1
σ (0)

dτ

τg4(τ)
=

∫ Z(t)

Z(0)

dτ

τg4(τ
1
σ )

≤ C

∫ t

0
∥Lu(τ)∥2L2 dτ.

Recalling ∫ ∞

1

dτ

τg4(τ)
= ∞, C

∫ t

0
∥Lu(τ)∥2L2 dτ ≤ C0,

one has,

Z(t) ≤ C0.

Thanks to (2.15), we also have

X(t) +

∫ t

0
∥√ρ∂τu(τ)∥2L2 dτ ≤ C0.

Then (2.13) and (2.11) yield ∫ t

0
∥L2u(τ)∥2L2 dτ ≤ C0.

We thus conclude the proof of Lemma 2.3. �



10 DEHUA WANG AND ZHUAN YE

2.3. Decay estimates. Lemma 2.3 enables us to derive the following exponential decay
estimate, which improves (2.4).

Lemma 2.4. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the system
(1.1) admits the following bound for any t ≥ 0,

eγt∥Lu(t)∥2L2 +

∫ t

0
(eγt∥L2u(τ)∥2L2 + eγt∥√ρ∂τu(τ)∥2L2) dτ ≤ C0, (2.16)

where the constant C0 depends only on the initial data.

Proof. Recalling (2.14), one has

d

dt
∥Lu(t)∥2L2 + ∥√ρ∂tu∥2L2 ≤ Cg4

(
[e+ ∥Lu∥2L2 ]

1
σ

)
∥Lu∥4L2 + C∥Lu∥2L2 .

Using (2.3) and (2.4), we derive

d

dt
∥Lu(t)∥2L2 + ∥√ρ∂tu∥2L2 ≤ C∥Lu∥4L2 + C∥Lu∥2L2 .

This further gives

d

dt
(eγt∥Lu(t)∥2L2) + eγt∥√ρ∂tu∥2L2 ≤γeγt∥Lu(t)∥2L2 + C∥Lu∥2L2(e

γt∥Lu∥2L2)

+ Ceγt∥Lu∥2L2 .

In view of (2.1), we get by integrating it in time

eγt∥Lu(t)∥2L2 +

∫ t

0
eγτ∥√ρ∂τu(τ)∥2L2 dτ ≤ C0 + C

∫ t

0
∥Lu(τ)∥2L2(e

γτ∥Lu(τ)∥2L2) dτ.

By means of the Gronwall inequality, we have

eγt∥Lu(t)∥2L2 +

∫ t

0
eγτ∥√ρ∂τu(τ)∥2L2 dτ ≤ C0.

Noticing (2.13) and (2.11), we verify that∫ t

0
eγt∥L2u(τ)∥2L2 dτ ≤ C0.

This completes the proof of Lemma 2.4. �

The following lemma is crucial to the derivation of the higher order estimates of the
solutions.

Lemma 2.5. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the system
(1.1) admits the following bounds for any t ≥ 0,

t∥√ρ∂tu(t)∥2L2 +

∫ t

0
τ∥L∂τu(τ)∥2L2 dτ ≤ C0, (2.17)

t∥L2u∥2L2 + t∥p(t)∥2H1 ≤ C0, (2.18)∫ t

0
(τ∥L2u(τ)∥2Lr + τ∥∇p(τ)∥2Lr) dτ ≤ C0, ∀ r ∈

[
2,

4n

n− 2

)
. (2.19)
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Moreover, for any t ≥ 1, the following estimates hold true

eγt∥√ρ∂tu(t)∥2L2 +

∫ t

1
eγτ∥L∂τu(τ)∥2L2 dτ ≤ C0, (2.20)

eγt∥L2u∥2L2 + eγt∥p(t)∥2H1 ≤ C0, (2.21)∫ t

1
(eγτ∥L2u(τ)∥2Lr + eγτ∥∇p(τ)∥2Lr) dτ ≤ C0, ∀ r ∈

(
2,

4n

n− 2

)
, (2.22)

where the constant C0 depends only on the initial data.

Proof. Applying ∂t to the equation (1.1)2, one has

ρ∂ttu+ ρu · ∇∂tu+ L2∂tu+∇∂tp = −∂tρ∂tu− ∂t(ρu) · ∇u. (2.23)

We get by multiplying (2.23) by ∂tu and using the equation (1.1)1 that

1

2

d

dt
∥√ρ∂tu(t)∥2L2 + ∥L∂tu∥2L2

= −
∫
Rn

∂tρ∂tu · ∂tu dx−
∫
Rn

∂t(ρu) · ∇u · ∂tu dx

= −2

∫
Rn

ρu · ∇∂tu · ∂tu dx−
∫
Rn

ρ∂tu · ∇u · ∂tu dx−
∫
Rn

ρu · ∇(u · ∇u · ∂tu) dx

=: J1 + J2 + J3. (2.24)

By (2.3), we have

∥Λ
1
2
+n

4
−ε∂tu∥2L2 =

∫
Rn

g2(ξ)

|ξ|2ε
|ξ|1+

n
2

g2(ξ)
|∂̂tu(ξ)|2 dξ

≤C

∫
Rn

|ξ|1+
n
2

g2(ξ)
|∂̂tu(ξ)|2 dξ

=C∥L∂tu∥2L2 . (2.25)

Similarly, it follows that

∥Λ1+n
2
−2εu∥2L2 ≤ C∥L2u∥2L2 .

By means of (2.25), we deduce for 0 < ε < n−2
4 ,

J1 ≤C∥√ρ∥L∞∥√ρ∂tu∥L2∥∇∂tu∥
L

4n
n+2+4ε

∥u∥
L

4n
n−2−4ε

≤C∥√ρ∂tu∥L2∥Λ
1
2
+n

4
−ε∂tu∥L2∥Λ

1
2
+n

4
+εu∥L2

≤C∥√ρ∂tu∥L2∥L∂tu∥L2∥Λ
1
2
+n

4
+εu∥L2

≤ 1

16
∥L∂tu∥2L2 + C∥Λ

1
2
+n

4
+εu∥2L2∥

√
ρ∂tu∥2L2 ,

J2 ≤C∥√ρ∥L∞∥√ρ∂tu∥L2∥∇u∥
L

4n
n+2−4ε

∥∂tu∥
L

4n
n−2+4ε

≤C∥√ρ∂tu∥L2∥Λ
1
2
+n

4
+εu∥L2∥Λ

1
2
+n

4
−ε∂tu∥L2

≤C∥√ρ∂tu∥L2∥L∂tu∥L2∥Λ
1
2
+n

4
+εu∥L2
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≤ 1

16
∥L∂tu∥2L2 + C∥Λ

1
2
+n

4
+εu∥2L2∥

√
ρ∂tu∥2L2 .

Similarly, one can check that

J3 ≤
∣∣∣∣∫

Rn

ρu · ∇u · ∇u · ∂tu dx
∣∣∣∣+ ∣∣∣∣∫

Rn

ρu · u · ∇2u · ∂tu dx
∣∣∣∣

+

∣∣∣∣∫
Rn

ρu · u · ∇u · ∇∂tu dx

∣∣∣∣
≤C∥ρ∥L∞∥u∥

L
4n

n−2−4ε
∥∇u∥2

L
4n
n+2

∥∂tu∥
L

4n
n−2+4ε

+ C∥√ρ∥L∞∥√ρ∂tu∥L2∥∇2u∥
L

n
1+2ε

∥u∥2
L

4n
n−2−4ε

+ C∥ρ∥L∞∥u∥2
L

4n
n−2

∥∇u∥
L

4n
n+2−4ε

∥∇∂tu∥
L

4n
n+2+4ε

≤C∥Λ
1
2
+n

4
+εu∥L2∥Λ

1
2
+n

4 u∥2L2∥Λ
1
2
+n

4
−ε∂tu∥L2

+ C∥√ρ∂tu∥L2∥Λ1+n
2
−2εu∥L2∥Λ

1
2
+n

4
+εu∥2L2

≤C∥Λ
1
2
+n

4
+εu∥L2∥Λ

1
2
+n

4 u∥2L2∥L∂tu∥L2 + C∥√ρ∂tu∥L2∥L2u∥L2∥Λ
1
2
+n

4
+εu∥2L2

≤ 1

16
∥L∂tu∥2L2 + C∥Λ

1
2
+n

4 u∥4L2∥Λ
1
2
+n

4
+εu∥2L2 + C∥Λ

1
2
+n

4
+εu∥2L2∥

√
ρ∂tu∥2L2 ,

where we have used the following fact due to (2.8),

∥L2u∥L2 ≤ C∥√ρ∂tu∥L2 + C∥Λ
1
2
+n

4 u∥2L2 .

Substituting the above estimates into (2.24) yields

d

dt
∥√ρ∂tu(t)∥2L2 + ∥L∂tu∥2L2 ≤C∥Λ

1
2
+n

4 u∥4L2∥Λ
1
2
+n

4
+εu∥2L2

+ C∥Λ
1
2
+n

4
+εu∥2L2∥

√
ρ∂tu∥2L2 .

Noticing the following facts:

∥Λ
1
2
+n

4 u∥L2 ≤C∥Λ
1
2
+n

4
−εu∥

n+2−8ε
n+2−4ε

L2 ∥Λ1+n
2
−2εu∥

4ε
n+2−4ε

L2

≤C∥Lu∥
n+2−8ε
n+2−4ε

L2 ∥L2u∥
4ε

n+2−4ε

L2 , (2.26)

∥Λ
1
2
+n

4
+εu∥L2 ≤C∥Λ

1
2
+n

4
−εu∥

n+2−12ε
n+2−4ε

L2 ∥Λ1+n
2
−2εu∥

8ε
n+2−4ε

L2

≤C∥Lu∥
n+2−12ε
n+2−4ε

L2 ∥L2u∥
8ε

n+2−4ε

L2 ,

we conclude that

d

dt
∥√ρ∂tu(t)∥2L2 + ∥L∂tu∥2L2 ≤C∥Lu∥

6n+12−56ε
n+2−4ε

L2 ∥L2u∥
32ε

n+2−4ε

L2

+ C∥Lu∥
2n+4−24ε
n+2−4ε

L2 ∥L2u∥
16ε

n+2−4ε

L2 ∥√ρ∂tu∥2L2 .

Taking 0 < ε ≤ n+2
20 , we get

d

dt
∥√ρ∂tu(t)∥2L2 + ∥L∂tu∥2L2 ≤C∥Lu∥4L2(∥Lu∥2L2 + ∥L2u∥2L2)
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+ C(∥Lu∥2L2 + ∥L2u∥2L2)∥
√
ρ∂tu∥2L2 . (2.27)

This implies

d

dt
(t∥√ρ∂tu(t)∥2L2) + t∥L∂tu∥2L2 ≤∥√ρ∂tu(t)∥2L2 + Ct∥Lu∥4L2(∥Lu∥2L2 + ∥L2u∥2L2)

+ C(∥Lu∥2L2 + ∥L2u∥2L2)(t∥
√
ρ∂tu∥2L2). (2.28)

According to (2.16), we conclude∫ t

0
τ∥Lu(τ)∥4L2(∥Lu(τ)∥2L2 + ∥L2u(τ)∥2L2) dτ

=

∫ t

0
τe−2γτ (eγτ∥Lu(τ)∥2L2)

2(∥Lu(τ)∥2L2 + ∥L2u(τ)∥2L2) dτ

≤ C

∫ t

0
(∥Lu(τ)∥2L2 + ∥L2u(τ)∥2L2) dτ ≤ C0. (2.29)

Combining (2.28), (2.29) and the Gronwall inequality, we deduce for any t ≥ 0,

t∥√ρ∂tu(t)∥2L2 +

∫ t

0
τ∥L∂τu(τ)∥2L2 dτ ≤ C0. (2.30)

It follows from the Stokes system (2.7) that

∥L2u∥L2 + ∥∇p∥L2 ≤C∥ρ∂tu∥L2 + C∥ρu · ∇u∥L2

≤C∥√ρ∂tu∥L2 + C∥Λ
1
2
+n

4 u∥2L2

≤C∥√ρ∂tu∥L2 + C∥Lu∥
2(n+2−8ε)
n+2−4ε

L2 ∥L2u∥
8ε

n+2−4ε

L2

≤1

2
∥L2u∥L2 + C∥√ρ∂tu∥L2 + C∥Lu∥

2(n+2−8ε)
n+2−12ε

L2 , (2.31)

where we have used the estimate (2.26). It thus implies

t∥L2u(t)∥2L2 + t∥∇p(t)∥2L2 ≤ Ct∥√ρ∂tu∥2L2 + Ct∥Lu∥
4(n+2−8ε)
n+2−12ε

L2 ≤ C0. (2.32)

Moreover, it follows from (2.26) and (2.31) that

t∥∇p∥2L2 ≤Ct∥√ρ∂tu∥2L2 + Ct∥Λ
1
2
+n

4 u∥4L2

≤Ct∥√ρ∂tu∥2L2 + Ct∥Lu∥
4(n+2−8ε)
n+2−4ε

L2 ∥L2u∥
16ε

n+2−4ε

L2

≤Ct∥√ρ∂tu∥2L2 + Ct∥Lu∥2L2(∥Lu∥2L2 + ∥L2u∥2L2),

which implies ∫ t

0
τ∥∇p(τ)∥2L2 dτ ≤ C0.

Similarly, we obtain

∥p∥L2 ≤C∥Λ−1(ρ∂tu∥L2)∥L2 + C∥Λ−1(ρu · ∇u)∥L2

≤C∥ρ∂tu∥
L

2n
n+2

+ C∥ρu · ∇u∥
L

2n
n+2

≤C∥√ρ∥Ln∥√ρ∂tu∥L2 + C∥ρ∥Ln∥u · ∇u∥L2

≤C∥√ρ0∥Ln∥√ρ∂tu∥L2 + C∥ρ0∥Ln∥u · ∇u∥L2
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≤C∥√ρ∂tu∥L2 + C∥Λ
1
2
+n

4 u∥2L2 ,

which gives

t∥p(t)∥2L2 ≤ C0.

Again, we deduce from the Stokes system (2.7) that

∥L2u∥
L

4n
n−2+4ε

+ ∥∇p∥
L

4n
n−2+4ε

≤C∥ρ∂tu∥
L

4n
n−2+4ε

+ C∥ρu · ∇u∥
L

4n
n−2+4ε

≤C∥∂tu∥
L

4n
n−2+4ε

+ C∥u∥L∞∥∇u∥
L

4n
n−2+4ε

≤C∥L∂tu∥L2 + C∥Lu∥L2∥L2u∥L2 ,

where and in what follows we use the following facts:

∥u∥L∞ ≤C∥Λ
1
2
+n

4
−εu∥

4−8ε
n+2−4ε

L2 ∥Λ1+n
2
−2εu∥

n−2+4ε
n+2−4ε

L2

≤C∥Lu∥
4−8ε

n+2−4ε

L2 ∥L2u∥
n−2+4ε
n+2−4ε

L2 ,

∥∇u∥
L

4n
n−2+4ε

≤C∥Λ
1
2
+n

4
−εu∥

n−2+4ε
n+2−4ε

L2 ∥Λ1+n
2
−2εu∥

4
n+2−4ε

L2

≤C∥Lu∥
n−2+4ε
n+2−4ε

L2 ∥L2u∥
4

n+2−4ε

L2 .

Recalling (2.30) and (2.32), one has∫ t

0
(τ∥L2u(τ)∥2

L
4n

n−2+4ε
+ τ∥∇p(τ)∥2

L
4n

n−2+4ε
) dτ ≤ C0,

or equivalently∫ t

0
(τ∥L2u(τ)∥2Lr + τ∥∇p(τ)∥2Lr) dτ ≤ C0, ∀ r ∈

(
2,

4n

n− 2

)
.

Next, we show the estimates (2.20)-(2.22). To this end, we deduce from (2.27) that

d

dt
(eγt∥√ρ∂tu(t)∥2L2) + eγt∥L∂tu∥2L2

≤ γeγt∥√ρ∂tu(t)∥2L2 + Ceγt∥Lu∥4L2(∥Lu∥2L2 + ∥L2u∥2L2)

+ C(∥Lu∥2L2 + ∥L2u∥2L2)(e
γt∥√ρ∂tu∥2L2).

Making use of the Gronwall inequality, (2.16) and (2.17), we may deduce

eγt∥√ρ∂tu(t)∥2L2 +

∫ t

1
eγτ∥L∂τu(τ)∥2L2 dτ ≤ C0. (2.33)

With the estimate (2.33) in hand, the desired estimates (2.21)-(2.22) can be proved via
the same arguments in proving (2.18) and (2.19), and hence we omit the details. This
completes the proof of Lemma 2.5. �
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2.4. Gradient estimates. The following estimates will be used to show the uniqueness
of the solutions.

Lemma 2.6. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the system
(1.1) admits the following bounds for any t ≥ 0,∫ t

0
∥∇u(τ)∥L∞ dτ ≤ C0,

∥∇ρ(t)∥Lq ≤ C0,

where the constant C0 depends only on the initial data.

Proof. For any 2 < p < 4n
n−2 , one may conclude that

∥ρ∂tu∥Lp ≤C∥ρ∂tu∥1−ϑ
L2 ∥ρ∂tu∥ϑ

L
4n

n−2+4ε

≤C∥√ρ∂tu∥1−ϑ
L2 ∥∂tu∥ϑ

L
4n

n−2+4ε

≤C∥√ρ∂tu∥1−ϑ
L2 ∥Λ

1
2
+n

4
−ε∂tu∥ϑL2

≤C∥√ρ∂tu∥1−ϑ
L2 ∥L∂tu∥ϑL2 ,

where

ϑ =
2n(p− 2)

(n− 2 + 4ε)
∈ (0, 1).

Similarly, we have

∥ρu · ∇u∥Lp ≤C∥ρu · ∇u∥L2 + C∥ρu · ∇u∥
L

4n
n−2+4ε

≤C∥Λ
1
2
+n

4 u∥2L2 + C∥u∥L∞∥∇u∥
L

4n
n−2+4ε

≤C∥Lu∥2L2 + C∥L2u∥2L2 .

Applying the Lp-estimate to (2.7) yields

∥L2u∥Lp ≤ C∥ρ∂tu∥Lp + C∥ρu · ∇u∥Lp .

This allows us to show for some 2 < p < 4n
n−2 that

∥∇u∥L∞ ≤C∥∇u∥1−σ

L
4n

n+2+4ε
∥L2u∥σLp

≤C∥Lu∥1−σ
L2 (∥σ∂tu∥Lp + ∥σu · ∇u∥Lp)σ

≤C∥Lu∥1−σ
L2 ∥

√
σ∂tu∥(1−ϑ)σ

L2 ∥L∂tu∥σϑL2 + C∥Lu∥L2 + C∥Lu∥2L2 + C∥L2u∥2L2 ,

where σ ∈ (0, 1). Thanks to the estimates of Lemma 2.2-Lemma 2.5, we immediately
obtain∫ t

0
∥∇u(τ)∥L∞ dτ ≤C

∫ t

0
∥Lu(τ)∥1−σ

L2 ∥
√
σ∂τu(τ)∥(1−ϑ)σ

L2 ∥L∂τu(τ)∥σϑL2 dτ

+ C

∫ t

0
(∥Lu(τ)∥L2 + ∥Lu(τ)∥2L2 + ∥L2u(τ)∥2L2) dτ

=C

∫ 1

0
∥Lu(τ)∥1−σ

L2 ∥
√
σ∂τu(τ)∥(1−ϑ)σ

L2 ∥L∂τu(τ)∥σϑL2 dτ
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+ C

∫ t

1
∥Lu(τ)∥1−σ

L2 ∥
√
σ∂τu(τ)∥(1−ϑ)σ

L2 ∥L∂τu(τ)∥σϑL2 dτ

+ C

∫ t

0
(∥Lu(τ)∥L2 + ∥Lu(τ)∥2L2 + ∥L2u(τ)∥2L2) dτ

≤C0 + C

∫ 1

0
∥Lu(τ)∥1−σ

L2 ∥
√
σ∂τu(τ)∥(1−ϑ)σ

L2 ∥L∂τu(τ)∥σϑL2 dτ

≤C0,

where we have used the following fact

C

∫ 1

0
∥Lu(τ)∥1−σ

L2 ∥
√
σ∂τu(τ)∥(1−ϑ)σ

L2 ∥L∂τu(τ)∥σϑL2 dτ

≤ C

∫ 1

0
τ−

σ
2 ∥Lu(τ)∥1−σ

L2 (τ
1
2 ∥
√
σ∂τu(τ)∥L2)(1−ϑ)σ(τ

1
2 ∥L∂τu(τ)∥L2)σϑ dτ

≤ C

∫ 1

0
τ−

σ
2 (τ

1
2 ∥L∂τu(τ)∥L2)σϑ dτ

≤ C

(∫ 1

0
τ−

σ
2−σϑ dτ

) 2−σϑ
2

(∫ 1

0
τ∥L∂τu(τ)∥2L2 dτ

)σϑ
2

≤ C0.

Sincere ρ satisfies

∂tρ+ u · ∇ρ = 0,

we have

∂t∇ρ+ u · ∇(∇ρ) = −∇u · ∇ρ.

Thanks to ∇ · u = 0, we get by direct computations

d

dt
∥∇ρ(t)∥Lq ≤ ∥∇u∥L∞∥∇ρ(t)∥Lq .

Appealing to the Gronwall inequality, we have

∥∇ρ(t)∥Lq ≤ ∥∇ρ0∥Lq exp

[∫ t

0
∥∇u(τ)∥L∞ dτ

]
≤ C0.

We thus complete the proof of the lemma. �

2.5. Proof of Theorem 1.1. Now we are ready to prove Theorem 1.1. The desired
bounds of Theorem 1.1 follow directly by combining together all the estimates of the
above Lemmas 2.2-2.6. Thus our main objective is to prove the uniqueness. To explain
the ideas clearly, we shall present a formal argument which can be made rigorous by
appropriate regularizations. To this end, we make use of the following two momentum
equations:

ρ∂tu+ ρu · ∇u+ L2u+∇p = 0, ρ̃∂tũ+ ρ̃ũ · ∇ũ+ L2ũ+∇p̃ = 0.

Then the following holds,

ρ∂t(u− ũ)+ ρu ·∇(u− ũ)+L2(u− ũ)+∇(p− p̃) = −(ρ− ρ̃)(∂tũ+ ũ ·∇ũ)− ρ(u− ũ) ·∇ũ.
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Multiplying the above identity by u− ũ and integrating it over Rn lead to

1

2

d

dt
∥√ρ(u− ũ)(t)∥2L2 + ∥L(u− ũ)∥2L2 = K1 +K2,

where

K1 := −
∫
Rn

ρ(u− ũ) · ∇ũ · (u− ũ) dx,

K2 := −
∫
Rn

(ρ− ρ̃)(∂tũ+ ũ · ∇ũ) · (u− ũ) dx,

We first have

K1 ≤ C∥∇ũ∥L∞∥√ρ(u− ũ)∥2L2 .

For the term K2, one may deduce

J1 ≤C∥ρ− ρ̃∥
L

2n
n+2−4ε

(∥∂tũ∥
L

4n
n−2+4ε

+ ∥ũ · ∇ũ∥
L

4n
n−2+4ε

)∥u− ũ∥
L

4n
n−2+4ε

≤C∥ρ− ρ̃∥
L

2n
n+2−4ε

(∥Λ
1
2
+n

4
−ε∂tũ∥L2 + ∥ũ∥L∞∥∇ũ∥

L
4n

n−2+4ε
)∥Λ

1
2
+n

4
−ε(u− ũ)∥L2

≤C∥ρ− ρ̃∥
L

2n
n+2−4ε

(∥L∂tũ∥L2 + ∥Lũ∥L2∥L2ũ∥L2)∥L(u− ũ)∥L2

≤1

2
∥L(u− ũ)∥2L2 + C(∥L∂tũ∥2L2 + ∥Lũ∥2L2∥L2ũ∥2L2)∥ρ− ρ̃∥2

L
2n

n+2−4ε
.

This implies

d

dt
∥√ρ(u− ũ)(t)∥2L2 + ∥L(u− ũ)∥2L2 ≤C(∥L∂tũ∥2L2 + ∥Lũ∥2L2∥L2ũ∥2L2)∥ρ− ρ̃∥2

L
2n

n+2−4ε

+ C∥∇ũ∥L∞∥√ρ(u− ũ)∥2L2 .

Using the difference of the density equations yields

∂t(ρ− ρ̃) + u · ∇(ρ− ρ̃) = −(u− ũ) · ∇ρ̃.

One can check that

n+ 2− 4ε

2n

d

dt
∥(ρ− ρ̃)(t)∥

2n
n+2−4ε

L
2n

n+2−4ε
≤C∥ρ− ρ̃∥

2n
n+2−4ε

−1

L
2n

n+2−4ε
∥(u− ũ) · ∇ρ̃∥

L
2n

n+2−4ε

≤C∥ρ− ρ̃∥
2n

n+2−4ε
−1

L
2n

n+2−4ε
∥u− ũ∥

L
4n

n−2+4ε
∥∇ρ̃∥

L
4n

n+6−8ε

≤C∥ρ− ρ̃∥
2n

n+2−4ε
−1

L
2n

n+2−4ε
∥L(u− ũ)∥L2∥∇ρ̃∥

L
4n

n+6−8ε
.

This in particular implies that

d

dt
∥(ρ− ρ̃)(t)∥

L
2n

n+2−4ε
≤ C∥L(u− ũ)∥L2∥∇ρ̃∥

L
4n

n+6−8ε
.

Now let us denote

X1(t) := ∥(ρ− ρ̃)(t)∥
L

2n
n+2−4ε

, X2(t) := ∥√ρ(u− ũ)(t)∥2L2 ,

A := C∥∇ρ̃∥
L

4n
n+6−8ε

, Y (t) := ∥L(u− ũ)(t)∥2L2 ,

β(t) := C∥∇ũ(t)∥L∞ , γ(t) := C(∥L∂tũ(t)∥2L2 + ∥Lũ(t)∥2L2∥L2ũ(t)∥2L2),
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which satisfy 
d
dtX1(t) ≤ AY

1
2 (t),

d
dtX2(t) + Y (t) ≤ β(t)X2(t) + γ(t)X2

1 (t),

X1(0) = 0.

Recalling the estimates of Lemma 2.2-Lemma 2.5, one has∫ t

0
β(τ) dτ ≤ C0,

∫ t

0
τγ(τ) dτ ≤ C0.

Due to u(x, 0) = ũ(x, 0), we have X2(0) = 0. According to the Gronwall type inequality
(see [21, Lemma 2.5]), it is clear that

∥√ρ(u− ũ)(t)∥2L2 + ∥(ρ− ρ̃)(t)∥2
L

2n
n+2−4ε

+ ∥L(u− ũ)(t)∥2L2 ≡ 0,

which guarantees the uniqueness. Therefore, we complete the proof of Theorem 1.1.

Appendix A. Besov spaces

This Appendix recalls the inhomogeneous Besov spaces. We begin with the so-called
Littlewood-Paley theory. We choose a smooth radial non-increasing function χ ∈ [0, 1] such
that χ is supported in the ball B := {ξ ∈ Rn, |ξ| ≤ 4

3} and with value 1 on {ξ ∈ Rn, |ξ| ≤ 3
4}.

Now we set φ(ξ) = χ
( ξ
2

)
− χ(ξ), which is supported in the annulus C := {ξ ∈ Rn, 34 ≤

|ξ| ≤ 8
3} and satisfies

χ(ξ) +
∑
j≥0

φ(2−jξ) = 1, ∀ξ ∈ Rn.

Let h = F−1(φ) and h̃ = F−1(χ), then the dyadic blocks ∆j of our decomposition can be
defined by

∆ju = 0, j ≤ −2; ∆−1u = χ(D)u =

∫
Rn

h̃(y)u(x− y) dy;

∆ju = φ(2−jD)u = 2jn
∫
Rn

h(2jy)u(x− y) dy, ∀j ∈ N.

The following operator Sj reads as the low-frequency cut-off

Sju = χ(2−jD)u =
∑

−1≤k≤j−1

∆ku = 2jn
∫
Rn

h̃(2jy)u(x− y) dy, ∀j ∈ N.

Now the inhomogeneous Besov spaces are defined through the dyadic decomposition.

Definition A.1. Let s ∈ R, (p, r) ∈ [1,+∞]2. The inhomogeneous Besov space Bs
p,r is

defined as a space of f ∈ S′(Rn) such that

Bs
p,r = {f ∈ S′(Rn); ∥f∥Bs

p,r
< ∞},
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where

∥f∥Bs
p,r

=


( ∑

j≥−1

2jrs∥∆jf∥rLp

) 1
r
, r < ∞,

sup
j≥−1

2js∥∆jf∥Lp , r = ∞.

The following lemma provides the Bernstein type inequalities for fractional derivatives.

Lemma A.1 (see [4]). Assume 1 ≤ a ≤ b ≤ ∞. If the integer j ≥ −1, then it holds that

∥Λk∆jf∥Lb ≤ C1 2
jk+jn( 1

a
− 1

b
)∥∆jf∥La , k ≥ 0.

If the integer j ≥ 0, then we have

C2 2
jk∥∆jf∥Lb ≤ ∥Λk∆jf∥Lb ≤ C3 2

jk+jn( 1
a
− 1

b
)∥∆jf∥La , k ∈ R,

where C1, C2 and C3 are constants depending on k, a and b only.

Acknowledgement

The work of D. Wang was partially supported by the National Science Foundation under
grants DMS-1907519 and DMS-2219384. This work of Z. Ye was supported by the Qing
Lan Project of Jiangsu Province.

References

[1] H. Abidi, G. Gui, P. Zhang, On the well-posedness of 3-D inhomogeneous Navier-Stokes equations in
the critical spaces, Arch. Ration. Mech. Anal. 204(1) (2012), 189–230.

[2] H. Abidi, G. Gui, P. Zhang, Well-posedness of 3-D inhomogeneous Navier-Stokes equations with highly
oscillatory velocity field, J. Math. Pures Appl. 100(1) (2013), 166–203.

[3] S. Antontesv, A. Kazhikov, V. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous
Fluids, North-Holland, Amsterdam, 1990.

[4] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,
Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011.

[5] D. Barbato, F. Morandin, M. Romito, Global regularity for a slightly supercritical hyperdissipative
Navier-Stokes system, Anal. PDE, 7(8) (2014), 2009–2027.

[6] J. Y. Chemin, M. Paicu, P. Zhang, Global large solutions to 3-D inhomogeneous Navier-Stokes system
with one slow variable, J. Differential Equations 256(12) (2014), 223–252.

[7] H. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible
fluids, Comm. Partial Differential Equations, 28 (2003), 1183–1201.

[8] W. Craig, X. Huang, Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-
Stokes equations, J. Math. Fluid Mech. 15 (2013), 747–758.

[9] R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edin-
burgh Sect. A 133 (2003), 1311–1334.

[10] R. Danchin, Local and global well-posedness results for flows of inhomogeneous vicous fluids, Adv.
Differ. Equ. 9 (2004), 353–386.

[11] R. Danchin, P. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech.
Anal. 207(3) (2013), 991–1023.

[12] R. Danchin, P. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with
variable density, Comm. Pure Appl. Math. 65(10) (2012), 1458–1480.

[13] D. Fang, R. Zi, On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations,
Discrete Contin. Dyn. Syst., 33 (2013), 3517–3541.



20 DEHUA WANG AND ZHUAN YE

[14] B. Han, C. Wei, Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical
hyper-dissipation, Discrete Contin. Dyn. Syst. 36 (2016), 6921–6941.
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