GLOBAL WELL-POSEDNESS AND EXPONENTIAL DECAY FOR THE
INHOMOGENEOUS NAVIER-STOKES EQUATIONS WITH
LOGARITHMICAL HYPER-DISSIPATION

DEHUA WANG AND ZHUAN YE

Dedicated to Professor Constantine Dafermos on the Occasion of His 80th Birthday

ABSTRACT. We consider the Cauchy problem for the inhomogeneous incompressible log-
arithmical hyper-dissipative Navier-Stokes equations in higher dimensions. By means of
the Littlewood-Paley techniques and new ideas, we establish the existence and uniqueness
of the global strong solution with vacuum over the whole space R"™. Moreover, we also
obtain the exponential decay-in-time of the strong solution. Our result holds without
any smallness on the initial data and the initial density is allowed to have vacuum.

1. INTRODUCTION

This paper is concerned with the unique global strong solution with vacuum to the
generalized inhomogeneous incompressible Navier-Stokes equations of the form:

Op + div(pu) = 0, z €R™ t>0,

Or(pu) + div(pu ® u) + L2u + Vp = 0, (1.1)
V.-u=0,
where p = p(z,t) denotes the density, u = u(z,t) € R" the fluid velocity and p(x,t) the
scalar pressure; £ is multiplier operator with the symbol \&Ij(;% , namely
Fute) = K 5, 12)
9(&)

where g = ¢g(§) > 0 is a non-decreasing, radially symmetric function. We consider the
Cauchy problem of (1.1) with (p, u) vanishing at infinity and satisfying the following initial
condition:

p(z,0) = po(z), pu(z,0) = pouo(z), (1.3)
where po(x) and ug(z) are the prescribed initial values for the density and velocity such
that V - ug = 0.

When £ = v/—A, the system (1.1) becomes the standard inhomogeneous incompressible
Navier-Stokes equations, which can describe the motion of two miscible and incompress-
ible fluids with different densities and can also describe the motion of the fluid containing
a melted substance. For detailed derivation and physical meaning of this system, we refer
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to [23]. On account of the physical importance and the mathematical challenges, many
physicists and mathematicians have investigated the standard inhomogeneous incompress-
ible Navier-Stokes equations. Let us recall some known results for this system. When the
initial density is strictly positive, Kazhikov [19] proved that the system has at least one
global weak solution in the energy space. Later, Antontesv-Kazhikov-Monakhov [3] and
Ladyzhenskaya-Solonnikov [20] gave the first result on the local existence and uniqueness
of strong solutions, while globally defined in two-dimensional case. Similar results were
established in a series of works; see for example [1,2,6,9-12,25,26]. However, for the initial
data that permits the region of vacuum, the problem becomes much more complicated,
especially the higher regularity is difficult to derive since dy;u in the momentum equations
is multiplied by p possibly vanishing in some region. Simon [27] first proved the global
existence of weak solutions with finite energy, which was later extended later by Lions [23]
to the case of density-dependent viscosity. Under the initial compatibility assumption,
Choe-Kim [7] successfully established the local existence of the strong solution in dimen-
sions three, which was later improved by Craig-Huang-Wang [8] for global strong small
solutions (see [15,17,33] for the case of density-dependent viscosity). The global existence
of strong solution with the general initial data in dimension two was proved by [16, 24]
for the initial-boundary value problem and the Cauchy problem. However, the global ex-
istence of strong or smooth solutions with general initial data in higher dimensions is full
of challenges and remains an outstanding open problem. As a matter of fact, one notable
difficulty is that the Laplacian dissipation is insufficient to control the nonlinearity when
applying the standard techniques to establish global a priori bounds.

When the hyper-dissipation (1.2) is considered, the global strong solutions to the Navier-
Stokes equations (1.1) have been studied in the literature on both homogeneous and in-
homogeneous fluids. When p is a constant, the system (1.1) becomes the homogeneous
incompressible Navier-Stokes equations, which admit a unique global smooth solution as
long as g(§) = 1 in (1.2). This result dates back to Lions’s book [22] (see also [18,31]).
In Barbato-Morandin-Romito [5] and Tao [28] the global regularity of the Navier-Stokes
equations with logarithmically supercritical hyper-dissipation was obtained. Recently, sev-
eral works are devoted to generalizing these results of [5,28] to the inhomogeneous case.
More precisely, Fang-Zi [13] established the global well-posedness for the system (1.1) with
g(&€) = 1 by using the arguments in [10]. Following the work [13], Han-Wei [14] attempt-
ed to prove the corresponding logarithmically improved result of the system (1.1) with

g(&) = Int (e+|€]?). Tt should be noted that both [13] and [14] require the restriction that
the initial density py is bounded away from zero, which implies that the density cannot
contain vacuum state. Very recently, in Wang-Ye [30] we established the unique global
strong solution with vacuum to the Cauchy problem of system (1.1) under the assumption
g(&) = 1 with n > 3. Moreover, the corresponding strong solution admits the exponential
decay-in-time property. The goal of this paper is to improve the global existence result
of [30] by reducing the dissipation (—A)%Jr% through a logarithmic factor.
We first give the definition of weak and strong solutions to the system (1.1).

Definition 1.1. We call (p, u) a weak solution to the system (1.1) if (p, u) satisfies (1.1) in
the sense of distributions. Moreover, a weak solution is called strong if all the derivatives
involved in the system (1.1) are regular distributions and the system (1.1) holds almost
everywhere in R" x (0, T').
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Now our main result of this paper can be stated as follows.

Theorem 1.1. Assume that n > 3 and the initial data (po, uy) satisfies the following
conditions:

0< po € Lr (RM)NL=(RY), Vpo € LUR™),
V-up=0, Luge Ll*R"), /pouoec L*R"),
4n

with some q > —%. Let g = g(§) > 0 be a non-decreasing, radially symmetric function

n+6 "
and satisfy
*© dr
—— = 0. 1.4
| -

Then the Navier-Stokes system (1.1) has a unique global strong solution (p,u) satisfying,
for any given T > 0 and for any 0 <7 < T,

[ 0< pe L®0,T; Lu2(R?) N L®(R™)), Vpe L0, T; LI(RM),

Vpu, Lu e L>(0,T; L*(R")),

VPOu, L*u € L>(1,T; L*(R™)), (1.5)
O Lu, L2u € L(1,T; L*(R™)), p€ L>(r,T; H'(R")),

L%u, Vp € L*(r,T; L"(R")), Vre (2, 2%).

’ n—2

Moreover, there exists some positive constant vy depending only on ||p0||L%ﬁLOo such that,
forallt > 1,

ILu(O)1Z2 + IVporu(®) 172 + 1C2u(®) 22 + Ip(®) 7 < Coe™,

where Cy depends only on HpOHL%ﬂLO") lv/pouollz2 and ||Luol| 2.

Remark 1.1. Some typical examples of g, besides g = 1, satisfying (1.4) include

N

g(r) = [In(1 4+ )] %;
g(r) = [In(1 + 7) In(1 + In(1 + 7))] *;

g(r) = [In(1+ ) In(1 + In(1 + 7)) In(1 + In(1 + In(1 + )))] %"

Ll

We now explain the difficulties and strategy for the proof of Theorem 1.1. Since the
local existence of strong solutions to the system (1.1) follows from the works in literature
such as [7,21,30], our efforts are devoted to obtaining global a priori estimates on strong
solutions in suitable higher-order norms. To this end, we may encounter several difficulties.
The first one is that the density has no positive lower bound and the velocity has no
smallness or compatibility conditions. Consequently, new ideas are needed to overcome
these difficulties. First, thanks to the estimate on the density, we have the following
observation: for € < ”12,

1
2
IvBels < VAl g Il g < Cllool? s Eulza,

[ n—2+4e




4 DEHUA WANG AND ZHUAN YE

which implies that ||,/pu(t)||2, decays with the rate of e~ for some v > 0 depending only
on || pQHL 2y Unfortunately, the above energy estimate is insufficient to complete the
proof of Theorem 1.1 as it is far from reaching the critical level

t
/ A5 u(7)|2, dr < oo. (1.6)
0

In order to overcome this difficulty, the next natural step is to increase the regularity
of u. More precisely, invoking the Littlewood-Paley technique, we are able to show the
inequality of the following form

1

d
a2 + Iv/porul3e < CllLulRag* (le + 1£ul3a]7 ) ILulEs + ClLLul s,

which along with (1.4) and the basic energy estimate yield the following key estimate:

1Lu(®)]1Z: +/0 (1E2u(r)|IZ + lv/poru(r)|[Z2) dr < co. (1.7)

We point out that the similar arguments in dealing with the logarithmic reduction type
case were also used for tackling other fluid dynamic equations; we refer the readers to
our recent papers [29,32]. Moreover, based on the proof of (1.7), we show the following
exponential decay estimate that improves (1.7),

t
[ Lu(t)|7 +/ (" 12u(r) 72 + € /pOru(T)|Z2) dT < oo,
0

At this stage, we are still not able to show that (1.6) is valid via (1.7), because (1.7)
includes a logarithmic reduction. To solve this difficulty, we appeal to derive the bound
of ||l\/pOwu(t)||7.. However, it is hard to achieve this goal due to the absence of the
compatibility condition for the initial velocity ug. To overcome this difficulty, we need to
derive the following crucial time-weighted estimate:

t
/o (t) 12 +/ PComu(r)|2e dr < Co, Vi >0, (1.8)
0

where the positive constant Cp is independent of the initial data of |/pd;u. Consequently,
(1.8) allows us to derive that for any ¢ > 0,

tIL2ullZ: + tlp®)7 < Co,

¢ 4dn
| e+ T 9polE ) dr < Co, e 2, ).
0 n—2

Moreover, for any t > 1, the following estimates hold true,
t
| /Aout)||2: + / O ILOu(r)|22 dr < Co,
1

M LulZ2 + € lp®) 17 < Co,

! 2 2 2 4n
/ @2} + VR ) dr < Co, Wre (2 1),
1 n—2

We remark that all these exponential decay-in-time estimates and the time-weighted es-
timate (1.8) allow us to derive the desired uniform-in-time bound of fot IVu(T)|| Lo dT.
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Once this key bound is at our disposal, we can continue to complete the proof of Theorem
1.1.

The rest of the paper is organized as follows. In Section 2, we shall give the detailed
proof of the main results in Theorem 1.1 through energy estimates. The Appendix will
recall some basic information on the Besov spaces.

2. ENERGY ESTIMATES AND THE PROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. The proof consists of the local
existence, basic energy estimates, a priori estimates that are uniform in time, exponential
decay estimates, gradient estimates, and uniqueness.

We shall use C' to denote a generic positive constant that may change from line to line.
For any two quantities A and B, we use A ~ B to denote the inequality C™'B < A < CB
for a generic positive constant C.

2.1. Local existence and basic energy estimates. Inspired by the previous works
[7,21], one may obtain the local existence and uniqueness of strong solution, and we omit
the proof.

Lemma 2.1 (Local strong solution). Under the conditions in Theorem 1.1, there exists
a small time T* and a unique strong solution (p, u) to the system (1.1) in R™ x (0, T*)
satisfying (1.5).

With the local well-posedness at hand, it suffices to establish a priori estimates for
strong solutions for any given t > 0. We begin with the basic energy estimates.

Lemma 2.2. Under the assumptions of Theorem 1.1, the solution (p,u) of the system
(1.1) admits the following bound for any t > 0,

t
llvpu(t)z. +/0 || Lu(r) |72 dr < |lv/pouollZz, (2.1)
lo(2) o S leoll zp, s (2.2)

I 2n
L7+2NL nL>
where v depends on ||p0||L 2n
n 2

NL>

Proof. First, the non-negativeness of p is a direct consequence of the maximum principle
and po > 0. Multiplying (1.1); by |p[P~2p and integrating it over R™, one has

d
—||p(t =0
o)l =0,
which implies
[o@®)l[r < llpolle-
Letting p — oo, it yields
lp(t) 1= < lollzes-
Thus (2.2) follows. We multiply the equation (1.1)2 by u, integrate it over R™ and use
Plancherel’s theorem to obtain
1d

5 S IVAu®IZ: + 1£ul2: = 0.
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According to the assumptions on g (more precisely, g grows logarithmically), one may
conclude that for any fixed € > 0, there exists C' = C(e) satisfying

9(&) < ClEl. (2.3)

As a matter of fact, throughout our arguments, € > 0 can be arbitrarily small. In our
proof, it actually needs to satisfy e < F(n), where the function F'(n) > 0 depends only
the space dimensions n. Without loss of generality, we may assume € < %. Thanks to
(2.3), it follows that

. 2 +3
st ul, - [ 2 e ae

[SRRE NP
C d
= /Rn 92(8) ) at
= C||Lul,

which implies that, for € < ”T“,

Ivaullze < VAl gl g

% l+ﬂ_5
SC*HPHL 2n HA2 4 UHL2

n+2—4e
1
< Cullpoll? 2 | Lul|12,
LnF2 AL
where C, = Ci(n) > 0 is a constant. Taking v as
1

= 2
Collooll, 2,

7y

Y

LOO

one has

d
—lvpu®)7e +vlveu)ll7e + | Lul7. = 0.
dt

Then the Gronwall inequality yields the desired estimate (2.1). This completes the proof
of Lemma 2.2. O

2.2. Uniform estimates in time. Next we will establish the time-independent estimate
on the L>°(0,T; L?(R™))-norm of Lu, which plays a key role in proving our main result.

Lemma 2.3. Under the assumptions of Theorem 1.1, the solution (p,u) of the system
(1.1) admits the following bound for any t > 0,

t
1£u(t)]17 +/0 (I£%u(T)ll72 + lv/POru(T)|I72) dT < Co, (2.4)

where the constant Cy depends only on the initial data.

Proof. Multiplying (1.1)2 by Oyu, using V - u = 0 and integrating by parts, one has

Ld

5 g 1£u@: + | VBonle = = [ pu- V- Opuda,
]RTL



GLOBAL SOLUTION AND EXPONENTIAL DECAY OF NAVIER-STOKES EQUATIONS 7

In view of the Gagliardo-Nirenberg inequality, it follows that

- / pu-Vu-dpude <||/pllp= - Vul 12|50yl 2

<C||p0||LOO||u|| an [[Vullan |lv/pOrul| 2

n+2
§C||A2+Zu”L2 Iv/pOrul| 2.
We thus get

1, n
S ILu)Za + Aol < CIAF FulZall/poru o (2.5)

Now let us denote )
A(t) = [|Az [,
By the high-low frequency technique, we derive
At) < | Sx A2 Tullfa + 3 (1442 T ul
J>N
where the operators S; and A; are defined in the Appendix and N will be specified later.
By Plancherel’s theorem and Sobolev’s embedding, we obtain

1 n _ 1 n _o
ISnAZ T iu|2, =Cx(27Ne) ¢z 1a(9)]3,

i)
9(&)

2

|\ )9(©)

<Cg*(2")||LulZe,

6]

L2

where x and ¢ are associated with the definition of Besov spaces (see Appendix for details).
By Lemma A.1, it follows that, for 0 < o < min{2t2=8¢ n+Z- 125} with 0 < e < %2

12 »
S IaAT 2, <C Y 27| A AT w2,
j>N j=>N
<0 Y 2o Astitoy2,
j>N

<o [ g

—2No 2002(¢ s
<2 /Ig BRGGETG

—2No 94(5) [P e
O [ T g PO

4
<0272 (vogPr)ulls + S Cul

[a(6)|* de

1+7—20

1
—92N 2
<(272Ne <T2U+25"‘Cu’%2 + W“ﬁ“”m)

<OV Lull 3| £2u s,
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4
=
r= ,
[ Lul| 12
_ 8(o+¢)
24 n—4e

where we have fixed r as

and
€ (0, 1).
As a result, we arrive at
A(t) < Cg* (") Lulfz + C2727 || Lull T2 I £%ul 7. (2:6)
Let us rewrite the equation (1.1)2 as the Stokes type
L%u+ Vp = —pdu — pu - Vu,
{ V.-u=0.
It thus follows that
1£%ul| 2 <C||pdyul| L2 + Cllpu - Vul| 2
<CllVpll=lvVpdrul 12 + Cllpllzoe |lu - V| 12
<Clvpdeull Lz + Cllull _an, [Vull _n,
<Cllv/pdrull gz + ClIAZ* Tull s, (2:8)
which further implies
1£%ull 2 < Cllv/pOhul| 12 + CA(). (2.9)
Combining (2.6) and (2.9), we deduce
A(t) <Cg*(2Y)|| Lul T2 + C2727|| Lul 72 (Il /pdeull 72 + ANE))

2—X

1 _ _ _2No =2
<5A(t) + Cg?(2N)||Lull 2 + C272N|| Lul| 35 M |V/pohul| 2 + C27 13 || Lull 27,

which implies

2No 2=2
A(t) < Ca*(2Y)| LullF2 + C272N7|| Lul M | pdeul 72 + C27 13 || Lul| . (2.10)
This along with (2.9) gives

1£%ull 2 <CllVpdhullpz + Co®(2Y) |1 LulZ2 + C272N | Lul| 727 |v/pOeull 22
2—)

_2Ne 2=2
+ C27 =X || Lul| ;37 (2.11)
Substituting (2.10) into (2.5) ensures that

1d
5 ILu®)Z + vpoullz: <Cg*(2Y)|LullZallv/porull 2

2 dt
+ 027N Lul| 7 |y/pOeul |

_2No 2=2
+ C27 18| Lul| ;27 [/pOsul| 2. (2.12)
Now taking N such that
22N e + || Lul 12, (2.13)
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we deduce from (2.12) that

1d 1 1
s Cu®) I + Ivpaulte <5 lvporulF +Cg* (fe + ICullf)? ) Iullfe
+ C||Lul|,. (2.14)

We therefore obtain
d 1
e+ Iu(t)IRa) + /Aol <CllCulg ([e + Iulal?) (e + 1£ull)
+C||Lul 7.
Making use of (2.1) and setting
X(t) == e+ || Lu(t)]|7,

one derives
X () + /Ot IvPOru(r)|72 dr < Co + C/Ot |Lu(r)[Fa9" (X (1) X (7)dr,  (2.15)
where the constant Cy depends only on initial data, independent of t. We denote
2():=Co+C | ()26 (XH () X () dr, 2(0) = Co 2 e,

then we obtain

S2(0) = ClLu®)l3ag’ (X7 (0) X (1) < ClLult) 30" (27 (1) 2(0).

Therefore, it follows that
7% (1) Z(t) t
dr dr
a/l ! :/ ; gC/ (722 dr.
z%0) T94(T) 2(0) Tg*(77) 0

[ c/tnz()ﬁ ir <G
ol T Ty TR R

Recalling

one has,
Z(t) < Cp.
Thanks to (2.15), we also have

t
X0+ [ IVpoulr) 3z dr < Co
0

Then (2.13) and (2.11) yield

t
/ |£2u(r)[[22 dr < Co.
0

We thus conclude the proof of Lemma 2.3. O
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2.3. Decay estimates. Lemma 2.3 enables us to derive the following exponential decay

estimate, which improves (2.4).

Lemma 2.4. Under the assumptions of Theorem 1.1, the solution (p,u) of the system

(1.1) admits the following bound for any t > 0,
t
| Lu(t)]7: +/ () L2u(7) 172 + € lV/pdru(r)|72) dr < Co,
0

where the constant Cy depends only on the initial data.

Proof. Recalling (2.14), one has

d 1
a2 + IVporullfe < Cg* ([ + l1Lula]7 ) ILulfz + CllLul?a.
Using (2.3) and (2.4), we derive

d
I Lu®IZe + lvpowllzz < CllLulle + CllLull7..

This further gives

d
— (| Lu(®)]172) + "l VpOeull7 <ve™||Lut)l|F: + CllLulF2 (]| Lull7)

dt
T O a2,

In view of (2.1), we get by integrating it in time
t

t
I Lu(t)|2 + / (| /p0ru(r)|2, dr < Co + C / | () |2 Lu(r)|[22) dr

By means of the Gronwall inequality, we have
|| Lu(t)|l72 + /Ot " |lV/pdrul(r)||72 dT < Co.
Noticing (2.13) and (2.11), we verify that
/ot || L2u(7)||72 dr < Co.

This completes the proof of Lemma 2.4.

(2.16)

g

The following lemma is crucial to the derivation of the higher order estimates of the

solutions.

Lemma 2.5. Under the assumptions of Theorem 1.1, the solution (p,u) of the system

(1.1) admits the following bounds for any t >0,
t
tvp(t)| + [ 7l£onu(r) | dr < o
0

L2l + tp(0) 2 < Co.

! 2 2 2 dn
[ Ieul + rwpiz)dr < Co, re [ ).
0 n—2

(2.17)
(2.18)

(2.19)
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Moreover, for any t > 1, the following estimates hold true
¢
VA + [ IO ur)|Ra dr < G,
1

L2l 72 + " llp() |7 < Co,

t 4
[ @mIenu + TIvpnI ar < Co, e (27,
1
where the constant Cy depends only on the initial data.
Proof. Applying 0; to the equation (1.1)2, one has
POy + pu - Voyu + L20u 4+ VOp = —0pdyu — 0y (pu) - Vu.
We get by multiplying (2.23) by 0;u and using the equation (1.1); that

5 dt”f pou(t)| 12 + | L0

= — OpOiu - Opudx — O(pu) - Vu - Qpu dx
R~ R~

:—2/ pu~V8tu-8tudx—/ patu-Vu-atudx—/ pu-V(u-Vu-

n

= J1+ Jo+ Js.
By (2.3), we have

1 n 1+
IAFE g = [ ¢ SO 5 e de

n 675 g2(€)
’f’HQ » 2
C d d
<c [ S erioueac
=C||LOpu)3..

Similarly, it follows that
AT 2213, < Ol LPull7a.
By means of (2.25), we deduce for 0 < ¢ < 22
R <Ol /ool 2 IVopul, gl
<C||V/posul| 2 | A7+ E = Opul| o |AZTE 2w 2
1 n
<CllVpdsul 2| LOul| 2| A2 5 ul| 2

Ln24s

_16||£5tu||L2+C||A2+ |2 VPOl 22,

Jo <CIN/pl el Vaoul 2| Vull| g
l,.n
<C||/pOsul| g2 | AT 20| | AZTE eatUHLQ
1, n
<O|lv/pdeul| 2| Lyul| 2| A2 5wl 2

(2.20)
(2.21)

(2.22)

(2.23)

Owu) dx
(2.24)

(2.25)
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—16”‘Catu”L2 + Ol A2+ i< 3|y /pOsul 3.

Similarly, one can check that

J3 <

/ pu - Vu - Vu- Owudr| +

/ pu - u - Vu - Opud

_l’_

/ pu - u - Vu - Voudr

an |0 an
[ n+2 [ n—2+4¢e

+ Clivpllzellvepdeu| L2 HVQUHLﬁ lull? _
+ Clipllo=llull? an, [Vull, _go VOl g

<O||AZ 5] 2| AT ZuHLQHAf rfatuup
+ Cly/pOull g2 A E 20| 2 | AZTE w2,

<O|AZF T+ 2 | AT Fu) 22| COrul| 2 + Cll/pOhull 2| L2ul| 2| A2+ |2,

g%uwtuuiz + CIAT ul| | A2 T2, + ClIAZT T 450 , |y /p0pul .,
where we have used the following fact due to (2.8),

1£%ull 2 < Cll\/pouul 2 + ClIAT* T ul 3.
Substituting the above estimates into (2.24) yields
SV s + L0l 3 SCIAF Sullfa AT ul,

1, n
+ Ol | v/pOrul 2.
Noticing the following facts:

+2-8 _ 4e
AR 2 <O ATHE—oy | e HA””QS o

n+2—8e

<C|Lull73* " 1£%u H"+2 - (2.26)

+2-12
||A2+ —i—auHL2 <CHA2+Z EuHT’:l+2 4:||A1+§—2su”n+2 4e

n+2—12¢

<C”£ ” n+2—4e ||£2 ||n+2 45

we conclude that
6n+12—56¢

d 6n412—-56¢
S IVPOm®72 + L0l <CllLul| 727 L2 II"+2 B

2n+44—24¢

+ O Lull 577 HEQUII”+2 “lv/porul| -

Taking 0 < ¢ < ”2—’62, we get

d
VPO + 1£0wllTz <Cl|Lull s (|| Lul72 + [1£%ull72)
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+ C(|1Lull72 + 1£%72) || /pOrul - (2.27)
This implies
(tlv/POru(t)|IF2) + tIlLOullF2 <IIVpdeu(t)|72 + Ctl| Lullz2(l Lullfz + | £2ul72)
+ O (I Lull7z + L%l 72) (tll/pOeull2)- (2.28)

d
dt
According to (2.16), we conclude
[ ALt + 122l dr
= [ eI s + 1) ) dr

t
< [[(leutl + [1£%u(r)) dr < Co. (2.29)
0
Combining (2.28), (2.29) and the Gronwall inequality, we deduce for any ¢ > 0,

t
tll/povu(t) |2 + / 1£0,u(r) |2 dr < Cy. (2.30)
0

It follows from the Stokes system (2.7) that
1£%ull 12 + [IVpl 2 <Cllpdhul|r2 + Cllpu - Vul 2
1, n
<C|lv/pdeul| 2 + ClIAZT Tul|Z,

2(n+2—8¢)

8e
<C|lvpdul 2 + CllLull 777 || L2 37"

1 2(n+2_—85)
<G L%ullz2 + Cllvpdeull 2 + CllLull 57, (2.31)
where we have used the estimate (2.26). It thus implies
4(n+2—8¢)
tIL2u()| 72 + VeI Z2 < Ctly/pdeul72 + Ctl Lull 577 < Co. (2.32)

Moreover, it follows from (2.26) and (2.31) that
1, n
tIVpll7: <Ctlly/pdeulz + Ct|AZ T ul

4(n+2—8¢) 16e

<Ct||\/poeullze + Ctl[ Lull 5775 || L2l 727
<Ct||Vpdullzz + Ct| Lul T (| Culfz + 1£%ulZ2),

which implies
[ 1w i <
Similarly, we obtain ’
Ipll 2 <CIIAT (pdeullz2)l| 2 + ClIIA™ (pu - V)| 2
<Cllpdeull , 20, + Cllpu-Vul| 20,
<ClIVpllzr Vel Lz + Cliplle llu - Vull 2
<Cllvpollz~ VPOl L2 + CllpollLn |u - Vaul| 12
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1, n
<C|lVpdull g2 + Cl|A2 "5 w22,

which gives
tlp(t)l72 < Co.

Again, we deduce from the Stokes system (2.7) that

Vel

- +Cllpu- V|
<ouatuu e cuuumuwu
<Cllcouls + cuﬁuuyuﬁuup,

2+4 2+4s

where and in what follows we use the following facts:

Jullze <CIARE 2l 7 AL =22 55

4—8e n—2+4e

<C||£ Hn+2 45H£2 Hn+2 45’

n—2+4e 4
IVull, 4 <C[AztE =y 3" 4EHA1+*—2€uHZ;2—4E

£

n—2+44e

<C”£u”n+2 4E||£2u||n+2 45‘

Recalling (2.30) and (2.32), one has

t
2 2 2
[ Iy +ATROIE )i <

or equivalently

¢ 2 2 2 an
/ (T||L%(T)||3r + 7| VD(T)||7r) dT < Cy, Vre (2, )
0 n—2

Next, we show the estimates (2.20)-(2.22). To this end, we deduce from (2.27) that

d
(" Vporut)[T2) + | LpullLe

< e |lyporu(t) 172 + Ce || Lullza (| Lullzs + [1£2%ullZ2)
+ O(ILullZ2 + 1] 22) (7"l pOrullZ2)-

Making use of the Gronwall inequality, (2.16) and (2.17), we may deduce

t
| /poru(t)]|2a + / L0, u(r)|2 dr < Co.

With the estimate (2.33) in hand, the desired estimates (2.21)-(2.22) can be proved via

the same arguments in proving (2.18) and (2.19), and hence we omit the details.
completes the proof of Lemma 2.5.
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2.4. Gradient estimates. The following estimates will be used to show the uniqueness
of the solutions.

Lemma 2.6. Under the assumptions of Theorem 1.1, the solution (p,u) of the system
(1.1) admits the following bounds for any t > 0,

t
/ IVu(r)l|z= dr < Co,
0

IVp(t)|[La < Co,
where the constant Cy depends only on the initial data.

Proof. For any 2 < p < one may conclude that

n2’

lpdrullze <Cllpdeull 2" llpdeull? s

[ n—2+4¢e

30||ﬁatu||;ﬂ||atuu’9

<C||Vpoulfz7 | A2+ ezatuHLz
<C|lv/phul 1" | L8rul| 7z,
where on( 2
n(p —
Y= -——""—=—¢€(0,1).
m-2+1 <OV
Similarly, we have

lpu - Vull e <Clipu - Vull 2 + Cllpu - V|

Ln:gjr&:
l+£ 2
<Cl[A=T5ul[72 + Cllul| L~ [ Vull
<C|lLul7s + C||L2ul 7.
Applying the LP-estimate to (2.7) yields
Il < CllDeudis + Cll: Vi

4n
L n—2+4e

This allows us to show for some 2 < p < =5 that
IVl e~ <CHVUH1 “anNC7ull
SCI|£UIIL2 (”UatUHLP + llow- Vul[re)”
<CllLull 27 IVodhul s 7 1Ldulg8 + CllLul 2 + CllLullfa + ClIL2ul 3,

where o € (0, 1). Thanks to the estimates of Lemma 2.2-Lemma 2.5, we immediately
obtain

t t
/0 IVu(r)| e dr <C /0 |La(r57 Vo dru(r) |7 | £oru(r)|gd dr
t
e / (a2 + Culm) 2 + |C2u(r)|22) dr

1
—c /0 | Cu(r) 37 IVadru(r) 7 | Loru(r)|IoE dr
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o —v)o o
+C / 1Lu() 1557 |Vaoru(r) ||V 7| Loru(r) |58 dr
+C / (1Lu(m)| g2 + 1Cu()|22 + [|L2u(r)]22) dr

<CO+C/ leu() |37 Ve dru(r)| s | Lorulr)||5) dr
SCO>

where we have used the following fact

c/ 1Lu(r) 137 IVaoru(r) ™7 | Loru(r)|IgE dr
= C/o 75| Lu(m) |52 (72 |Vadru(r) || 12) 7 (72 | LOru(T) || 12) 7 dr

1

< c/ 775 (72| LOru(r) | 12)7” dr

0
IR =2 n %
<C </ T 2709 dT) </ THEGTU(T)H%Q d7‘>
0 0

< Cp.

Sincere p satisfies
Op+u-Vp=0,
we have
WVp+u-V(Vp)=—-Vu-Vp.

Thanks to V - u = 0, we get by direct computations

d
3 IVelize < [IVullz=[[Vo(t)] 2o

Appealing to the Gronwall inequality, we have

t
I9p(8) 120 < [V poll s exp [ TR df] < G,
0

We thus complete the proof of the lemma. O

2.5. Proof of Theorem 1.1. Now we are ready to prove Theorem 1.1. The desired
bounds of Theorem 1.1 follow directly by combining together all the estimates of the
above Lemmas 2.2-2.6. Thus our main objective is to prove the uniqueness. To explain
the ideas clearly, we shall present a formal argument which can be made rigorous by
appropriate regularizations. To this end, we make use of the following two momentum
equations:

PO+ pu-Vu+ L2+ Vp=0, pou+ pu-Viu+ LU+ Vp=0.
Then the following holds,
pO(u—0) + pu-V(u—u)+ LE(u—0)+V(p—p) = —(p—p) (Ot +u- Vi) — p(u—1u) - V.
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Multiplying the above identity by u — @ and integrating it over R™ lead to

A= D)W+ 1L = D22 = Ky + Ko,
where

K :——/np(u—ﬂ)~Vﬁ-(u—ﬂ)dm,

Ky = _/ (p—7)(Oii+ 70 - Vi) - (u— T) da,
We first have
Ky < OV pe||/pu — )|
For the term K5, one may deduce

J1 <Cllp =7l (|Opul| + [lu- Va

) =

n+2 de L n— 2+4e Ln 42145 L#&éle
<Cllo =7l 3. (AT =20, 12 + [allpel[Vall | OIATFEE (u - @) 2
<Cllp =7l | sz (1£0hull 2 + HEUHLQHﬁﬂHm)IIﬁ(U - U)||L2

1 _ _ _ _ _
<SIL(u =@ + CAUILOTT + || LT L%l 7)o — B1

A==
This implies
d - ~ ~ ~ ~ ~
o IVplu— W72 + £ —D)|72 <C(L£0lI72 + [|£al[72 1% 72) 1o — pllirgnpg
+ C||Val| ool /p(u — )| 2.
Using the difference of the density equations yields

Bulp— ) +u-Vi(p—p) = —(u—1) - Vp.
One can check that

n+2—4ed n+2 45 ~ ﬁfl

o @l PO <Cllo—pl "t =) VAl g,
<Cllp—ll"* il IIU—U\\Lm!!VpIILn+G -
<Cllp—7lI"* Rl IIE(u—U)IILzllvmlL an

This in particular implies that

II(p PN, e < ClLu =) 20VAll |

Now let us denote
Xi(t) = [l(p = p)@) Xo(t) = [lV/plu = @)(1)[|72,
A=CVoll g, V()= 1£(u— @) ()|,

B(t) = C||Va(t)||L, () = CILOE®)|F2 + |LU) |72l L2U(E)[172),

2n 9
[ n+2—4e
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which satisfy
LX,(t) < A2 (1),
FXa(t) + Y (t) < B(O)Xa(t) +()XT(2),
X1(0) =0.

Recalling the estimates of Lemma 2.2-Lemma, 2.5, one has

t t
/ B(r)dr < Co, / (r) dr < Co.
0 0

Due to u(z,0) = u(x,0), we have X5(0) = 0. According to the Gronwall type inequality
(see [21, Lemma 2.5]), it is clear that

Ivetu=m @)z + (0= DO

which guarantees the uniqueness. Therefore, we complete the proof of Theorem 1.1.

o FlIL—a)#)]7 =0,

2
nF2—41e

APPENDIX A. BESOV SPACES

This Appendix recalls the inhomogeneous Besov spaces. We begin with the so-called
Littlewood-Paley theory. We choose a smooth radial non-increasing function y € [0, 1] such
that x is supported in the ball B := {¢ € R, [¢| < 3} and with value 1 on {¢ € R™, [¢] < 2}.

Now we set p(§) = X(%) — x(€), which is supported in the annulus C := {£ € R", 2 <
€] < 3} and satisfies

XE+D (279 =1, VEeR™

Jj=0

Let h = F () and h = F~1(x), then the dyadic blocks A; of our decomposition can be
defined by

Aju=0, j<-2% Ayu=x(Dju= / R(y)ule — ) dy:

Aju= (279 D)u = 29" h(27y)u(z —y)dy, Vi€ N.
R

The following operator S; reads as the low-frequency cut-off

Siu=x(27D)u = Z Apu = Qj"/ h(2y)u(z —y)dy, VjeN.
C1<k<j—1 R

Now the inhomogeneous Besov spaces are defined through the dyadic decomposition.

Definition A.1. Let s € R, (p,7) € [1,400]?. The inhomogeneous Besov space Bj . is
defined as a space of f € S'(R™) such that

By, = {f € S ®"): | flls;, < oo},
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where

1
(X 27 1afll)". <o
7y, = =

sup 2jsHA]~fHLp, 7 = 00.
iz-1

The following lemma provides the Bernstein type inequalities for fractional derivatives.

Lemma A.1 (see [4]). Assume 1 < a <b < oco. If the integer j > —1, then it holds that

IARA; fll s < CL 2 G DA fllpe, k>0,

If the integer j > 0, then we have

Co2M A fllps < IAFA;fllpy < O3 249G A s, k€ R,

where Cp, Cy and Cs are constants depending on k,a and b only.
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