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Abstract
This paper provides a review of the recent results on the stability of vortex sheets in com-
pressible flows. Vortex sheets are contact discontinuities of the underlying flows. The vor-
tex sheet problem is a free boundary problem with a characteristic boundary and is chal-
lenging in analysis. The formulation of the vortex sheet problem will be introduced. The 
linear stability and nonlinear stability for both the two-dimensional two-phase compress-
ible flows and the two-dimensional elastic flows are summarized. The linear stability of 
vortex sheets for the three-dimensional elastic flows is also presented. The difficulties of 
the vortex sheet problems and the ideas of proofs are discussed.
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1  Introduction

Vortex sheets are contact discontinuities in fluid flows arising in many disciplines such 
as fluid mechanics, aerodynamics, astrophysics, oceanography, and so on. The flow 
velocity in vortex sheets is continuous in the normal direction but has a jump along the 
tangential direction. We refer the readers to [7, 8, 14, 15, 18, 24, 31, 38, 42, 43] and the 
references therein for more discussions on the physical background and applications of 
vortex sheets. The mathematical analysis of vortex sheets in fluid flows is challenging 
and has attracted wide attention, resulting in many significant works and progress. In 
this article, we provide a review of some recent results on the existence and stability of 
vortex sheet solutions for various compressible flows.

It is well known from the analysis in [18, 31, 32, 40] that the vortex sheets in the 
two-dimensional compressible flows governed by the Euler equations are unstable when 
the Mach number is less than 

√
2 , while the vortex sheets in the three-dimensional com-

pressible Euler flows are always violently unstable. For the two-dimensional Euler flows

where � , � , p are the density, velocity, and pressure, respectively, Coulombel and Secchi 
in their pioneer works [15, 16] established the local existence and stability of vortex sheet 
solutions when the Mach number is larger than 

√
2 . For the three-dimensional compress-

ible flows, various stabilizing effects on the stability of vortex sheets have been discovered 
recently in the following works.

•	 Magnetic field: for the three-dimensional compressible magnetohydrodynamic flows, 
the nonlinear stability of vortex sheets was obtained in Chen and Wang [7] and Trakh-
inin [42] under a condition on the magnetic field using an energy method, which shows 
that the magnetic field can stabilize the three-dimensional vortex sheets.

•	 Surface tension: for the three-dimensional compressible Euler flows with surface ten-
sion, the local existence and structural stability of vortex sheets were proved in Stevens 
[41], which demonstrates that the surface tension provides a stabilizing effect on vortex 
sheets.

•	 Elasticity: for the three-dimensional compressible elastodynamic flows, the linear sta-
bility was established in Chen et al. [12] with the necessary and sufficient conditions 
for the linear stability and instability of vortex sheets, which indicates that the elasticity 
can provide stabilization on vortex sheets. In fact, the stabilizing effect on vortex sheets 
from elasticity was first revealed in the two-dimensional compressible isentropic elastic 
flows in [8–10, 21].

In addition, the linear and nonlinear stability of compressible vortex sheets have also been 
obtained in many other papers, mostly on the two-dimensional flows, such as [23, 38] for the 
two-dimensional two-phase flows, [45] for the two-dimensional magnetohydrodynamic flows, 
[5] for the relativistic flows, [34, 35] for the two-dimensional nonisentropic Euler flows, [11] 
for the two-dimensional nonisentropic elastic flows, [44, 46, 47] for the three-dimensional 
steady Euler flows, and so on. The stability of solutions with different discontinuities than vor-
tex sheets in the two-dimensional compressible elastic flows was studied in [6, 33].

We want to point out that the incompressible vortex sheets have also been extensively stud-
ied, but this article will only focus on the results in the compressible flows.

(1)
{

𝜌t + div(𝜌�) = 0,

(𝜌�)t + div(𝜌�⊗ �) + ∇p = 0,
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Mathematically, the vortex sheet problem for the compressible Euler flows is a free bound-
ary problem with a characteristic boundary, making it difficult to control the trace of the 
characteristic parts of the solutions. Since the Kreiss-Lopatinski ĭ condition does not hold 
uniformly, there is some loss of the tangential derivatives in the estimates of the solutions 
[15, 16]. There are extra difficulties in dealing with other compressible flows, for example, in 
elastic flows, the Lopatinski ĭ determinant has a more complicated distribution of roots, that 
is, the non-differentiable points of the eigenvalues may coincide with the roots of the Lopat-
inski ĭ determinant. The three-dimensional vortex sheet problems are often different from and 
much harder than the two-dimensional problems. As a result, novel techniques and ideas are 
required to establish both linear and nonlinear stability of vortex sheets; for example, the upper 
triangularization method was introduced to study the linear stability with constant coefficients 
of vortex sheets of elastic flows in [8] and later was adopted in the works of [5, 9, 10, 12]. 
Some standard techniques involved for the stability of vortex sheets (cf. [7, 15, 16, 34, 35, 
42, 45]) include the normal mode analysis, symmetrization, para-linearization and microlocal 
analysis in the neighborhood of bicharacteristic curves [3, 30], Nash-Moser iteration, energy 
estimates in usual or anisotropic Sobolev spaces, and so on. The aim of this article is to review 
the recent results on the stability of compressible vortex sheets for the two-dimensional two-
phase flows obtained in [23, 38], and for the two-dimensional and three-dimensional elastic 
flows in [8–10, 12]. In comparison with the compressible Euler flows, the two-phase flows 
have two different densities for the liquid and gas, making the analysis much more compli-
cated (cf. [38]). For the elastic flows, the roots of the Lopatinski ĭ determinant exhibit substan-
tial degeneracy, causing the Kreiss symmetrizer argument not applicable (cf. [8]). The works 
on vortex sheets in [8–12, 23, 38] investigate the linear stability with constant coefficients, the 
linear stability with variable coefficients, and the nonlinear stability, as in [15, 16].

The rest of the paper is organized as follows. In Sect. 2 , we present the stability results of 
vortex sheets in [23, 38] for the two-dimensional two-phase flows, including the linear stabil-
ity with constant coefficients, the linear stability with variable coefficients, and the nonlin-
ear stability. In Sect. 3, we summarize the stability results in [8–10] for the two-dimensional 
elastic flows, including the linear stability with constant coefficients, the linear stability with 
variable coefficients, and the nonlinear stability, and a brief remark on the nonisentropic flows. 
In Sect. 4, we review the linear stability results in [12] for the three-dimensional elastic flows.

2 � Vortex Sheets in the Two‑Phase Compressible Flows

In this section, we give a review of the stability results obtained in [23, 38] for the vortex sheets 
in the two-dimensional two-phase compressible flows, following closely their presentations. 
Consider the following equations of two-phase compressible flows of liquid-gas fluids in ℝ2:

where m is the gas mass, n is the liquid mass, � is the velocity, and

is the pressure with 𝛾 > 1 ; see [4, 23, 26, 28, 29, 38] and the references therein for the 
physical background and applications of two-phase flows.

(2)

⎧
⎪⎨⎪⎩

𝜕tm + ∇ ⋅ (m�) = 0,

𝜕tn + ∇ ⋅ (n�) = 0,

𝜕t(n�) + ∇ ⋅ (n�⊗ �) + ∇p(m, n) = 0,

p(m, n) = (� − 1)(m + n)�
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Denote by x = (x1, x2) the spatial variable, � = (v, u) the velocity, and �1 = �x1 , �2 = �x2 . 
Let (m, n, �)(t, x1, x2) be a piecewise smooth function across a smooth surface 
𝛤 = {x2 = 𝜑(t, x1), t > 0, x1 ∈ ℝ} , satisfying the Rankine-Hugoniot jump conditions on � :

where � = (−�1�, 1) , [q] = q+ − q− is the jump of a quantity q across the interface �  , and 
q+ and q− denote the states in {x2 > 𝜑(t, x1)} and {x2 < 𝜑(t, x1)} , respectively. A vortex 
sheet solution (m, n, �) has continuous normal velocity and possible jump of tangential 
velocity, thus the Rankine-Hugoniot conditions (3) on �  become the following:

Then the problem of the existence and stability of vortex sheet solutions can be formu-
lated as the following free boundary problem for U± = (m±, n±, v±, u±) and a free boundary 
𝛤 = {x2 = 𝜑(t, x1), t > 0, x1 ∈ ℝ} such that

satisfying the jump conditions on � :

where �0(x1) = �(0, x1) and

We need to establish the local existence and stability of the problem (5)–(6) around a back-
ground piecewise constant vortex sheet solution.

To solve the vortex sheet problem we first reformulate the free-boundary into a fixed-
boundary by straightening the interface using the standard partial hodograph transformation 
(cf. [19]):

with some smooth functions Φ± satisfying

for some constant 𝜅 > 0 . Then the domain becomes the fixed domain x2 > 0 (after drop-
ping the tildes for simplicity of notation), the free boundary becomes the fixed boundary 
x2 = 0 , and the vortex sheet problem becomes the following problem for the smooth solu-
tions U± = (m±, n±, v±, u±)⊤ and Φ±:

(3)

⎧
⎪⎨⎪⎩

�t�[m] − [m� ⋅ �] = 0,

�t�[n] − [n� ⋅ �] = 0,

�t�[n�] − [(n� ⋅ �)�] − [p]� = 0,

(4)�t� = �
+
⋅ � = �

−
⋅ �, m+ + n+ = m− + n−.

(5)

⎧⎪⎨⎪⎩

𝜕tU
+ + A1

�
U+

�
𝜕1U

+ + A2

�
U+

�
𝜕2U

+ = 0, x2 > 𝜑(t, x1),

𝜕tU
− + A1(U

−)𝜕1U
− + A2(U

−)𝜕2U
− = 0, x2 < 𝜑(t, x1),

U(0, x1, x2) =

�
U+

0
(x1, x2), x2 > 𝜑0(x1),

U−
0
(x1, x2), x2 < 𝜑0(x1),

(6)�t� = −v+�1� + u+ = −v−�1� + u−, m+ + n+ = m− + n−,

A1(U) =

⎡⎢⎢⎢⎣

v 0 m 0

0 v n 0
pm

n

pn

n
v 0

0 0 0 v

⎤⎥⎥⎥⎦
, A2(U) =

⎡⎢⎢⎢⎣

u 0 0 m

0 u 0 n

0 0 u 0
pm

n

pn

n
0 u

⎤⎥⎥⎥⎦
.

(7)t = t̃, x1 = x̃1, x2 = Φ±
(
t̃, x̃1, x̃2

)

(8)±𝜕x̃2Φ
±
(
t̃, x̃1, x̃2

)
⩾ 𝜅 > 0, Φ+

(
t̃, x̃1, 0

)
= Φ−

(
t̃, x̃1, 0

)
= 𝜑

(
t̃, x̃1

)
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for x1 ∈ ℝ, x2 > 0 , with the boundary conditions on x2 = 0:

and the initial condition

We take the following simple vortex sheet solution with piecewise constants:

with mr + nr = ml + nl, vr + vl = 0 , and mr,ml, nr, nl > 0 as well as vr > 0 without loss of 
generality. We shall study the vortex sheet problem around the background solution defined 
by (12).

2.1 � Linear Stability with Constant Coefficients

We now present the linear stability result of vortex sheets with constant coefficients in [38]. 
Denote by U̇± = (ṁ±, ṅ±, v̇±, u̇±) and Ψ± the small perturbation of the background solution 
(12), set

and consider the linearized problem

where U̇ = (U̇+, U̇−) , and

We shall establish the estimates of (U̇,𝜓) in terms of f and g in appropriate functional 
spaces.

Set c2
r,l
=
(
1 +

mr,l

nr,l

)
pn and perform the following changes of variables:

(9)�tU
± + A1(U

±)�1U
± +

1

�2Φ
±

[
A2(U

±) − �tΦ
±I4×4 − �1Φ

±A1(U
±)
]
�2U

± = 0

(10)

⎧
⎪⎨⎪⎩

Φ+ = Φ− = �,

(v+ − v−)�1� − (u+ − u−) = 0,

�t� + v+�1� − u+ = 0,

(m+ + n+) − (m− + n−) = 0,

(11)(m±, n±, v±, u±)|t=0 = (m±
0
, n±

0
, v±

0
, u±

0
)(x1, x2), �|t=0 = �0(x1).

(12)Ur =
(
mr, nr, vr, 0

)⊤
, Ul =

(
ml, nl, vl, 0

)⊤
, Φr,l(t, x1, x2) ≡ ±x2, 𝜑 ≡ 0

U± = Ur,l + U̇±, Φ± = Φr,l + Ψ±,

(13)
{

LU̇ = f , if x2 > 0,

B(U̇,𝜓) = g, if x2 = 0,

LU̇ = 𝜕
t

�
U̇+

U̇−

�
+

�
A1(Ur

) 0

0 A2(Ul
)

�
𝜕1

�
U̇+

U̇−

�
+

�
A1(Ur

) 0

0 − A2(Ul
)

�
𝜕2

�
U̇+

U̇−

�
,

B(U̇,𝜓) =

⎡⎢⎢⎣

�
v
r
− v

l

�
𝜕1𝜓 −

�
u̇+ − u̇−

�
𝜕
t
𝜓 + v

r
𝜕1𝜓 − u̇+�

ṁ+ + ṅ+

�
−
�
ṁ− + ṅ−

�
⎤
⎥⎥⎦
.
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and

Define W = (W1,W2,W3,W4,W5,W6,W7,W8)
⊤ , and its “characteristic part” and “nonchar-

acteristic part”: Wc = (W1,W2,W5,W6)
⊤ , Wnc = (W3,W4,W7,W8)

⊤.

Then we have the following system for W (see [38]):

where

⎡
⎢⎢⎢⎣

ṁ+

ṅ+
v̇+
u̇+

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

2nr 0 − 2mr 2mr

−2nr 0 − 2nr 2nr
0 1 0 0

0 0 2cr 2cr

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎣

W1

W2

W3

W4

⎤
⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎣

ṁ−

ṅ−
v̇−
u̇−

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

2nl 0 − 2ml 2ml

−2nl 0 − 2nl 2nl
0 1 0 0

0 0 2cl 2cl

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎣

W5

W6

W7

W8

⎤
⎥⎥⎥⎦
.

(14)
{

LW = A0𝜕tW +A1𝜕1W +A2𝜕2W = f , if x2 > 0,

B(Wnc,𝜓) = MWnc|x2=0 + b(𝜕t𝜓 , 𝜕1𝜓)⊤ = g, if x2 = 0,

A0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0
1

4
0 0

0 0 2c2
r

0

0 0 0 2c2
r

�

�

1 0 0 0

0
1

4
0 0

0 0 2c2
l

0

0 0 0 2c2
l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
r

0 0 0

0
1

4
v
r

−
1

2
c2
r

1

2
c2
r

0 −
1

2
c2
r

2c2
r
v
r

0

0
1

2
c2
r

0 2c2
r
v
r

�

�

v
l

0 0 0

0
1

4
v
l

−
1

2
c
2

l

1

2
c
2

l

0 −
1

2
c
2

l
2c2

l
v
l

0

0
1

2
c
2

l
0 2c2

l
v
l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 − 2c3
r

0

0 0 0 2c3
r

�

�

0 0 0 0

0 0 0 0

0 0 2c3
l

0

0 0 0 − 2c3
l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎣

0 2v
r

1 v
r

0 0

⎤
⎥⎥⎥⎦
, M =

⎡
⎢⎢⎢⎣

−2c
r

− 2c
r

2c
l

2c
l

−2c
r

− 2c
r

0 0

−2(m
r
+ n

r
) 2(m

r
+ n

r
) 2(m

l
+ n

l
) − 2(m

l
+ n

l
)

⎤
⎥⎥⎥⎦
.
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The problem (14) is a hyperbolic problem with characteristic boundary. We need to intro-
duce some weighted Sobolev norms following [38]. Let 𝛺 =

{
(t, x1, x2) ∈ ℝ3: x2 > 0

}
 be 

the half-space. For s ∈ ℝ and λ ⩾ 1 , define the weighted Sobolev space

with the norm ‖u‖Hs
λ
(ℝ2) = ‖ exp(−λt)u‖Hs(ℝ2). Set ũ = exp(−λt)u , then ‖u‖Hs

λ
(ℝ2) ≃ ‖ũ‖s,λ, 

where

and v̂ is the Fourier transform of v. Let

for an integer k and λ ⩾ 1 . For s > r , Hs
λ

(
ℝ2

)
⊂ Hr

λ

(
ℝ2

)
 and ‖v‖r,λ ⩽ 1

λs−r
‖v‖s,λ . The norm 

of the space L2
(
ℝ+;Hs

λ
(ℝ2)

)
 is given by

We have the linear stability with constant coefficients stated as follows.

Theorem 1  [38, Theorem 3.1] Let 
(
Ur,l,Φr,l

)
 be the background solution in (12).

(i) If

then there exists a positive constant C such that for all λ ⩾ 1 and for all solutions 
(W,�) ∈ H2

λ
(�) × H2

λ
(ℝ2) to (14), the following estimate holds: 

(ii) If

then there exists a positive constant C such that for all λ ⩾ 1 and for all solutions 
(W,�) ∈ H3

λ
(�) × H3

λ
(ℝ2) to (14), the following estimate holds: 

Hs
λ
(ℝ2) =

{
u ∈ D

�(ℝ2): exp(−λt)u ∈ Hs(ℝ2)
}

‖v‖2
s,λ

=
1

(2𝜋)2 ∫ℝ2

�
λ2 + �𝜉�2�s�v̂(𝜉)�2d𝜉,

Hk
λ
(�) =

{
u ∈ D

�(�): exp(−λt)u ∈ Hk(�)
}

���v���2
L2(Hs

λ
)
= ∫

∞

0

‖v(⋅, x2)‖2Hs
λ
(ℝ2)

dx2.

(15)vr − vl >

�
c

2

3

r + c
2

3

l

� 3

2

and vr − vl ≠
√
2(cr + cl),

(16)
λ���W���2

L
2

λ
(�)

+ ‖Wnc�
x2=0

‖2
L
2

λ
(ℝ2)

+ ‖�‖2
H

1

λ
(ℝ2)

⩽ C

�
1

λ3
���LW���2

L2(H1

λ
)
+

1

λ2
‖B(W,�)‖2

H
1

λ
(ℝ2)

�
.

(17)vr − vl =
√
2(cr + cl),

(18)
λ���W���2

L
2

λ
(�)

+ ‖Wnc�
x2=0

‖2
L
2

λ
(ℝ2)

+ ‖�‖2
H

1

λ
(ℝ2)

⩽ C

�
1

λ5
���LW���2

L2(H2

λ
)
+

1

λ4
‖B(W,�)‖2

H
2

λ
(ℝ2)

�
.
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Theorem  1 can be proved using a normal mode analysis of (14) as in [15] with the 
elimination of the front, construction of the symmetrizer and energy estimates; see [38] for 
details.

2.2 � Linear Stability with Variable Coefficients

For the linear stability with variable coefficients [38], we first linearize the equations 
around the state Ur,l(t, x1, x2),Φr,l(t, x1, x2) as a perturbation of the constant solution in (12) 
given by the following:

such that Ur,l,∇Φr,l ∈ W2,∞(�) , ‖(Ur,Ul)‖W2,∞(�) + ‖(∇Φr,∇Φl)‖W2,∞(�) ⩽ K0 for some 
constant K0 > 0 , where U̇r,l have compact support. As in [38] we consider the linearized 
problem for the good unknown V̇ = (V̇+, V̇−)

⊤ (see [1]) around the state Ur,l,Φr,l:

where

and

with the similar formulas for L(Ul,∇Φl) and C(Ul,∇Ul,∇Φl)V̇− , and

The linear stability with variable coefficients reads as follows.

Theorem 2  [38, Theorem 5.1] Assume that the particular solution defined by (19) satisfies

and that the perturbations U̇r,l, ∇Φ̇r,l have compact support and are small enough in 
W2,∞(�) . Then there exist some constants C1 and λ1 ⩾ 1 , such that, for all λ ⩾ λ1 , the 
solution (V̇ ,𝜓) ∈ H2

λ
(𝛺) × H2

λ
(ℝ2) to the linearized problem (20) satisfies the following 

estimates:

(19)
{

Ur,l(t, x1, x2) =
(
mr,l, nr,l,±vr, 0

)⊤
+ U̇r,l(t, x1, x2),

Φr,l(t, x1, x2) = ±x2 + Φ̇r,l(t, x1, x2),

(20)

⎧⎪⎪⎨⎪⎪⎩

L�
r
V̇+ = L(Ur,∇Φr)V̇+ + C(Ur,∇Ur,∇Φr)V̇+ = f+,

L�
l
V̇− = L(Ul,∇Φl)V̇− + C(Ul,∇Ul,∇Φl)V̇− = f−,

Ψ+(t, x1, x2)�x2=0 = Ψ−(t, x1, x2)�x2=0 = 𝜓(t, x1),

B�(Ur,l,Φr,l)
�
V̇�x2=0,𝜓

�
= b∇𝜓 +M

�
𝜕2Ur

𝜕2Φr

,
𝜕2Ul

𝜕2Φl

�⊤���x2=0𝜓 +MV̇�x2=0 = g,

L(Ur,∇Φr) =�t + A1(Ur)�1 +
1

�2Φr

[
A2(Ur) − �tΦrI4×4 − �1ΦrA1(Ur)

]
�2,

C(Ur,∇Ur,∇Φr)V̇+ =
(
dA1(Ur)V̇+

)
𝜕1Ur +

1

𝜕2Φr

{
dA2(Ur)V̇+ − 𝜕1Φr[dA1(Ur)V̇+]

}
𝜕2Ur

b(t, x1) =

⎡⎢⎢⎣

0
�
vr − vl

��x2=0
1 vr�x2=0
0 0

⎤⎥⎥⎦
, M(t, x1) =

⎡⎢⎢⎣

0 0 �1� − 1 0 0 − �1� 1

0 0 �1� − 1 0 0 0 0

1 1 0 0 − 1 − 1 0 0

⎤⎥⎥⎦
.

(21)vr − vl >

�
c

2

3

r + c
2

3

l

� 3

2

, vr − vl ≠
√
2
�
cr + cl

�
,
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The idea for proving the above theorem is to turn the variable-coefficient problem 
into the constant-coefficient problem by freezing the coefficients. The proof of Theo-
rem  2 includes the transformations of the interior equations by the Friedrichs sym-
metrization, para-linearization and elimination of the front, energy estimates for the 
para-linearized problem and microlocalization as in [15], and the details can be found 
in [38].

2.3 � Nonlinear Stability

To prove the existence and stability of vortex sheet solutions for the free-boundary prob-
lem (9)–(11), we need to find a solution U(t, x1, x2) and �(t, x1) locally in time, which was 
achieved in [23] from the linearization of (9)–(11) around the piecewise constant back-
ground vortex sheet solution (12). For the convenience of notation we also denote by Ū± 
the background solution Ur,l , i.e., Ū± = Ur,l . Then we have the existence and nonlinear sta-
bility of vortex sheet solutions as follows.

Theorem  3  [23, Theorem  2.1] Let T > 0 , � ∈ ℕ, � ⩾ 15 , and the background solution 
defined by (12) satisfy the “supersonic” condition:

where cr,l =
√

(1 +
mr,l

nr,l
)pn(mr,l, nr,l). Assume that the initial data (U±

0
,�0) has the form 

U±
0
= Ū± + U̇±

0
, with U̇±

0
∈ H2𝛼+15

∗
(ℝ2

+
) and �0 ∈ H2�+16(ℝ) compatible up to order � + 7 

and compactly supported. Then, there exists 𝛿 > 0, such that, if 
[U̇±

0
]2𝛼+15,∗,T + ||𝜑0||H2𝛼+16 ⩽ 𝛿, the problem (9)–(11) has a unique solution 

U± = Ū± + U̇±,Φ± = ±x2 + Φ̇±,𝜑 on [0,  T],   satisfying (U̇±, Φ̇±) ∈ H𝛼−1
∗

((0, T) ×ℝ2
+
), 

and � ∈ H�((0, T) ×ℝ).

The proof of Theorem 3 can be found in [23]. In the proof, we apply the Nash-Moser 
procedure as in [16], but we need to use the anisotropic Sobolev spaces (cf. [13, 39]) 
instead of the usual Sobolev spaces to deal with the jump of the normal derivatives of the 
densities in order to derive the derivative estimates and the tame estimates. The major steps 
of the proof include deriving the a priori estimates of the tangential derivatives and normal 
derivatives, and the tame estimates in the anisotropic Sobolev spaces. A different sym-
metrization for the two-phase flows was used in [37] for the local existence of shock waves 
and vortex sheets based on the result in [35].

(22)

λ������V̇������2L2
λ
(𝛺)

+ ‖V̇nc�x2=0‖2L2
λ
(ℝ2)

+ ‖𝜓‖2
H1

λ
(ℝ2)

⩽ C1

�
1

λ3
������L�V̇������2L2(H1

λ
)
+

1

λ2
������B�(V̇ ,𝜓)������2H1

λ
(ℝ2)

�

= C1

�
1

λ3
������(f+, f−)������2L2(H1

λ
)
+

1

λ2
���g���2

H1

λ
(ℝ2)

�
.

(23)vr − vl >

�
c

2

3

r + c
2

3

l

� 3

2

, vr − vl ≠
√
2(cr + cl),
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3 � Vortex Sheets in the Two‑Dimensional Compressible Elastodynamics

In this section, we summarize the works on the stability of vortex sheets for elastic flows 
in [8–10] (see also [21]). We consider the vortex sheets for the two-dimensional isentropic 
compressible flows in elastodynamics (cf. [17]) of the form

where � denotes the density, � = (v, u) ∈ ℝ2 the velocity, � = (Fij) ∈ �2×2 the deforma-
tion gradient, and p = p(�) the pressure. Using the intrinsic property div(𝜌�⊤) = 0 one can 
rewrite the system (24) as the following conservative form:

where �j is the jth column of the deformation gradient � , j = 1, 2 . We refer the readers to 
[2, 22, 24, 25, 27, 36] for the physical background and motivation of the vortex sheets in 
elastic flows. Let U(t, x1, x2) = (�, �, �)(t, x1, x2) be a solution to the system (25) which is 
smooth on each side of a smooth interface � = {x2 = �(t, x1)}:

where U± = (�±,�±, �±) . Setting �i = �xi , i = 1, 2 , we denote by � = (−�1� , 1) a normal 
vector on �  . For a vortex sheet in the elastic flow, the Rankine-Hugoniot jump conditions 
become

As for the two-phase flows in Sect. 2, we introduce the change of variables (cf. [19]) to 
straighten the free boundary �  through the functions Φ±(t, x1, x2) = Φ(t, x1,±x2) with 
inf{𝜕2Φ} > 0 and Φ(t, x1, 0) = �(t, x1) , and �tΦ± + v±�1Φ

± − u± = 0 for x2 ⩾ 0 . Then we 
arrive at the following problem:

for x2 > 0 with the boundary conditions on x2 = 0:

where the precise formulas of the matrices A1,A2,A3 can be found in [8]. We remark that 
the condition �±

j
⋅ � = 0 in (26) holds for t > 0 if it is satisfied at t = 0 due to the transport 

(24)

⎧
⎪⎨⎪⎩

𝜌t + div(𝜌�) = 0,

(𝜌�)t + div(𝜌�⊗ �) + ∇p = div(𝜌��⊤),

�t + � ⋅ ∇� = ∇��,

(25)

⎧⎪⎨⎪⎩

𝜌t + div(𝜌�) = 0,

(𝜌�)t + div(𝜌�⊗ �) + ∇p − div(𝜌��⊤) = 0,

(𝜌�j)t + div(𝜌�j ⊗ � − �⊗ 𝜌�j) = 0,

U(t, x1, x2) =

{
U+(t, x1, x2), when x2 > 𝜓(t, x1),

U−(t, x1, x2), when x2 < 𝜓(t, x1),

(26)�+ = �−, �t = �
+
⋅ � = �

−
⋅ �, �

+
j
⋅ � = �

−
j
⋅ � = 0, j = 1, 2 on � .

(27)�tU
± + A1(U

±)�1U
± +

1

�2Φ
±

[
A2(U

±) − �tΦ
±I − �1Φ

±A3(U
±)
]
�2U

± = 0

(28)

⎧⎪⎨⎪⎩

(v+ − v−)�1� − (u+ − u−) = 0,

�t� + v+�1� − u+ = 0,

�+ − �− = 0,
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equation �t(�j ⋅ �) + � ⋅ ∇(�j ⋅ �) = 0 , thus �±
j
⋅ � = 0 is considered as the restriction on the 

initial data and hence does not appear in the boundary conditions (28). The above system 
(27)–(28) has a piecewise constant solution of the following form:

where the constants 𝜌̊ , vr , vl , Fr
11

 , Fl
11

 , Fr
12

 , and Fl
12

 satisfy

We want to construct the vortex sheet solutions of (27)–(28) which is a perturbation of the 
background solution (29) and prove the stability.

3.1 � Linear Stability with Constant Coefficients

Now we linearize the system (27)–(28) around the above constant states (29). Let 
U̇± = (𝜌̇±, �̇±, �̇±) = U± − Ů± and Φ̇± = Φ± − Φ̊± be the small perturbation of the con-
stant solution. As in [8], we consider the following change of variables:

with c =
√
p�(𝜌̊) . Denote

and consider the following linearized problem:

where Wnc = (W2,W3,W9,W10)
⊤ is the non-characteristic part of W, and the precise formu-

las of A, A1, A2, M, b can be found in [8].
Using the notation of the weighted Sobolev spaces and norms defined in Sect. 2.1, 

we have the following linear stability with constant coefficients.

Theorem 4  [8, Theorem 2.1]

(i) If the particular solution defined by (29) satisfies

(29)
Ů+ = (𝜌̊, vr, 0,Fr

11
, 0,Fr

12
, 0)⊤, Ů− = (𝜌̊, vl, 0,Fl

11
, 0,Fl

12
, 0)⊤, Φ̊±(t, x1, x2) = ±x2,

vr + vl = Fr
11
+ Fl

11
= Fr

12
+ Fl

12
= 0 and vr > 0,Fr

11
,Fr

12
≠ 0.

(30)W =

�
T 0

0 T

� �
U̇+

U̇−

�
, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0

−
1

2𝜌̊
0

1

2c
0 0 0 0

1

2𝜌̊
0

1

2c
0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

W = (W1,W2,W3,⋯ ,W14)
⊤,

(31)
{

LW = A0𝜕tW +A1𝜕1W +A2𝜕2W = 0, x2 > 0,

B(Wnc,𝜑) = MWnc + b(𝜕t𝜑, 𝜕1𝜑)
⊤ = 0, x2 = 0,

(32)

(vr)2 > 2c2 + (Fr
11
)2 + (Fr

12
)2, or

(vr)2 < (Fr
11
)2 + (Fr

12
)2 and (vr)2 ≠

(
(Fr

11
)2 + (Fr

12
)2
)(
2c2 + (Fr

11
)2 + (Fr

12
)2
)

4
(
(Fr

11
)2 + (Fr

12
)2 + c2

) ,
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then there is a positive constant C such that for all λ ⩾ 1 , W ∈ H2
λ
(ℝ3

+
) and � ∈ H2

λ
(ℝ2) , 

the following estimate holds: 

(ii) If the particular solution defined by (29) satisfies

then there is a positive constant C such that for all λ ⩾ 1 , W ∈ H3
λ
(ℝ3

+
) and � ∈ H3

λ
(ℝ2) , 

the following estimate holds:

(iii) If the particular solution defined by (29) satisfies

then there is a positive constant C such that for all λ ⩾ 1 , W ∈ H4
λ
(ℝ3

+
) and � ∈ H4

λ
(ℝ2) , 

the following estimate holds: 

(iv) If the particular solution defined by (29) satisfies

the constant vortex sheets (29) is linearly unstable, in the sense that the Lopatinski ĭ condi-
tion is violated.

As remarked in [8], the above theorem provides a sufficient and necessary condition 
on the stability of the linearized problem, that is, one has the linear stability under the 
conditions (i)–(iii), and the instability under the remaining condition (iv). The elasticity 
gives a stable subsonic region in (32), which shows the stabilization effect. To prove this 
theorem, one major difficulty is that there is some degeneracy at the roots of the Lopatin-
ski ĭ determinant, which make it hard to apply the Kreiss symmetrizer argument (cf. [15]) 
because it does not separate the incoming and outgoing modes at those points of degen-
eracy. Instead an upper triangularization method was developed in [8] to separate only the 
outgoing modes that were shown to be zero, thus one only needs to derive the estimates for 
the incoming modes directly from the Lopatinski ĭ determinant. The upper triangularization 
procedure simplifies greatly the computations and estimates for the outgoing modes and 
can apply to other compressible flows [6, 9, 10, 12].

(33)
λ���W���2

L2(H0

λ
)
+ ‖Wnc�

x2=0
‖2
L
2

λ
(ℝ2)

+ ‖�‖2
H

1

λ
(ℝ2)

⩽ C

�
1

λ3
���LW���2

L2(H1

λ
)
+

1

λ2
‖B(Wnc�

x2=0
,�)‖2

H
1

λ
(ℝ2)

�
.

(34)
(vr)2 =

(
(Fr

11
)2 + (Fr

12
)2
)(
2c2 + (Fr

11
)2 + (Fr

12
)2
)

4
(
(Fr

11
)2 + (Fr

12
)2 + c2

) , or

(vr)2 = (Fr
11
)2 + (Fr

12
)2,

(35)
λ���W���2

L2(H0

λ
)
+ ‖Wnc�

x2=0
‖2
L
2

λ
(ℝ2)

+ ‖�‖2
H

1

λ
(ℝ2)

⩽ C

�
1

λ5
���LW���2

L2(H2

λ
)
+

1

λ4
‖B(Wnc�

x2=0
,�)‖2

H
2

λ
(ℝ2)

�
.

(36)(vr)2 = (Fr
11
)2 + (Fr

12
)2 + 2c2,

(37)
λ���W���2

L2(H0

λ
)
+ ‖Wnc�

x2=0
‖2
L
2

λ
(ℝ2)

+ ‖�‖2
H

1

λ
(ℝ2)

⩽ C

�
1

λ7
���LW���2

L2(H3

λ
)
+

1

λ6
‖B(Wnc�

x2=0
,�)‖2

H
3

λ
(ℝ2)

�
.

(38)(Fr
11
)2 + (Fr

12
)2 < (vr)2 < 2c2 + (Fr

11
)2 + (Fr

12
)2,
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3.2 � Linear Stability with Variable Coefficients

Next we discuss the linear stability of compressible vortex sheets with variable coeffi-
cients in [9]. For the linear stability of the variable coefficients, we consider the follow-
ing background state:

where Ur,l and Φr,l are states on the both sides of the vortex sheet; 𝜌̄ > 0 , v̄ , F̄11 , and F̄12 are 
constants; U̇r,l and Φ̇r,l are functions which are the perturbation around the constant states, 
such that, U̇r,l ∈ W2,∞(𝛺), Φ̇r,l ∈ W3,∞(𝛺) , ‖(U̇r, U̇l)‖W2,∞(Ω) + ‖(Φ̇r, Φ̇l)‖W3,∞(Ω) ⩽ K 
for some constant K > 0 , and U̇r,l and Φ̇r,l have compact support, where 
𝛺 =

{
(t, x1, x2) ∈ ℝ3: x2 > 0

}
.

Now we linearize (27) and the boundary conditions (28) around the states (39) and 
denote by (V±,Ψ±) the perturbation of the states (Ur,l,Φr,l) . We define the operator

set the good unknowns [1]

and then consider the following linearized problem:

where

where A1,A2, b,M can be found in [9].
Then the main result on the linear stability with variable coefficients can be stated as 

follows.

Theorem 5  [9, Theorem 2.1] Suppose that the particular solution defined by (39) satisfies 
one of the following two conditions:

(39)

⎧
⎪⎨⎪⎩

Ur,l = (𝜌r,l, vr,l, ur,l,Fr,l

11
,F

r,l

21
,F

r,l

12
,F

r,l

22
)⊤ = Ūr,l + U̇r,l

= (𝜌̄,±v̄, 0,±F̄11, 0,±F̄12, 0)
⊤ + (𝜌̇r,l, v̇r,l, u̇r,l, Ḟr,l

11
, Ḟ

r,l

21
, Ḟ

r,l

12
, Ḟ

r,l

22
)⊤,

Φr,l(t, x1, x2) = ±x2 + Φ̇r,l,

L(Ur,l
,∇Φr,l)V±

= �
t
V
± + A1(U

r,l)�1V
± +

1

�2Φ
r,l

(
A2(U

r,l) − �
t
Φr,l − �1Φ

r,l
A1(U

r,l)
)
�2V

±
,

V̇± =
(
𝜌̇±, v̇±, u̇±, Ḟ±

11
, Ḟ±

21
, Ḟ±

12
, Ḟ±

22

)⊤
= V± −

Ψ±

𝜕2Φ
r,l
𝜕2U

r,l

(40)
{

L�
r,l
V̇± = f r,l, x2 > 0,

B�(V̇ ,𝜓) = g, x2 = 0,

L
�
r,l
V̇
± = L(Ur,l

,∇Φr,l)V̇± + C(Ur,l
,∇Ur,l

,∇Φr,l)V̇± = f
r,l
,

C(Ur,l
,∇Ur,l

,∇Φr,l)V̇±

= [dA1(U
r,l)V̇±]𝜕1U

r,l +
1

𝜕2Φ
r,l
[dA2(U

r,l)V̇± − 𝜕1Φ
r,l
dA1(U

r,l)V̇±]𝜕2U
r,l
,

B
�(V̇ ,𝜓) = b∇𝜓 +M

[
𝜕2U

r∕𝜕2Φ
r

𝜕2U
l∕𝜕2Φ

l

]
𝜓 +MV̇|

x2=0
,
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and moreover, the perturbations U̇r,l and Φ̇r,l have compact support, and K is small 
enough. Then there are two constants C0 and λ0 which are determined by the particular 
solution, such that for all V̇  and � and all λ ⩾ λ0 the following estimate holds:

where L�V̇ = (L�
r
V̇+, L�

l
V̇−).

From the above theorem, we can see the stabilization effect due to elasticity in (ii), which 
was also observed in the constant-coefficient case.

One of the difficulties to prove Theorem 5 is that the standard bicharacteristic extension 
method (cf. [15]) does not work here since the roots of the Lopatinski ĭ determinant coincide 
with the poles for the system of elastic flows. Fortunately the upper triangularization method 
developed in [8] for the constant coefficients can be extended to the para-linearized system to 
separate the outgoing mode. The main steps in the proof of Theorem 5 are reducing the sys-
tem by the para-differential calculus and then using the microlocalization to derive the desired 
energy estimates in the theorem. See [9] for the details.

3.3 � Nonlinear Stability

As in [10], take the background solution of piecewise constants for the trivial vortex sheet as

After straightening the free boundary, we need to solve the following initial-boundary 
value problem for U± in a fixed domain:

where

(i) v̄2 > 2c(𝜌̄)2 + F̄2
11
+ F̄2

12
, or

(ii) v̄2 < F̄2
11
+ F̄2

12
but

v̄2 ≠ F̄2
11
+ F̄2

12

4
, v̄2 ≠

(√
F̄2
11
+ F̄2

12
+ c(𝜌̄)2 −

√
F̄2
11
+ F̄2

12

)2

4
,

v̄2 ≠ F̄2
11
+ F̄2

12
+ c(𝜌̄)2

4
, v̄2 ≠

(
F̄2
11
+ F̄2

12

)(
2c(𝜌̄)2 + F̄2

11
+ F̄2

12

)

4
(
F̄2
11
+ F̄2

12
+ c(𝜌̄)2

) ;

λ������V̇������2L2(H0

λ
)
+
���V̇

nc�
x2=0

���
2

L
2

λ
(ℝ2)

+ ‖𝜓‖2
H

1

λ
(ℝ2)

⩽ C0

�
1

λ3
������L�V̇������2L2(H1

λ
)
+

1

λ2
��B�(V̇ ,𝜓)��2H1

λ
(ℝ2)

�
,

(41)U
±
=
(
𝜌̄, ±v̄, 0, ±F11, 0, ±F12, 0

)⊤
, 𝜑 = 0, 𝛷

±
= ±x2.

(42)

⎧⎪⎨⎪⎩

L(U±,𝛷±)U± = 0, x2 > 0,

�(U+,U−,𝜑)�x2=0 = 0,

(U+,U−,𝜑)�t=0 = (U+
0
,U−

0
,𝜑0),

(43)L(U,�) = �t + A1(U)�1 + Ã2(U,�)�2,
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For the nonlinear stability of elastic vortex sheets, the main result is as follows.

Theorem 6  [10, Theorem 1.1] Let T > 0 and s0 ⩾ 14 be an integer. Suppose that the back-
ground state (41) satisfies one of the following stability conditions:

or

Suppose further that the initial data U±
0
 and �0 with certain constraints and compatibility 

conditions satisfy that (U±
0
− U

±
,�0) ∈ Hs0+1∕2(ℝ2

+
) × Hs0+1(ℝ) has a compact support. 

Then there exists a positive constant � such that, if

then problem (42) admits a solution (U±,�±,�) on the time interval [0, T] satisfying

Theorem 6 indicates that the deformation gradient in elasticity stabilizes the elastic 
system even in the subsonic zone. Again, to understand the spectrum of the para-line-
arized system the upper triangularization method is very useful to treat the degeneracy 
of the Kreiss-Lopatinski ĭ condition and the characteristic boundary. The nonlinear sta-
bility can be proved through the Nash-Moser iteration scheme inspired by [16], and then 
show the convergence of the scheme using the tame estimates derived for the variable 
coefficient linearized problem. See [10] for the details.

We conclude this section by a remark on the nonisentropic case. Some stability 
results of vortex sheets for the two-dimensional nonisentropic Euler flows were obtained 
in [34, 35]. We also studied the stability of vortex sheets for the the two-dimensional 
nonisentropic elastic flows in [11], where the linear stability was derived in some super-
sonic and subsonic regions by an analysis of the roots of the Lopatinski ĭ determinant for 

(44)�(U+,U−,�) =

⎡
⎢⎢⎣

[v1]�1� − [v2]

�t� + v+
1
�x2=0�1� − v+

2
�x2=0

[�]

⎤
⎥⎥⎦
,

Ã2(U,�) =
1

�2�

(
A2(U) − �t�I7 − �1�A1(U)

)
.

(45)v̄2 > 2c(𝜌̄)2 + F
2

11
+ F

2

12
,

(46)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 < v̄2 < F
2

11
+ F

2

12
,

v̄2 ≠ F
2

11
+ F

2

12

4
, v̄2 ≠

�
(F

2

11
+ F

2

12
+ c(𝜌̄)2)1∕2 − (F

2

11
+ F

2

12
)1∕2

�2

4
,

v̄2 ≠ F
2

11
+ F

2

12
+ c(𝜌̄)2

4
, v̄2 ≠ (F

2

11
+ F

2

12
)(F

2

11
+ F

2

12
+ 2c(𝜌̄)2)

4(F
2

11
+ F

2

12
+ c(𝜌̄)2)

.

‖U±
0
− U

±‖Hs0+1∕2(ℝ2
+)
+ ‖�0‖Hs0+1(ℝ) ⩽ �,

(U± − U
±
,�± −�

±
) ∈ Hs0−8((0,T) ×ℝ

2
+
), � ∈ Hs0−7((0,T) ×ℝ).
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the linearized problem, and the nonlinear stability was obtained for the small perturba-
tion of entropy. Our results in [11] also confirm that the elasticity can provide stabiliza-
tion in vortex sheets in the nonisentropic flows.

4 � Vortex Sheets in the Three‑Dimensional Compressible 
Elastodynamics

In this section, we review the stability result of vortex sheets for the three-dimensional com-
pressible elastic flows following the presentation of [12]. This work shows that the elasticity 
can also stabilize the compressible fluid flows in three dimensions, however the linear stability 
problem is much more difficult and the spectrum analysis is much more complicated in the 
three-dimensional case than in the two-dimensional case.

Consider the three-dimensional compressible elastic flows governed by the following equa-
tions [17]:

where � denotes the density, � = (u, v,w) ∈ ℝ3 the velocity, �j the jth column of the defor-
mation gradient � = (Fij) ∈ �3×3 , and p = p(�) the pressure.

Set U = (�,�, �) . A vortex sheet solution to system (47) is a piecewise smooth function:

across the interface � : x3 = �(t, x1, x2) satisfying the Rankine-Hugoniot jump conditions

where U± = (�±, �±, �±) and � = (−�1� ,−�2� , 1) with �i = �xi , i = 1, 2, 3.
Take the function Φ(t, x1, x2, x3) with inf{𝜕3Φ} > 0 and Φ(t, x1, x2, 0) = �(t, x1, x2) , 

define U±(t, x1, x2, x3) = U(t, x1, x2,Φ(t, x1, x2,±x3)) and Φ±(t, x1, x2, x3) = Φ(t, x1, x2,±x3) 
such that �tΦ± + u±�1Φ

± + v±�2Φ
± − w± = 0 for x3 ⩾ 0 , and consider the following initial-

boundary value problem for (47):

where

(47)

⎧⎪⎨⎪⎩

𝜌t + div(𝜌�) = 0,

(𝜌�)t + div(𝜌�⊗ �) + ∇p = div(𝜌��⊤),

(𝜌�j)t + div(𝜌�j ⊗ � − �⊗ 𝜌�j) = 0,

U(t, x1, x2, x3) =

{
U+(t, x1, x2, x3), x3 > 𝜓(t, x1, x2),

U−(t, x1, x2, x3), x3 < 𝜓(t, x1, x2),

(48)�+ = �−, �t = �
+
⋅ � = �

−
⋅ �, �

+
j
⋅ � = �

−
j
⋅ � = 0, j = 1, 2, 3,

(49)

⎧⎪⎨⎪⎩

L(U±,Φ±) = 0, x3 > 0,

B(U±,𝜓)�x3=0 = 0,

(U±,𝜓)�t=0 = (U±
0
,𝜓0),
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and A1,A2,A3 are some 13 × 13 matrices (see [12] for the precise forms).
Without loss of generality we take the piecewise constant background solution to the 

system (49) as the following:

with ur ≠ 0,Fr
ij
≠ 0 for i = 1, 2, j = 1, 2, 3 . We linearize the problem (49) around the back-

ground solution (50) and let

be the small perturbation of the constant solution. As in the two-dimensional case, we 
change variables by the following transformation:

where the precise formula of the 13 × 13 matrix T can be found in [12]. In terms of the 
new variables W = (W1,W2,⋯ ,W26)

⊤ , the linearized problem of (49) at the constant back-
ground solution (50) can be written as

where Wnc = (W1,W2,W14,W15)
⊤ , and Ai, i = 0, 1, 2, 3 , M, b can be found in [12].

Let Fj be the jth row of the deformation matrix �r for j = 1, 2, 3 . Denote by Πb(a) the 
parallel projection of a onto b and Π⟂

b
(a) = a − Πb(a) the perpendicular projection of a 

onto b. Using the weighted Sobolev spaces and norms for the three-dimensional space 
that are analogous to those defined in Sect. 2.1 for the two-dimensional space, we can 
state the linear stability with constant coefficients as follows.

Theorem 7  [12, Theorem 3.1]

(i) Assume that the background solution defined by (50) satisfies F1 × F2 ≠ � . If

then there is a positive constant C such that for all λ > 1,W ∈ H3
λ
(ℝ4

+
) and � ∈ H3

λ
(ℝ3), 

the following estimate holds:

L(U,Φ) = 𝜕tU + A1(U)𝜕1U + A2(U)𝜕2U + Ã3(U,Φ)𝜕3U,

Ã3(U,Φ) =
1

𝜕3Φ
[A3(U) − 𝜕tΦI − 𝜕1ΦA1(U) − 𝜕2ΦA2(U)],

B(U±,𝜓) =

⎡⎢⎢⎣

(u+ − u−)𝜕1𝜓 + (v+ − v−)𝜕2𝜓 − (w+ − w−)

𝜕t𝜓 + u+𝜕1𝜓 + v+𝜕2𝜓 − w+

𝜌+ − 𝜌−

⎤⎥⎥⎦
,

(50)

⎧⎪⎨⎪⎩

Ū+ = (𝜌̄, ur, 0, 0,Fr
11
,Fr

21
, 0,Fr

12
,Fr

22
, 0,Fr

13
,Fr

23
, 0)⊤,

Ū− = (𝜌̄,−ur, 0, 0,−Fr
11
,−Fr

21
, 0,−Fr

12
,−Fr

22
, 0,−Fr

13
,−Fr

23
, 0)⊤,

Φ̄±(t, x1, x2, x3) = ±x3

U̇± = (𝜌̇±, �̇±, Ḟ±) = U± − Ū±, Φ̇± = Φ± − Φ̄±

(51)W =

[
T 0

0 T

][
U̇+

U̇−

]
,

(52)
{

LW = A0𝜕tW +A1𝜕1W +A2𝜕2W +A3𝜕3W = 0, x3 > 0,

B(Wnc,𝜑) = MWnc|x3=0 + b
(
𝜕t𝜑, 𝜕1𝜑, 𝜕2𝜑

)⊤
= 0,

(53)0 < (ur)2 < F(F1, F2),
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(ii) Assume that the background solution defined by (50) satisfies F1 × F2 ≠ � . If

then there is a positive constant C such that for all λ > 1,W ∈ H4
λ
(ℝ4

+
) and � ∈ H4

λ
(ℝ3), 

the following estimate holds: 

(iii) Assume that the background solution defined by (50) satisfies

then the constant vortex sheet solutions (50) are linearly unstable.
We remark that the function F(F1, F2) in the above theorem is complicated and can be 

found in [12], satisfying |||Π⟂

F2
(F1)

|||
2

⩽ 4F(F1, F2) ⩽ 2
|||Π⟂

F2
(F1)

|||
2

.

The sufficient and necessary conditions for the linear stability of the background solu-
tion (50) are provided in Theorem 7, which are obtained by a spectral analysis [15] and 
the upper triangulation method [8]. Different from the two-dimensional case [8], the linear 
stability holds only in a subsonic bubble of the three-dimensional elastic flows. In con-
trast with the three-dimensional compressible Euler flows for which the vortex sheets are 
violently unstable, Theorem  7 shows the stabilizing effect from elasticity which allows 
a subsonic region for the linear stability. The proof of Theorem 7 includes the following 
main steps after the linearization: the normal mode analysis, the upper triangularization 
to separate only the outgoing modes, a delicate analysis of the Lopatinski ĭ determinant 
and the estimates in the neighborhood of the zeros of the Lopatinski ĭ determinant, and 
the desired energy estimates in the theorem. See [12] for details. We remark that the linear 
stability with variable coefficients and the nonlinear stability for the vortex sheets of the 
three-dimensional elastic flows are very challenging and still part of the ongoing studies.
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1

λ5
|||Lλ
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L2(H2

λ
)
+

1

λ4
||Bλ(Wnc|
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,�)||2

H
2

λ
(ℝ3)
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.
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⟂

F2
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2
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λ
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