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Abstract

A list of open questions is found herein, each with a bounty of $1000.

1 Introduction

The end is near. More precisely, the end of my time as a (non-emeritus) professor is near. Thus
I’m particularly grateful to Lane for inviting me to share some thoughts here, because there are a
few things that I want to get off my chest. The Computational Complexity Column provides the
perfect podium for this.

I have some scores to settle.
My upcoming retirement in 2023 provides an opportunity to reflect on my career at Rutgers.

I’ve had the chance to interact with some wonderful students and colleagues, and I’ve been lucky
to have my research efforts be appreciated [AM17]. But there have also been disappointments.
I’m not referring here to the myopic conference program committees that accepted clearly inferior
work while rejecting my submissions; after all, I’ve been on enough program committees over the
years, so that I’ve been complicit in my own share of myopic decisions. No, I’m referring instead to
something much more problematic. I’m referring to the adversaries that have caused me so much
grief, that I’m offering a bounty to have them eliminated.

I’m referring to the open problems that seem like they should be solvable, but which remain at
large to this day.

It comes as no surprise to me that these problems have defeated my best efforts. After all, my
best efforts have frequently fallen short. But I’m fortunate to be part of a community of hard-
working and brilliant theoreticians, and I’ve been happy to see them succeed where I have failed.
(The list of papers that solve problems that I left as open questions includes [GW93, RRW94,
Hir18, Agr11, ABL98, KV10, CDE+14, BTV09, Hes01] and I’m sure that this is incomplete.)

I’m not bothering to offer a bounty for the big open questions that are already well known to
everyone who is likely to be reading this column; the payoff for solving those problems is already
huge and dwarfs any increment I might be able to offer. Instead, I’ve curated a selection of problems
that I truly believe ought to yield to a properly-mounted offensive. These are problems that I believe
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deserve to be better known. And they’re problems that – I hope – will be entertaining to read
about.

So, with no further ado:

2 Equity for PP and #P: Why should we have stronger lower
bounds for one than for the other?

There has been significant progress in the last few years, resulting in improved circuit lower bounds.
In particular, ACC0 circuits require superpolynomial size in order to recognize certain languages
in NQP (nondeterministic quasipolynomial time) [MW20, Che19, CR20]. This is an extremely
important line of work, and by some metrics it brings us close to having interesting circuit lower
bounds for problems in NP.

But – although NQP is “close” to NP in some sense – the reader should note that NQP is not
known (or widely believed) to lie in PSPACE. Thus the lower bounds of [MW20, Che19, CR20]
are incomparable with the uniform circuit lower bounds that are known for PP, #P, and other
classes in the counting hierarchy. Admittedly, uniformity is a strong restriction – but even when
we restrict our attention to uniform circuits, there are some interesting open questions. That is the
subject of this section.

The circuit classes we’ll be concerned with in this section are TC0 (constant depth threshold
circuits) and ACC0 (constant depth circuits of AND, OR, and MODm gates for some fixed modulus
m). A circuit family {Cn : n ∈ N} is uniform if there is a (very) efficient way3 to obtain the

description of Cn given n. Any problem that is complete for PSPACE under ≤AC0

m reductions (or

even under ≤TC0

m reductions) requires uniform TC0 circuits of size at least 2n
ε

for some ε > 0
[All99] (and this size bound cannot be improved, since it is easy to see via a padding argument
that, for every ε > 0 there are complete sets for PSPACE that have uniform AC0 circuits of size
2n

ε
). Despite some effort, however, there is still no example of a subclass of PSPACE that has been

shown to require exponential-size uniform TC0 circuits. Instead, there are results that show only 1
k -

exponential size bounds, using the terminology that was introduced by Miltersen, Vinodchandran,
and Watanabe [MVW99]. Informally, a function T is said to have at most half-exponential growth

if T (T (nO(1))) = 2n
o(1)

, and more generally it is said to have at most 1
k -exponential growth if the

k-fold composition T (T (. . . T (n) . . .)) = 2o(n). If T is less than 1
k -exponential, for every k, then

no set that is complete for PP under ≤AC0

m has uniform TC0 circuits of size T (n) [All99]. I do not
think that this is optimal, but I’m not offering a bounty for improving that lower bound. There
has already been work extending and building on [All99] in various ways, without obtaining larger
bounds (see [KP09, Kin12]). Instead, I want to call attention to a different, more glaringly deficient
lower bound.

Prior to the 1
k -exponential uniform TC0 lower bound for PP that was presented in [All99],

somewhat similar lower bounds against uniform ACC0 circuits were presented in [AG94]. There, it
was shown that there are problems in PP that cannot be computed by uniform ACC0 circuits whose
growth rate is at most half-exponential. Thus, the size lower bound is larger than in the lower
bound of [All99], which makes a certain amount of sense, since the class of circuits is weaker. But
[AG94] also shows that the Permanent (and any problem complete for #P under AC0 reductions)

3The reader is advised to consult the papers cited in this section for more details on the type of “uniformity” that
is considered here, along with the motivation for considering this particular notion.



requires ACC0 circuit size at least 2n
ε

for some ε > 0. That is, the uniform ACC0 circuit size lower
bounds for #P are much, much stronger than the bounds that we have for PP.

Does that seem reasonable? We are accustomed to think that #P and PP have similar com-
plexity . . . , but the standard reductions of #P problems to those in PP rely on binary search,
which is unlikely to be possible using ACC0 circuits. Still, there is a history of successful at-
tempts to prove exponential bounds, where the näıve approach would yield a half-exponential
bound [AGHK11, TV07].

I see no reason why there should not be a simple proof, showing that complete sets for PP need
to have ACC0 circuits that are as large as those that are required by #P-complete problems. I
think that such a proof would likely yield techniques that will be useful in other settings. Thus I
offer the following bounty:

Wanted: $1000 REWARD! Open Question 1 Do problems that are complete for PP under
≤AC0

m reductions require uniform ACC0 circuits of size 2n
ε

for some ε > 0?

Note that it suffices to prove that this lower bound holds for some “standard” PP-complete
problem, such as determining if a given Boolean formula (or circuit) is satisfied by at least half of
all possible assignments.

3 Uniformity and the Prime Numbers

How hard is it, to tell if a number is prime?
One way answer to this question is to provide an upper bound. The set of prime numbers lies in

P [AKS04], and any improvement in this upper bound would be extremely interesting. But that’s
not the question I want to focus on here.

Instead, I’m interested in improved lower bounds on the complexity of the set of prime numbers.
Currently, the best lower bounds that we have for the set of prime numbers follow from the fact
that the set is hard for TC0 under nonuniform ≤AC0

T reductions [ASS01]. I’d be very interested in
learning that the set of prime numbers is hard for an even larger subclass of P – but I’m not going
to offer a bounty for that, because I’m not very confident that the set of primes really is hard for
any class larger than TC0.

Similarly, I’d be very interested in knowing if the set of primes is hard for TC0 under ≤AC0

m

reductions – but again, I’m not going to offer a bounty for that improvement. It’s not clear to me
that there should even be an ≤AC0

m reduction from PARITY to the set of primes. In fact, it might

even be feasible to prove that the set of primes is not complete under ≤AC0

m reductions for P or NL
or any other familiar complexity class.4

Instead, I want to draw your attention to the question of uniformity. The nonuniform reduction
in [ASS01] is quite simple; the idea can be illustrated by considering how to reduce the MOD3

problem to the set of primes. First, we observe that MOD3 reduces to the question of whether a
given number (in binary notation) is a multiple of 3. (This is a simple uniform reduction.) Next,
we note that if y is a multiple of 3, then for every number r, y+ 3r is also a multiple of 3, whereas
if y is not a multiple of 3, then y + 3r is reasonably likely to be prime (for randomly-chosen r).
This forms the basis of a (uniform) probabilistic reduction to the set of primes, which can then

4I discussed some ideas about how to attack problems like this in [All01]; some further reflections on whether this
approach might be difficult can be found in [All14].



be turned into a non-uniform deterministic reduction. To date, there is still no known uniform
≤AC0

T reduction of MOD3 to the set of primes. Stated another way: We know that there are AC0

circuits that reduce the question “Is y a multiple of 3?” to the question “Is y composite?” – but
we don’t know how to build those circuits. This seems unreasonable. The first question is very
easy to answer, and seems (in some sense) to be a special case of the second question. Thus I offer
the following bounty:

Wanted: $1000 REWARD! Open Question 2 Is the set of prime numbers hard for TC0 un-
der DLOGTIME-uniform ≤AC0

T reductions?

In general, I think that the following heuristic offers good guidance:

If there is a non-uniform (or not-very-uniform) circuit family accomplishing some
task, very likely there is a DLOGTIME-uniform circuit family for the same task.

Here is a list of some examples from history, to illustrate how this heuristic usually works out:

� Agrawal’s Isomorphism Theorem [Agr11] (showing that, for most complexity classes of inter-

est, the sets complete under uniform ≤AC0

m reductions are all AC0-isomorphic) was initially
known only in the non-uniform setting [AAR98].

� The P-uniform TC0 division algorithm of Beame, Cook, and Hoover [BCH86] was later re-
placed by a DLOGTIME-uniform algorithm [HAB02].

� Torán showed that Graph Isomorphism is hard for DET under logspace-uniform ≤AC0

m re-

ductions, and it was later shown to be complete under DLOGTIME-uniform ≤AC0

m reductions
[All04b]. (Other related examples are also discussed in [All04b].)

� Frandsen, Valence, and Barrington [FVB94] introduced a class of functions called AE, which
they showed is sandwiched between DLOGTIME-uniform TC0 and P-uniform TC0. Later,
Healy and Viola showed that AE coincides with DLOGTIME-uniform TC0 [HV06].

Of course, there are also some counterexamples. It was shown in [ABK+06b] that the set
of strings with high space-bounded Kolmogorov complexity is complete for PSPACE under non-
uniform nonadaptive TC0 reductions, but that this fails even under L-uniformity. Still, it strikes
me as unlikely that nonuniformity is essential in order to reduce TC0 to the set of prime numbers.

4 ACC0 Again: A Retraction

This section is the most difficult for me to write.
Hansen gave a surprising and beautiful characterization of ACC0 as the class of problems having

planar circuits of constant width [Han06]. Later, an extension of this result was published [ADR05],
claiming to show that this characterization holds not only for circuit families embeddable on a
surface of genus zero, but even for circuit families {Cn : n ∈ N} where Cn can be embedded on a
surface of genus logO(1) n.

The main result of [ADR05] may be true, but the argument presented in the paper is incorrect.5

5Without going into too much detail, in the proof of [ADR05, Lemma 8], the argument breaks down at the
statement: “Thus we can view them as being stripes arranged along the sides of the cylinder. In this way, each
handle connection hi has an East neighbor and a West neighbor. . . ” There is a counterexample to this assertion.



We were blissfully unaware of the bug until we were revising the article for submission to a
journal. It seemed easy to fix at first. And then we found a bug in the fix, which also seemed easy
to fix. And so on. . . At this point, it is becoming clear that the bug is not going to be fixed before
my impending retirement. The claim is definitely true for genus 1, and probably true for genus
O(1). Perhaps a fresh approach (with fresh eyes) will settle the matter?

Wanted: $1000 REWARD! Open Question 3 Does every language accepted by constant-
width circuit families of polylogarithmic genus lie in ACC0?

5 Ambiguously Unique

The complexity class UP (sometimes known as “unique” P or “unambiguous” P) is familiar to most
people who are likely to read this article. A language is in UP if it is accepted by some NP machine
that never has more than one accepting computation path. Thus if a string is accepted, there is
a unique witness for acceptance, and there is no ambiguity about how to prove that x is accepted.
There are several different ways that this can be formalized.

When it comes to defining a “unique” or “unambiguous” analog of UP as a subclass of NL, it
turns out that some of the “several different ways” to formalize this notion yield classes that appear
not to coincide. Buntrock et al. [BJLR91] identified three different classes, which have come to be
known as StUL,RUL and UL, respectively.

Most probably, UL is just another name for NL. In particular, if there is any set in DSPACE(n)
that requires exponential-size circuits, then UL = NL [ARZ99], and (unconditionally) they coincide
in the setting of nonuniform complexity [RA00].6 Thus anything that is true for NL should also be
true for UL. Which brings us to the first bounty in this section:

Wanted: $1000 REWARD! Open Question 4 Is UL closed under complement?

Although UL is not yet known to be equal to NL, it is known to contain some interesting
problems, such as the reachability problem for directed planar graphs [BTV09, TV12] (see also
[KV10, GST19, DGJ+21]) and some other graph problems [TW14, LMN10]. Also, there is a
problem that is (unconditionally) in UL that is hard for NL under (nonuniform) projections. All
of those problems are also known to be in coUL. Thus we have no good “candidates” for being in
UL and not in coUL. Yet there is still no proof that UL = coUL. One way to solve this problem, of
course, would be to show that UL = NL, but it might be considerably easier to show directly that
UL is closed under complement.

If UL were known to have a complete set under ≤L
m reductions, then it would suffice to show

that this problem is also in coUL, in order to show that UL = coUL. However, no such complete set
is known to exist. The situation is quite different for RUL (defined in terms of NL machines that
have at most one path between any two reachable7 configurations). RUL has a complete set [Lan97],
and RUL is closed under complement [BJLR91]. RUL is also a fairly “robust” class; it was shown
to coincide with a class that allows a polynomial amount of “ambiguity” [GSTV14]. In contrast to
UL, there is little reason to believe that RUL = NL. In fact, a better upper bound is known for the
space complexity of problems in RUL: (log2 n)/ log log n [AL98], which is an improvement over the

6For the best current simulation of NL via unambiguous logspace, see [vMP19].
7The name RUL comes from “Reach”-UL, because of this restriction to reachable configurations.



log2 n space bound for NL from Savitch’s theorem. I suspect that this space bound for RUL can be
improved.

I’m even more confident that an improved space bound can be proved for StUL, or “Strongly-
Unambiguous Logspace” (defined in terms of NL machines that have at most one path between
any two configurations, regardless of whether they are reachable). The configuration graphs of
StUL machines are known as mangroves, which have turned out to be useful in other investigations
of logspace computation [EJT10]. There is no language known to reside in StUL that is not also
known to reside in L. I suspect that StUL = L, but I would be happy to see a proof of something
much weaker:

Wanted: $1000 REWARD! Open Question 5 Is StUL ⊆ DSPACE(o((log2 n)/ log log n))?

6 How Robust Is the Determinant?

The previous section dealt with NL, which belongs on everyone’s short list of important complexity
classes, because it captures the complexity of a great many computational problems that we care
about (such as the problem of finding shortest paths in graphs). In this section, we consider the
related class #L. Although #L also captures the complexity of some natural problems (such as
counting the number of s-t paths in a DAG), the strongest argument for being interested in #L is
this: It captures the complexity of computing the determinant. More precisely: GapL is the class
of functions that can be represented as the difference of two #L functions. The determinant of
integer matrices is complete for GapL under ≤AC0

m reductions. That is, for any f, g ∈ #L there is
an AC0 function h such that f(x)− g(x) = det(h(x)) [Dam91, Tod91, Vin91, MV97].

There are many reasons why complexity theoreticians are interested in the determinant. It
plays a central role in the theory of algebraic circuits. Also, there are several Boolean complexity
classes that are intimately connected to the determinant:

� C=L = {A : ∃f ∈ GapL (x ∈ A ⇔ f(x) = 0)}. The set of singular matrices is complete for
C=L (essentially by definition).

� LC=L is the class of languages ≤L
T reducible to a language in C=L. Problems complete for

LC=L under ≤AC0

m reductions include computing the rank of a matrix, and solving systems of
linear equations [ABO99].

� PL = {A : ∃f ∈ GapL (x ∈ A ⇔ f(x) > 0)}. (This is the “unbounded error” version of
probabilistic logspace originally defined by Gill [Gil77].) The set of matrices with positive
determinant is complete for PL.

Remark 1 It may well be true that C=L is closed under complement. If this is the case, then
C=L = LC=L [ABO99].

A recurring theme in complexity theory is that “natural” problems that are complete for some
complexity class under one notion of reducibility (such as ≤L

m reductions) usually remain complete

under very restrictive reductions (such as ≤AC0

m reductions, or even projections). For problems
that are reducible to their complement, even using very powerful notions of reducibility (such as
various types of Turing reducibility) yield the same class of problems. For example, if we let stconn



denote the standard complete problem for NL, then the set of problems reducible to stconn is NL,
regardless8 of whether “reducible” means “under ≤AC0

m reductions” or “under ≤NC1

T reductions”.
The main open question in this section is whether the determinant shares this “robustness”

property. When Cook defined DET as the class of problems reducible to the determinant, he defined
it in terms of ≤NC1

T reductions [Coo85]. (Equivalently: DET = NC1(#L).) But would it have made

a difference, if he had defined it in terms of ≤AC0

T reductions? That is: Is AC0(#L) = NC1(#L)?
There are some reasons to suspect that they might be equal. For instance:

� LC=L = AC0(C=L) = NC1(C=L) [ABO99].

� PL = AC0(PL) = NC1(PL) [BF00].

Wanted: $1000 REWARD! Open Question 6 Is it the case that

DET = NC1(#L) = AC0(#L)?

The reader may want to consult [All04a, AAM03] for some additional discussion of this question.

7 Boolean vs. Arithmetic Formulae

I am predisposed to believe that, someday, we will really understand the framework of complexity
classes, and that the final picture will be beautiful. In particular, it should not be too cluttered
with jarring oddities that spoil the picture. This section is all about tidying up the clutter.

Readers of this article are likely to be quite familiar with NC1: the class of problems that have
families of Boolean formulae of polynomial size. You might be less familiar with the “counting”
version: #NC1. There are several different equivalent ways to define #NC1; perhaps the simplest
one is in terms of families of arithmetic circuits (with + and × gates of fan-in two, evaluated over
N) of polynomial size and depth O(log n).

There is a simple argument, due to Jung [Jun85], showing that every function in #NC1 is com-
puted by Boolean circuits9 of polynomial size, fan-in two, and depth O(log n log∗ n). In other
words, #NC1 and NC1 are very nearly the same. Furthermore, there are at least five other
complexity classes that have received study, that would all collapse to NC1 if #NC1 = NC1

[CMTV98, DMR+12, All04a, AKM19]. Thus it would certainly “tidy things up” if one could
show that NC1 and #NC1 coincide, improving Jung’s O(log n log∗ n) upper bound that has stood
since 1985. But I’m willing to pay full price for something far more modest: Give any improvement.

Wanted: $1000 REWARD! Open Question 7 Is it the case that every function in #NC1 has
Boolean circuits of fan-in two, polynomial size and depth o(log n log∗ n)?

8This may be an appropriate time to mention something counterintuitive about ≤L
T and ≤AC0

T reductions. Although

AC0 ( NC1 ⊆ L, it is nonetheless the case that B≤L
TA implies B≤AC0

T A, for problems A that are hard for NL. Thus,

for instance, every problem in LC=L is ≤AC0

T -reducible to the set of singular matrices [AO96].
9I provide an arguably simpler presentation of Jung’s proof in [All04a].



8 Reducing the Degree

In this section, we investigate another aspect of the “de-cluttering” program that was introduced
in the previous section. We will focus on the notion of the “degree” of a Boolean (or arithmetic)
circuit. Skyum and Valiant [SV85] may have been the first to identify the degree of a Boolean circuit
as an important consideration in complexity theory. (See also [Coo85].) The class of languages
accepted by uniform circuit families of polynomial size and polynomial degree is known by several
names:

� SAC1 (Log-depth circuits with unbounded fan-in OR gates, and bounded fan-in AND gates;
known as semi-unbounded fan-in circuits.)

� LogCFL (The class of languages ≤L
m-reducible to context-free languages.)

� NAuxPDA(log, nO(1)) (The class of languages accepted by nondeterministic auxiliary push-
down automata in polynomial time and logarithmic workspace.)

The reader can consult the textbook by Vollmer [Vol99] for more background on this topic.
Of course, the notion of polynomially-bounded degree also plays a central role in the theory of

algebraic computation, where the complexity class VP denotes the class of families polynomials that
can be represented by circuits of polynomial size and polynomial degree. As in the Boolean case,
VP corresponds to polynomial-size semi-unbounded circuits of logarithmic depth (with unbounded
fan-in + and bounded fan-in × gates) [Vin91, AJMV98]. The auxiliary pushdown automaton
model of computation has also been useful in working with VP, as with the Boolean case (see, e.g.,
[AJMV98, Men13]).

Having interesting complete problems helps motivate interest in a complexity class. However,
VP was studied intensely for decades before finally accumulating a collection of interesting natural
complete problems [Men13, DMM+16, MS18, CLP21, CLV21]. I recommend the excellent survey
by Mahajan [Mah14] for a discussion of these developments, as well as for an interesting perspective
on algebraic computation.

Our focus in this section will not be on VP per se, but rather on a Boolean class that corresponds
in a natural way to VP. If we are working over F2, then given any polynomial p in n variables and
a string x of length n representing an assignment to those variables, p(x) takes on a value in {0, 1},
and in this way any family in VP naturally corresponds to a language. In [AGM17], this class was
denoted VP(F2). As with LogCFL, this class has many equivalent names:

� VP(F2)

� ⊕AuxPDA(log, nO(1)) (The class of languages L for which there is a nondeterministic auxiliary
pushdown automaton M running in polynomial time and logarithmic workspace, where x ∈ L
iff M has an odd number of accepting computations on x.)

� SAC1[⊕,∧] (Log-depth circuits with unbounded fan-in PARITY gates and bounded fan-in
AND gates.)

VP(F2) has a number of natural complete problems, inherited from the complete polynomials for
VP.

In contrast, the other two complexity classes that we will focus on in this section really don’t
have any interesting natural complete problems of which I am aware. Those classes are:



� AC1 (Log-depth circuits of unbounded fan-in AND and OR gates.)

� AC1[⊕] (Just like AC1, but now with unbounded fan-in PARITY gates as well.)

The known relationships among the classes mentioned in this section are:

SAC1 ⊆ AC1 ⊆ AC1[⊕].

VP(F2) ⊆ AC1[⊕].

In addition, under a plausible derandomization hypothesis, SAC1 ⊆ VP(F2) [GW96, RA00, ARZ99].
It is essentially obvious that AC1[⊕] corresponds to languages represented by algebraic circuits

over F2 of polynomial size, logarithmic depth, and degree nO(logn). Somewhat surprisingly, it is
shown in [AGM17] that AC1[⊕] also corresponds to languages represented by algebraic circuits over
F2 of polynomial size, logarithmic depth, and degree nO(log logn)! That is, the degree can be reduced
significantly. The proof in [AGM17] is not difficult, and I very much doubt that the degree bound
nO(log logn) is optimal.

The obvious question is:

Does this degree collapse (from quasipolynomial to nO(log logn)) go further? Does it
go all the way to nO(1)? Equivalently: is AC1[⊕] equal to VP(F2)?

This would be asking quite a lot, since VP(F2) is not even known to contain NL (although,
under a plausible derandomization hypothesis, it contains even the seemingly-larger class LogCFL,
as mentioned above). Thus, I’m going to offer full payment for a weaker result:

Wanted: $1000 REWARD! Open Question 8 Is AC1 contained in VP(F2) under a plausible
derandomization hypothesis?

9 Numbers as Easy as π

A language (say, A ⊆ {0, 1}∗ = {s0, s1, . . .} where s0 = λ (the empty string)) can be equated with
its characteristic sequence χA = b0b1b2 . . . where bi = 1 if si ∈ A and bi = 0 otherwise. But the
sequence χA is also the binary representation of a real number in the interval [0, 1]. For instance, the
sequences 1000 . . . and 0111 . . . (corresponding to the languages {λ} and {x : x 6= λ}, respectively)
both denote the number 1

2 =
∑∞

i=2 2−i. More generally, the finite and co-finite languages correspond
exactly to dyadic rational numbers. Any real number in [0, 1] that is not a dyadic rational has
exactly one binary representation, and hence corresponds to exactly one language.

So, what is the complexity of (the fractional part of) π? It lies in PHCH3 [ABDP23] (improving a
PSPACE upper bound that follows from [Yap10]). (Here, CHk refers to the kth level of the counting

hierarchy PP,PPPP, etc., and PH refers to the polynomial hierarchy.) How about e? The same
paper gives an upper bound of PHCH4 . Is there any reason why e should be more difficult than π?

. . . But that’s not the question I want to call your attention to here.
Every algebraic number lies in PHCH3 [ABDP23], improving on a bound that is implicit in the

work of Jeřábek [Jeř12]. Algebraic numbers come in two flavors: rational and irrational. The
rational numbers all all lie in ACC0 [BC91], and in fact they all are regular sets. Furthermore, for
every odd modulus m there is a rational number αm that is hard for AC0[m] under projections,
and hence lies outside of AC0[p] for any prime p that doesn’t divide m [ABDP23].



It was a fairly big result a few years ago, when Adamczewski, Bugeaud, and Luca proved that
no irrational algebraic number is regular [ABL04, AB07]. Thus any regular language that does
not correspond to a rational number (i.e., any regular language whose characteristic sequence is
not ultimately periodic) corresponds to a transcendental real number. Freivalds has written an
excellent survey explaining some of the reasons that motivate a study of the “complexity” of real
numbers in this setting [Fre12].

What about the irrational algebraic numbers? Although it’s reasonable to conjecture that
they’re at least as difficult as the rational ones, we don’t know whether that’s the case.

Wanted: $1000 REWARD! Open Question 9 Is every irrational algebraic number in AC0?
Is there any irrational algebraic number in PH? (Full payment for answering either of these ques-
tions.)

I think that it would be instructive to see a proof that some irrational algebraic number lies
outside of AC0 (or even, that this holds for every irrational algebraic number). It would be remark-
able if the irrational algebraic numbers yielded a class of languages in CH that are not in PH. It
is clear that any argument showing that some irrational algebraic number lies in PH will have to
make use of very different techniques than were used in [ABDP23].

10 The Random Strings

The end is near. In this final section, we pose a question that lies at the intersection of complexity
theory and computability theory.

The story for this section begins with this paper: [ABK+06b]. When we began work on this
project, our focus was on resource-bounded Kolmogorov complexity, and it’s accurate to say that
the final paper still is primarily on that topic. But we also proved some results about the undecidable
set of Kolmogorov-random strings.10 Namely, if we let R denote the set of Kolmogorov-random
strings, then R is hard for PSPACE under ≤P

T reductions, and every computably-enumerable set

(including the Halting Problem) is reducible to R under ≤P/poly
T reductions.

Later, additional results with this flavor were proved:

� BPP ⊆ PR
tt [BFKL10]. (I.e., every problem in BPP is reducible to R via a nonadaptive

polynomial-time reduction.)

� NEXP ⊆ NPR [ABK06a].

These results were fairly “robust”, in that they held for essentially all of the most common
ways to define “Kolmogorov-random” (for example, in terms of “plain Kolmogorov complexity” or
“prefix-free Kolmogorov complexity”). And – it almost goes without saying – they also held, no
matter which “universal Turing machine” was being used, to define Kolmogorov complexity.

Remark 2 . . . But there seemed to be something odd about these results. Did it even make sense
to talk about efficient reductions to a non-computable language? Were these results trivial? Is it
perhaps the case that all computably-enumerable languages are in PR?

10Readers who are unfamiliar with Kolmogorov complexity may want to consult some of the excellent texts on this
topic, such as [LV19, DH10].



In order to move on to the next chapter in this narrative, it is necessary to start being more
specific about the ways to define the “Kolmogorov-random strings”. Define RCU to be the set of
strings x with “plain” Kolmogorov complexity CU (x) ≥ |x| where U is the universal Turing machine
being used to define plain Kolmogorov complexity. That is, RCU = {x : ¬∃d |d| < |x|, U(d) = x}.
RKU

is defined similarly, in terms of the version of prefix-free Kolmogorov complexity defined using
universal Turing machine U . This additional notation is needed, in order to answer the questions
raised in Remark 2:

Theorem 1 [AFG13, CDE+14]

� BPP ⊆
⋂

U P
RKU
tt ⊆ PSPACE ⊆

⋂
U PRKU .

� NEXP ⊆
⋂

U NPRKU ⊆ EXPSPACE.

In other words, the class of languages that are efficiently reducible to the Kolmogorov-random
strings in the prefix-free setting, regardless of the universal machine that is being used to define
Kolmogorov complexity, is a complexity class.

I made some conjectures about just which complexity classes can be characterized in this way
[All12], which turned out to be spectacularly wrong. Hirahara [Hir20] has done some outstanding

work shedding more light on what the true answer is, including showing that EXPNP ⊆ PR. Note
that this is a very significant improvement over the PSPACE hardness result of [ABK+06b]. Still,
an exact answer is still not known. I think that this is a very interesting and important direction to
pursue. I also think that it is quite worthwhile to understand what is reducible to the Kolmogorov-
random strings via nonuniform projections (and other restrictive nonuniform reductions); some
initial steps in this direction have recently been taken [AGHR21]. But I’m not offering money for
the resolution of those problems.

Instead, I want to direct your attention to the question about what can be reduced to RCU .
In contrast to the situation with RKU

, each set RCU is hard for the computably-enumerable sets
under time-bounded reductions. Let H denote the halting problem (which is complete for the

computably-enumerable sets under uniform ≤AC0

m reductions); Kummer [Kum96] showed that, for
each universal machine U , there is a time-bounded disjunctive truth-table reduction from H to
RKU

. (That is, there is a computable function that takes x as input, and produces a list of strings,
with the property that x ∈ H if and only if at least one of the strings is in RCU .) However, it
was shown in [ABK06a] that, no matter what computable time bound t one picks, there is some
U such that the disjunctive truth-table reduction from H to RKU

requires more time than t. It
is also shown in [ABK06a] that there is some U such that the reduction from H to RKU

can be
accomplished in doubly-exponential time, but it is not known if this bound can be improved, for
any U .

These results from [ABK06a] are only for disjunctive-truth-table reductions. Nothing is known
about ≤P

T reductions.

Wanted: $1000 REWARD! Open Question 10 Is H ∈ PRCU for some universal machine U?
Is H 6∈ PRCU for some universal machine U? (Full payment for answering either of these questions.)



11 Is This Just a Cheap Stunt?

Well, it’s definitely a stunt. And it’s not a particularly original stunt. A fairly long list of open
problems with monetary rewards can be found via an internet search. (See, e.g. [Exc12].) I agree
that it’s certainly not clear that putting a price on the head of an open problem decreases the time
to solution, although I do hope that it might help. After all, there might be a few people who will
have read this far, just to see what I’m willing to pay for. And some of those people may have
some good ideas.

At least, I hope that we can agree that it’s not a particularly cheap stunt!

12 The Fine Print

All of these offers are time-limited. The expiration date is no later than my own: my estate will
not have any provisions for making these payments after I am dead, so start working now! Even
prior to my death, if I am no longer competent to verify claims that you have answered one of these
problems, then the offer is no longer in effect. Also, there is some slight chance that I’m already so
far into my dotage, that some of these problems have already been solved without my being aware
of it. In that case, no reward can be claimed; these cash rewards are only for solutions that are
first made public after March, 2023 (when this article is scheduled to appear in SIGACT News).
Also, lest there be any ambiguity concerning the currency: All bounties are in the amount of 1,000
US Dollars.
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