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ABSTRACT. We are concerned with the incompressible limit of global-in-time strong solutions
with arbitrary large initial velocity for the three-dimensional compressible viscoelastic equations.
The incompressibility is achieved by the large value of the volume viscosity, which is different
from the low Mach number limit. To obtain the uniform estimates, we establish the estimates
for the potential part and the divergence-free part of the velocity, respectively. As the volume
viscosity goes to infinity the dispersion associated with the pressure waves tends to disappear,
but the large volume viscosity provides a strong dissipation on the potential part of the velocity
forcing the flow to be almost incompressible.

1. INTRODUCTION

Viscoelastic fluids combine the fluid characteristics with the solid characteristics, and have
wide applications in engineering, biology, medicine and so on. The interaction of fluids and
solids leads to complicated phenomena in viscoelastic fluids and causes many challenges in
mathematical analysis. This paper is focused on the following three-dimensional compressible
viscoelastic flows [7,19]:

pt + div(pv) =0, in [0, +00) x R3,
(pv)i + div(pv @ v) — pAv — (A + p)Vdivv + Vp(p) = div(pFF '),  in [0, 400) x R?,
F,+v-VF = VvF, in [0, +00) x R3,
(p,v,F)(x,0) = (po, vo, Fo), z € R?,

(1.1)
where p, v € R3, F € M3*3 (the set of 3 x 3 matrices with positive determinants) denote the den-
sity, the velocity field, and the deformation gradient, respectively. The shear and bulk viscosity
coefficients p and A are constants and assumed to satisfy the following physical conditions:

(>0, 20+ 3\ > 0.

The pressure p(p) is a given function of p that is suitably smooth for p > 0 with p/(p) > 0. The
symbol ® denotes the Kronecker tensor product, F' stands for the transpose matrix of F, and
the notation v - VF is understood as (v - V)F. In this paper, we assume that

div(pF") =0, F*V,F9 =FIv,F*, (1.2)

It has been proved that (1.2) holds for all time ¢ > 0 if it is satisfied initially (cf. Qian-Zhang [19],
Hu-Wang [7], Hu-Zhao [11]).

As far as smooth solutions to the incompressible version of (1.1) are considered, authors

in [3,14-16] showed a global-in-time existence of classical solutions to (1.1) in H? whenever the

initial data is a small perturbation around the equilibrium (0, I'), where I is the identity matrix;
see also [2] for the related Oldroyd-B model. The construction of global solutions in [14, 15]
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heavily depends on the conserved quantities in (1.2) which decouple the relation between the
pressure and the deformation gradient F, see also [7,8,19] for the global existence of classical
solutions near the equilibrium for the compressible model (1.1). It is remarkable to note that
the global existence of classical solution in H*® (s > 8) to the incompressible version of (1.1) with
w1 = 0 has also been obtained in [13,23,24] via the vector field method by different approaches;
see also [25] for a different approach via the space-time resonance method in two dimensions. It
is also known that for the Oldroyd-B model with a finite relaxation time, the global existence
of weak solutions with arbitrary initial data was verified in [1,18]. The global existence of weak
solutions for the FENE dumbbell model with arbitrary initial data was constructed by Masmoudi
in [20] through a detailed analysis of the defect measure associated with the approximation.
Moreover, for solutions with low regularity, with the help of (1.2), the global weak solutions
of the incompressible version of (1.1) in two dimensions with the discontinuous initial data
near the equilibrium have been established in [9] provided that |lvg||z+ is bounded. One of
key observations in [9] is the effective viscous flur which admits a higher regularity than its
components. This observation, combined with a similar structure for the density, further helps
to construct a global weak solution with discontinuous initial data in [10] for the compressible
model (1.1). However, the global existence of weak solutions, in the spirit of Leray, to the
viscoelastic fluids with large initial data is still an outstanding open question.

In the compressible regime, different viscosities make different contributions to the flow of
fluids. For example, the presence of the shear viscosity p prevents the formation of shocks near
the equilibrium in [7,14,15,19], while as the shear viscosity vanishes, the shock formation is
expected even for small initial perturbations of incompressible models, see references in [11].
However, for (1.1), the volume viscosity, which controls the volume change, plays a similar role
in prohibiting the shock formation; see [11]. Moreover, Cui and Hu [4] studied the incompress-
ible limit of the compressible viscoelastic system near the equilibrium when the shear viscosity
converges to zero and the value of the volume viscosity is large. Similarly to the Navier-Stokes
equations, the global existence of solutions to (1.1) with large initial data is still a challenging
open problem. Note that Danchin and Mucha [5] proved the existence of global strong solutions
to the compressible Navier-Stokes equations with arbitrary large initial velocity vg for large
volume viscosity in critical Besov spaces. Nevertheless, when dealing with the global existence
of strong solutions with large initial data in the compressible viscoelasticity (1.1), the main
difficulty lies in that there is no dissipative estimate for the deformation gradient.

The main purpose of this paper is to establish that for any fixed shear viscosity p > 0 and
any initial velocity-field vy with given regularity, the solution to (1.1) is global for A sufficiently
large and pg sufficiently close to some positive constant which we set to be one in this paper. In
contrast with the results in [8], we are concerned with the global existence of strong solutions to
(1.1) with large volume viscosity and large initial velocity. We apply the method developed by
Danchin and Mucha [5] to derive the estimates for the potential part Qv and the “incompressible
part” Pv of the velocity, respectively. However, we adapt a different way in the Sobolev spaces,
instead of, the composition of high frequency and low frequency in the Besov spaces in [5].
This result will strongly rely on the fact that, for A — 400, the limit velocity satisfies the
incompressible viscoelastic flows:

divV =0, in [0,400) x R3,
Vi+V-VV - AV + VP =div(FF"), in [0,+00) x R, L3)
F, +V.VF = VVF, in [0, +00) x R, '

V(z,0) = Vo, F(z,0) = F, z € R3,
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where Vg is the Leray-Helmholtz projection of vy on the divergence-free vector fields. We
introduce the perturbation of deformation gradient defined by E=F-Iforl being the identity
matrix. The second conserved quantity in (1.2) also holds true and the first identity becomes
divE" =0 for all t > 0. Thus (1.3) can be adapted into the following form:

divV =0, in  [0,400) x R3,
Vi+V.-VV — AV + VP =divE+div(EE"), in [0,400) x R?,
E, +V: -VE =VV + VVE, in [0,400) x R3, (1.4)
V(z,0) = Vg, E(z,0) = Eg:=F — 1, z e R

As the global existence of strong solution to (1.3) supplemented with general data is open in
R? (d = 2,3), we have to assume that (Vo, Fo) generates a global solution to (1.3), and then
we analyze the stability of that solution in the setting of the compressible model (1.1) with
large A. The present work is to justify the incompressible limit of the global strong solutions to
the system (1.1) around the incompressible state (1, V,F) when the volume viscosity A tends
to infinity. The incompressibility follows from the large value of the volume viscosity. In this
situation, the dispersion associated with the pressure waves tends to disappear as A\ — —+o0,
but large A provides a strong dissipation on the potential part of the velocity, and thus forces
the flow to be almost incompressible. We remark that the mechanism for the incompressibility
is different from the setting in [17,24] where the incompressibility is achieved as the low Mach
number limit.

We first introduce the perturbations a and E of the density and deformation gradient as the
following;:

p=1+a, F=I+E. (1.5)
Since div(pF ") = 0 holds for all ¢ > 0, the i-th component of the vector div(pFF ') can be
written as

U, (pFFFR) = pFiby Fik 4 Ry (pFb) = pFiky Fik
= pdivE + pE/*V,E* = divE + adivE + (1 + a)E/*V;E*,

Thus, the system (1.1) becomes equivalently

at + div(av) + divv = 0, in [0,400) x R3,

I+a)vi+(1+a)v-Vv+Vp(l+a)

— pAV — (A + p)Vdivvy = divE + adivE + (1 + a)E*V,;E* . in [0,400) x R3, (1.6)

E; +v-VE = Vv + VVE, in [0,400) x R3,

| (a,v,E)(z,0) = (a0, vo, Eo) = (po — 1, vo,Fo — I), z € R3.

For any vector field v = (v!,v2%,0%), we denote by P the orthogonal projection onto the

subspace of incompressible vector fields, that is,
v=Pv+ Qu, with div(Pv)=0, curl(Qu) =0,

where Q := —(—A)"'Vdiv stands for the projection operator on potential vector fields and
P :=1d+(—A)~'Vdiv. Indeed, from the results in [6], we know that the operators P and Q are
linearly bounded operators in W*P(R3) for all s > 0 and 1 < p < co. Furthermore, we give the
notation used throughout this paper. We denote the usual Sobolev space by H*(R?) endowed
with the norm || - ||gx. We also use the following abbreviations for the Sobolev spaces involving
time:

LP(H*) = LP(0,t; HY(R?)), Cu(H*) = C([0,t], H*(R?)),
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with
- Mlzecasy = M- llzeogary, - ey = 1 egog,my
where HY(R?) = L?(R3). We will utilize the notation C to signify a generic positive constant.
In addition, we use f < g to represent the relation that f < Cg.
The local existence and uniqueness of the strong solution to (1.1) can be obtained in the spirit
of Matsumura and Nishida [21,22], see also [7,19]. Now we state our main result for (1.6).

Theorem 1.1. Assume that the initial data (po—1,vo, Fo—1I) € H*(R3) satisfies the constraint
(1.2) and there exist constants dp,e9 < 1 such that ||Eg — E0H12L12 < 6o and HE0H12L14 < ep.

Suppose that the system (1.4) with initial data (Vo, Ey) generates a unique global solution V €
C([0, +00), HY(R?)) N L*(0, +o0; H*(R?)), E € C([0,+00), H(R?)) N L*(0, +00; H*(R?)) and
denote

M := HVH%"O(O,-i-OO;H‘l) + HVtH%Z(O,—i-oo;H?’) + HVVH%Q(O;I—OO;H‘l)’ (17)
and
¢ = HEH%M(O,T;m) + HVEH%Q(O7T;H3)’ (1.8)

where M and &' are positive constants with &' < 1. Assume in addition that there exists a large
constant C such that if v := A+ 2u satisfies v > p and

CeCCHM (luag| 132 + |QvollFe + M + p?) < Vi, (1.9)
then (1.6) admits a unique global-in-time solution (p,v,E) satisfying
v € L%(0,400; HX(R?)), v € L*(0,400; HY(R?)), Vv € L*(0,+o0; H*(RY)),
(a, E) € L>(0, +o0; H*(R?)), (Va,VE) € L*(0, +oo0; H'(R?)).

In addition,

(1.10)

HQVH%C’O(O,+OO;H2) + ”VVQVH%Q(OA»OO;HQ) + ||Va”%°°(0,+oo;H2)

C(1+M?2) 2 2 9 (1.11)
< Ce (Ilvaollzr: +11Qvollfz + M + 1)

holds for any t > 0. Furthermore, if ag = 0 and Eg = E[), then as \ tends to +oo, (p,v,E)
converges to (1, V,E) as follows:

v (HP — 1 Zo0 (0 4002y + HVQVH%2(0,+00;H2)) +[(Pv = V,E = E)[[Fos (0 1 00:1r2)
1

1PV = Vel o) + 11V PV = V[0 ez S

(1.12)

where (1, V, f)) satisfies (1.4) with initial data Vo = Pvy.

Remark 1.1. As justified in [14,15], when ||Vo|| g4 + || Eo|| g+ is sufficiently small, the conditions
(1.7)-(1.8) can be justified with (M, §") replaced by a small parameter that depends on the initial
data. However, for a large volume M, the global-in-time existence of (1.4) is still out of reach.

For the proof of the above result in Theorem 1.1, we are encountering two major mathematical
difficulties in verifying the incompressible limit of the global strong solutions to the system (1.6)
with large A: the first one is to establish the uniform estimates for the potential part Qv and
the “incompressible part” Pv of the velocity, respectively; the second one is to deal with the
deformation gradient F that lacks dissipative estimates. For the first obstacle, the uniform
estimates are difficult to obtain due to the high-order term of the velocity in the momentum
equation. Since large A provides a strong dissipation on the potential part of the velocity v, the
uniform estimates for Qv and Pv need to be established in different ways. More precisely, we first
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establish the unifoNrrn estimates for the “incompressible part” Pv and the deformation gradient
perturbation E — E by considering the momentum and deformation gradient equations together
to eliminate the high-order terms of Pv. For the potential part Qv and the density perturbation
a, the uniform estimates are developed by taking the momentum and continuity equations into
account together to deal with the high-order terms of Qv. This is one of the novelties in this
paper. For the second difficulty, there is no dissipative estimates for the deformation gradient
F. Thus, we need to establish the estimates for the perturbation of the deformation gradient
E = F — I by virtue of the property of Riesz potential. In more detail, we first utilize the
equations for deformation gradient perturbations E and E in the compressible system (1.6) and
incompressible system (1.4) to obtain the equation for E — E, namely (2.7). Then by virtue of
the assumptions for E and estimates for E — E we derive the estimates for the perturbation of
deformation gradient E, which is another novelty in our work.

The proof of Theorem 1.1 will be carried out in the remaining sections of this paper. In
Section 2 we give the preliminary setup and derive the estimates for the deformation gradient.
In Section 3, we prove the estimates for the divergence-free part of the velocity. In Section 4,
we establish the estimates of the potential part of the velocity and the density. In Section 5, we
close the estimates and then complete the proof of Theorem 1.1.

2. THE PRELIMINARY SETUP AND THE ESTIMATES FOR THE DEFORMATION GRADIENT

From now on, we assume that the shear viscosity p = 1 and p/(1) = 1 for simplicity. We
aim to establish the global-in-time uniform estimates for the solution of (1.6), since the local
existence issue has been well understood. To compare the solutions of (1.1) and (1.3), we set

u:=v-—-V.

In the spirit of Danchin and Mucha’s argument [5], we establish the estimates for the potential
part Qu and divergence-free part Pu, respectively. To derive the equation for Qu, we need to
deal with the term divE on the right-hand side of (1.6),. We first use the condition div(pF ") = 0
for all ¢ > 0 to derive that

divdiv[(1+a)(I+E)] =0, Vt>0,
from which we obtain that
82(Eij )

divdiv(E") = divdivE = Drdr,

= divdiv[(1 4+ a)(I+ E)| — divdiv(aI + «E) 2.1)

= —Aa — divdiv(aE).

Then, by virtue of Qu = Qv and v = Qu + Pu+ V, applying the operator Q to the velocity
equation (1.6), yields

(Qu); + Q((u+V)-VQu) — vAQu + 2Va = —Q(aVy + auy) — QRo, (2.2)
where
Ry —(1+a)(u+V) -VPu+ (1+a)(u+V) - VV+a(u+V) VQu
+k(a)Va+E-Va— (1+a)E*V,EF,

for k(a) = p'(1 +a) —p'(1) = p'(1 + a) — 1 and the initial data Qu|i—o = Qvp. From the first
equation in (1.6), we find that a satisfies

at+ (u+V) - Va+divQu = —adivQu. (2.4)

(2.3)



6 X. HU, Y. OU, D. WANG, AND L. YANG

Noting that PV =V and P(Qu-VQu) = P(aVa) = 0, we apply the operator P to the velocity
equation (1.6), and subtract the equation (1.3), for PV =V to derive that

(Pu); + P((u+ V) - VPu) — APu— Pdiv(E — E) = —P(aV; + au; 4+ 2aVa) — PRy, (2.5)
where
Ry :=(14+a)Pu-V(V+Qu)+(1+a)V-VQu+ (14+a)Qu-VV +a(u+V)-VPu
+aV-VV +aQu - VQu — adivE — E*V;(E — E)* (2.6)
— (E - EY*V,E* — oE/FV;E*.
with the initial data Pul;—o = 0. By subtracting (1.4)5 from (1.6),, we have
(E—E);+v-V(E—-E)+u-VE-Vu= Vv(E - E) + VuE. (2.7)

Noticing that the conditions FkV,F = FUV,F* and Flkvlﬁij = ﬁljv,ﬁi’f hold for all ¢t > 0,
we obtain that
ViEY + E*V,EV = V,E* + BVV,E*, V,EY + EfV,EV = V,E* + EVV,E*, vi>o0.
Thus we have
Vi(E - B)Y - V,(E - B)* .
— EYV,(E - E)* + (E - E)VV,E* — E*V,(E - E)Y — (E — E)"*V,EV. '

We assume that the maximal solution (p, v, E) of (1.6) corresponding to data (po, vo, E) is
defined on the time interval [0,7%). In order to bound a, E, Pu and Qu, we need to perform
suitable energy estimates. It is natural to estimate Qu; + 2Va rather than just Qu; from the
expression of (2.2). In what follows, for T' < T, we set

X(T) == [|(Qu, Va)”%oo(o,:r;m)a

Y(T) := [[(Qui +2Va, v *Va) 721 1) + WV QU0 14129
Z(T) = [|(Pu,E — E)H%OO(O,T;HQ)’

W(T) = ||(Puy, Pdiv(E — E))H%Q(O,T;Hl) +IV P20 7.012)-

(2.9)

Furthermore, we fix some M > 0 and small 0 < ¢’ < 1 so that the incompressible solution (V, E)
to (1.4) satisfies the following:

V(T) = HVH%OO(O,T;H4) + HVtH%2(O,T;H3) + HVVH%Q(O,T;H‘l) <M, forall T" >0, (2.10)
and

E(T) = ||E|[7e0(o.1:%) + I VEI 720 13y < &', for all T > 0. (2.11)

We claim that if v is large enough, then one may find some large D and small § so that for
all T' < Ty, the following bounds are valid:

X(T)+Y(T)<D and Z(T)+W(T)<6. (2.12)

Then by a standard continuation principle, we may extend the solution beyond T,. For the
purpose of (2.12), we first assume that for some large constant D and small constant § € (0, 1),

X(T)+Y(T) < 2D, Z(T)+W(T) < sz, (2.13)
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which indicates that
2
allZ o (0,7;pr2) < 1. (2.14)
Throughout this paper, we will use frequently the following interpolation inequality.

Lemma 2.1. (Interpolation inequality, see Galdi [6]) Let u € L1(R"™), with D*u € L"(R"),
la] =m >0, 1<gq,r <oo. Then D € L*(R"), |a| = j, and the following inequality holds for
0 <j<m and some C =C(n,m,j,q,r0):

D90 ey < Cllulyme ol afany (2.15)
where . _ . .
:j+9<—m> +(1-0)-,
s n r o n q
for all 0 in the interval ’
J<p<i,
m

with the following exceptional cases:

(i) If j = 0, rm < n, ¢ = 00, then we make the additional assumption that either u(z) — 0 as
|z| — oo, or u € LI(R™) for some q € (0,00).

(i) If 1 < r < oo, and m — j — n/r is a nonnegative integer, then (2.15) only holds for
Jj/m<6<1.

We now derive the estimates on E. By virtue of (2.1) we have

Adiv(E — E) = VdivdivE — curlcurldiv(E — E)

~ (2.16)
= —AVa — Vdivdiv(aE) — curlcurldiv(E — E).
Thus applying A~! to (2.16) and using the property of Riesz potential, we arrive at
div(E ~ B2 S [1Vallf2 + V@B +[|Pdiv(E — B3 o)

S [IVallz: + llall: || VE|Z: + | Pdiv(E — E)|[72,
and
|Vdiv(E - E)[[72 < [|V?a||72 + ||V*(aB)||7: + ||V Pdiv(E - E)|[7
S IV2allZ: + llal 7=l VZEI72 + [[E|[72]| VZal[72 (2.18)
+ ||[VPdiv(E — E)|[2..
With the help of the above estimates and (2.8), we can deduce that
IV(E - E)|[7: < [|div(E - E)|[7: + [[curl(E — E)||7
S [IVallz: + llall: || VE|Z: + | Pdiv(E - E)[[7 (2.19)
+ (1Bl 22 + |[El | 22)[| V(B = E)|[ 2,
and
IV*(E - E)||7 < ||Vdiv(E — B)|[72 + ||Vewl(E - E)||7
SIV2all72(1+ [ElE:) + llall%: || V2E|[7: + [[VPdiv(E - E)[[7. (2:20)
+ (B2 + ||El|2) V> (E = E)|[ 2.
With sufficiently small ¢’ in (2.11) and § in (2.13), we can obtain that
IVE = B)Ia (1) S 19012 1) + lal ey VBN (g, + | Piv(B = B2 or. (221)
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Thus from (2.21) we derive that
2 ()2 12
HVE||L2T(H1) < HV(E - E)||L2T(H1) + ||VE||L2T(H1)
< HVCLH%%(HI) =+ HQH%OTO(HQ)HVEHi?T(Hl) (2.22)
+|[Pdiv(E = E)|[72 1) + [IVEI[Z2 1)
With the assumption (2.14), we have
2 < 2 . B2 P
||VEHL2T(H1) Py ||va||L2T(H1) + HPle(E E)HLQT(Hl) + ||VEHL2T(H1) (2.23)
<v'Y(T)+ W(T) + E(T),

and

IV(E ~ B)|2 (1) < IVEIZ; )+ IVEI25 ) < v 'Y (T) + W(T) + E(T). (2.24)

3. ESTIMATES FOR THE DIVERGENCE-FREE PART OF THE VELOCITY

We first establish the estimates for Pu and E — E by virtue of (2.5) and (2.7).
Step 1: L?-estimates for Pu and E — E. Noticing the fact that P? = P, we take the inner
product of (2.5) with Pu to deduce that
1d

——||Pu|l72 + ||V Pul|72 —/ div(E — E) - Pudz
2dt R3

= / —[(u+V)-VPu+a(Vi+ Pu + (Qu¢ + 2Va) + Ry] - Pudx 3.1)
R3 '

= /]R?)[;divu|Pu|2 — (a(Vi+ Pu; + (Qui + 2Va)) + Ry) - Puldx
S |1Pull ([ Pul| 2[|divul| g2 + [[a(Vi + Pug + (Quy + 2Va)) |2 + [[Ral[ 2],
where
1 Ballr2 < (1 +lal[g2)([[Pull2[[V(V + Qu)l[g2 + [V 52|V Qul[ 2 + [V V]| || VQu| 2
+llallg2(lla+ VI 2|V Pl gz + |[VI[ 2[[VV ] g2 + [|Qul] 12|V Qul | 2
+IVEl| 2 + [[El 52|[VE||z2) + ([El| g2 + | El|12)[ [V (E — E)| .

(3.2)
Multiplying (2.7) by (E — E) yields that
1d - ~
——||E - E|?, — Pu-(E—E
5 |E= Bl — [ vPu-(B-B)a
:/ (VV(E—E)+VuE —u-VE —v-V(E - E)+ VQu) - (E - E)dz (3:3)
R3
SIE = El|2([|E = E[|2[|[VV||gz + [[Vul| 2| |[El| g2+ V|| 2 [VE| g1 + [[VQu]|2).
Hence combining (3.1) and (3.3) we obtain that
1d ~
5%(HPUII%2 +||E - E|[[72) + ||V Pul|7,
< |[Pu| g2 (|| Pul| 2| [divul| 2 + [|a( Ve + Pus + (Quy + 2Va))|[ 2 + || Ral | 2] (3.4)

+||E — El| 2 ([E — El| 2| V'Vl 52 + [V ul | g2 [E| g2+ Vull 2 [ VE] g1 + |V Qul| 2)-
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We apply “Pdiv” to (2.7) to obtain that
Pdiv(E — E); — APu = Pdivh, (3.5)
where
h=Vv(E-E)+VuE—u-VE—v-V(E-E). (3.6)
Then taking the inner product of (3.5) with Pdiv(E — E) gives that

Ld

5 || Pdiv(E — E)||%, — / APu- Pdiv(E — E)dz = [ Pdivh- Pdiv(E — E)dz. (3.7
R3

R?)

To eliminate the high-order term [p; APu- Pdiv(E — E)dz, we multiply (2.5) by —Pdiv(E — E)
to deduce that

/ —Pu; - Pdiv(E — E)dz + ||Pdiv(E — E)||2, + / APu - Pdiv(E — E)dx
R3 R3

(3.8)
= / —[(u+V) -VPu+a(Vy+ Pu + (Qus + 2Va)) + Ry] - Pdiv(E — E)dz.
R3
With the help of (3.5), we have
—Pu; - Pdiv(E — E)dx
R3
d . N
=—— [ Pu-Pdiv(E—E)dz+ [ Pu-Pdiv(E—E)dx (3.9)
dt R3 R3
= —d/ Pu - Pdiv(E — E)dz — ||V Pul|2, +/ Pu - Pdivhdz.
dt Jgrs R3
By direct calculations, we have
/ (Pdiv(E — E) 4+ Pu) - Pdivhdz
R3
= / (Pdiv(E — E) + Pu) - Pdiv(Vv(E —E) + VuE —u - VE — v - V(E — E))dz
R3
4
= Z-[u
1
with
I < / (|Pdiv(E — E)| + | Pu|)(|V?V||E — E| + |[VV||V(E — E)|)dz
R3 (3.10)
< |[(Pdiv(E — E), Pu)||12||V?V]| 2| [E — E[| g2,
I = / (|Pdiv(E — B)| + | Pul) (IV2uE| + |Vu||VE|)da
R? (3.11)
< ||(Pdiv(E — E), Pu)||2[|V*ul| 2| [E|| 2,
Iy — / (|Pdiv(E — B)| + |Pul)(|u - V2E| + |Vu|[VE|)dz
R3 (3.12)

< ||(Pdiv(E — E), Pu)||2(/|Vul| 2| V*El [z + [[Vul[ 2 |E]| =),
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and

I = /Rg [Pdiv(E — B) - Pdiv(v - V(E — B)) + Pu(lv - V2(E — B)| + |Vv||V(E — B)|)]da

< [|Pdiv(E - E)||7/|V(a + V)2 + | Pul| g1 |V V]| 2] [V (E — E)[ 2.
(3.13)

Notice that
/ (|Pdiv(E — E)|? — 2Pu - Pdiv(E — E) + 2|Pu|? + 2|E — E[?)dz
R3

= / (|Pdiv(E — E) — Pu|? + |Pul? + 2|E — E?>)dz ~ ||(Pu, Pdiv(E — E),E — E)||2,.
R3

Using (3.9) and Pu|;—9 = 0, we integrate the summation of twice (3.4) and (3.8) in time to
arrive at

|(Pu, Pdiv(E — E),E — E)|[72(t) + IV Pul[}, 1) + | Pdiv(E — E)|[72 (12

~ ~ T ~ ~
< [|(Pdiv(Eo — Eo), Eo — Eo)[7 + / [|(Pu, Pdiv(E — E),E — E)||7:|V(u+ V)| 2
0
+ [|E = El|z2([[Vul[ 2| |El 72 + [[u][g=2[[VE[| 22 + [[VQu]|2)
+ [|(Pu, PAiv(E — E))||2(||a(Vi + Pu; + (Qut + 2Va))|| 2 + ||Ral| 12
+ V2V |2 |[B = Ellg2 + [[Vul| 2 Bl 2+ V| 2| V*E| | 1)
+[|PAiv(E — E)||2[[(w + V) - VPul| 2 + || Pul| ][V (u + V)| 12| V*(E — E)|| £2]ds,
(3.14)

where we have used the estimates (3.10)-(3.13).

Step 2: Low-order estimates for Pu and E — E. Next, we multiply V(2.5) by VPu to
obtain that

1d

2 dt

= / [-V((u+ V) -VPu)—V(a(V;+ Pu + (Qu; + 2Va))) — VRy] - VPudz
R3

IVPu|f3, + ||V2Pul[7, —/ Vdiv(E — E) - VPudz
R3

SIVP|[ (|| VP[] [V(u+ V)|[g2 + [[V(a(Ve + Py + Qug + 2Va))|[ 2 + ||V R1|[ 2],
(3.15)

where
IVR1lr2 S (1+ lallg2) (| |Pull g [[V(V + Qu)| g2 + [V 52| VZQul| 12 + ||V V|| 2] [V Qu| 2)

+lallgz ([ + Vg [[VPullgz + VI [V V]| g2 + [|Qul| [ VQul g2 + [[VZE|| 2

+[|El 22 |IV?El|22) + ([[Ell g2 + ||El| g2)|[V*(E — E)|| 2 + [|E — E|| 12| V*E] | 2.
(3.16)
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Applying V to (2.7) and multiplying by V(E — E), we obtain

1d ~ -
3 lIVE =B~ [ V?Pu. V(B E)ds
R3

= / (V2Qu + V>v(E — E) + VvV(E — E) + V?uE + VuVE
R3

_ _ _ _ _ (3.17)
—u-VZE-Vu-VE-v-V¥E-E)-Vv-V(E-E)) V(E-E)dz
SIVE = B)||2(/IV(E = B)|| 2l [VV] g2+ Vul | 2| V*El i1
+ [Vl 2| [El 2 + [[V2Qu | 2).
Hence combining (3.15) and (3.17), we obtain that
ld 2 (12 2 2
5 7 UIVPul[ge + [IV(E = E)|l72) + |IV=Pul[L,
< [[VPul| 2 [[[VPul| 2|[V(u+ V)2 + [[V(a(Vi + Pu; + Qu; + 2Va))|[ 2 (3.18)
+IVR[z2] + IV(E = E)|[ 12 (/[V(E = B)|| 2|V V] g2 +[Vul 2 VZE|| 12
+[[V?ul| 2] [E] 2 + || V2Qu | 2).
Next, we apply “V” to (3.5) to obtain that
VPdiv(E — E), — VAPu = VPdivh. (3.19)
Thus we multiply (3.19) by VPdiv(E — E) to derive that
1d ~ ~ ~
5 37| VPdiv(E —B)7. - / VAPu-VPdiv(E — E)dz = | VPdivh-VPdiv(E — E)dz.
R3 R3
(3.20)

By virtue of (3.19), taking the inner product of V(2.5) with —VPdiv(E — E) to eliminate the

high-order term [p3 VAPu - Pdiv(E — E)dz yields that

d ~ ~
— = [ VPu:VPdiv(E - E)dz — |V2Pu|2, + || VPdiv(E — E)|2,
R3

+ [ VAPu-VPdiv(E — E)dz
R3

= ~VP[(u+V)-VPu+a(Vi+ Pu; + (Qu; + 2Va)) 4+ Ry] - VPdiv(E — E)da

R3

— VPu-VPdivhdz.
R3

(3.21)
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Integrating the summation of twice (3.18) and (3.21) in time gives that
|(VPu, VPdiv(E — E), V(E — E))||%.(t) + V2 Pul[7 2y + ||V Pdiv(E — E)||§2T(L2)
< |[(VPdiv(Eq — Eo), V(Eo — Eo))||7»

T ~ ~
+ /0 [[|(VPu, VPdiv(E — E), V(E — E))|32||V(u + V)|| 2

+[|V(E = B)|[z2(|[ul 72| VB 2 + [Vl 2Bl 2 + [|V2Qul12) (3.22)
+ |[(VPu, VPAiv(E — E))||12(|[V(a(V + Pug + (Qu; + 2Va)))| |2 + || VR 2
+|Vul| 2| IVPEl g1 + |Vl |2 [E 72 + [V (0 + V)| | 2| [E — E[[572)

+||[VPAiv(E — E)||2||(u + V) - VPul|

+ V2P| ||V (u+ V)| 2] [VX(E — E)|[ z2]ds,

where we have used

/ VPu-VPdiv(v-V(E - E))dz = — [ V?Pu- Pdiv(v-V(E — E))dz
R3 R3

SIV?Pu|s]| Pdiv(v - V(E = E))|| 122
S V2Pl [V (a+ V)| 2| V*(E = E)|[ 2.
Step 3: Higher-order estimates for Pu and E — E. Next, applying V2 to (2.5) and
multiplying the resulting equality by VZPu yield
1d
2dt
= / [—V2((u+ V) - VPu) — V(a(V; + Pu; + (Qu; +2Va))) — VR,] - V2Pudz
R3

|IV2Pu| |72 + [|[VAPu|[7. — / V2div(E — E) - V2Pudz
R3

S IV2Pulff2]|V(u+ V)|l
+[[VAPu|| 12 (|[V(a(Ve + Pu; 4+ Quy + 2Va))l| 12 + || VR1 || 12)

(3.23)

1
SIVPPu||22]|V(u+ V)| |52 + 5\\VAPUH%2
1
+ 5 (IIV(a(Vt + Pu; + Quy + 2V(L))H%2 + ||VR1H%2) .

Multiplying V2(2.7) by V2(E — E), we have
1 ~ ~
—£]|V2(E ~E)|3. - / V3Pu-V?*E - E)dz
2dt R3

:/ [V3V(E—E)+V*>v.-V(E—E)+Vv-V}E—-E)-Vv-VE-E)
RS

—v-V3E—-E)-V?v.V(E - E) + V*uE + V>uVE + VuV’E
—Vu - V’E—u-V’E-V?u-VE—v-V}E—-E)-Vv-V3(E-E)
~V?v-V(E—-E) + V3Qu] - V*(E — E)dz
SIVAE = B)|[2([|(B = E)||2|[V(u+ V)| | 2+ Vul[ 2] VPE|| 11
+ 1|Vl 2| [Bl 2 + | V3Qul| 2).

(3.24)
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Hence combining (3.23) and (3.24), we obtain that

1d ~ 1
5o (IV2Pul, + V(B = B)2.) + S VAPul,
< IV2Pul L[V (u+ V)= + V2B = B)ll 2 B~ B)l e IV + V)l (3.5)

+[[V(a(Vi + Pug + Qug +2Va)) |72 + [V R1[[72
+ IV = E)|| 2 (|[Vul| 2 V*El g1 + [[Vul| 2] [El 2 + || V*Qul[ 2).

Then by virtue of (3.22), we can bound ”PUtHL%(Hl) directly from (2.5) by the estimates of
Stokes equation as follows:

HPutH%ZF(Hl) + HAPUH%%(Hl)
<N+ V) VPl )+ [la(Ve+ Pug + (Qu +2Va))| B
+ HRIH%%(Hl) + HPdiV(E - E)H%%(HI)

T
3.26
<Pl 1) [V Pl 2 ) + /0 (IV(Qu+ V)13 +11Qu + VI[3)[[V*Pul[2ds  320)

T
+ [ I9QuA VIRl VPulffds + la(Vi+ Puy + (Qui+ 270
B2 gy + 1Piv(E — B)[[2; .

To control the term fOT |Qu+ V|2 .||[V2Pul|%,ds, we apply the interpolation inequality (2.15)
to obtain that

T T
/0 1Qu 4+ VI[3nc|[V2Pul[2ads < /0 1Qu + V3| [V Pul| 2] [V Pul|2ds

1 1T
< SIVPullts o)+ 5 [ Quot VIV Pulffads,
2 T 2 Jo

Step 4: Collection of the estimates for Pu and E — E. By virtue of Pug =0, (2.20) and
small enough ¢’ in (2.11), integrating (3.25) with respect to time and combining with (3.22) and
(3.26), we can obtain that

[(Pu,E = E)[Z0 g2 + |(Pus, PAiv(E — ED|IZ2 1) + IV PullZs 42,
" T ~
< 180~ Boll + [ (1Pulfs + 18— Bl 17V VP, VQu -+ 1@, V)l s

+ Ha|’%%o(H2)(HVtH%2T(H1) + ”PutHi%(Hl) +[|Quy + 2Va||%2T(H1)) + HRIH%%(Hl)

+ HVQUH%%(Hz)(l + HE‘|%%°(H2)>+HVQUHL2T(L2)HVEHL%"(H?’)'
(3.27)

By assuming (2.13) with small enough 0, the first term of the right-hand side in (3.26) can be
absorbed by the left-hand side of (3.27). For the third term of the right-hand side of (3.27), one
has

||a||%%°(H2)(HVtHi2T(H1) + ”PutH%%(Hl) + [|Quy + 2va||i2T(H1))
SvEX(T)(V(T) + W(T) + Y/(T)).
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From (3.2) and (3.16), we can estimate the terms in || R; in the right-hand side of (3.27)

2
122 (1)
as follows:

(1+ ‘|QH%%O(H2))(||V||%%°(H2)HVQU|’%§F(H1) + HVVHZL%O(H?)HVQUH%%(H))
< (L +v2X (D)WY (T)V(T),

a2 e oy [0+ VI o gy [V Pl 25 2 S 02X (D)W (T)(X(T) + Z(T) + V(T)),

"GH%OTO(H%(HV"%%O(Hl)HVVH%%(H‘Z) + "Qu"%;@(Hl)HVQuH%%(H%)
SvEX(T)(VAT) +v2X(T)Y(T)),
a2 e a2y (IVE 23 3, + 1B B () [ VEI 50
SvEX(T) (v 'Y (T) + W(T) + E(T))(1 + Z(T) + E(T)),
and
(112 12 + 1Bl 102 V(B = B 25
S (Z(T) + BEM) (v 'Y(T) + W(T) + E(T)),
where we have used (2.23) and (2.24). For the last term, we have
IV QuIZs g2y (1 + Bl B 102 HIVQul 3 1) IVE (13 S v 2V (T)(1+ E(T)).
Recall the assumption that X (7') < v2, we obtain that
Z(T)+W(T)
T
<200 >+/0 (I(VV, ¥ Pu, VQu) 3 + [[(Qu, V)[£) Z(t)ds
v X (T)(V(T) + W(T) +Y/(T) + v Y (D)1 + V(T) + E(T) + Z(T)) (3.28)
2X(T)W( (X (T) + Z(T) + V() + v 2X(T)VA(T)
v X (T) (Y (T) + W(T) + E(T))(1 + E(T))
+ (Z(T) + ET) (v 'Y(T) + W(T) + E(T)).
Using Gronwall’s inequality, we conclude that
Z(T)+W(T)
< C1C1 I VY.V Puv Qi HI@uV)Eee)ds| 70y 4 =2 X (T)(V(T) + W(T) + Y (T))
+v?Y(T) 1+ V(T) + E(T) + Z(T1)) + v *X(T)W(T)(X(T) + Z(T) + V(1)) (3.29)
+ v 2 X(TYVA(T) + v X(T) (v 'Y (T) + W(T) + E(T))(1 + E(T))
+(Z(T) + E(D)) (v~ 'Y (T) + W(T) + E(T))],

for some constant C7 > 1.

4. ESTIMATES FOR THE POTENTIAL PART OF THE VELOCITY AND THE DENSITY

To estimate the potential part of the velocity, we consider the momentum and continuity
equations together.
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Step 1: Low-order estimates for Qu and a. Now, we first multiply (2.2) and (2.4) by Qu
and 2a, respectively, and integrate by part to discover that

1d
3 pllullts + VIV Quli:+2 [ Va-Quds
R3

= / —((u+V)-VQu) - Qu— (aVy + au; + Rg) - Qudx
R3

(4.1)
1 . 2
= —divu|Qu|“dz + f1 - Qudz,
R3 2 R3
and

d . o : .

—llal|72+2 [ adivQudr = [ [-(u+ V) Va —adivQu] - 2adx

dt R3 R3

(4.2)
= / divua®dz + 2/ g1 - adx,
R3 R3
where
fi:=—(aVi+au, + Ry), and ¢ :=—adivQu.
Applying V to (2.4) gives that
Va, + (u+V) - V2a+ VdivQu = Vg; — V(u+ V) - Va. (4.3)

Thus we take the L? inner product of (4.3) with Va to discover that

ld 2 2 .

-—||Vall72+ [ (u+V)-V?)- -Vadr+ [ VdivQu- Vadx

2 dt R3 R3

(4.4)
= / Vg1 —V(u+V)-Va] - Vadz.
R3

In order to eliminate the high-order term [, VdivQu - Vadz, we test (4.3) by Qu and (2.2) by
Va, respectively, and summarize the resulting equalities to derive that

4 Qu - Vadx + / (u+V)-V(Qu-Va)dr —v | AQu-Vadx
dt R3 R3

R3

+2||Va|\2L2+/ VdivQu - Qudz
R3

(4.5)
= / Vg1 —V(u+V)-Va| - Qudz —|—/ f1-Vadz.
R3 R3

Noting that AQu = VdivQu, we add v times (4.4) to (4.5) and use integration by parts to
obtain

1d
2q R3(y\va|2 +2Qu - Va)dz + (2||Val|3: — ||[VQu]|3,)

:/ (;|Va\2+Qu-Va)divud:r+y/
R3

Vg1 —V(u+YV)-Va|-Vadx (4.6)
RS

+ / Vg1 —V(u+V)-Va]-Qudz+ [ fi-Vadz.
R3 R3
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Multiplying the above equality by v, adding up twice (4.1) and (4.2), and integrating the result-
ing equality in time, we get

(Qu.a.vVa)|32(t) + v(2Val 3 2y + IV Qul s 12)
T

< 1(@uo,a0,vVan) s + [ 11(Qu.a,v5a) | ldiva s
0

T
+/O IV (u+ V)[lg2(lvVall2[|(vVa, Q)| L2 + [[(91, vV g1, f)ll 2 |[(Qu, a, vV a) || L2]ds,

(4.7)
where we have used that
/Ra (402 + [vVa|? + 20Qu - Va + 2/Qul’)de > ||(Qu, a, vV a)| 2. (4.8)
Moreover, from (4.2) we have
%llaH%z S llallpz([|divQul[ 2 + [lal| 2 [[divul | f2). (4.9)

Multiplying (4.9) by v? and integrating in time give that
1 IR :
Il o(0) S ool + gllval e uoy + 5 [ (ivQuls + [valallivalGepas. (410

We multiply (4.1) by v to derive that

1d

5@( lQul72) + [[vVQul[7,

S12Qu| e |[v?Val |2 + vV Qul| 2 (|| Qul | 2| divul |71 + Mo) (4.11)
1 1 .

S12Qu| 2|2 Val| 2 + §||VVQ11H2L2 + §(||QUH%2||d1VUH%p +Mp),

where
Mo=(1+ |lal|g2)|[a + V[ 2(I[VPul[g1 + [[VV]][g1) + [lal[g2|[u + V]| 2] [VQul| 1
+ llallm|[Vallpz + [lal| i [[VE[ 2 + (1 + [l g2) Bl g1 [ VE]| 2.
Thus integrating (4.11) in time gives that
QU 1) + 1V QulZa 1o

T (4.12)
SollQuols + [ (1%alfs + [1Qulaldival -+ M3
0
Thus summarizing (4.7), (4.10) and (4.12), we can obtain the following inequality
[(Qu, va, VV@)H%;O(B) + VHVGH?J%(L‘Z) + H’/VQUH%%(B)
T
< [1(Quo, vag, vVao)|[7: +/ 1(Qu, va, vVa)|[72[|V(u + V)| [}2ds (4.13)
0
+ H(gl,fl,VVgl)H%gr(Lz),
where
191,990 123 12y S I1ivQulZ e (alsroy + Va2 ),
and

Hlei%,(L2) S lla(Vie+ Pug + (Quy + QVG))H%%(H) + HGH%;O(H%HV@H%%(B) + HR2H%2T(L2)7
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with
1ReI 12y S (14 [lal B oyl 4+ VI ) (1Y Pl B ey + 9V 2 g2
1l B o 1 VIR ) IV QU g+ Nl o V]2 ) (414)
B o) 19012 2 + (14 (10l ) B | VL2 1

Step 2: Higher-order estimates for Qu and a. We multiply V(2.2) by VQu to discover
that

5 dtIIVQuIILz +v||[V2Qu|%, + 2/ V2a - VQudz
(4.15)

= 1/ divu|VQu2d:c+/ fo - VQudz,
2 R3 RS

where fo = —V(u+ V) -VQu — VQ(au; + aV;) — VQRs. Next, testing V2(2.4) by V2a yields

2dt\|v2 \|L2+/ VidivQu - VZadx

= Vg - VZadx — / (u+4V)-V3a) - Viadr,
R3 R3

(4.16)

where g; = —V(u+ V) - Va — V(adivQu). To eliminate the highest-order term [, VZdivQu -
V2adzx, we test V2(2.4) by VQu and V(2.2) by VZa to get
d
— [ VQu-V?adz —v | VAQu-VZadz +2||V3al|7, + / V2divQu - VQudx
R3 R3

dt Jms (4.17)

= / Vg2 - VQudzx +/ fo - Viadx — / (u+ V) V(VQu- V3a)dz.
R3 R3 R3

Then we add v times (4.16) to (4.17) to cancel the highest term and use integration by parts to
get

1d

S d /RS(VIV%F +2VQu - VZa)dz + (2||V3al|32 — || V2Qu][32)

- / (5IV%a + VQu- VZa)divudz +v | V- Vada (4.18)
R3 R3

+/ Vgs - VQudx + / fa - V2adz.
R3 R3

Multiplying the above equality by v, adding up twice (4.15) and 4 times (4.4) and integrating
in time, we obtain

(VQu, Va, v02a) [ (t) + 121Vl B (12, + [IV2Qul 2 (12))
T
< 1I(VQuo, Vag, v¥2ag) 2 + / 1(VQu, Va, v 20| Falldivallzds (4 19)
0
T
4 / (g2, for vV 92) 1121 | (VQu, Va, v¥a) |2,
0

by noticing that

/ (4Va|? + [vV2a* + 20V Qu - VZa + 2|V Qu|*)dz > ||(VQu, Va,vV?a)|[2,. (4.20)
R3
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We can obtain the following estimate from multiplying (4.15) by v that

1d
oY, VIIVQull72) + |[¥V*Qul[7.
S wV2Qul |2 (|| Val| 2 + || VQu|| 22| |divul| g1 + [[VQu[ 2|V (w+ V) ||z + || f1]]2)  (4.21)

1 1 i
S 5V Qu[L + SlIIVallfe + [[VQullZa([[dival [fn + IV (a+ V)IIF) + [ fallZ2];
whence integrating in time gives

V|IVQul7e0 12y + [[PV2Qul[72 1)

T (4.22)
< v|IVQuol[7. +/0 [1VallZ> + IV Qul[Z2(lldivullF + ||V (u + V)[[31) + [ f1l[Z2)ds.
Thus with (4.19) and (4.22) we have
1(VQU, Var90) 2 () + 111Vl 2 12y + 092 Qul s
T
S 1(VQuo, Vao.v¥2an)| 3 + [ IV (a+ VIIEel(VQu, Va,rvPa)|fads (423
0

2
+1|(g2, fo, Vv92)||L2T(L2)7
where
192, v 92)1 25 (1) S (IF00+ VI3 72 + 10vQUIZs 72 ) (W8l 012 + Il r2))
and
12l 2 1) S 100+ V) - VQuIEs 0, + IV (@(Ve + Puy + (Quy + 2Va))| 2 10
el o 1920123 g2y + IV Rel23 1
with
IV RZ 2y S (14 10l o) 10+ V1B IV P () + 9V 2 1)
+ HaH%%"(H?)Hu + V||%%°(H1)HVQUH%2T(H2) + ||a||%39(H2)HV2a||%2T(L2) (4.24)
+ HEH%;O(HZ)HVZGH%QT(B) +(1+ ‘|QH%%°(H2))‘|EH%§9(H2)HV2EH%ZT(L2)'
Next, we take the inner product of V2(2.2) and V2Qu to discover that

1d
2 dt
= V2 [-Q((u+V)-VQu) —2Va — Q(aV; + aw;) — QRy] - V2Qudz

R3
S IV2Qu| 2211V (u+ V)| g2 + [[VAQu|| 2[|[V2al[ 2 + ||V (a Vi + auy) | g2 + ||V Ra[ 2]

IV2Qulf: + v||[VAQuZ,

1
SIV2QuIIZ: IV (u + V)12 + 5[ VAQul[Z

1
+ 5 [IV2allLz + [V (Vi + aw)[[72 + ||V Ra[72]-
(4.25)
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Similarly to (4.22), we have
VIV2Qul e o) + VT AQuIEs

S v|IVEQuol[72 + /OT(HVQaH%z +[V(aVy + aw)|[72 + |V Re|[72)ds )
In view of (2.2), we obtain that
|Quy + 2Va|\§2T(H1)
< la(Vi+ Pug + (Que + QVG))H%zT(Hl) + HGH%;O(H2)HV@||%2T(H1) (4.27)

+ HRQH%%(Hl) +[l(u+V)- qu"%%(Hl) + HVAQUH%Z’T(HI)-

Bounding [[(u+ V) - VQul[%, (1) 8 in (3.26), we have
T

)
[(u+V)- VQUH%%(Hl)

T
< 11Pu + Qul3e 1) IV QU g + / IV V1 + [ V][200)l V2 Qul 2ads
T
T / [VVI12.][VQul 2 ds
0

T
< 11Pu+ Quild iy I VQUIE oy + [ 119V V2Qufads

1 1 [T T
+2||V3Qulli%(Lz)+2/o IIV\I%wlvaullizd5+/0 IVV|[3.]|VQul[3:ds.

With small enough ¢ in (2.11) and § in (2.13) and the assumption (2.14), we combine (4.13),
(4.23), (4.25), (4.26), and (4.27) to derive that

[(Qu, Va)H%%O(HQ) + ’/HVGHQL%(Hl) + [|Quy + 2VCLH%?T(Hl) + HVVQUH%?T(}ﬂ)

T
< [1(Quo, vao)| 32 + /0 ((VV. VPu, VQu)| %2 + V][4 [(Qu, va) | [3ds
(1Pl e 1y + VI AT PO g0y + TV () + VI3 (g 1B 2 12

+ ‘|aH%§9(H2)(HVt|’%%(H1) + HputH?ﬁT(Hl)) + HaHig(HZ)HPu + VH%%O(Hl)HVQuHi?T(H2)a
(4.28)

where we used HEHzm (H2) HVCLHL2 (1) < (62 + )| Vall%, 2 (1)
Recalling the settlng of X(T), Y(T)7 W(T) and Z(T) in (2.9), we have

Pl gty + V1 e (i TP ) + IV VI s 2)) S (Z(T) + VD)W (T) + V(T)),
a2 e a2y IVl B gy + [Pl 1)) S 02X (T)(V(T) + W(T)),

all2 g2 [P0+ VI 10|V QU () S v X (T)(Z(T) + VT)Y (D),
and using (2.24) we get
IVEIZ2 () [[Bl[Zee g2y S (v7 'Y (T) + W(T) + B(T))(Z(T) + E(T)).
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Therefore, we obtain that

X(T)+Y(T)

T
< X(0) + /0 (1(VV, VPu, VQu)|[f2 + [ VI[L) X (t)ds + v X (T)(V(T) + W (1)) (4.20)

+(Z(T) + V(T))(W(T) + V(T)) + v *X(T)(Z(T) + V(T))Y(T)
+ (v Y (T) + W(T) + E(T))(Z(T) + E(T)).
Using Gronwall’s inequality, we conclude that
X(T)+Y(T)
< 0yeC2 Jo VY.V PuVQu) [ 5+ V][ o0 )ds [X(0) + v 2X (T)(V(T) + W(T))
+(Z(T) + V(D) (W(T) + V(T)) + v X (T)(Z(T) + V(T))Y (T)
+ (T Y(T) + W(T) + E(T))(Z(T) + E(T))],

(4.30)

for some constant Cy > 1.

5. GLOBAL-IN-TIME CLOSURE OF THE ESTIMATES AND THE PROOF OF THEOREM 1.1

By applying ||Qu]|]~ < [|Qul|z2||[V?Qul[3,, we can obtain that

/OT 1Qul|}~ds < HQUHLOTO(H)‘|V2Qu"Lgs(L%HVQQUHQL%(Lz) SvTiD?,
which can be also applied to V. We suppose that
vID < [4(1+ MY (5.1)
and
512 <1/, Cle2C2(1+M?) 51/2 1/2, (5.2)
where Cs is the same as in (4.30). Thus inequality (3.29) implies that

X(T) + Y(T) < 01601(M+M2+V_2D+51/2)[X(O) + I/_QX(T)(M+ 51/2) + (M+61/2)2
+ 207 4D(M + 8V X (T) + v~ Y (T)(6Y/% 4 8') 4 6V/2(6/2 + &)

. (5.3)
< CyeO M5 ) [X(0) + v 2 X (T)(M +1/2) + M2+ M + 1
+v3(M 4+ 1/2)X(T) + v 1Y(T)),
which gives that
X(T) +Y/(T) < C12°10+M*) (X (0) 4 22 + 2). (5.4)

Then we choose dp and ¢’ satisfying

20350 HM) 50 < 1716, 2C3e5C20HM?) (5 4+ §2) < 1/16. (5.5)
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From (4.30), (5.2) and (5.5), we obtain that
Z(T) + W(T) < Cpe@>? MMt 2D4v=2D2842) (5 4 0, =2 9D + M + §Y/2)W/(T)
+ 8'W(T) 4 20 2D(M + M? + 2D + 207 D + 6Y/2 + §' + 1)
+ Z(T)(2v ™D + 612 +§') + &' (207D + §')]

< Cpe@0H2M 43 H543) (5, 4 202D (2D + M + 1/2)W(T) >0
+6'W(T) +2v2D(1 +2M? +2D + 201D + 2)
+Z(T)2v ™ D + 62 + 8" + §'(2v 7D + )],
which implies that
Z(T) + W(T) < Coe®@U+M)[50 4 22 D(2M? 4 2D + 4) + 6'(2v7 1D + &')]. (5.7)
Next we take v satisfying
8C, C2e2C1H3C) M) (X (0) 4+ 202 + 2) < /1, (5.8)
then set
D = C1 2 0HM) (X (0) + 22 + 2). (5.9)
Thus we can derive that
2035 MY) D202 4 2D + 4) < 12/16. (5.10)
Then we choose
§ = Cop22 UM 50 4 2,2 D(2M? + 2D + 4) + §' (20D + §)]. (5.11)
Hence we end up with
X(T)+Y(T) < D, (5.12)
and
Z(T)+W(T) < 6. (5.13)

From (5.8), (5.9) and (5.11), we see that the assumption (2.13) is recovered. The choices for dy
and ¢ give that

v1ID < [64C, CilePO+0C) M%) (x (0) 4 202 4 2)]7F < [128(M2 + 1)] 71,
§ < Coe?@ M) 50 1 9,2 D(2M? + 2D + 4) + &' (1 + §')] < 3/16,
and
[Coe2C2 (M) 517212 < C36C(4+MP) (50 4 9,=2D(2M? + 2D + 4) + 6'(1 + §')] < 3/16,
from which we see that the assumptions (5.1) and (5.2) are recovered. This also ensures that
[|a(T)|| g2 is small for all T € [0,T}), as we have
la(T)|f32 < Cv™2(lva(T)|[32) < Cv=2D. (5.14)

If v and the compressible part of the data fulfill (5.8), then defining D and ¢ according to (5.9)
and (5.11) ensures that (2.12) is fulfilled for all 7' < T\. Then, combining with the continuation
criterion, one can conclude that T, = 400 and that (2.12) is satisfied for all time. In fact, if we
assume that Ty, < +o0, applying (2.12) for all T' < T} yields

Ha(T)H%%O(H?) + HVH%;O(HZ’) < C < +oo. (5.15)
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Then for all T € [0,T), one can solve (1.6) starting with data (ao, vo, Eo) at time T' = Tj and
obtain a solution according to Theorem 1.1 on the interval [Ty, 71 + Tp] with T} independent of
Ty. Choosing Ty > Ty — T shows that the solution can be continued beyond T, which leads to
a contradiction. This completes the proof of Theorem 1.1.
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