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Optimality of intercellular signaling: Direct transport versus diffusion
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Intercellular signaling has an important role in organism development, but not all communication occurs
using the same mechanism. Here, we analyze the energy efficiency of intercellular signaling by two canonical
mechanisms: Diffusion of signaling molecules and direct transport mediated by signaling cellular protrusions.
We show that efficient contact formation for direct transport can be established by an optimal rate of projecting
protrusions, which depends on the availability of information about the location of the target cell. The optimal
projection rate also depends on how signaling molecules are transported along the protrusion, in particular the
ratio of the energy cost for contact formation and molecule synthesis. Also, we compare the efficiency of the two
signaling mechanisms, under various model parameters. We find that direct transport is favored over diffusion
when transporting a large amount of signaling molecules. There is a critical number of signaling molecules at
which the efficiencies of the two mechanisms are the same. The critical number is small when the distance
between cells is far, which helps explain why protrusion-based mechanisms are observed in long-range cellular
communications.
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I. INTRODUCTION

Intercellular communication is crucial for maintenance and
response to the external environment, allowing development,
growth, and immunity. However, not all biological commu-
nication systems transport signals by the same mechanism.
One well-known mechanism is simple diffusion, in which sig-
naling molecules are produced by localized source cells and
diffuse through extracellular space before degradation [1]. An
alternative mechanism, called direct transport (DT), involves
signaling molecules that are transported along protrusions
[2] such as cytonemes [3–6], tunneling nanotubes [7], and
airinemes [8,9]. One natural question is under what condition
cells should be expected to utilize one or the other mechanism
of signaling.

One or the other mechanism may be selectively favored,
over evolution, by achieving better performance. In the scale
of communication between two cells, first passage time (FPT)
of a signaling molecule to the target can be minimized by
parallel search with multiple copies (called “redundancy prin-
ciple”) [10,11], which characterizes the fertilization process
[12]. This also can be achieved by resetting and repeating
the search, which limits the search perimeter [13–15]. At a
larger spatial scale with multiple cells, a concentration gradi-
ent of signaling molecules can be established in a short time
[16–19], which is robust to parameter variation [16,17] and in-
ternal noise [18], and even precise under a noisy environment
[20]. However, there are only a few direct theoretic analy-
ses comparing these two fundamentally different mechanisms
of signaling (direct transport and diffusion), and most such
studies focus on the formation of a concentration gradient
[19,20].

One crucial aspect of the fitness of cells and organisms is
energy efficiency. Two significant sources of energy costs are
the synthesis of signaling molecules and the polymerization
of cellular protrusions. Synthesis cost depends on how many
diffusive molecules released from the source cell successfully
arrive at the target [21,22]. DT involves the polymerization
cost that is determined by the total number of polymerization
events until protrusions make a contact with the target, which
is characterized by the total elongation length of protrusions
[23,24]. However, the energy cost of intercellular signaling
processes has not been considered much in modeling studies,
as most such studies focus on the diffusion process, which
does not require energy input once it is synthesized. In con-
trast to the diffusion model, DT requires energy costs for
contact formation. And yet, once established, a protrusion can
securely transport signaling molecules. One natural question
is which mechanism, under different parameter values, will be
more energetically efficient in total.

In this paper, we investigate how a two-cell communication
mechanism is optimized by balancing performance (transport
time) and energy efficiency. We first find the optimal con-
ditions within the direct transport model by minimizing the
utility functions associated with the initiation rate of protru-
sion κDT. If the protrusion initiation is frequent, then a cell
can establish a contact quickly but it may waste energy due
to excessive polymerization. Moreover, the optimal initiation
rate depends on the number of signaling particles V required
to be transported. This relationship is nontrivial because the
effective diffusive transport along the finite one-dimensional
(1D) domain varies with V . We show how the relationship
changes with the energy consumption rate of polymerization
and synthesis of particles. Additionally, we study how spatial
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FIG. 1. Schematic figure of two intracellular transport mecha-
nisms. (a) Direct transport (DT) mediated by protrusions. (b) Dif-
fusion and degradation of signaling molecules.

information about the target cell can help form a protrusion
contact in a shorter time with less energy cost. And finally,
we study the effect of protrusion length, which, if short, may
save polymerization cost but is also less likely to hit the target.
Similar optimality considerations for protrusion length versus
search time have been studied in other directional search pro-
cesses with resetting [14,15].

Next, we determine which one of the two models (direct
transport or diffusion) is optimal for a given condition, by
comparing the values of utility functions. One crucial variable
for comparison is the number of transporting particles V . At
smallV , the diffusion model is generally preferable because it
does not require additional energy costs for contact formation.
At largeV , the direct transport model is preferable because the
contact formation cost per particle is cheaper. We determine
the critical number Vc such that the utilities of the two models
are the same, which can be a criterion for determining which
model is preferable.

There have been two different approaches to theoretical
models of protrusion-based intercellular signaling mecha-
nisms. Early studies [16,17] focused on deterministic con-
tinuum models of transporting molecules along with existing
signaling protrusion networks. Later studies [14,15,18] fo-
cused on stochastic search-and-capture models that describe
the random search process of signaling protrusions generating
signal “bursts.” Here, our model integrates the two aspects that
(i) a source cell first stochastically searches a target cell and
establishes a linkage between the source and the target cell,
and then (ii) transports molecules along with the linkage, as
illustrated in Fig. 1(a). Our integrated model can quantify the
overall signaling time, a sum of stochastic search time and
transport time of molecules. In contrast to the previous model,
one significant difference in our model is that, instead of a
fixed number of nucleation sites for multiple protrusions at
a source cell, we assume that cells project protrusions by a
Poisson process. Thus, the FPT problem of the multiple pro-
trusions (searchers) now should consider a dependent process.
To solve this problem analytically, we approximate the search
process by introducing a rare-event approximation, which
allows taking analytic approaches from [14,15,18]. Further-
more, we also consider the total polymerization length until a
searcher hits the target (that corresponds to the total length of

the searcher’s trajectories), which is not a linear function of
FPT.

The structure of the paper is as follows. In Sec. II we in-
troduce a direct transport model that combines the directional
search model with resetting [15,18] and a particle transport
model along 1D protrusions [16,17], as illustrated in Fig. 1(a).
We introduce two types of idealized targets, a disk and annu-
lus in two dimensions, for analytic simplicity. We describe a
single protrusion search event and then develop a process with
multiple search events generated by a Poisson process with the
initiation rate κDT until contact with the target is formed. We
introduce a rare-event approximation of the stochastic contact
formation process for analytic simplicity and find relative er-
ror bounds. We then quantify the transport time for a required
number of diffusive particles along the one-dimensional es-
tablished protrusion. In Sec. III we introduce the “mortal”
diffusive model (or diffusive particles with degradation), as
depicted in Fig. 1(b), and we calculate the hitting probabil-
ity and the transport time similar to the previous section. In
Sec. IV we define utility functions in terms of performance
and energy cost (a cost-benefit ratio and a total energetic cost
as a sum of the variables). We first investigate the behavior
of the cost-benefit ratio for contact formation alone, and we
establish the existence of an optimal initiation rate. We then
include the process of particle transport along an established
protrusion, and we compare the optimal projection rate with
and without the particle transport. Finally, we compare the
cost-benefit ratio of DT versus mortal diffusion, and we quan-
tify the critical number of signaling molecules that determines
which mechanism has more utility. Most of our qualitative
results are extended in the case of the total energetic cost.

II. DIRECT TRANSPORT VIA PROTRUSIONS

A. Single protrusion event

Consider a source that extends a protrusion to find target
�, as illustrated in Fig. 2(a). The protrusion is projected by a
random angle � with speed v+. It grows to a random protru-
sion length, L, or hits the target. If the protrusion fails to hit
the target, then it retracts to the source with speed v−.

We first study the contact probability ρDT that the protru-
sion will hit the target. The protrusion makes a contact with
the target under the following conditions: (i) Projection angle
� requires to be subtended by the target with respect to the
source, and this set of angles is denoted by φ(�); (ii) the
protrusion length L must not be shorter than target distance
ζ (�) at angle �. To be well defined, we set ζ (�) = ∞ if
� /∈ φ(�). Introducing the random variable

Z = ζ (�),

which represents the target distance for a projection event, the
hitting probability takes the form of

ρDT = P [Z � L]. (2.1)

Another important quantity is the actual protrusion length
X . Since the protrusion stops growing when it hits the target,
the actual protrusion length is shorter than the protrusion
length L. More precisely, the actual protrusion length can be
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FIG. 2. Single protrusion event. (a) Hitting event. A source cell
projects a protrusion with random angle � ∈ [−σ, σ ] at constant
speed v+. If random protrusion length L is longer than the effective
target distance Z , then it hits target �. Otherwise, the protrusion
grows to L and then returns to the source cell at speed v−. (b) Ide-
alized targets. We consider the idealized shape of cells with a point
source and two different types of targets: A disk-shaped target with
radius r and minimum distance d , and a target surrounding the source
with distance d .

written by

X =
{
Z, Z � L
L, Z > L

,

and we denote the protrusion length conditioned on hitting
(missing) the target by Xhit (Xmiss). And so the conditional
mean protrusion length satisfies when it hits the target

λhit = E[Xhit] = E[Z|Z � L], (2.2)

and misses the target

λmiss = E[Xmiss] = E[L|Z > L]. (2.3)

The mean protrusion length regardless of target contact is

λ = E[X ] = ρDTλhit + (1 − ρDT)λmiss. (2.4)

Moreover, one can also determine the duration of a single
protrusion event in terms of the actual protrusion length. Since
the protrusion growth and shrinkage speed are assumed to be
constant, then the duration can be written by

T =
{
Z/v+, Z � L
L/v+ + L/v−, Z > L

and we denote the conditional duration when the protrusion
hits (misses) the target by Thit (Tmiss). This yields the condi-
tional mean duration of a single projection event

τhit = λhit

v+
, τmiss =

(
1

v+
+ 1

v−

)
λmiss. (2.5)

To compute the statistics of a single protrusion event, we
introduce assumptions about the target and the random vari-
ables, as depicted in Fig. 2(b). We consider two types of

FIG. 3. Multiple protrusion events. The source cell projects
multiple protrusions at time Pk for k = 1, 2, . . . with exponential
interprojection times Sk = Pk − Pk−1 at rate κDT until the first pas-
sage time to the target (FPT) TDT. Each protrusion grows by Xk for
k = 1, 2, . . . and the total polymerization length of protrusions until
the FPT is X = ∑

k:Pk�TDT
Xk .

idealized targets in two dimensions: (i) A disk with minimum
distance d and radius r and (ii) an annulus with minimum
distance d . The former corresponds to intercellular commu-
nication between two distinct cells. The latter corresponds
to multicellular communication from a single source cell to
multiple target cells. For example, a niche cell controls how
quickly neighboring germ cells divide [25]. We model two-
dimensional (2D) intercellular communication not only for
analytic simplicity but also for representing cell-cell inter-
actions during morphogenesis such as constructing the body
axis [26] and tracheal organs [4] in Drosophila. Though we
choose the 2D model, our analysis can be extended to the
three-dimensional (3D) model. We assume that protrusion
length L follows an exponential distribution with mean l , i.e.,
its distribution takes the form of

ρL(x) = 1

l
e−x/l ,

and protrusion angle � follows a uniform distribution with
base 2σ :

ρ�(x) = 1

2σ
I[−σ,σ ](x).

Here IA(x) is the indicator function equal to 1 if x ∈ A, other-
wise zero, and � = 0 is set to be the direction of the center of
the disk, in the case of the disk-type target. The computation
of the hitting probability and the mean actual protrusion length
for the two idealized targets are presented in the Supplemental
Material [27]. In three dimensions, our analysis can be ex-
tended by introducing the spherical coordinate.

B. Contact formation via multiple protrusion events

Next, we consider the search process via multiple protru-
sion events, separated by time intervals that are exponentially
distributed with rate κDT, as depicted in Fig. 3. More pre-
cisely, let Pk be the kth projection time and the corresponding
interprojection times are

Sk = Pk − Pk−1, S1 = P1,

for k = 1, 2, . . .. Here Sk are independent and identically dis-
tributed exponential times with rate κDT. The corresponding
protrusion event is determined by the pair of the random target
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distance and the protrusion length (Zk,Lk ). Let Hk denote the
target passage time of the kth projected protrusion. If it hits
the target, then we have

Hk = Pk + Thit,k = Pk + Zk
v+

.

Otherwise,Hk = ∞. We introduce the set of indices for which
the protrusion hits the target:

K = {k : Zk � Lk} = {k : Hk < ∞}
To determine the overall speed of the target searching pro-

cess, we are interested in the FPT of protrusions to the target,
which takes the form of

TDT = inf
k∈K

{Hk}.
We also compute the total polymerization length of protru-
sions until the FPT, which determines the energy cost for the
protrusion polymerization. We introduce the random variable

N = max{k : Pk � TDT},
which represents the total number of protrusions until the FPT.
Then the total polymerization length can be written by

X =
N∑
k=1

Xk .

We denote the mean first passage time (MFPT) and the mean
total polymerization length by

τ = E[TDT], ξ = E[X ],

respectively.
Note that Hk is not necessarily an increasing sequence for

k ∈ K. In other words, even if one protrusion is projected ear-
lier than others that hit the target, it might nonetheless arrive at
the target later. Moreover,X depends on the nontrivial random
variable TDT. This makes the analysis quite involved, which
motivates us to find approximations of these random variables.

C. Rare-event approximation

We approximate the important random variables TDT and
X by the rare-event approximation. In general, Hk is not an
increasing sequence for k ∈ K, but it is very unlikely that
the protrusion projected later hits the target earlier than the
protrusion projected earlier, as depicted in Fig. 4(a). Thus,
we make the approximation that Hk is increasing. That is, the
rare-event approximation of the first passage time occurred at
the first protrusion heading to the target

T̃DT = HK0 , (2.6)

where K0 = minK. Under the assumption, the source cell
projects approximately K0 protrusions to generate the first
protrusions hitting the target. During that protrusion growing
to the target (Thit,K0 ), the source cell still generates the protru-
sions with rate κDT. Thus, the rare-event approximation of the
total number of protrusions can be written by

Ñ = K0 + N0(Thit,K0 ). (2.7)

Here N0(t ) is the number of protrusions over time t with
rate κDT. Therefore, the rare-event approximation of the total

FIG. 4. Rare-event approximation. (a) Protrusion departing later
might arrive earlier than protrusion departing earlier if Var[Xhit] �= 0,
and such events are very rare. We approximate the contact formation
process by ignoring the rare events and the approximation is exact if
Var[Xhit] = 0. (b) Contact formation process to target � is bounded
above by the rare-event approximation to target � and below by the
approximation to target �̂, which is the minimal “polar rectangle”
containing �.

polymerization length is

X̃ =
Ñ∑
k=1

Xk . (2.8)

Note that this approximation is exact when the actual
protrusion length for hitting the target has zero variance,
Var[Xhit] = 0, in which case the rare event we neglect has
zero probability. One example is that the source is surrounded
by the target at the same distance. In general, the rare-event
approximation overestimates the FPT and so does the total
polymerization length

TDT � T̃DT, X � X̃ , (2.9)

due to the way of approximation. The important advantage
of this rare-event approximation is that it provides analytical
tractability. In this section, we calculate the first moment of
the rare-event approximation of FPT and the total polymer-
ization length. Then we perform an error estimation of the
rare-event approximation.

We first calculate the rare-event approximation of the
MFPT by applying the total expectation theorem [18]. Con-
ditioning T̃DT on K0 = j gives

τ̃ j = E[T̃DT|K0 = j] = E

[
j∑

k=1

Sk + Thit, j

]

= j

κDT
+ τhit, (2.10)

according to which Thit, j is independent of j. Using the total
expectation theorem yields

τ̃ = E[E[T̃DT|K0]] =
∞∑
j=1

τ̃ jP [K0 = j]

=
∞∑
j=1

τ̃ jρDT(1 − ρDT)
j−1.
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Substituting Eq. (2.10) we finally have the rare-event approx-
imation of the MFPT:

τ̃ = 1

κDTρDT
+ τhit. (2.11)

This can be interpreted as the sum of the first projection time
of which protrusion hits the target (κ−1

DTρ−1
DT) and the protrusion

travel time to the target (τhit).
We calculate the rare-event approximation of the mean

total number of protrusions. N0(t ) is a Poisson point process
with rate κDT, that is, the number of events in any interval
of length t is a Poisson random variable with parameter (or
mean) κDTt :

P [N0(t ) = k] = (κDTt )k

k!
e−κDTt . (2.12)

This property implies that

n0(t ) = E[N0(t )] = κDTt . (2.13)

Therefore, we have

E[Ñ ] = E[K0] + κDTE[Thit,K0 ]

= 1

ρDT
+ κDTτhit = κDTτ̃ , (2.14)

which can be interpreted as the total number of protrusions
until the FPT.

We next calculate the rare-event approximation of the mean
total polymerization length. Equation (2.8) can be written by

X̃ =
K0∑
k=1

Xk +
K0+N0(Thit,K0 )∑

k=K0+1

Xk, (2.15)

where Xk = Xmiss,k if k < K0 and XK0 = Xhit,K0 . SinceK0 and
Xhit,K0 are independent we condition the expectation by setting
K0 = j and Xhit,K0 = x:

ξ̃ j (x) = E[X̃ |K0 = j,Xhit,K0 = x]

= ( j − 1)λmiss + x + E

[N0(x/v+ )∑
k=1

Xk

]
.

Using the independence of N0(x) and Xk for k > j, we have

E

[N0(x/v+ )∑
k=1

Xk

]
= E[N0(x/v+)]E[Xk]

= κDTxλ

v+
, (2.16)

by substituting Eq. (2.13). Thus, the unconditional expectation
satisfies

ξ̃ = E[E[X̃
∣∣K0, Xhit,K0 ]]

=
∞∑
j=1

ρDT(1 − ρDT)
j−1̃ξ j (λhit )

= (
ρ−1
DT − 1

)
λmiss + λhit + κDTτhitλ, (2.17)

which can be simplified as

ξ̃ = κDTτ̃ λ. (2.18)

FIG. 5. Comparison between the exact (solid curve) and the
rare-event approximation (dotted curve) of the mean first passage
time (MFPT) τ and the mean total polymerization length ξ with
various minimum distance d μm in case of the disk-shaped target
(left panel) and the annulus-shaped target (right panel). Parameters
are as follows: r = 5 μm, l = 10 μm, σ = π , v+ = 8.5 μm/min,
and v− = 3 μm/min.

This implies that the source cell projects protrusions κDTτ̃

times with average length λ to hit the target cell. Figure 5
shows that the rare approximation mean has good agreement
with the MFPT and the mean polymerization length estimated
by the Monte Carlo simulations. Moreover, direct contact can
be formed in a shorter time by generating more protrusions as
the projection rate increases. However, the asymptotic MFPT
never goes to zero; instead, it converges to

lim
κDT→∞ τ (κDT) = d

v+
, (2.19)

which is the traveling time along the minimum distance
(geodesic), as suggested in [28,29].

One natural question is how close the rare-event approx-
imation is to the exact process. We address this issue by
determining an error bound with a minimal polar rectangle
�̂ containing target �, as illustrated in Fig. 4(b). In particular,
we proceed with the error analysis for a target disk. Consider
a target disk with radius r and minimum distance d from the
source. Then the actual target distance of �̂ is shorter than �

for a given angle

ζ (�;�) � ζ (�; �̂) = d,

for angle � ∈ φ(�). For a minimal polar rectangle, it satisfies

φ(�) = φ(�̂).

In other words, the minimal polar rectangle has a shorter
distance in the set of subtended angles. This implies that the
hitting probability of a single protrusion event to �̂ is larger
than � and shorter than the conditional hitting time

ρDT(�) � ρDT(�̂), τhit (�) � τhit (�̂), (2.20)
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which also guarantees that

TDT(�̂) � T (�), (2.21)

for the same sequence of random pairs (�k,Lk ) for k =
1, 2, . . .. Since Thit (�̂) = d and Var[Thit (�̂)] = 0, we have

τ (�̂) = τ̃ (�̂). (2.22)

Together with Eqs. (2.9) and (2.21), we have the error bound
of the rare-event approximation

|̃τ (�) − τ (�)| � δ[̃τ ], (2.23)

where δ[ f ] = f (�) − f (�̂) and

δ[̃τ ] = δ
[
ρ−1
DT

]
κDT

+ δ[λhit]

v+
(2.24)

in accordance with Eq. (2.11). Moreover, the relative differ-
ence satisfies

δ[̃τ ]

τ̃ (�)
� δ[ρ−1

DT]

ρ−1
DT(�)

+ δ[λhit]

λhit (�)

� 1 − e−r/l + r

r + d
, (2.25)

in terms of the model parameters (see [27] for details). This
inequality implies that the relative error is smaller if the target
is smaller and farther from the source. That is, the rare-event
approximation is accurate if it is hard to hit the target in a
single protrusion. Similarly, one can derive the error bound
for the mean total polymerization length

|̃ξ (�) − ξ (�)| � δ[̃ξ ] = κDTλδ[̃τ ], (2.26)

according to Eq. (2.18). This has the same relative bound in
Eq. (2.25).

D. Particle transport along protrusion

Once a protrusion makes a contact with length Xhit, we
assume that the source begins to produce signaling molecules
with rate κ and the target cell absorbs the molecules, as
depicted in Fig. 6(a). We assume that the molecules dif-
fuse along the protrusion, though transport of proteins in
cellular protrusions can also occur by active transport [5,30].
By assuming diffusion along the protrusion we can directly
compare the efficiency of the same basic transport mode, with
the same diffusion constant, under different geometries. The
mechanism of direct transport allows molecules to diffuse
along a thin “pipeline” between cells (a 1D domain), whereas
diffusive particles are delivered through the space without
geometric restriction (a 2D domain).

We now determine the transport time ψDT for delivering a
required number of signaling molecules, V . More precisely,
let u(x, t ) denote the molecule concentration along the protru-
sion for 0 < x < Xhit , which evolves according to

∂u

∂t
= D

∂2u

∂x2
, (2.27)

where D is the diffusion coefficient along a protrusion. Here
we assume that the molecules are not degraded while they
move within the protrusion, because diffusion along the pro-
trusion is relatively stable compared to the outer environment.

FIG. 6. Molecule transport time of the direct transport model.
(a) Illustration of the particle transport time. Once establishing a
contact at time TDT with length Xhit , diffusive signaling molecules
are released at the source end with rate κ and absorbed at the target
end. It takes additional time �DT to transport the required amount
of particles V . (b) Plot of nondimensional particle transport time
�DT,0 = �DTD/X 2

hit as a function of nondimensional particle num-
ber V0 = VD/(κX 2

hit ), together with the asymptotic approximation
�DT,0 = �DTD/X 2

hit .

Thus, we can consider the protrusion as a “secure pipeline”
along which signaling molecules diffuse. This equation is
supplemented by the boundary conditions

−D
∂u(0, t )

∂x
= κ, u(Xhit, t ) = 0. (2.28)

Then the flux at position x takes the form

JDT(x, t ) = −D
∂u(x, t )

∂x
.

Note that the concentration u and the flux JDT have the unit
of inverse length and inverse time, respectively. The transport
time�DT(V ;Xhit ) for given protrusion length Xhit and required
number of particlesV satisfies the following integral equation:∫ �DT

0
JDT(Xhit, t

′)dt ′ = V, (2.29)

which yields the mean particle transport time depending on
the protrusion length

ψDT(V ) = E[�DT(V ;Xhit )].

Numerically computing the mean particle transport time
can be complex because Xhit is implicitly involved in the ex-
pression. We address this issue by introducing the nondimen-
sional variables x0 = x/Xhit , t0 = tD/X 2

hit , V0 = VD/(κX 2
hit ),

and JDT,0 = JDT/κ . The integral equation (2.29) can then be
written by

VDT(�DT,0) :=
∫ �DT,0

0
JDT,0(t

′
0)dt

′
0 = V0, (2.30)

where VDT(�DT,0) represents the nondimensional transported
molecules to the target over nondimensional time �DT,0. Tak-
ing the Laplace transformation

L[ f ](s) =
∫ ∞

0
f (t )e−st dt

of the nondimensional number of transported particles yields

L[VDT](s) = 1

s
L[JDT,0](s), (2.31)
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where

L[JDT,0](s) = 1

s cosh(
√
s)

, (2.32)

which does not depend on any model parameters. This also
gives the asymptotic flux

JSSDT,0 = lim
t0→∞ JDT,0(t0)

= lim
s→0

sL[J0](s) = 1. (2.33)

One can numerically evaluate VDT(t ) by taking the numer-
ical inverse transformation on L[VDT](s) [31], as shown in
Fig. 6(b). Since VDT(t0) is monotonically increasing, we de-
duce

�DT,0 = V−1
DT (V0),

which is equivalent to

�DT = X 2
hit

D
V−1
DT

(
DV

κX 2
hit

)
. (2.34)

Therefore, the mean transport time can be written by

ψDT(V ) = E

[
X 2
hit

D
V−1
DT

(
DV

κX 2
hit

)]
. (2.35)

When the number of particles V required to transport is
large, we can approximate the mean particle transport time by
using the fact that the flux converges to a constant. We write
the implicit equation as∫ �DT,0

0
JDT,0(t

′
0) − JSSDT,0dt

′
0 + JSSDT,0�DT,0 = V0, (2.36)

which can be approximated by∫ ∞

0
JDT,0(t

′
0) − JSSDT,0dt

′
0 + JSSDT,0�DT,0 = V0, (2.37)

when V0 � 1, that is, the required number of molecules is
sufficiently larger than the released molecules over the time
interval in which the diffusive particle travels the protrusion
(κX 2

hit/D 	 V ). Taking the Laplace transformation, the first
integral term reduces to∫ ∞

0
JDT,0(t

′
0) − JSSDT,0dt

′
0 = lim

s→0
L

[
J0 − JSSDT,0

]
(s)

= lim
s→0

1

s cosh(
√
s)

− 1

s

= −1

2
. (2.38)

Substituting into Eq. (2.37) gives

�DT,0 = V0 + 1
2 , (2.39)

from which it follows that

�DT = V

κ
+ X 2

hit

2D
. (2.40)

Therefore, the asymptotic approximation of the mean particle
transport time along the protrusion is

ψDT(V ) = V

κ
+ E

[
X 2
hit

]
2D

. (2.41)

TABLE I. Important parameters and variables for direct transport
mechanisms: single protrusion event (top), multiple protrusion events
(middle), and molecule transport along the established protrusion
(bottom).

Symbolsa Meaning Mean

ρDT Hitting probability
Xhit Protrusion length when hitting target λhit

X Unconditional protrusion length λ

Thit Protrusion time when hitting target τhit
κDT Protrusion projection rate
X Total polymerization length ξ

TDT First passage time to target τDT
κ Molecule synthesis rate
V Number of transporting molecules
�DT Molecule transport time along protrusion ψDT

aTilde over a variable means the rare-event approximation of the
variable.

Moreover, the integral term in Eq. (2.36) is nonpositive, and
so we have a lower bound

�DT � V

κ
. (2.42)

Numerical comparison in Fig. 6(b) confirms that this is an
approximation for large V .

Finally, important model parameters and variables for the
direct transport model are summarized in Table I, which ap-
pear in the next sections.

III. DIFFUSIVE PARTICLE TRANSPORT
UNDER DEGRADATION

We next consider the classical intercellular signaling mech-
anism of diffusion with degradation, which is referred to as
mortal diffusion [32,33]. The mortal molecules eventually
either hit the target or are degraded; we denote the portion of
hitting the target by ρdiff . Together with the hitting probability,
we again would like to determine the transport time ψdiff for
delivering the required number of signaling molecules V , in
terms of the model parameters. Furthermore, as we did in the
previous section, we will approximate the transport time in the
regime of large V .

We consider a source where signaling particles are released
at a constant rate, which then diffuse in two dimensions to find
target � ⊂ R2. To make a “fair” comparison, we assume that
the molecule production rate κ and the diffusivity D are the
same as the diffusion along with the (1D) protrusion in the
direct transport model. We also assume that molecules survive
for an exponential amount of time with rate g. In this section,
u(x, t ) again denotes the molecule concentration at position x
and time t , but in the two-dimensional domain. That is, the
concentration variable has the unit of inverse square length.
This concentration satisfies

∂u

∂t
= D∇2u − gu + κδ(x − xs), (3.1)

where xs is the location of the source (and δ denotes the
delta function in this section, not the difference of a function
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between the domain). This equation is supplemented by the
absorbing boundary condition

u(x ∈ ∂�, t ) = 0, (3.2)

where ∂� is the boundary of �. If R2\� is unbounded, it
requires an asymptotic boundary condition

lim
‖x‖→0

u(x, t ) = 0. (3.3)

Then the flux to the target, which is the unit of inverse time,
satisfies

Jdiff (t ) = −D
∫

∂�

∂u(x, t )

∂n
da,

where ∂/∂n represents the inward normal derivative to target
�. Since the flux converges to the steady state, the hitting
probability should satisfy

JSSdiff = κρdiff .

Similar to the diffusion along a protrusion, we can also de-
fine the transport time for delivering a required number of
molecules V by ∫ ψdiff

0
Jdiff (t

′)dt ′ = V. (3.4)

We determine the transport time by taking the Laplace
transformation. We first nondimensionalize using the vari-
ables x0 = x/d , t0 = tD/d2, V0 = VD/(κd2), and Jdiff,0 =
Jdiff/κ . The only difference from the previous section is that
the length is nondimensionalized by the minimum distance
d between the source and the target. Then the implicit equa-
tion for ψdiff becomes

Vdiff (ψdiff,0) :=
∫ ψdiff,0

0
Jdiff,0(t

′
0)dt

′
0 = V0, (3.5)

where Vdiff (t0) is again the nondimensional number of
transported particles to the target via diffusion over nondimen-
sional time t0. Another Laplace transformation yields

L[Vdiff ](s) = 1

s
L[Jdiff,0](s), (3.6)

which depends on the nondimensional target radius r0 = r/d
and degradation rate g0 = gd2/D. This allows finding the
asymptotic flux

JSSdiff,0 = lim
s→∞ sL[Jdiff,0](s)

= ρdiff ,

which is the same as the hitting probability of a single dif-
fusive particle. Another numerical inversion of the Laplace
transformation gives Vdiff (t ). Then the particle transport time
takes the form

ψdiff (V ) = d2

D
V−1
diff

(
DV

κd2

)
. (3.7)

We approximate the particle transport time for large V by∫ ∞

0
Jdiff,0(t

′
0) − JSSdiff,0dt

′
0 + JSSdiff,0ψdiff,0 = V0,

FIG. 7. Nondimensional molecule transport time of the diffusion
model ψdiff,0 to the target as a function of nondimensional particle
number V0 in case of the disk shape (left panel) and the annulus
shape (right panel) with various nondimensional radius r0. Exact
transport time (solid curve) is compared with the asymptotic approxi-
mation (dotted curve). Nondimensional degradation rate is chosen by
d0 = 1/2.

from which it follows that

ψdiff,0(V0) = V0
ρdiff

+ 1

2
�diff , (3.8)

where

�diff = 2
∫ ∞

0
1 − Jdiff,0(t ′0)

JSSdiff,0
dt ′0.

Therefore, we have

ψdiff = V

κρdiff
+ d2

2D
�diff . (3.9)

The exact formulation and detailed derivation can be found in
[27]. Our analysis can be extended to the corresponding 3D
model with the Laplace operator in the spherical coordinate.
Numerical simulation in Fig. 7 shows that the approxima-
tion agrees with the direct inversion for a large number of
molecules.

IV. UTILITY ANALYSIS

How do we quantify the “efficiency” of an intercellular
signaling transport mechanism? One important consideration
is the energy cost for transporting signaling molecules from
a source cell to a target cell. The cost arises from synthe-
sizing signaling molecules and polymerizing filaments for
cellular protrusions. If we consider only the energy aspect,
it would give an absurd prediction for optimal parameters.
For example, the energy cost for contact formation, which is
proportional to the total polymerization length in Eq. (2.18),
is minimized when the projection rate is zero—even though,
in reality, cells extend multiple protrusions to find the target
[3,4]. Another important consideration is the benefit accrued
by cells if they communicate quickly. Thus, another crucial
aspect of efficiency is the time required for transporting a
required amount of signaling particles.

Under competition between energy cost and communica-
tion speed, one natural measure of the signaling efficiency is

054411-8



OPTIMALITY OF INTERCELLULAR SIGNALING: DIRECT … PHYSICAL REVIEW E 106, 054411 (2022)

their ratio

γ = E

[ E
γ0T −1

]
,

where γ0 is a conversion factor from transport time to benefit.
In this formulation, we assume the benefit accrued by more
rapid signaling is linear in the rate of signaling transmis-
sion, although in some biological situations benefits of rapid
signaling may be nonlinear. The resulting cost-benefit ratio
is then

γ = γ −1
0 E[ET ]. (4.1)

Aside from this cost-benefit ratio, we might alternatively con-
sider a utility function given by the total energetic cost of a
successful signal

η = E[E] + η0E[T ], (4.2)

where the second term penalizes a long signaling process due
to the energetic cost of maintaining cell homeostasis during
the signaling search process (the factor η0 denotes a con-
version between time and energetic cost of homeostasis). In
this section, we determine and compare the cost-benefit ratio
of the transport mechanisms. In particular, we show that the
direct transport is optimized at some protrusion projection
rate κ∗

DT (the subscript of which will be modified depending
on the cost-benefit function). Then we extend the qualitative
results for the cost-benefit ratio as a measure of efficiency
based on total energetic cost, which allows determining
the critical condition balancing the efficiency of the two
mechanisms, especially the critical number of transporting
molecules Vc.

A. Efficient contact formation at optimal projection rate

First, we consider the contact formation process of the
direct transport model, temporarily neglecting molecule trans-
port following contact formation. Let �DT denote the energy
cost of protrusion polymerization per unit length. Then the
total energy cost for contact formation is proportional to the
total polymerization length

EDT = �DTX ,

assuming that the energy is not required for depolymerization.
Together with the contact formation time TDT, the cost-benefit
ratio of direct contact formation is then

γDT = E[EDTTDT] = γ −1
0,DTE[XTDT],

where γ −1
0,DT = γ −1

0 �DT. The rare-event approximation of γDT
takes the form

γ̃DT

γ −1
0,DT

= c−1

ρ2
DTκDT

+ c1λκDT + c0. (4.3)

The exact expression of coefficients and derivation can be
found in [27]. This approximation can be interpreted as fol-
lows: When the projection rate is slow (and the first term
dominates), the contact formation process can be more ef-
ficient with a faster projection rate by boosting the search
process; when the projection rate is fast (and the second term
dominates), it can be less efficient with a faster projection

FIG. 8. Cost-benefit ratio of contact formation by protrusions
with various parameters in case of the disk-shaped target (solid
curve) and the annulus-shaped target (dotted curve). There exist an
optimal projection rate and mean protrusion length (yellow circle).
Parameters are chosen as follows: d = 10 μm and the others are the
same as Fig. 5.

rate because redundant protrusions are made. Therefore, there
exists an optimal projection rate κ�

DT that neither is too slow
to find the target nor wastes too many protrusions. The cost-
benefit ratio as a function of κDT is depicted in the top-right
panel of Fig. 8. Note that the corresponding panel is a semilog-
arithmic plot and so the curve appears like an exponential
curve.

Figure 8 shows the cost-benefit ratio of the contact for-
mation, in response to variation in other parameters. γ̃DT is
monotonic with respect to σ and d (left panels). That is, as
the range of projection angle is tighter, the source cell can
hit the target cell in a shorter time with a smaller number of
protrusions. Likewise, the cost-benefit ratio decreases when
the target is closer. The bottom-right panel also confirms that
there is an optimal mean protrusion length (slightly longer
than the target distance) that minimizes the cost-benefit ratio.
Similar optimality (FPT versus protrusion length) has been
also observed in [14,15].

The cost-benefit ratio is nonmonotonic with respect to the
projection rate. The optimal projection rate can be found by
solving the critical condition for κDT, 0 = ∂γ̃DT/∂κDT. And
so the optimal protrusion rate satisfies

1

κ�
DTρDT

= τhit

χ0
, (4.4)

where χ0 = QE[Xhit]/
√
E[X 2

hit] and λQ2 = λ + (1 −
ρDT)λmiss. In order to interpret this condition, we find
the critical condition for the moment closure of the ratio,
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FIG. 9. Optimal protrusion rate κ�
DT with various parameters,

together with the statistics of the single protrusion event ρDT and
τhit . The optimal projection rate satisfies Eq. (4.4). Parameters are
the same as Fig. 8.

0 = ∂ (̃τDTλ̃DT)/∂κDT, which yields

1

κDTρDT
= τhit. (4.5)

Here κ−1
DTρ−1

DT represents the time to generate a protrusion
that hits the target, and τhit is the protrusion traveling time
to the target. These time intervals are balanced at the opti-
mal rate of protrusion. Equation (4.5) assumes no correlation
between the first passage time and the total polymerization
length. Thus, χ0 in Eq. (4.4) is a correction term due to the
correlation. Numerical simulations in Fig. 9 show the optimal
projection rate κ�

DT, together with the hitting probability ρDT

and the conditional hitting time τhit, as a function of various
parameters. We explain the behavior of κ∗

DT by ρDT and τhit,
which determine κ�

DT by Eq. (4.4). The optimal projection rate
monotonically decreases as the range of projection angle σ

is sharper. If the projection range is wider than the target,
the conditional hitting time is constant. However, the hitting
probability increases as the projection range is sharper. Thus,
Eq. (4.4) shows that κ∗

DT decreases as σ is sharper. By con-
trast, the optimal projection rate does not change much over
the target range σ ∈ φ(�), because the unconditional hitting
time (ρDTτhit) is nearly constant if the protrusions are always
projected towards the target. However, the optimal projection
rate has a nonmonotonic behavior with respect to the target
distance d . For a target that is farther from the source, the
source cell prefers a faster projection rate because the target
cell is harder to reach. The optimal projection rate is also fast
when the target is close, even though the hitting probability is
high, because the optimal rate balances the projection time for
a hitting event and the travel time to the target cell [Eq. (4.4)].
When the target is closer, the traveling time is shorter, which
requires a shorter projection time for the hitting event by a
faster projection rate.

B. Optimal projection rate with particle transport

Now we reconsider the cost-benefit ratio, including the
process of particle transport along the protrusion following
contact with a target. In addition to the contact formation time,
it now takes more time to transport the required number of
particles V along the protrusion:

T�,DT = TDT + �DT(V ;Xhit ).

Since there is no loss of particles by the protrusion-mediated
transport, the total energy cost is

E�,DT = EDT + �pV,

where �p is the energy price for synthesizing a single signal-
ing particle. Therefore, the mean cost-benefit ratio becomes

γ�,DT = γ −1
0 E[E�,DTT�,DT].

We calculate the rare-event approximation (see [27] for de-
tails) and subtract the approximation with and without particle
transport:

γ̃�,DT

γ −1
0,DT

− γ̃DT

γ −1
0,DT

= c�,−1�pV κ−1
DT + c�,1ψ

(1)
DT(V )κDT + c�,0,

(4.6)

where ψ
(k)
DT(V ) = E[Xk

hit�DT(V ;Xhit )] for k = 0, 1, . . .. In
contrast to Eq. (4.3), there are now additional terms on the
coefficients, which arise from the particle transport, including
the energy cost for molecule production (�pV ) and the parti-
cle transport time along the protrusion [ψ (1)

DT(V )].
Similar to the previous section, one can find the optimal

projection rate κ∗
�,DT by solving the critical condition 0 =

∂γ̃�,DT/∂κDT. That is, κ∗
�,DT optimizes the cost-benefit ratio

of the whole direct transport process, including contact forma-
tion by protrusions and particle transport along the protrusion
linkage. In contrast, κ∗

DT only optimizes the cost-benefit ratio
of the contact formation process. We compare those optimal
projection rates by calculating their ratio:(

κ�
�,DT

κ�
DT

)2

= c−1ρ
−2
DT + c�,−1�pV

c1λ + c�,1ψ
(1)
DT(V )

. (4.7)

This yields the following equivalent condition:

κ�
�,DT > κ�

DT ⇐⇒ εp

εDT
> χε(V ), (4.8)

where the energy rates satisfy

εp = κ�p, εDT = �DTλκ�
DT,

and the critical energy ratio is

χε(V ) = χ0κψ
(1)
DT(V )

λhitV
.

Here εp represents the energy rate for signaling molecule
production and Eq. (2.18) shows that εDT is the average en-
ergy rate for the contact formation without particle transport.
Therefore, one interpretation of Eq. (4.8) is that, for given
V , if the particle synthesis energy rate is sufficiently larger

054411-10



OPTIMALITY OF INTERCELLULAR SIGNALING: DIRECT … PHYSICAL REVIEW E 106, 054411 (2022)

FIG. 10. Comparison between the optimal projection rate with
and without the particle transport. Squared fraction of the optimal
projection rates (κ�

�,DT/κ
�
DT)

2 as a function of required number of
transporting particles V with various fraction of energy rate (left
panel) in Eq. (4.12). Critical number VDT in Eq. (4.13) as a function
of the fraction of the energy rates εp/εDTχ0 (right panel). Parame-
ters κ, �p, and �DT are chosen according to the value of εp/εDTχ0.
Other parameters are the same as Fig. 8.

than the average contact formation energy rate, cells prefer the
faster projection rate to be optimized. Otherwise, the slower
protrusion rate is more efficient.

We are also interested in the cost-benefit ratio, and optimal
projection rate, in the limit of a large number of transporting
particles, V . Using the fact that

V

κ
� �DT(V ;Xhit ) �

V

κ
+ X 2

hit

2D
, (4.9)

we have the limit

lim
V→∞

χε(V ) = χ0. (4.10)

Therefore, the asymptotic critical condition is

κ�
�,DT > κ�

DT ⇐⇒ εp

εDT
> χ0, (4.11)

in the limit of a large number of transporting particles. In
particular, we can extend the asymptotic condition to any
number of particles

εp

εDT
< χ0 �⇒ κ�

�,DT < κ�
DT (4.12)

by the following inequality derived from Eq. (2.42):

χε(V ) � χ0,

for anyV . In other words, the optimal projection rate with par-
ticle transport is always slower than the optimal rate without
particle transport, if the molecule synthesis cost is sufficiently
cheap compared to protrusion elongation cost, regardless of
V .

However, this strict ordering of optimal projection rates
with or without particle transport in Eq. (4.12) does not hold,
but depends on V when the energy for producing signaling
molecules is sufficiently large compared to the energy for
contact formation, as shown in Fig. 10. In other words, there
exists a number VDT such that

εp

εDT
> χ0 �⇒

{
κ�

�,DT < κ�
DT, V < VDT

κ�
�,DT > κ�

DT, V > VDT
. (4.13)

This statement can be shown by using a standard regular
perturbation argument. Expanding �DT(V ) = �DT,0V β + · · ·
and substituting into Eq. (2.29), we determine the leading
order β = 1/2. It follows that

χε(V ) ∼ V−1/2, (4.14)

for smallV . Therefore, for any energy cost ratio εp/εDT, there
exists small VDT > 0 such that χε(V ) > εp/εDT for all V <

VDT.
One interesting observation is that the ratio of optimal

projection rates with or without particle transport is non-
monotonic in V , as shown in Fig. 10. This arises from the
effective transport behavior of diffusion along with a 1D do-
main. At large V , the fluxes at both ends of the protrusion
converge to the maximum, and the transport behaves like an
advective process. Thus, to minimize the cost-benefit ratio,
the optimal rate of protrusion is faster when accounting for
the transport process, because the protrusion elongation cost
is relatively cheap. However, at small V , particles are trans-
ported more like diffusion, with a longer traveling time. This
particle transport time dominates the cost-benefit ratio so that
the protrusion elongation cost becomes relatively large, and
the optimal rate of protrusion is slower when accounting for
particle transport.

C. Signaling by direct transport versus diffusion

We can form expectations for when a cell would evolve
to use direct transport or, alternatively, mortal diffusion for
signaling, by inspecting the cost-benefit ratio in each case.
To do this we now analyze the cost-benefit ratio under mortal
diffusion. Due to the degradation of signaling molecules, the
source cell is required to release V/ρdiff particles to deliver V
to the target cell. Therefore, the total energy cost under mortal
diffusion is

E�,diff = �pV

ρdiff
,

which takes the following amount of time:

T�,diff = ψdiff (V ).

And so the cost-benefit ratio under the diffusion mechanism
takes the form of

γ�,diff

γ −1
0

= E�,diffT�,diff

= �pVψdiff (V )

ρdiff
. (4.15)

Finally, we can compare the cost-benefit ratio of two sig-
naling mechanisms. One important result is that the direct
transport outperforms diffusion for a sufficiently large number
of molecules V, as shown in Fig. 11(a). This observation can
be mathematically shown by the asymptotic behavior of the
cost-benefit ratio for largeV . At largeV , Eqs. (4.6) and (4.15)
indicate that the leading order behaviors of the ratios are

γ�,DT

γ −1
0

∼ �pV 2

κ
,

γ�,diff

γ −1
0

∼ �pV 2

κρ2
diff

. (4.16)

Since ρdiff < 1, then γ�,DT < γ�,diff for sufficiently large V .
That is, if the cell must deliver a large number of signaling
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FIG. 11. Critical amount of transporting molecules. (a) Critical
number Ṽ�,c (yellow dot) intersecting the cost-benefit ratio of the
direct transport model γ̃�,DT (red curve) and the diffusion model
γ�,diff (blue curve) for the disk-shaped target (left panel) and the
annulus-shaped target (right panel). Upper and lower bound for
Ṽ�,c (gray area) can be determined by the bounds for γ̃�,DT (red
area) and γ�,diff (blue area). If the required number of transporting
particles is larger than the critical number, then the direct transport
model is more efficient. Otherwise, the diffusion model is preferred.
(b) Plots of the critical number with various parameters. Parameters
are as follows: d = 1 μm, D = 1 μm/min2, κ = 1/min, g = 1/min,
�DT = 1ε/μm, �p = 1ε, where ε is the required number of ATP
for synthesizing a single signaling molecule. Others are the same as
Fig. 8.

molecules, the direct transport mechanism is cheaper than the
diffusion mechanism, because the contact formation energy
cost per transported particle is cheaper.

Furthermore, we show that there exists a critical number
of molecules Vc by showing the other end of the asymptotic

behavior of the cost-benefit ratio. At small V , the cost-benefit
ratios converge to

lim
V→0

γ�,DT(V ) = γDT, lim
V→0

γ�,diff (V ) = 0. (4.17)

This follows that γ�,DT > γ�,diff for sufficiently small V . In
this limit, due to the cost of contact formation, the diffusion
mechanism is always cheaper than direct transport. Together
with Eq. (4.16), this guarantees the existence of the critical
number of particles Vc that determines whether diffusion or
direct transport is preferable, namely,

γ�,DT(Vc) = γ�,diff (Vc). (4.18)

Numerical simulation in Fig. 11(a) confirms the existence of
the critical number of particles above which direct transport is
preferred and below which diffusion is preferred.

To study the behavior of the critical number in response to
various parameters, we use upper and lower bounds for the
rare-event approximation of Vc. We first define the rare-event
approximation of Vc by solving

γ� (Ṽc) := γ�,diff (Ṽc) − γ̃�,DT(Ṽc) = 0. (4.19)

We then determine bounds for Ṽc by using the analytic bounds
for the transport time in Secs. II D and III. Denote ψ (ψ) by
the upper (lower) bound for the transport time ψ and denote
γ (V, ψ ) by the cost-benefit ratio as a function of ψ . Then the
cost-benefit ratio is bounded by

γ (V, ψ ) � γ (V ) � γ (V, ψ ). (4.20)

Thus, the difference γ� is bounded by

γ
�
(V ) � γ� (V ) � γ � (V ) (4.21)

where γ
�
(V ) = γ�,diff (V, ψ

diff
) − γ�,DT(V, ψ

(0)
DT) and

γ � (V ) = γ�,diff (V, ψdiff ) − γ�,DT(V, ψ (0)
DT

). Therefore, the
critical number of transport particles is bounded by

V� � Ṽ�,c � V� (4.22)

where the bounds satisfy γ
�
(V� ) = 0 and γ � (V� ) = 0.

Numerical simulation in Fig. 11(b) shows the behavior of
the critical transport size as a function of various parameters
by plotting the upper and lower bounds. If the target is far
from the source cell, then the direct transport mechanism is
generally preferred, unless the required number of transport
molecules is very small (that is, Ṽ�,c is small), because the
protrusion search process is cheaper than diffusive particle
synthesis. If the projections are aimed at the target more
precisely, then again the direct contact model is typically
preferred (Ṽ�,c small) because the contact formation cost is
small. In the case of an annular target, the critical number is
independent of σ because the target distance is uniform for
any projection angle. At small degradation rates, the hitting
probability of diffusive particles is higher and so diffusion
is typically preferred (Ṽ�,c large). When the cost of particle
synthesis is cheap enough, diffusion is generally preferred
(Ṽ�,c large), especially so for a disk-shaped target because
it has a smaller hitting probability. And for large elongation
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costs, the diffusion model is typically preferred (Ṽ�,c large,
especially for a disk-shaped target).

One natural question is whether, for any set of parameters,
direct transport can always dominate diffusion, regardless of
the size of required transport molecules, V . More precisely,
we would like to find a bounded set of parameters such that

γ� (V ) � 0,

for all V . Here we introduce the rare-event approximation
for analytic simplicity. We choose α1 = �DT and α2 = v−1

+
as the parameters for the dominant condition, and then the
cost-benefit ratio takes the form

γ� (α1, α2,V ) = ϕ0(V ) − α1ϕ1(V ) − ϕ2(α2;V ), (4.23)

where

ϕ0(V ) = �pV

(
ψdiff (V )

ρdiff
− ψ

(0)
DT(V )

)
,

ϕ1(V ) = R�,DT(V ) − RDT, and ϕ2(α;V )/2 = αVar[X 2
hit]

λhitλ0/ρDT + ρ−2
DT(λ0Q2 + �pρDTV/�DT) × {α2E[X 2

hit] +
αψ

(1)
DT(V )}1/2. We want to find nonzero α1 and α2 such

that there is a lower bound γ� (V ) � γ�,0 > 0 for all V .
If ϕ0(V ) � 0 for some interval including V = 0, then
γ� (V ) < 0 over the interval. Thus, one cannot find any
nonzero parameters. In other words, the diffusion mechanism
dominates the direct transport mechanism over the interval.
Although ϕ0(V ) � 0 for all V , we still cannot find the set of
parameters because

lim
V→0

γ� (α1, α2,V ) = ϕ2(α2, 0) < 0, (4.24)

for nonzero α2. This result implies that, for finite protrusion
growth speed and the elongation cost, direct transport cannot
dominate the diffusion mechanism for all V .

D. Total energetic cost

As an alternative to the cost-benefit ratio measure of sig-
naling efficiency, we can also study the total energetic cost
[Eq. (4.2)] of direct transport and mortal diffusion. In general,
the total energetic cost has qualitatively similar behavior to
the cost-benefit ratio, such as an optimal projection rate and
the critical number discussed in the previous section. We show
that most of the qualitative properties of the cost-benefit ratio
also hold for total energetic cost.

There exists an optimal projection rate of the total energetic
cost. The total energetic cost of the contact form can be written
by

ηDT = �DTE[X ] + η0E[TDT], (4.25)

the rare-event approximation of which is

η̃DT = �DTξ̃ + η0τ̃DT. (4.26)

Substituting (2.11) and (2.18) into the equation yields

η̃DT = �DTλτhitκDT + η0

κDTρDT
+ η̃DT,0, (4.27)

where η̃DT,0 = �DTλ/ρDT + η0τhit . This is minimized at(
κ−1
DTρ−1

DT

)2 = �DTλ

η0ρDT
τhit, (4.28)

where the fraction on the right-hand side represents the
energetic cost of maintaining metabolism during contact for-
mation. That is, this optimal condition balances the time to
generate a protrusion that will hit the target (κ−1

DTρ−1
DT) and

the geometric mean of the traveling time (converted into the
energetic cost) for the protrusion to hit the target (τhit), which
is analogous to Eq. (4.4). Numerical simulation (shown in
Fig. S1 in [27]) shows that the total energetic function also has
an optimal projection rate and the same qualitative behavior
shown in Fig. 8.

We next consider the total energetic cost of the direct
transport model with particle transport. Setting E = E�,DT and
T = T�,DT gives

η�,DT = ηDT + �pV + η0ψ
(0)
DT(V ). (4.29)

Since the second and the third terms are independent of the
projection rate κDT, the optimal condition with particle trans-
port is the same as without particle transport:

0 = ∂η�,DT

∂κDT
= ∂ηDT

∂κDT
. (4.30)

This implies that the optimal projection rate of the total
energetic cost is independent of the number of transporting
particles, which is qualitatively different behavior from the
cost-benefit ratio in Eq. (4.13).

The total energetic cost shows the same asymptotic be-
havior as the cost-benefit ratio with respect to the number of
transporting particles. Similar to Eq. (4.29), one can define the
total energetic cost of the diffusion mechanism

η�,diff = �pV

ρdiff
+ η0ψdiff (V ). (4.31)

As V → 0, diffusion is more efficient than direct contact

lim
V→0

η�,DT = ηDT, lim
V→0

η�,diff = 0, (4.32)

and the opposite holds as V → ∞ because

η�,DT

V
∼ �p + η0

κ
,

η�,diff

V
∼ 1

ρdiff

(
�p + η0

κ

)
(4.33)

and ρdiff < 1. Therefore, there is a critical number satisfying
η�,DT(V ) = η�,diff (V ), which is analogous to Eqs. (4.32) and
(4.33), that determines whether diffusion or direct transport is
more efficient. The critical number for the total energetic cost
has qualitatively similar behavior to that of the cost-benefit
ratio analysis in Fig. 11 (see Fig. S2 in [27] for the numerical
simulation).

V. DISCUSSION

In this paper, we have compared two qualitatively dif-
ferent mechanisms of intercellular signaling: direct transport
and mortal diffusion. We first developed a protrusion-based
model of direct transport, in which a source cell projects a
series of protrusions in two dimensions until making contact
with the target cell. Once contact is established, signaling
molecules are then transported via diffusion along the one-
dimensional protrusion. We calculated the mean effective
protrusion length of a single protrusion, conditioned on either
hitting or missing the target, and then used this to develop a
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rare-event approximation for the mean first passage time and
mean total effective protrusion length in the case of multiple
protrusions. Finally, we calculated the transport time for a
required number of diffusive particles along an established
protrusion. By contrast, in the case of diffusive signaling,
we calculated the hitting probability and the transport time
of diffusive molecules with degradation in two dimensions.
We then introduced the cost-benefit ratio as a measure of the
efficiency of these two mechanisms, comparing their relative
efficiency across a range of parameters. We also compared
the mechanisms for a different measure of efficiency, the total
energetic cost, which shows qualitatively similar behavior to
the cost-benefit ratio.

Two specific conditions that optimize and favor direct
transport emerge from our analysis. First, cellular protrusions
that are accurately directed toward the target cell (σ 	 π ) and
the length of which is similar to the target distance (l ≈ d)
minimize the cost-benefit ratio (as shown in Fig. 8 and in
Fig. S1 in [27]). Indeed, theoretical analysis suggests that
cells can gather accurate information about the location of
a target cell by optimizing the distribution of receptors on
the cell surface [34]. Therefore, in the case of bidirectional
communications, we hypothesize that the DT mechanism may
be efficiently utilized for responder cells. Empirical examples
of this phenomenon are known to occur, as cells generate
additional cytonemes by feedback signals following contact
formation during fibroblast growth factor morphogen gradi-
ent formation in Drosophila [35]. Second, the projection rate
that optimizes contact formation, neglecting particle transport,
balances the time required to initiate a successful protrusion
with the time required for that protrusion to hit the target cell
[Eq. (4.4)].

Interestingly, the optimal projection rates with and without
particle transport have a nontrivial relationship. For a large
number of transport particles, the condition that the optimal
projection rate with particle transport is faster than one with-
out transport may have a trivial dependence on the energy
cost of contact formation versus particle synthesis (εp/εDT),
as seen in Eq. (4.12). However, in the case of a small number
of transport particles, the criteria have a nonlinear relationship
with the number of particles, as seen in Fig. 10 and Eq. (4.13).
This nontrivial dependence can be achieved through our math-
ematical analysis and simulation.

Our comparison of direct transport versus mortal diffusion
highlights a critical number of required signaling molecules,
Vc, that determines which of the two mechanisms is more ef-
ficient, for any given set of model parameters. In other words,
which mechanism is more efficient will depend on the total
number of required transport particles V , even when all other
conditions are the same. In particular, the direct transport
model tends to be preferred over diffusion when the target
cell is far from the source cell, across a very broad range of
required transport molecules (as seen in Fig. 11 and in Fig. S2
in [27]). This theoretical result may help to explain why cy-
tonemes and other signaling protrusions are often observed in
long-range intercellular signaling [36,37].

By contrast, when the source and target cells are in
close proximity, e.g, between niche cells and germ cells in
Drosophila testis [25], then direct transport is more efficient
only when the required number of transport molecules is very

large, under our model. And so this result provides a concrete
prediction that can be tested experimentally for short-range
signaling, if the amount of signaling molecules can be exper-
imentally manipulated. That being said, the primary value of
our model is not to produce precise quantitative predictions
for experimental validation, but rather to determine which
physical parameters are most important for governing whether
direct transport versus diffusion will be the preferred mode of
cell-cell signaling.

A comparison between signaling by direct transport versus
diffusion requires that we choose a measure of efficiency.
Most of our qualitative conclusions hold for both of the two
efficiency measures we have studied: a benefit-to-cost ratio
of signaling speed to metabolic energy cost, as well as a
metric based purely on energetic costs. Both utility functions
predict an optimal projection rate and a critical number of
required signaling molecules. Moreover, the critical number
of signaling molecules has a similar dependence on variation
in other model parameters, such as the distance to the target,
information about the target location, the degradation rate of
signaling molecules, and synthesis and elongation costs.

Our analysis has several limitations. We have assumed
that signaling molecules degrade under the mortal two-
dimensional diffusion model, whereas we assume they are
protected against degradation when diffusing along the in-
terior of a cellular protrusion. This assumption, which may
be realistic in most settings, nonetheless penalizes the diffu-
sion mechanism compared to direct transport. This affects the
asymptotic behavior of the cost-benefit ratio at large V , that
is, Eq. (4.16) becomes

γ�,DT ∼ �pV 2

κρ2
diff,1

, γ�,diff ∼ �pV 2

κρ2
diff,2

, (5.1)

where ρdiff,k is the hitting probability of signaling molecules
in k-dimensional space to the target before degradation. For
a disk target, ρdiff,1 > ρdiff,2 (see [27] for proof) and thus our
qualitative results do not change if we allow the degradation of
particles within the protrusion. However, we have the opposite
relationship in the case of an annular target, which implies that
the direct transport model can be monotonically less efficient
than diffusion while incurring an additional cost for contact
formation.We have also assumed that signaling molecules and
protrusions are nucleated from a point source. Indeed, the nu-
cleation process can happen on the source cell surface, which
can be approximated by introducing multiple point sources on
the surface. This geometric effect can quantitatively affect our
analytic results, but is expected to give qualitatively similar
results when the overall rate of multiple sources is the same
as the rate of the single source.

There are many open questions and avenues for future
research based on the simple modeling framework we have
developed. One important area concerns the cost-benefit ratio
as a measure of signaling efficiency. Our analysis has assumed
that benefits are linear in the speed of signaling (that is, the
inverse of the time to deliver the required number of signaling
molecules). But there may be biological contexts in which
benefits are saturating, strictly sublinear, or even nonconcave
in the speed of signaling—and this distinction could quali-
tatively change the performance of direct transport relative
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to mortal diffusion as a mechanism of signaling. A related
set of questions pertains to a source cell that communicates
with multiple target cells. In this setting, which is common in
biological contexts, the benefits of successful signaling may
again be subadditive or superadditive across targets, depend-
ing upon whether reaching multiple targets is strictly required
for producing a successful biological function, or merely
additionally beneficial. Analysis of mean passage times and

measures of efficiency in the setting of multiple targets re-
mains an important and rich area for future research.
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