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Abstract. The bidomain model is the standard model for cardiac electrophysiology. In this
paper, we study the bidomain Allen--Cahn equation, in which the Laplacian of the classical Allen--
Cahn equation is replaced by the bidomain operator, a Fourier multiplier operator whose symbol
is given by a homogeneous rational function of degree two. The bidomain Allen--Cahn equation
supports planar front solutions much like the classical case. In contrast to the classical case, however,
these fronts are not necessarily stable due to a lack of maximum principle; they can indeed become
unstable depending on the parameters of the system. In this paper, we prove nonlinear stability and
instability results for bidomain Allen--Cahn fronts on an infinite two-dimensional strip. We show
that previously established spectral stability/instability results in L2 imply stability/instability in
the space of bounded uniformly continuous functions by establishing suitable decay estimates of the
resolvent kernel of the linearized operator.

Key words. bidomain Allen--Cahn equation, traveling front solution, nonlinear stability,
bifurcation of traveling fronts
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1. Introduction. The bidomain model is the standard mathematical model to
describe propagation of electrical signal in cardiac tissue [31, 19, 10, 14]. Cardiac
tissue can be seen as consisting of an intracellular region connected via gap junctions
together with the extracellular space. In the bidomain model, these two compart-
ments are homogenized as inseparable continua [28, 29]. As a result, quantities in the
intracellular compartment and the extracellular compartment and on the cell mem-
brane are defined everywhere in space. Let ui and ue be intracellular and extracellular
voltages of the cell membrane, respectively. In general, the bidomain model is given
of the form

Cm
\partial u

\partial t
 - f(u, s) = div (Ai\nabla ui) = - div (Ae\nabla ue), where u= ui  - ue,

\partial s

\partial t
= g(u, s),

where the constant Cm > 0 is the membrane capacitance, and Ai, Ae are the conduc-
tivity tensors, symmetric positive definite matrices that may be functions of position.
The function u = ui  - ue represents the membrane potential, and s \in Rn(n \geq 1)
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1546 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

represent the gating variables, which describe the opening and closing of ion channels
on the cell membrane. The first equation is a statement of conservation of electric
current applied to the intracellular and extracellular spaces. The leftmost side of the
first equation describes the transmembrane current, which consists of the capacitive
current term Cm\partial u/\partial t and the ion channel current term f(u, s). The ion channel
current f(u, s) depends on the gating variables s which in turn obey the differential
equation on the second line. The most important property of this model is that it
supports propagating pulse solutions, which correspond to the cardiac electrical signal
that coordinates the heart beat, the aberrations of which may cause cardiac arrhyth-
mias [19, 10]. Thus, it is of great scientific interest to understand the properties of
the traveling front and pulse solutions of the bidomain model.

There are many computational studies of the bidomain model [15, 6], but there
are relatively few analytical studies. The well-posedness of the bidomain model has
been studied in [32, 4, 11, 12]. A rigorous study of the homogenization limit can be
found in [29], and the paper [13] constructs large amplitude periodic solutions under
periodic forcing. We also mention a recent paper on stochastic forcing of the bidomain
model [16].

As an initial step toward a qualitative understanding of the full bidomain model
above, in [27] the authors studied the bidomain Allen--Cahn equation (see below) in
R2, in which the gating variable dynamics are ignored. Much like the classical Allen--
Cahn equation, the bidomain Allen--Cahn equation supports planar front solutions.
However, in sharp contrast to the classical Allen--Cahn model, it was found that the
planar fronts may become unstable as indicated by the study of the spectrum of the
linearized operator around the planar front solution. The main goal of the present
paper is to prove nonlinear stability and instability results for the planar front based
on the spectral findings in [27].

1.1. Model formulation and well-posedness. We now introduce the the
bidomain Allen--Cahn equation. Consider the following problem in R2 or an infinite
strip (to be discussed shortly):

div (Ai\nabla ui) + div (Ae\nabla ue) = 0,(1.1a)

\partial u

\partial t
 - f(u) = div (Ai\nabla ui), where u= ui  - ue.(1.1b)

In the above, Ai and Ae are spatially constant 2 \times 2 symmetric positive definite
matrices. In (1.1b), the term f(u) is an unbalanced bistable nonlinearity. To be more
precise, we assume the following:

(i) f is smooth.
(ii) f has three zeros u = 0, \alpha ,1 with 0 < \alpha < 1, such that f \prime (0) < 0, f \prime (\alpha ) > 0,

f \prime (1)< 0.
(iii) f(s)> 0 on ( - \infty ,0)\cup (a,1) and f(s)< 0 on (0, \alpha )\cup (1,\infty ).

(iv)
\int 1

0
f(s)ds > 0.

The last condition (iv) means that f is unbalanced. In the case of the standard
semilinear diffusion equation ut = uxx + f(u) with such a nonlinearity f , it is well
known that the traveling front solution connecting 0 and 1 converges to 1 as t\rightarrow \infty .

By formally using the Fourier transform, the system (1.1a)--(1.1b) can be reduced
to a scalar equation for u= ui - ue, which we call the bidomain Allen--Cahn equation ,
of the form

(1.2) ut = - \Lambda u+ f(u),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1547

where \Lambda , which we call the bidomain operator , is a Fourier multiplier operator defined
on R2 as follows:

\Lambda u=\scrF  - 1Q\scrF u,

Q(k) =
Qi(k)Qe(k)

Qi(k) +Qe(k)
, Qi,e(k) = kTAi,ek,

(1.3)

where k = (k, l)T \in R2. The symbols \scrF and \scrF  - 1 denote the Fourier transform and
its inverse on R2; namely, by letting x= (x, y)T \in R2,

\^u(k, t) = (\scrF u)(k, t) = 1

2\pi 

\int 
R2

e - ik\cdot xu(x, t)dx,

u(x, t) = (\scrF  - 1\^u)(x, t) =
1

2\pi 

\int 
R2

eik\cdot x\^u(k, t)dk.

The Fourier multiplier symbol Q(k) is rational function in \bfitk that is positive and
homogeneous of degree two (Q(ak) = a2Q(k) for a > 0). In this sense, the bidomain
operator is similar to the (anisotropic) Laplacian, whose symbol is a positive second
degree polynomial in k.

As mentioned previously, our goal is to study the planar fronts of the bidomain
Allen--Cahn equation. We shall study the stability of planar fronts in an infinite
strip (see Figure 1). For this, it is necessary first to develop a solution theory on an
unbounded domain in contrast to previous studies in which solutions were constructed
on bounded domains [32, 4, 11, 12]. Here, we make use of the fact that, in our setting,
the fundamental solution to the linear bidomain equation can be written explicitly
using the Fourier transform. We now define the mild solution to the following initial
value problem for the bidomain Allen--Cahn equation:

(1.4) u(x,0) = u0(x), ut = - \Lambda u+ f(u) for t > 0.

It will be technically convenient for us to construct our solution in the whole of R2

rather than in the infinite strip. Our solution is constructed in the space of bounded
uniformly continuous functions on R2, which we denote by BUC(R2), endowed with
the topology of L\infty (R2):

\| u\| BUC(R2) = \| u\| L\infty (R2).

The space BUC(R2) is a closed subspace of L\infty (R2). The reason we prefer to work
in BUC(R2) is that the mild solution, to be defined below, will fail to be continuous
at t= 0 for initial data in L\infty (R2) (see the proof of Lemma 2.4 item (iii)). Define Gt

to be the fundamental solution of the linear equation ut = - \Lambda u:

(1.5) Gt(x) =
1

(2\pi )2

\int 
R2

eik\cdot xe - tQ(k)dk.

Definition 1.1 (mild solution to the bidomain Allen--Cahn equation). Consider
(1.4), where u0 \in BUC(R2). For T > 0, we define u(x, t) \in C1((0, T ];BUC(R2)) \cap 
C([0, T ];BUC(R2)) to be a mild solution of (1.4) if

u(x, t) = (Gt \ast u0)(t) +
\int t

0

Gt - s \ast f(u(\cdot , s))ds, x\in R2, t\in (0, T ],

where \ast denotes the convolution in R2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1548 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Fig. 1. Planar fronts on R2 and \Omega \theta ,d with the (\xi , \eta )-coordinate system, where the \xi -axis aligns
with the direction of propagation n= (cos\theta , sin\theta ).

In Lemma 2.6, we shall establish the existence and uniqueness of mild solutions. In
Lemma 2.8, we will see that mild solutions become immediately smooth in x\in R2 for
t > 0. The proofs of these results are very similar to the proofs of the corresponding
results for the semilinear heat equation in which \Lambda is replaced by the Laplacian. The
fundamental solution Gt shares analytical similarities with the heat kernel. In fact, if
there is a constant \beta > 0 such that Ai = \beta Ae, then

(1.6) Q(k) =
\beta 

1 + \beta 
Qe(k).

In this case,  - \Lambda = \beta (1+\beta ) - 1\nabla \cdot (Ai\nabla ), which implies that (1.2), after a suitable affine
transformation, reduces to the classical Allen--Cahn equation ut = \Delta u+ f(u). This
is known as the monodomain reduction. The important point is that the maximum
principle does not hold for the bidomain Allen--Cahn equation (1.2) aside from the
monodomain case when Ai = \beta Ae. That is, the fundamental solution (or kernel) Gt

is positive if and only if Ai = \beta Ae. This fact is proved in the Appendix A. Thus,
results based on the maximum principle for the classical Allen--Cahn equations may
not hold in the bidomain case. One such result is the stability of planar fronts, which
is the focus of this paper.

The mild solutions constructed in Lemma 2.6 satisfy (1.4) but with the opera-
tor \Lambda identified as the generator of the analytic semigroup defined by Gt acting on
BUC(R2). Indeed, it is not immediately clear whether the original definition of \Lambda 
as a Fourier multiplier operator makes sense even for sufficiently smooth functions in
BUC(R2), given that such functions do not decay as | x| \rightarrow \infty . The semigroup prop-
erties of Gt are established in Proposition 2.5. The definition of \Lambda here is abstract; in
Proposition 1.2, we prove that this solution is classical when considered on an infinite
strip.

1.2. Planar fronts on an intfinite strip. We now consider the planar front
solutions of the bidomain Allen--Cahn equation (1.2). We first make the following
observation. If a solution u(x, t) of (1.2) depends on the space variable of only one
direction, then its behavior is identical to that of the standard Allen--Cahn equation.
More precisely, if u is expressed in the form u(x, t) = v(n(\theta ) \cdot x, t) with some unit
vector n(\theta ) = (cos \theta , sin\theta )T and a function v(\widehat \xi , t) (\widehat \xi \in R, t \geq 0), then v satisfies the
following one-dimensional reaction diffusion equation:

(1.7)
\partial v

\partial t
=Q(n(\theta ))

\partial 2v

\partial \widehat \xi 2 + f(v).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1549

Thus, as long as we deal with solutions of (1.2) with such symmetry, their behavior
is the same as that of the standard Allen--Cahn equation.

It is well known (see [5, 9], for instance) that, under the assumptions on f(u)
stated previously, the standard Allen--Cahn equation \partial u

\partial t = \Delta u + f(u) on R2 has
planar front solutions of the form

u(x, t) =\Phi (n(\theta ) \cdot x - c\ast t), x= (x, y)T \in R2,

for each direction of propagation n(\theta )\in S1, where \Phi and c\ast satisfy

\Phi \prime \prime (\xi ) + c\ast \Phi 
\prime (\xi ) + f(\Phi (\xi )) = 0,(1.8)

\Phi ( - \infty ) = 1, \Phi (+\infty ) = 0, \Phi (0) = \alpha .(1.9)

Since f is a bistable nonlinearity, the speed c\ast is uniquely determined, and the profile
\Phi is also unique under the condition \Phi (0) = \alpha in (1.9).

Similarly, by substituting u(x, t) =U(n(\theta ) \cdot x - ct) into the bidomain Allen--Cahn
equation (1.2), we obtain

Q(n(\theta ))U \prime \prime (\xi ) + c U \prime (\xi ) + f(U(\xi )) = 0,(1.10)

U( - \infty ) = 1, U(+\infty ) = 0, U(0) = \alpha .(1.11)

Thus, we find that, for each n(\theta ) \in S1, (1.2) on R2 has the planar front solutions of
the form

(1.12) u(x, t) =U(n(\theta ) \cdot x - ct), x= (x, y)T \in R2,

where U and c are given by

(1.13) U(\xi ) =\Phi (\xi /K\theta ), c= c\ast K\theta , K\theta =
\sqrt{} 
Q(n(\theta )).

We note that any translate u(x, t) =U(n(\theta ) \cdot x - ct+ \xi 0), \xi 0 \in R is also a planar front
of the bidomain equations. We also note that the profile and the speed of the planar
fronts depend on the value of K\theta . Such anisotropy may play a key role in the stability
and instability of front solutions.

The objective of the present paper is to study the stability of the planar fronts
given by (1.12)--(1.13) in the bidomain Allen--Cahn equation (1.2) on an infinite strip
in R2 given by

\Omega \theta ,d =
\bigl\{ 
x\in R2 | 0\leq x \cdot ( - sin\theta , cos\theta )T \leq d

\bigr\} 
.

This domain represents an infinite strip of width d that stretches in the direction
n= (cos \theta , sin\theta )T; see Figure 1. We consider the initial value problem of the form

ut = - \Lambda u+ f(u), x\in \Omega \theta ,d, t > 0,(1.14a)

u(x,0) = u0(x), x\in \Omega \theta ,d,(1.14b)

under periodic boundary conditions. Here, by periodic boundary conditions, we mean
that a function w(x) defined on \Omega \theta ,d can be extended over R2 that satisfies

(1.15) w(x+ d( - sin\theta , cos\theta )T) =w(x), x\in R2.

It is clear that if a function u0(x) on R2 satisfies the periodicity condition (1.15), then
the solution u(x, t) of (1.2) on R2 with the initial value u0 satisfies (1.15) for all t\geq 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1550 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

so long as the solution is unique. This is because (1.2) is equivariant with respect to
spatial translation (1.15). This means that the well-posedness and regularity of the
solution for the problem (1.14) follow immediately from those for the problem on R2.

The main reason we consider the problem in an infinite strip rather than in R2 is
that this will greatly facilitate the study of planar front stability, as we will discuss
shortly. An added benefit of working in the infinite strip is that we can claim that mild
solutions, defined in Definition 1.1, are classical in the sense to be specified below.
Let BUC(\Omega \theta ,d) be the set of functions in BUC(R2) which are periodic in the sense
of (1.15).

Proposition 1.2. Let u0 \in BUC(\Omega \theta ,d). The initial value problem (1.14) has
a unique mild solution as defined in Definition 1.1. Furthermore, this solution is
classical in the following sense. For t > 0, there are smooth bounded functions ui(x, t)
and ue(x, t) satisfying ui  - ue = u(x, t) such that (1.1a) and (1.1b) are satisfied. The
functions ui and ue are uniquely determined up to an additive constant.

The proof of this assertion uses a Fourier series decomposition of u with respect
to the direction parallel to the planar front (\eta -direction defined below; see Figure 1)
and thus depends on the fact that the solution is defined on an infinite strip and not
the whole of R2. For general mild solutions defined on R2, there are fundamental
difficulties associated with solving the second order elliptic equation (1.1a) satisfied
by ui and ue.

1.3. Spectral stability of planar fronts. Let us now turn to the problem of
the stability of planar fronts. We first introduce a coordinate system (\widehat \xi , \eta ) where the\widehat \xi -axis coincides with the direction of propagation n and the \eta --axis is parallel to the
planar front. In this coordinate system, (1.14) can be written as

\partial u

\partial t
= - \Lambda \theta u+ f(u), (\widehat \xi , \eta )\in R\times S1

d , t > 0,(1.16a)

u(\widehat \xi , \eta ,0) = u0(\widehat \xi , \eta ), (\widehat \xi , \eta )\in R\times S1
d ,(1.16b)

where \Lambda \theta denotes the transformed operator \Lambda \theta u=\scrF  - 1Q\theta \scrF u. Here, \scrF is the Fourier
transform in (\widehat \xi , \eta )\in R2 and the Fourier multiplier symbol Q\theta (k) is given by

Q\theta (k) =
Q\theta 

i (k)Q
\theta 
e(k)

Q\theta 
i (k) +Q\theta 

e(k)
, Q\theta 

i,e(k, l) = kTA\theta 
i,ek,(1.17)

A\theta 
i,e =R\theta Ai,eR - \theta , R\theta =

\biggl( 
cos\theta  - sin\theta 
sin\theta cos\theta 

\biggr) 
.(1.18)

More precisely, \Lambda \theta should be seen as the generator of the analytic semigroup Gt (with
Q replaced by Q\theta in (1.5)) acting on BUC(R2) (or BUC(\Omega \theta ,d)); see Lemma 2.6 and
the discussion between (1.6) and (1.7). The traveling front solutions in this coordinate
system are given by U(\widehat \xi  - ct+ \xi 0) for any constant \xi 0 \in R. In order to facilitate our
analysis of planar fronts, we will mostly make use of the moving coordinate system
(\xi , \eta ) = (\widehat \xi  - ct, \eta ). Then (1.16a) in this new coordinate system is given by

(1.19)
\partial u

\partial t
= - \Lambda \theta u+ c

\partial u

\partial \xi 
+ f(u).

In this moving coordinate system, the traveling front solutions U(\xi + \xi 0), \xi 0 \in R are
stationary solutions.
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1551

In order to study the stability of the planar fronts, consider the linearized equation
around U =U(\xi ):

(1.20)
\partial v

\partial t
=\scrL v, \scrL v= - \Lambda \theta v+ c

\partial v

\partial \xi 
+ f \prime (U)v.

In [27], the authors studied the spectrum of \scrL as a closed operator on L2(R2). First,
take the Fourier transform in \eta . We have, for each l \in R,

\partial vl
\partial t

=\scrL lvl, \scrL lvl = - \Lambda lvl + c
\partial vl
\partial \xi 

+ f \prime (U)vl,

\Lambda l =\scrF  - 1
\xi Q\theta (k, l)\scrF \xi , vl(\xi , t) =\scrF \eta v(\xi , \eta , t),

(1.21)

where \scrF \xi and \scrF \eta are the Fourier transform in \xi and \eta , respectively. The operator
\scrL l governs the growth of perturbations with wave number l in the \eta -direction. For
each l \in R, \scrL l is a closed operator on L2(R) with domain H2(R). Let \sigma L2(R2)(\scrL ) and
\sigma L2(R)(\scrL l) be the spectra of \scrL and \scrL l, respectively, as operators L2(R2) and L2(R).
By Proposition 2.2 in [27], we have

\sigma L2(R2)(\scrL ) =
\bigcup 
l\in R

\sigma L2(R)(\scrL l).

The study of the spectrum of \scrL thus reduces to the study of \scrL l. Note that, in the
case of the infinite strip, the relevant spectra will be those at l= 2\pi k/d, k \in Z.

It is important to note that the operator \scrL 0 governs the growth of the solutions
of (1.20) under perturbations that are independent of \eta . In other words, this operator
coincides with the linearization of the classical Allen--Cahn equation:

(1.22)
\partial v

\partial t
=\scrL 0v, \scrL 0v :=K2

\theta 

\partial 2v

\partial \xi 2
+ c

\partial v

\partial \xi 
+ f \prime (U)v,

where K\theta is the constant that appears in (1.13). The spectrum of \scrL 0 on L2(R) is thus
well known; namely, \sigma L2(R)(\scrL 0) contains 0 as a simple eigenvalue, which comes from
the translation equivariance of (1.13) in the direction \xi , and

(1.23) \sigma (\scrL 0)\setminus \{ 0\} \subset \{ z \in C | Rez \leq  - \delta \} 

for some constant \delta > 0 that depends only on f .
We now define the spectral stability of the planar front in L2(R2).

Definition 1.3 (spectral stability of planar fronts in L2(R2) [27]). Let U and c
be defined as in (1.12)--(1.13), and let \scrL l be the operator defined by (1.21). The planar
front U(\xi ) in (1.19) on R2 is spectrally stable if

\sigma L2(R)(\scrL l)\subset \{ z \in C | Rez < 0\} for all l \not = 0.

It is spectrally unstable if there exists a value of l such that

\sigma L2(R)(\scrL l)\cap \{ z \in C | Rez > 0\} \not = \emptyset .

Remark 1.4. We exclude the case l = 0 in the above definition since \scrL 0 does
not play a role in the stability properties of the planar front. This is because \scrL 0 is
concerned with perturbations that are independent of \eta , under which (1.2) reduces to
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1552 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

the standard Allen--Cahn equation (1.7); hence the planar front is always stable (with
asymptotic phase) under such perturbations. As mentioned above, the eigenvalue
0\in \sigma L2(R)(\scrL 0) comes from the translation equivariance of (1.2) in the direction \xi , and
its corresponding eigenfunction U \prime (\xi ) represents a phase shift of the traveling front.

We now summarize, without proof, the main results of [27] on the spectral stability
of the planar fronts.

Proposition 1.5 (see [2, Proposition 2.3]).
One has

\sigma L2(R)(\scrL l)\subset 
\bigl\{ 
z \in C | Rez \leq fmax  - mQl

2
\bigr\} 
,

where fmax and mQ are positive constants defined by

fmax = max
0\leq s\leq 1

f \prime (s), mQ =min
s\in R

Q\theta (s,1).

The above proposition shows that the wave is stable to short wave-length per-
turbations (| l| large). The value of fmax, however, is positive, and the above does
not rule out the possibility that the planar front may be unstable to perturbations of
longer wave-lengths. Planar fronts of the bidomain Allen--Cahn equation can indeed
become spectrally unstable. To state the instability results, we introduce the notion
of the Frank diagram.

Definition 1.6 (Frank diagram).
The Frank diagram F \subset R2 is the region enclosed by the Frank plot defined by

\partial F =
\bigl\{ 
(cos\theta , sin\theta )T/K\theta , 0\leq \theta \leq 2\pi 

\bigr\} 
,

which is equivalent to \partial F = \{ k= (k, l)T \in R2 | Q(k) = 1\} .
In Figure 2, we plot the Frank diagram for the following choices of Ai and Ae:

(1.24) Ai =

\biggl( 
1 + a 0
0 1 - a

\biggr) 
, Ae =

\biggl( 
1 - a 0
0 1 + a

\biggr) 
, | a| < 1.

The importance of the Frank diagram in the study of the bidomain model has been
recognized in many studies [1, 2, 3]. In particular, [10] argues that the loss of convexity
of the Frank diagram may play an important role in the electrophysiology of the heart
after myocardial infarction.

We point out that the notion of the Frank diagram plays a central role in aniso-
tropic growth models, which is important, for example, in crystal growth problems
[20]. In this context, the most closely related to the bidomain Allen--Cahn equation
may be the anisotropic Allen--Cahn equations studied, for example, in [7, 8, 23].

We now state the instability results relating the Frank diagram to the spectral
instability of fronts.

Proposition 1.7 (see [27, Theorem 4.2 and Corollary 4.3]). There is a \delta > 0
such that for | l| < \delta there is an eigenvalue \lambda l of \scrL l satisfying the following properties:

1. The eigenvalue \lambda l is simple and is the principal eigenvalue of \scrL l in the fol-
lowing sense: there is a positive constant \nu \delta independent of l such that

\sigma L2(R)(\scrL l)\setminus \{ \lambda l\} \subset \{ z \in C| Rez < - \nu \delta \} .
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a = 0.5

a = 0.3

a = 0.7

a = 0.5

a = 0.3

a = 0.7

Fig. 2. (Top) The Frank diagrams for three different parameter values when Ai and Ae are
as in (1.24). Here a = 0.7, 0.5, and 0.3. The value a = 0.5 is the threshold below which the Frank
diagram is convex. The directions for which the Frank diagram is locally concave correspond to the
directions where \kappa (\theta ) < 0. (Bottom) Plot of the curvature \kappa (\theta ) of the Frank diagrams given in the
top image.

2. The eigenvalue \lambda l is a C2 function of l and has the following expansion near
l= 0:

(1.25) \lambda l = i\alpha 1cl - \alpha 0l
2 +\scrO (l3),

where c is the speed of planar front (see (1.13)), and \alpha 1, \alpha 0 depend only on
Ai,Ae, and \theta .

3. Let \kappa (\theta ) be the curvature of the Frank plot \partial F at the point (cos\theta , sin\theta )/K\theta .
Then \alpha 0 in (1.25) can be written as

(1.26) \alpha 0 =K\theta (1 + \alpha 2
1)

3/2\kappa (\theta ).

In particular, the planar front propagating in the direction n(\theta ) = (cos \theta , sin\theta )
is spectrally unstable in the sense of Definition 1.3 if \kappa (\theta )< 0.

As can be seen from Figure 2, for different choices of a and b in (1.24), \kappa (\theta ) can
indeed be negative for a range of values of \theta . For instance, if b = 0 and | a| > 1/2 in
(1.24), \kappa (\theta )< 0 if \theta satisfies the following condition:

(1.27) | cos(2\theta )| < 1

| a| 

\sqrt{} 
1 - 2\surd 

3

\sqrt{} 
1 - a2.
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1554 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

In [27], a more detailed description, especially the explicit expressions for \alpha 0, \alpha 1 in
terms of a, b, \theta are given for the case (1.24).

We make some further remarks on the results of [27]:

(i) From Proposition 1.5, we find that, for every direction n, the planar front is
spectrally stable under short wave-length (i.e., | l| is sufficiently large) pertur-
bations.

(ii) From Proposition 1.7, we find that, for every direction n, spectral stability un-
der long wave-length (i.e., | l| is sufficiently small) perturbations is determined
by the convexity of the Frank diagram F in the direction n. In particular,
stability to long wave-length perturbations do not depend on the specific form
of the bistable nonlinearity f .

(iii) Spectral stability for intermediate wave-length perturbations (| l| is neither
sufficiently large or sufficiently small) is largely unknown. However, in certain
specific examples of f , the spectral stability can be studied in greater detail.
There are choices of f for which planar fronts are spectrally unstable in every
direction of propagation. See section 5 of [27] for details.

Note that, in (1.25), \lambda l \rightarrow 0 as | l| \rightarrow 0. This implies that even if we exclude the
translational mode \lambda 0 = 0, the spectral set \sigma L2(R2)(\scrL ) comes arbitrarily close to the
origin. This lack of spectral gap presents considerable difficulty in studying nonlinear
stability of the front. Working in the infinite strip \Omega \theta ,d, the values of l are restricted
to l = 2\pi k/d, k \in Z, and we have a spectral gap. Even in the classical Allen--Cahn
case, the stability of planar fronts on the whole of R2 is subtle and relies heavily
on the maximum principle. Certain ergodicity conditions must be placed on the
perturbations to ensure convergence to the planar front, and even when convergence
can be proved, the rate is not necessarily exponential because of the lack of a spectral
gap [17, 21, 25, 26, 33].

1.4. Nonlinear stability of planar fronts. We are now ready to state the
definitions of nonlinear stability and instability of planar fronts on the infinite strip
\Omega \theta ,d. Recall that U(\widehat \xi  - ct) (or U(\xi )) is the planar front solution to (1.16).

Definition 1.8 (nonlinear stability of planar fronts on \Omega \theta ,d). Let U and c be
defined as in (1.12)--(1.13). The planar front U is stable if, for any \varepsilon > 0, there
exists a constant \delta > 0 such that, for any solution u of (1.16) satisfying \| u0(\widehat \xi , \eta ) - 
U(\widehat \xi )\| BUC(R\times S1

d)
\leq \delta , it holds that

sup
(\widehat \xi ,\eta )\in R\times S1

d

\bigm| \bigm| \bigm| u(\widehat \xi , \eta , t) - U(\widehat \xi  - ct)
\bigm| \bigm| \bigm| \leq \varepsilon for all t > 0.

It is called stable with asymptotic phase if it is stable and if there exists a constant
\delta \ast > 0 such that, for any solution u of (1.16) satisfying \| u0(\widehat \xi , \eta ) - U(\widehat \xi )\| BUC(R\times S1

d)
\leq 

\delta \ast , it holds that

(1.28) lim
t\rightarrow \infty 

sup
(\widehat \xi ,\eta )\in R\times S1

d

\bigm| \bigm| \bigm| u(\widehat \xi , \eta , t) - U(\widehat \xi  - ct+ \xi 0)
\bigm| \bigm| \bigm| = 0

for some constant \xi 0 \in R. We say that it is exponentially stable with asymptotic
phase if the convergence (1.28) takes place exponentially:

sup
(\widehat \xi ,\eta )\in R\times S1

d

\bigm| \bigm| \bigm| u(\widehat \xi , \eta , t) - U(\widehat \xi  - ct+ \xi 0)
\bigm| \bigm| \bigm| \leq Ce - \nu t for all t > 0

for some constants \xi 0 \in R, C > 0, and \nu > 0.
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1555

Definition 1.9 (nonlinear instability of planar fronts on \Omega \theta ,d).
Let U and c be defined as in (1.12)--(1.13). The planar front U is unstable if it

is not stable, namely if there exists a constant \varepsilon \ast > 0 such that, for any \delta > 0, there
exists a solution of (1.16) satisfying \| u0(\widehat \xi , \eta ) - U(\widehat \xi )\| BUC(R\times S1

d)
\leq \delta and

sup
(\widehat \xi ,\eta )\in R\times S1

d

\bigm| \bigm| \bigm| u(\widehat \xi , \eta ,T ) - U(\widehat \xi  - ct)
\bigm| \bigm| \bigm| \geq \varepsilon \ast 

for some T > 0. We say that U is orbitally unstable if there exists a constant \varepsilon \ast >
0 such that, for any \delta > 0, there exists a solution of (1.16) satisfying \| u0(\widehat \xi , \eta )  - 
U(\widehat \xi )\| BUC(R\times S1

d)
\leq \delta and

inf
\xi 
\prime \in R

sup
(\xi ,\eta )\in R\times S1

d

\bigm| \bigm| \bigm| u(\widehat \xi , \eta ,T ) - U(\widehat \xi  - ct+ \xi \prime )
\bigm| \bigm| \bigm| \geq \varepsilon \ast 

for some T > 0.

Note that the above definitions of nonlinear stability and instability are in the
BUC(\Omega \theta ,d) topology and we thus allow perturbations that do not decay to 0 as \xi tends
to infinity. In contrast, all spectral results quoted above were in L2(R2). In section
3, we first prove that the linearized operator \scrL generates an analytic semigroup on
BUC (Proposition 3.1), which follows from our earlier result on semigroup generation
by the bidomain operator \Lambda (Proposition 2.5). To understand the decay and growth
properties of the linear semigroup generated by \scrL , it is thus sufficient to study the
spectrum of \scrL in BUC(\Omega \theta ,d). The rest of section 3 is devoted to relating the spectral
results in L2(R2) with the spectral properties of \scrL acting on BUC(R2) resolvent
(Proposition 3.2). This hinges on a careful study of the resolvent kernel of \scrL l and its
dependence on l. By proving that the resolvent kernel of \scrL l decays sufficiently fast as
| \xi | \rightarrow \infty , we show that any point in the resolvent set of \scrL l, considered as an operator
in L2(R), is also in the resolvent set of BUC(R). A further study on the dependence
of the size of the resolvent kernel with respect to l allows us to obtain Proposition
3.2, stating that the spectrum of \scrL as an operator on BUC(\Omega \theta , d) is contained in the
L2(R) spectra of \scrL l, l= 2\pi Z. In section 3.2, the foregoing results on the resolvent set
are combined with observations on the Fredholm properties of the operator \scrL l to prove
that the nonnegative real parts of the BUC and L2 spectra of \scrL are identical. For
details of the standard theory of analytic semigroup we applied, see [22], for instance.

In section 4, we prove our main results concerning the relationship between spec-
tral stability (instability) and nonlinear stability (instability). Statement (i) in The-
orem 1.10 is concerned with the case that the planar front is spectrally stable in
the direction of the strip, while statement (ii) is concerned with the case that it is
spectrally unstable in the direction of the strip.

Theorem 1.10 (spectral stability and nonlinear stability).
The following hold:

(i) nonlinear stability: if the planar front on R2 is spectrally stable in direction
n(\theta )\in S1 in the sense of Definition 1.3, then, for any d> 0, the planar front
on \Omega \theta ,d is exponentially stable with asymptotic phase in the sense of Definition
1.8.

(ii) nonlinear instability: if the planar front on R2 is spectrally unstable in
direction n\in S1 in the sense of Definition 1.3 and if d> 0 is sufficiently large,
then the planar front on \Omega \theta ,d is orbitally unstable in the sense of Definition
1.9.
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1556 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Our second result below states that the planar fronts on a sufficiently narrow strip
are stable regardless of the direction of the strip. We note that, only short wave-length
perturbations can exist in narrow strips due to the periodic boundary conditions.

Theorem 1.11 (nonlinear stability on narrow strips). If d > 0 is sufficiently
small, then for every n(\theta ) \in S1 the planar front on \Omega \theta ,d is exponentially stable with
asymptotic phase in the sense of Definition 1.8.

To prove Theorems 1.10 and 1.11, in section 4.1, we first decompose the solution
near a traveling front profile into a component that aligns with the traveling front and
the component that is transverse to the family of front solutions. We then estimate
the growth and decay of the component transverse to the front solutions by standard
arguments using the variation of constants formula (see, for example, [22, 18]). For
this, the decay and growth properties of the analytic semigroup generated by \scrL ,
implied by the spectral results in section 3, plays a crucial role.

Finally, in Appendix A, we prove that the bidomain operator does not satisfy the
maximum principle unless Ai and Ae are proportional to each other.

1.5. Bifurcation of planar fronts. In concluding this introduction, let us
briefly describe what happens to the front after it has been destabilized.

According to Proposition 1.7 mentioned above, the principal eigenvalue \lambda l of \scrL l

can become positive for sufficiently small | l| when the planar front is propagating in
a direction \theta for which the curvature \kappa (\theta ) of the Frank plot \partial F is negative. On the
other hand, when | l| is sufficiently large, the spectrum of \scrL l is in the left half of the
complex plane, as stated in Proposition 1.5. This indicates that, in such directions, a
planar front can be destabilized as the width d of the strip becomes larger. This and
other properties of the bidomain Allen--Cahn and FitzHugh--Nagumo systems were
explored computationally in a recent paper [24]. Simulations indicate that, when a
planar front is destabilized, the solution typically develops a front of saw-toothed
profile; see Figure 3. Such front solutions rotate periodically along the direction \eta 
(right-bottom of Figure 3), except for special symmetric cases (for example, \theta = \pi /4
and b= 0 in (1.24)), in which the saw-tooth fronts do not rotate (right-top of Figure 3).
A rigorous mathematical analysis of these and related phenomena will be a subject
of future study.

2. Existence and regularity of the solution. The aim of this section is to
show the existence and basic properties of the solution of the bidomain Allen--Cahn
equation (1.2) on R2 and \Omega \theta ,d. The bidomain operator \Lambda introduced in the previous
section is a self-adjoint operator on L2(R2). In this section, we shall first show that  - \Lambda 
generates an analytic semigroup on BUC(R2) in a certain appropriate sense, where the
explicit expression for the fundamental solutions of the linear bidomain equation plays
an important role. Then we shall discuss the existence and uniqueness of the initial
value problem of the bidomain Allen--Cahn equation on R2, where by the solution we
mean mild solution; see Lemma 2.6. Finally, we discuss the problem on the infinite
strip \Omega \theta ,d. Throughout this section, we let x = (x, y)T \in R2, x\prime = (x\prime , y\prime )T \in R2, and
k= (k, l)T \in R2.

2.1. Linear bidomain equation on R2R2R2. Let BUCk(R2) be the space of func-
tions on R2 all of whose partial derivatives of order k and below are bounded and
uniformly continuous with norm

(2.1) \| u\| BUCk(R2) =
\sum 

0\leq | \alpha | \leq k

\| \partial \alpha xu\| L\infty (R2),
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Fig. 3. An unstable front for the bidomain Allen--Cahn model. Here a= 0.9 and b= 0 in (1.24)
and the nonlinear bistable function f(u) =  - u(u  - 0.4)(u  - 1). Planar fronts propagating in the
directions of \theta = \pi /4 and \theta = 3\pi /16 are shown. Left images are well-developed destabilizing fronts
at a large time. Right images are the time sequences of the front location. When a planar front is
destabilized, the solution typically develops a front of saw-toothed profile. For numerical procedure,
see [27, 24].

where \alpha = (\alpha 1, \alpha 2), \alpha i = 0,1,2, . . . is a multi-index and | \alpha | = \alpha 1 + \alpha 2. It is eas-
ily checked that BUCk(R2) is a Banach space under the above norm. Note that
BUC0(R2) = BUC(R2). To study the analytic semigroup on BUCk(R2) generated
by  - \Lambda , we first consider basic properties of the solution to the Cauchy problem of the
linear bidomain equation on R2. Namely, we consider the problem of the form

ut = - \Lambda u, x\in R2, t > 0,(2.2a)

u(x,0) = u0(x), x\in R2,(2.2b)

where u0 \in BUCk(R2).
Suppose u0 is sufficiently smooth and decays sufficiently fast as | x| \rightarrow \infty . We may

then take the Fourier transform in x\in R2 in the above equations to obtain

\^ut = - Q(k)\^u, k\in R2, t > 0,(2.3a)

\^u(k,0) = \^u0(k), k\in R2.(2.3b)
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1558 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

The solution \^u(k, t) of (2.3) is given by \^u(k, t) = e - tQ(k)\^u0(k), and hence the solution
u(x, t) of (2.2) is expressed by using the inverse Fourier transform as

u(x, t) =
1

2\pi 

\Bigl( 
\scrF  - 1e - tQ(k)

\Bigr) 
\ast u0(x) = (Gt \ast u0)(x),

where Gt is given by

Gt(x) =
1

(2\pi )2

\int 
R2

eik\cdot xe - tQ(k)dk.

Since Q(k) is homogeneous of degree two, by setting K=
\surd 
tk, it is rewritten as

(2.4) Gt(x) =
1

(2\pi )2t

\int 
R2

exp

\biggl( 
iK \cdot x\surd 

t

\biggr) 
e - Q(K)dK=

1

t
G1

\biggl( 
x\surd 
t

\biggr) 
.

Observe that the expression Gt \ast u0 will make sense even when u0 \in BUCk(R2)
so long as Gt is in L1(R2). In what follows, we derive estimates for G1 and Gt and
establish some basic properties of the expression (Gt \ast u0)(x).

Before we state and prove our results, let us make some simple observations about
the multiplier Q(k). By the positive definiteness of the matrices Ai and Ae (see (1.3)),
it is easily seen that there are positive constants \lambda min and \lambda max satisfying:

(2.5) \lambda min| k| 2 \leq Q(k)\leq \lambda max| k| 2.

Moreover, for any multi-index \alpha , the function \partial \alpha kQ(k) is homogeneous of degree 2 - | \alpha | 
and satisfies

(2.6) | \partial \alpha kQ(k)| \leq C\alpha | k| 2 - | \alpha | 

for a positive constant C\alpha .

Lemma 2.1. For any multi-index \alpha , one has \partial \alpha xG1 \in L1(R2)\cap L\infty (R2).

Proof. \partial \alpha xG1 \in L\infty (R2) follows easily from (2.5). Indeed, we have

| \partial \alpha xG1(x)| \leq 
1

(2\pi )2

\int 
R2

| k| \alpha e - Q(k)dk \leq 1

(2\pi )2

\int 
R2

| k| \alpha e - \lambda \mathrm{m}\mathrm{i}\mathrm{n}| k| 2dk < \infty .

To prove \partial \alpha xG1 \in L1(R2), we estimate x3\partial \alpha xG1(x). By integrating by parts, we have\bigm| \bigm| x3\partial \alpha xG1(x)
\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| 1

(2\pi )2

\int 
R2

k\alpha 
\bigl( 
\partial 3ke

ik\cdot x\bigr) e - Q(k)dk

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| 1

(2\pi )2

\int 
R2

eik\cdot x\partial 3k

\Bigl( 
k\alpha e - Q(k)

\Bigr) 
dk

\bigm| \bigm| \bigm| \bigm| 
\leq 1

(2\pi )2

\int 
R2

\bigm| \bigm| \bigm| \partial 3k \Bigl( k\alpha e - Q(k)
\Bigr) \bigm| \bigm| \bigm| dk.

From (2.5) and (2.6), there exists a positive constant C such that\bigm| \bigm| \bigm| \partial 3k \Bigl( k\alpha e - Q(k)
\Bigr) \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \partial 3kk\alpha  - 3\partial 2kk

\alpha \partial kQ(k) - 3\partial kk
\alpha \partial 2kQ(k) + 3\partial kk

\alpha (\partial kQ(k))2

+ 3k\alpha \partial 2kQ(k)\partial kQ(k) - k\alpha \partial 3kQ(k) - k\alpha (\partial kQ(k))3
\bigm| \bigm| \bigm| e - Q(k)

\leq C
\Bigl( 
| k| 3+| \alpha | + | k|  - 1

\Bigr) 
e - \lambda \mathrm{m}\mathrm{i}\mathrm{n}| k| 2 .
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1559

This implies \partial 3k(k
\alpha e - Q(k)) \in L1(R2), and hence supx\in R\bftwo | x3\partial \alpha xG1(x)| <\infty holds. In

the same way, we can prove supx\in R\bftwo | y3\partial \alpha xG1(x)| <\infty . Consequently, we obtain

sup
x\in R2

\bigm| \bigm| (1 + | x| 3)\partial \alpha xG1(x)
\bigm| \bigm| <\infty .

This implies \partial \alpha xG1 \in L1(R2).

Lemma 2.2. There exists a positive constant C such that

(2.7) \| \partial tGt\| L1(R2) \leq Ct - 1, t > 0.

Proof. By direct computations, we have

\partial tGt(x) = - 1

(2\pi )2

\int 
R2

Q(k)eik\cdot xe - tQ(k)dk= - 1

t2
H

\biggl( 
x\surd 
t

\biggr) 
,

H(x) =
1

(2\pi )2

\int 
R2

Q(k)eik\cdot xe - Q(k)dk.

In what follows, we shall prove H \in L1(R2). It suffices to prove (2.7) since \| H\| L1(R2)

is equal to \| t - 1H(\cdot /
\surd 
t)\| L1(R2). For this purpose, we first estimate x3H(x). By

integrating by parts, we have\bigm| \bigm| x3H(x)
\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| 1

(2\pi )2

\int 
R2

Q(k)
\bigl( 
\partial 3ke

ik\cdot x\bigr) e - Q(k)dk

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| 1

(2\pi )2

\int 
R2

eik\cdot x\partial 3k

\Bigl( 
Q(k)e - Q(k)

\Bigr) 
dk

\bigm| \bigm| \bigm| \bigm| 
\leq 1

(2\pi )2

\int 
R2

\bigm| \bigm| \bigm| \partial 3k \Bigl( Q(k)e - Q(k)
\Bigr) \bigm| \bigm| \bigm| dk.

From (2.5) and (2.6), there exists a positive constant C such that\bigm| \bigm| \bigm| \partial 3k \Bigl( Q(k)e - Q(k)
\Bigr) \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \partial 3kQ(k) - 6\partial 2kQ(k)\partial kQ(k) + 3(\partial kQ(k))3  - Q(k)\partial 3kQ(k)

+ 3Q(k)\partial kQ(k)\partial 2kQ(k) - Q(k)(\partial kQ(k))3
\bigm| \bigm| \bigm| e - Q(k)

\leq C
\bigl( 
| k| 5 + | k|  - 1

\bigr) 
e - \lambda \mathrm{m}\mathrm{i}\mathrm{n}| k| 2 .

This implies \partial 3k(Q(k)e - Q(k)) \in L1(R2), and hence supx\in R\bftwo | x3H(x)| < \infty holds. In
the same way, we can prove supx\in R\bftwo | y3H(x)| <\infty . On the other hand, H \in L\infty (R2)
follows easily because (2.5) and (2.6) imply that

| H(x)| \leq 1

(2\pi )2

\int 
R2

C| k| 2e - \lambda \mathrm{m}\mathrm{i}\mathrm{n}| k| 2dk < \infty 

for some constant C. By combining these estimates, we have

sup
x\in R2

| (1 + | x| 3)H(x)| <\infty .

This implies H \in L1(R2).

Lemmas 2.1 and 2.2 lead to Lemma 2.3 below. It implies that the regularity of
Gt\ast u0 is basically the same as that of the solution of the linear heat equation ut =\Delta u
on R2.
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1560 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Lemma 2.3 (regularity of Gt \ast u0). Let u0 \in BUCk(R2). Then the solution
u(x, t) = (Gt \ast u0)(x) of the linear problem (2.2) satisfies the following:

(i) For any multi-index \alpha , one has

(2.8) \| \partial \alpha x (Gt \ast u0)\| BUCk(R2) \leq t - 
| \alpha | 
2 \| \partial \alpha xG1\| L1(R2)\| u0\| BUCk(R2), t > 0.

(ii) There exists a positive constant C such that

(2.9) \| \partial t(Gt \ast u0)\| BUCk(R2) \leq t - 1C\| u0\| BUCk(R2), t > 0.

Proof. We first note that if w \in BUC(R2) and g \in L1(R2), then g \ast w \in BUC(R2)
and

(2.10) \| g \ast w\| BUC(R2) \leq \| g\| L1(R2)\| w\| BUC(R2).

This is a consequence of Young's inequality and the fact that translation commutes
with convolution:

\| g \ast w\| L\infty (R2) \leq \| g\| L1(R2)\| w\| L\infty (R2),

\| \tau x\prime (g \ast w) - g \ast w\| L\infty (R2) = \| g \ast (\tau x\prime w - w)\| L\infty (R2) \leq \| g\| L1(R2)\| \tau x\prime w - w\| L\infty (R2),

(2.11)

where (\tau x\prime w)(x) =w(x - x\prime ).
Since \partial \alpha xG1 \in L1(R2) holds from Lemma 2.1, we have

\| \partial \alpha xGt\| L1(R2) = t - (1+
| \alpha | 
2 )
\bigm\| \bigm\| \bigm\| \bigm\| \partial \alpha xG1

\biggl( 
\cdot \surd 
t

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L1(R2)

= t - 
| \alpha | 
2 \| \partial \alpha xG1\| L1(R2)

for any t > 0. This gives (2.8) since, for any multi-index \alpha and | \beta | \leq k, we have
(2.12)
\| \partial \alpha +\beta 

x (Gt \ast u0)\| BUC(R2) = \| \partial \alpha xGt \ast \partial \beta xu0\| BUC(R2) \leq \| \partial \alpha xGt\| L1(R2)\| \partial \beta xu0\| BUC(R2),

where we used (2.10). Similarly, (2.9) follows immediately from Lemma 2.2.

Lemma 2.4. The family of linear operators \{ T (t)\} t>0 defined by T (t)u0 =Gt \ast u0
is an analytic semigroup on BUCk(R2).

Proof. T (t) satisfies the following:

(i) T (t)T (s) = T (t+ s) holds for any t, s > 0. This follows immediately from

Gt \ast Gs =
1

2\pi 

\Bigl( 
\scrF  - 1e - tQ(k)

\Bigr) 
\ast 1

2\pi 

\Bigl( 
\scrF  - 1e - sQ(k)

\Bigr) 
=

1

2\pi 
\scrF  - 1

\Bigl[ 
e - (t+s)Q(k)

\Bigr] 
=G(t+s).

(ii) It holds from Lemma 2.3 that there exists a positive constant C such that

\| T (t)u0\| BUCk(R2) \leq \| G1\| L1(R2)\| u0\| BUCk(R2),

\| tT \prime (t)u0\| BUCk(R2) \leq C\| u0\| BUCk(R2)

hold for any t > 0, where T \prime (t) is the derivative in the strong sense.
(iii) limt\rightarrow +0 T (t)u0 = u0 holds in the topology of BUCk(R2). This follows from

the explicit expression of Gt given in (2.4).
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1561

Thus, \{ T (t)\} t>0 is an analytic semigroup in BUCk(R2); see Proposition 2.1.9 of [22],
for instance.

For functions that decay sufficiently fast at infinity, the bidomain operator \Lambda may
be defined as a Fourier multiplier operator as in (1.3). However, this does not work
in BUCk(R2). Functions that do not decay at infinity (such as the constant function
u\equiv 1) have a Fourier transform that is not regular at the origin, making it difficult to
define \Lambda as a Fourier multiplier since the symbol Q(k) is discontinuous at the origin
(see (1.3)). To avoid this technical difficulty, we make use of the above lemma and
define \Lambda on BUCk(R2) as the generator of T (t) as follows. Let \scrD k(\Lambda ) \subset BUCk(R2)
be the domain of \Lambda :

 - \Lambda u= lim
t\rightarrow +0

T (t)u - u

t
in BUCk(R2),(2.13)

\scrD k(\Lambda ) =

\biggl\{ 
u\in BUCk(R2) | lim

t\rightarrow +0

T (t)u - u

t
exists in BUCk(R2)

\biggr\} 
.(2.13)

We may define the norm \scrD k(\Lambda ) as follows:

(2.15) \| u\| \scrD k(\Lambda ) = \| u\| BUCk(R2) + \| \Lambda u\| BUCk(R2).

We will not attempt to characterize \scrD k(\Lambda ). We will, however, prove the following
result. Let Ck,\gamma (R2), k = 0,1,2, . . ., 0 < \gamma < 1, be the space of functions whose kth
order partial derivatives are \gamma H\"older continuous. The Ck,\gamma norm is defined as

\| u\| Ck,\gamma (R2) = \| u\| BUCk(R2) +
\sum 
| \alpha | =k

\| \partial \alpha xu\| C\gamma (R2) ,

\| u\| C\gamma (R2) = sup
x,x

\prime \in R2

| u(x+ x\prime ) - u(x)| 
| x\prime | \gamma 

.

Proposition 2.5. Consider the operator \Lambda and its domain \scrD k(\Lambda ) defined in
(2.13) and (2.14). We have \scrD k(\Lambda ) \subset Ck+1,\gamma (R2), 0 < \gamma < 1. Furthermore, we have
the following estimate for u\in \scrD k(\Lambda ):

(2.16) \| u\| Ck+1,\gamma (R2) \leq Ck,\gamma \| u\| \scrD k(\Lambda ), 0<\gamma < 1,

for a constant Ck,\gamma that depends only on k and \gamma .

Proof. Using (2.8), we have

\| T (t)u\| BUCk(R2) \leq C0\| u\| BUCk(R2),

\| T (t)u\| BUCk+1(R2) \leq C1

\biggl( 
1\surd 
t
+ 1

\biggr) 
\| u\| BUCk(R2),

\| T (t)u\| BUCk+2(R2) \leq C2

\biggl( 
1

t
+ 1

\biggr) 
\| u\| BUCk(R2)

(2.17)

for some positive constants C0,C1, and C2. First, note that\bigm\| \bigm\| \bigm\| \bigm\| \int \infty 

0

exp( - t)T (t)udt
\bigm\| \bigm\| \bigm\| \bigm\| 
BUCk(R2)

\leq 
\int \infty 

0

exp( - t)\| T (t)u\| BUCk(R2)dt

\leq C0

\int \infty 

0

exp( - t)dt\| u\| BUCk(R2) =C0\| u\| BUCk(R2),

(2.18)
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1562 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

where we used the first inequality in (2.17) in the second inequality. This implies that
(1 +\Lambda ) has a bounded inverse and, for u\in BUCk(R2), we have

(2.19) (1 +\Lambda ) - 1u=

\int \infty 

0

exp( - t)T (t)udt.

Using the interpolation inequality on H\"older spaces, we have

\| T (t)u\| Ck+1,\gamma (R2) \leq C\| T (t)u\| 1 - \gamma 
BUCk+2(R2)

\| T (t)u\| \gamma 
BUCk+1(R2)

\leq C3

\biggl( 
1

t(1+\gamma )/2
+ 1

\biggr) 
\| u\| BUCk(R2),

(2.20)

where we used (2.17) in the second inequality. We have

\| (1 +\Lambda ) - 1u\| Ck+1,\gamma (R2) \leq 
\int \infty 

0

exp( - t)\| T (t)u\| Ck+1,\gamma (R2)dt

\leq C3

\biggl( \int \infty 

0

\biggl( 
1

t(1+\gamma )/2
+ 1

\biggr) 
exp( - t)dt

\biggr) 
\| u\| BUCk(R2) \leq C\gamma \| u\| BUCk(R2),

(2.21)

where we used the fact that (1+\gamma )/2< 1 to conclude that the integral in the last line
is finite. Any element v \in \scrD k(\Lambda ) can be written as v = (1 + \Lambda ) - 1u. Thus, the above
inequality can be written as

(2.22) \| v\| Ck+1,\gamma (R2) \leq C\gamma \| (1 +\Lambda )v\| BUCk(R2) for any v \in \scrD k(\Lambda ).

The triangle inequality applied to the last expression yields the desired inequality.

2.2. Bidomain Allen--Cahn equation on R2R2R2. In this subsection, by using
the fundamental solution Gt and the analytic semigroup constructed in the previous
subsection, we discuss the existence and basic properties of the solution u(x, t) of the
initial value problem of the bidomain Allen--Cahn equation on R2 of the form

ut = - \Lambda u+ f(u), x\in R2, t > 0,(2.23a)

u(x,0) = u0(x), x\in R2.(2.23b)

The first lemma implies the local existence of the solution, which is derived im-
mediately from Theorem 7.1.2 and Proposition 7.1.10 of [22]. Thus, we omit the
proof.

Lemma 2.6 (local existence of solutions of (2.23)). Assume u0 \in BUCk(R2).
Then there exists a constant T > 0 such that the problem (2.23) has a unique mild so-
lution u(x, t)\in C1((0, T ];BUCk(R2))\cap C([0, T ];BUCk(R2)) in the sense of Definition
1.1. Furthermore, u(x, t) satisfies

\partial u

\partial t
= - \Lambda u+ f(u), t > 0,

where \Lambda is defined in (2.13).

We also state the following result on the continuity with respect to initial data,
which is also standard (see [22]).
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1563

Lemma 2.7 (continuity with respect to initial data). For any u0 \in BUCk(R2),
there is a constant \delta > 0 such that the time T in Lemma 2.6 can be taken uniformly
for initial data \widetilde u0 satisfying \| \widetilde u0  - u0\| BUCk(R2) \leq \delta . Let \widetilde u be the mild solution cor-
responding to \widetilde u0. Then \| \widetilde u(t)\| BUCk(R2) \leq M0,0 \leq t \leq T , for some positive constant
M0 > 0 that does not depend on the choice of \widetilde u0.

The next lemma shows the regularity of the solution of (2.23) in x\in R2, which is
derived by estimating the fundamental solution Gt directly. Let BUC\infty (R2) consist
of functions that belong to all BUCk(R2), k \in N.

Lemma 2.8 (regularity of the solution of (2.23) in x). Let u(x, t) be the solution
of (2.23) defined on R2 \times [0, T ]. Then u(\cdot , t)\in BUC\infty (R2) for each t\in (0, T ].

Proof. Let any t \in (0, T ] be fixed, and let \alpha be any given multi-index satisfying
| \alpha | = 1. Differentiating the formula

(2.24) u(x, t) = (Gt \ast u0)(t) +
\int t

0

Gt - s \ast f(u(\cdot , s))ds

and then applying (2.8) in Lemma 2.3, we have

\| \partial \alpha xu(x, t)\| L\infty (R2) \leq t - 
1
2 \| \partial \alpha xG1\| L1(R2)\| u0\| L\infty (R2)

+

\int t

0

(t - s) - 
1
2 \| \partial \alpha xG1\| L1(R2)\| f(u(\cdot , s))\| L\infty (R2)ds

= t - 
1
2 \| \partial \alpha xG1\| L1(R2)\| u0\| L\infty (R2)

+ 2
\surd 
t\| \partial \alpha xG1\| L1(R2)\| f(u)\| L\infty (R2\times [0,t])

<\infty .

This implies u(\cdot , t)\in W 1,\infty (R2) for each t\in (0, T ].
Let any t \in (0, T ] be fixed, and let \alpha be any given multi-index satisfying | \alpha | = 2.

We choose multi-indexes \alpha \prime and \alpha \prime \prime that satisfy | \alpha \prime | = 1, | \alpha \prime \prime | = 1, and \partial \alpha x = \partial \alpha 
\prime 

x \partial \alpha 
\prime \prime 

x .
Setting u\ast (x) := u(x, t/2), we have

(2.25) u(x, t) = (Gt/2 \ast u\ast )(t) +
\int t

t/2

Gt - s \ast f(u(\cdot , s))ds.

Differentiating this formula and then applying (2.8) in Lemma 2.3, we have

\| \partial \alpha xu(x, t)\| L\infty (R2) \leq 
\biggl( 
t

2

\biggr)  - 1

\| \partial \alpha xG1\| L1(R2)\| u\ast \| L\infty (R2)

+

\int t

t/2

(t - s) - 
1
2 \| \partial \alpha 

\prime \prime 
x G1\| L1(R2)\| f \prime (u(\cdot , s))\partial \alpha 

\prime 

x u(\cdot , s)\| L\infty (R2)ds

=

\biggl( 
t

2

\biggr)  - 1

\| \partial \alpha xG1\| L1(R2)\| u\ast \| L\infty (R2)

+
\surd 
2t\| \partial \alpha 

\prime \prime 
x G1\| L1(R2)\| f \prime (u)\partial \alpha 

\prime 
x u\| L\infty (R2\times [t/2,t])

<\infty .

This implies u(\cdot , t) \in W 2,\infty (R2) for each t \in (0, T ]. From the bootstrap argument,
for any k = 3,4, . . . , we obtain u(\cdot , t) \in W k,\infty for each t \in (0, T ]. Consequently,
u(\cdot , t)\in BUC\infty (R2) holds for each t\in (0, T ].
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1564 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

2.3. Bidomain Allen-Cahn equation on the infinite strip \Omega \bfittheta ,\bfitd . In this
subsection, we consider well-posedness and the regularity of the solution of the bido-
main Allen-Cahn equation on the infinite strip \Omega \theta ,d as given in (1.14). There is a
one-to-one correspondence between any function on \Omega \theta ,d and its periodic extension
to all of R2 using (1.15). Recall that BUC(\Omega \theta ,d) consist of functions of BUC(R2)
which are periodic in the sense of (1.15). The space BUC(\Omega \theta ,d) may thus be viewed
as bounded uniformly continuous functions defined on the strip \Omega \theta ,d with periodic
boundary conditions.

Definition 2.9 (mild solution of the bidomain Allen--Cahn equation in \Omega \theta ,d).
Consider the problem (1.14) where u0(x) \in BUC(\Omega \theta ,d). The function u(x, t) \in 
C1((0, T ];BUC(\Omega \theta ,d)) \cap C([0, T ];BUC(\Omega \theta ,d)), T > 0, is a mild solution to (1.14) if
the periodic extension of u(x, t) via (1.15) is a mild solution in the sense of Definition
1.1 with initial data given by the periodic extension of u0(x).

The well-posedness and the regularity of the solution u(x, t) of (1.14) follows
immediately from those in the previous subsection. This establishes the first half of
Proposition 1.2.

We now show that this solution is classical. To proceed further, we first introduce
a coordinate system on \Omega \theta ,d. We let

(2.26) x=

\biggl( 
x
y

\biggr) 
=

\biggl( 
cos\theta 
sin\theta 

\biggr) 
\xi +

\biggl( 
 - sin\theta 
cos\theta 

\biggr) 
\eta .

In this coordinate system, (\xi , \eta )\in R\times S1d =\Omega \theta ,d. The definition of the coordinate \xi is

what we referred to as \widehat \xi in section 1. In this section only, we shall use \xi instead of \widehat \xi 
to avoid cumbersome notation.

We shall often expand a function v(\xi , \eta ) \in BUC(R\times S1d) in terms of its Fourier
series in the \eta -direction:

(2.27) v(\xi , \eta ) =

\infty \sum 
k= - \infty 

v2\pi k/d(\xi ) exp(2\pi ik\eta /d), vl(\xi ) =
1

d

\int d

0

v(\xi , \eta ) exp( - il\eta )d\eta .

We first prove the following result. Let BUCk(\Omega \theta ,d), k \in N, be the subset of
BUC(\Omega \theta ,d) with bounded continuous kth order derivatives in BUC(\Omega \theta ,d). A function
in BUC\infty (\Omega \theta ,d) belongs to all function BUCk(\Omega \theta .d), k \in N.

The operator \Lambda \theta , the matrices A\theta 
i ,A

\theta 
e, the symbol Q\theta , and other mathematical

objects all depend on \theta . In what follows, however, we will mostly be working with a
fixed value of \theta , and we will thus omit this dependence to avoid cluttered notation.

Proposition 2.10. Consider a function v \in BUC\infty (\Omega \theta ,d). Then there exist
vi, ve \in BUC\infty (\Omega \theta ,d) satisfying

(2.28) \nabla \cdot (Ai\nabla vi) +\nabla \cdot (Ae\nabla ve) = 0, vi  - ve = v.

The functions vi and ve are uniquely determined up to a constant.

It is possible to relax the assumption on the regularity of v with corresponding
changes in the regularity of vi and ve, as will be clear in the proof. We will only need
the smooth case, and we will thus not pursue this here.

Proof. Equation (2.28) may be rewritten as the following equation for vi:

(2.29) \nabla \cdot ((Ai +Ae)\nabla vi) =\nabla \cdot (Ae\nabla v).
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1565

Let qi(k) = Qi(k,1) and qe(k) = Qe(k,1). Note that qi and qe are both quadratic in
k. Let

(2.30)
qi(k)

qi(k) + qe(k)
= c1 +

c2(k)

qi(k) + qe(k)
,

where c1 is a constant and c2(k) is first order in k. Let

(2.31) K(x) =\scrF  - 1

\biggl( 
c2(k)

qi(k) + qe(k)

\biggr) 
,

where \scrF  - 1 is the one-dimensional inverse Fourier transform. Given that qi + qe is
a positive quadratic function of k, K(x) is a function that decays exponentially as
| x| \rightarrow \infty .

Expand the v(x) in terms of Fourier series as in (2.27). Given that v \in BUC\infty ,
vl(x) are smooth functions and satisfy the bound

(2.32) \| dmvl/dxm\| L\infty \leq Cn,m

ln
for any n,m\in N,

where the constant Cn,m depends on n,m but not on l. Define

(2.33) w=
\sum 

l\in (2\pi /d)Z

wl(x) exp(il\eta ), wl(x) = c1vl(x) +

\int 
R
| l| K(l(x - z))vl(z)dz.

It can be checked that vi =w is a smooth function that satisfies (2.29). Indeed, direct
computation shows that

(2.34) \nabla \cdot ((Ai +Ae)\nabla (wl exp(il\eta ))) =\nabla \cdot (Ae\nabla (vl exp(il\eta ))).

Given the decay estimate (2.32), the claim follows. To prove uniqueness, suppose \widetilde vi
is another solution. We see that vi  - \widetilde vi satisfies
(2.35) \nabla \cdot ((Ai +Ae)\nabla (vi  - \widetilde vi)) = 0.

Given that vi  - \widetilde vi must be bounded, we see that vi  - \widetilde vi is spatially constant by
Liouville's theorem.

We now consider the action of \Lambda on sufficiently smooth functions v(\xi , \eta ) defined
on \Omega \theta ,d. As was introduced in (1.21), using the expansion (2.27), formal computations
indicate that

(2.36)  - \Lambda v=
\sum 

l\in (2\pi /d)Z

(\Lambda lvl)(\xi ) exp(il\eta ), (\Lambda lvl)(\xi ) =\scrF  - 1
\xi Q(k, l)\scrF \xi vl(\xi ).

This expression, however, does not make sense even for sufficiently smooth functions
in BUC(\Omega \theta ,d) since vl(\xi ) does not, in general, belong to L2(R). This can be remedied
by rewriting \Lambda l in the following way, as was first done in [27]. Let

(2.37) qBD(k) =
Qi(k,1)Qe(k,1)

Qi(k,1) +Qe(k,1)
= p(k) +

cq(k)

Qi(k,1) +Qe(k,1)
= p(k) + q(k),

where cq(k) is linear in k and p(k) is a second degree polynomial in k obtained as a
quotient by performing polynomial division with remainder. Let

\Lambda lw(\xi ) = l2p( - i\partial \xi /l)w(\xi ) + (| l| 3\v q(l\xi ) \ast w)(\xi ), \v q(\xi ) = (\scrF  - 1q(k))(\xi ) for l \not = 0,

\Lambda 0w(\xi ) = cp
d2w

dx2
,

(2.38)
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1566 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

where \ast denotes the convolution on R and cp is the coefficient of k2 in the quadratic
polynomial p(k). It is easily seen that \v q(\xi ) decays exponentially as | \xi | \rightarrow \infty , and thus
the above convolution is well-defined for bounded functions w(\xi ). For sufficiently
smooth functions that decay sufficiently fast as | \xi | \rightarrow \infty , by construction, the above
definition of \Lambda l coincides with (2.36). We shall henceforth take (2.38) to be the def-
inition of \Lambda l. This has the advantage that it is well-defined for any bounded function
that is sufficiently smooth. We now prove the following result on the operator \Lambda .

Proposition 2.11. Suppose v \in BUC4(\Omega \theta ,d). Then

(2.39) (\Lambda v)(\xi , \eta ) =
\sum 

l\in (2\pi /d)Z

(\Lambda lvl)(\xi ) exp(il\eta ),

where \Lambda was defined in (2.13) and \Lambda l is given as in (2.36). Suppose v \in BUC\infty (\Omega \theta ,d),
and let vi be a solution to (2.28), whose existence is guaranteed by Proposition 2.10.
Then

(2.40)  - \Lambda v=\nabla \cdot (Ai\nabla vi) .

Proof. We first consider the operator  - \Lambda acting on a single term in the Fourier
expansion w(\xi ) exp(il\eta ):

 - \Lambda (w(\xi ) exp(il\eta )) = lim
t\rightarrow 0+

t - 1(T (t)(w(\xi ) exp(il\eta )) - w(\xi ) exp(il\eta ))

= lim
t\rightarrow 0+

t - 1

\biggl( \int 
R2

Gt(\xi 
\prime , \eta \prime )w(\xi  - \xi \prime ) exp(il(\eta  - \eta \prime ))d\xi \prime d\eta \prime  - w(\xi ) exp(il\eta )

\biggr) 
.

(2.41)

By the definition of Gt, we see that\int 
R2

Gt(\xi 
\prime , \eta \prime )w(\xi  - \xi \prime ) exp(il(\eta  - \eta \prime ))d\xi \prime d\eta \prime 

=

\int 
R
Gt,l(\xi 

\prime )w(\xi  - \xi \prime )d\xi \prime exp(il\eta ), Gt,l(x) =\scrF  - 1(exp( - tQ(k, l))).

(2.42)

We first consider the case l= 0. In this case,

(2.43) Gt,0(x) =\scrF  - 1(exp( - tQ(k,0))) =\scrF  - 1(exp( - cptk2)).

This is nothing other than a scaled heat kernel, and it is well known that if w \in 
BUC2(R), we have

(2.44) \Lambda w= - lim
t\rightarrow 0+

t - 1((Gt,0 \ast w)(\xi ) - w(\xi )) = - cp
d2w

d\xi 2
= (\Lambda 0w)(\xi ),

where the convergence above is in BUC(R2).
We next consider the case l \not = 0. Define the kernel

(2.45) Kl(\xi ) =
1

| l| 
KBD(l\xi ), KBD(\xi ) = (\scrF  - 1q - 1

BD(k))(\xi ).

We note that KBD(x) is exponentially decaying as | \xi | \rightarrow \infty . It is clear from the above
construction that Kl(x) is the fundamental solution to the operator \Lambda l. Indeed, for a
function w(\xi )\in BUC2(R), it can be shown that

(2.46) Kl \ast (\Lambda lw) =w.
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1567

Combining the above, we have

 - \Lambda (w(\xi ) exp(il\eta ))

= lim
t\rightarrow 0+

t - 1 (Gt,l \ast (Kl \ast (\Lambda lw)) - Kl \ast (\Lambda lw)) exp(il\eta )

= lim
t\rightarrow 0+

t - 1 ((Gt,l \ast Kl  - Kl) \ast (\Lambda lw)) exp(il\eta ).

(2.47)

Given the definition of Kl and of Gt,l, we see that

Gt,l \ast Kl  - Kl =\scrF  - 1

\biggl( 
exp( - tQ(k, l)) - 1

Q(k, l)

\biggr) 
= - \scrF  - 1

\biggl( \int t

0

exp( - sQ(k, l))ds

\biggr) 
= - 

\int t

0

Gs,l(\xi )ds,

(2.48)

where we used Fubini's theorem in the last equality. Note that\int 
R2

\int t

0

Gs(\xi  - \xi \prime , \eta  - \eta \prime )dsw(\xi  - \xi \prime ) exp(il(\eta  - \eta \prime ))d\xi \prime d\eta \prime 

=

\int t

0

\int 
R2

Gs(\xi  - \xi \prime , \eta  - \eta \prime )w(\xi  - \xi \prime ) exp(il(\eta  - \eta \prime ))d\xi \prime d\eta \prime 

=

\int 
R

\biggl( \int t

0

Gs,l(\xi 
\prime )ds

\biggr) 
w(\xi  - \xi \prime )d\xi \prime exp(il\eta ),

(2.49)

where we used Fubini's theorem in the above equalities. We thus see that

lim
t\rightarrow 0+

t - 1

\biggl( \biggl( \int t

0

Gs,lds

\biggr) 
\ast w
\biggr) 
(x) exp(il\eta )

= lim
t\rightarrow 0+

t - 1

\int t

0

\int 
R2

Gs(\xi  - \xi \prime , \eta  - \eta \prime )w(\xi  - \xi \prime ) exp(il(\eta  - \eta \prime ))d\xi \prime d\eta \prime =w(\xi ) exp(il\eta ),

(2.50)

where the above limit is valid in the BUC(R2) topology. Furthermore, we have\bigm| \bigm| \bigm| \bigm| t - 1

\biggl( \biggl( \int t

0

Gs,lds

\biggr) 
\ast w
\biggr) 
(x) exp(il\eta )

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| t - 1

\int t

0

\int 
R2

Gs(\xi  - \xi \prime , \eta  - \eta \prime )w(\xi  - \xi \prime ) exp(il(\eta  - \eta \prime ))d\xi \prime d\eta \prime 
\bigm| \bigm| \bigm| \bigm| 

\leq \| G1\| L1(R2)\| w\| L\infty (R).

(2.51)

Combining the above, we have

 - \Lambda (w(\xi ) exp(il\eta )) = - (\Lambda lw)(\xi ) exp(il\eta ),(2.52) \bigm\| \bigm\| t - 1(T (t)(w(\xi ) exp(il\eta )) - w(\xi ) exp(il\eta ))
\bigm\| \bigm\| 
L\infty \leq \| G1\| L1(R2)\| \Lambda lw\| L\infty (R).(2.53)

Finally, let us consider the general case (2.39). First, note that there is a constant
c\scrK that does not depend on l such that

(2.54) \| \Lambda lw\| L\infty (R) \leq c\scrK (\| w\| BUC2(R) + l2\| w\| BUC(R)).

For v \in BUC4(R2), we have the estimate

(2.55) \| vl\| BUC2(R) + l2\| vl\| BUC(R) \leq 
Cv

l2
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1568 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

for a constant Cv that does not depend on l. Let

(2.56) \scrA N = \{ l= 2\pi k/d, k \in Z, | k| \leq N\} , \scrB N = ((2\pi /d)Z)\setminus \scrA N .

For v \in BUC4(R2), we have, for positive integers N ,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
l\in \scrB N

(\Lambda lvl)(\xi ) exp(il\eta )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R2)

\leq 
\sum 
l\in \scrB N

c\scrK (\| vl\| BUC2(R) + l2\| vl\| BUC(R))\leq 
\sum 
l\in \scrB N

c\scrK Cvl
 - 2 \leq c\scrK Cv(2\pi )

2

d2N
.

(2.57)

Likewise, we have \bigm\| \bigm\| \bigm\| \bigm\| t - 1(T (t) - I)
\sum 
l\in \scrB N

vl(\xi ) exp(il\eta )

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R2)

\leq 
\sum 
l\in \scrB N

c\scrK \| G1\| L1(R2)(\| vl\| BUC2(R) + l2\| vl\| BUC(R))

\leq 
\sum 
l\in \scrB N

\| G1\| L1(R2)c\scrK Cvl
 - 2 \leq 

\| G\| L1(R2)c\scrK Cv(2\pi )
2

d2N
.

(2.58)

Fix \epsilon > 0, and let N > 1/\epsilon . Then

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\|  - \Lambda v - 
\sum 

l\in (2\pi /d)Z

(\Lambda lvl)(\xi ) exp(il\eta )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
BUC(R2)

\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| lim
t\rightarrow 0+

t - 1(T (t) - I)

\Biggl( \sum 
l\in \scrA N

vl(\xi ) exp(il\eta )

\Biggr) 
 - 
\sum 
l\in \scrA N

(\Lambda lvl(\xi )) exp(il\eta )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| lim
t\rightarrow 0+

t - 1(T (t) - I)
\sum 
\scrB N

vl(\xi ) exp(il\eta )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R2)

+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
l\in \scrB N

(\Lambda lvl)(\xi ) exp(il\eta )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R2)

\leq c\scrK Cv(2\pi )
2

d2
(1 + \| G\| L1(R2))\epsilon ,

(2.59)

where (2.52), (2.57), and (2.58) were used in the last inequality. Since \epsilon > 0 was
arbitrary, we have (2.39) for v \in BUC4(R2).

Finally, we must show that

(2.60)  - 
\sum 

l\in (2\pi /d)Z

(\Lambda lvl)(x) exp(il\eta ) =\nabla \cdot (Ai\nabla vi).

It can be directly checked that this is true for finite Fourier sums. The general case
follows given the decay estimate (2.32).

We may now prove the rest of Proposition 1.2.

Proof of Proposition 1.2. The existence and uniqueness for the mild solution for
problem (1.14) is an immediate consequence of Lemma 2.6. By Lemma 2.8, u(x, t) \in 
BUC\infty (\Omega \theta ,d) for t > 0. By Propositions 2.10 and 2.11, one may obtain functions ui
and ue belonging to BUC\infty (\Omega \theta ,d) that satisfy the system (1.1).
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1569

3. Spectrum of linearized operators. In this section, we study the properties
of the spectrum of the linearized operator \scrL for later discussion. Throughout this
section, we consider (1.20), namely the linearized equation around the front U :

\partial v

\partial t
=\scrL v, \scrL v= - \Lambda \theta v+ c

\partial v

\partial \xi 
+ f \prime (U)v,

where v = v(\xi , \eta , t) and (\xi , \eta ) \in R\times S1
d . Note here that the \xi coordinate moves with

the front, and we thus have a term in the expression above that is proportional to the
front speed c. Let us first prove that \scrL , like \Lambda , is a generator of an analytic semigroup
on BUCk(\Omega \theta ,d).

Proposition 3.1. The operator \scrL generates an analytic semigroup on
BUCk(\Omega \theta ,d) where the domain of \scrL , denoted by \scrD k(\scrL ), is the same as \scrD k(\Lambda ). Fur-
thermore, for u in the domain of \scrL , we have the estimate

(3.1) \| u\| Ck+1,\gamma (\Omega \theta ,d) \leq C\scrL 
\bigl( 
\| u\| BUCk(\Omega \theta ,d) + \| \scrL u\| BUCk(\Omega \theta ,d)

\bigr) 
,

where C\scrL is a positive constant.

Proof. For any u\in \scrD k(\Lambda ), by Proposition 2.5, we have, for any \epsilon > 0,\bigm\| \bigm\| \bigm\| \bigm\| \partial u\partial \xi 
\bigm\| \bigm\| \bigm\| \bigm\| 
BUCk(R2)

\leq C\| u\| \gamma /(1+\gamma )

BUCk(R2)
\| u\| 1/(1+\gamma )

Ck+1,\gamma (R2)

\leq C\gamma 

(1 + \gamma )\epsilon \gamma 
\| u\| BUCk(R2) +

C\epsilon 

1 + \gamma 
\| u\| Ck+1,\gamma (R2)

\leq C\gamma 

(1 + \gamma )\epsilon \gamma 
\| u\| BUCk(R2) +

CC\gamma \epsilon 

1 + \gamma 
\| u\| \scrD k(\Lambda ).

(3.2)

Thus, for u\in \scrD k(\Lambda ), we have

(3.3)

\bigm\| \bigm\| \bigm\| \bigm\| c\partial v\partial \xi + f \prime (U)v

\bigm\| \bigm\| \bigm\| \bigm\| 
BUCk(R2)

\leq a\| u\| BUCk(R2) + \delta \| \Lambda u\| BUCk(R2)

for a constant a> 0 and a constant \delta > 0 can be made arbitrarily small. This implies
the desired result.

To study the spectrum of \scrL , we expand v in a Fourier series in \eta as in (2.27).
Each Fourier coefficient vl is acted upon by the following operator \scrL l:

(3.4) \scrL lvl = - \Lambda lvl + c
\partial vl
\partial \xi 

+ f \prime (U)vl,

where \Lambda l was defined in (2.38). The results in section 3.1 are used mainly for proving
nonlinear stability of planar fronts stated in Theorems 1.10 and 1.11, and the results
in section 3.2 are used for proving nonlinear instability stated in Theorem 1.10.

3.1. Stability criteria. The aim of this subsection is to prove Proposition 3.2
below, which allows us to apply the results in [27] concerning the spectral properties of
\scrL l as an operator on L2(R) to prove our main theorems in the topology of BUC(R\times 
S1
d).

Proposition 3.2. For the operator \scrL and \scrL l defined in (1.20) and (3.4), one
has

(3.5) C\setminus \sigma BUC(R\times S1
d)
(\scrL )\supset 

\bigcap 
k\in Z

C\setminus \sigma BUC(R)(\scrL 2\pi k/d)\supset 
\bigcap 
k\in Z

C\setminus \sigma L2(R)(\scrL 2\pi k/d).
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1570 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

To prove Proposition 3.2, we decompose \scrL l defined in (3.4) as \scrL l = \scrL  - 
l +A - or

\scrL l =\scrL +
l +A+, where

\scrL  - 
l u= - \Lambda lu+ c

\partial u

\partial \xi 
+ f \prime (1)u, A - u= f \prime (U)u - f \prime (1)u,(3.6)

\scrL +
l u= - \Lambda lu+ c

\partial u

\partial \xi 
+ f \prime (0)u, A+u= f \prime (U)u - f \prime (0)u.(3.7)

In what follows, we provide some auxiliary lemmas. The first one is concerned with
the relation of the spectrum of \scrL l and \scrL \pm 

l as operators on L2(R).

Lemma 3.3 (spectrum of \scrL \pm 
l ). For each l= 2\pi k/d with k \in Z, one has

\sigma L2(R)(\scrL +
l )\subset \sigma L2(R)(\scrL l),(3.8)

\sigma L2(R)(\scrL  - 
l )\subset \sigma L2(R)(\scrL l).(3.9)

Proof. Let z \in \sigma L2(R)(\scrL +
l ). To show that z \in \sigma L2(R)(\scrL l), it is sufficient to show

the following:

(3.10) \forall \varepsilon > 0, \exists v \in L2(R) such that \| v\| L2(R) = 1, \| (z  - \scrL l)v\| \leq \varepsilon .

Note that z can be expressed as

z = - Q(k\ast , l) + ick\ast + f \prime (0)

for some k\ast \in R. Consider the function v\delta for \delta > 0:

v\delta (\xi ) = (\delta /\pi ) - 1/4 exp( - \delta \xi 2/2) exp(ik\ast \xi ).

It is easily seen that \| v\delta \| L2(R) = 1. Note that\bigm\| \bigm\| (z  - \scrL +
l )v\delta 

\bigm\| \bigm\| 
L2(R) = \| (Q(k, l) - Q(k\ast , l) + ic(k - k\ast ))(\scrF \xi v\delta )(k)\| L2(R) .

We may compute the Fourier transform of v\delta as

(\scrF \xi v\delta )(k) = (\pi \delta ) - 1/4 exp( - (k - k\ast )
2/(2\delta )).

The function (\scrF \xi v\delta )(k) is sharply peaked at k = k\ast as \delta \rightarrow 0, and it is thus readily
seen that

(3.11) lim
\delta \rightarrow 0

\bigm\| \bigm\| (z  - \scrL +
l )v\delta 

\bigm\| \bigm\| 
L2(R) = 0.

Let

v\delta ,L(\xi ) = v\delta (\xi  - L).

Since v\delta ,L is merely a translation of v\delta , we have

(3.12) \| v\delta \| L2(R) = \| v\delta ,L\| L2(R) = 1,
\bigm\| \bigm\| (z  - \scrL +

l )v\delta 
\bigm\| \bigm\| 
L2(R) =

\bigm\| \bigm\| (z  - \scrL +
l )v\delta ,L

\bigm\| \bigm\| 
L2(R) .

We also have, for each fixed \delta > 0,

(3.13)
\bigm\| \bigm\| A+v\delta ,L

\bigm\| \bigm\| 
L2(R) = \| (f \prime (U) - f \prime (0))v\delta (\xi  - L)\| L2(R) \rightarrow 0 as L\rightarrow \infty ,
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1571

where we used the fact that f \prime (U) - f \prime (0) decays exponentially to 0 as \xi \rightarrow \infty . Now,

\| (z  - \scrL l)v\delta ,L)\| L2(R) \leq 
\bigm\| \bigm\| (z  - \scrL +

l )v\delta 
\bigm\| \bigm\| 
L2(R) +

\bigm\| \bigm\| A+v\delta ,L
\bigm\| \bigm\| 
L2(R) ,

where we used the triangle inequality and (3.12). By (3.11) and (3.13), the right-hand
side of the above can be made arbitrarily small by taking \delta sufficiently small and L
sufficiently large. Together with (3.12), this establishes (3.10).

We may show that z \in \sigma L2(R)(\scrL  - 
l ) implies z \in \sigma L2(R)(\scrL l) in a similar fashion.

Lemma 3.4.

(3.14) C\setminus \sigma L2(R)(\scrL l)\subset C\setminus \sigma BUC(R)(\scrL l).

Proof. Step 1. Fix z \in C\setminus \sigma L2(R)(\scrL l) and v \in BUC(R) arbitrarily. We decompose
v into a sum of L2(R)-functions by a partition of unity. Choose a function \varphi 0 \in C\infty 

0 (R)
supported on [ - 1,1] such that

\infty \sum 
n= - \infty 

\varphi n(\xi )\equiv 1, \varphi n(\xi ) := \varphi 0(\xi  - n),

and decompose v as

v(\xi ) =

\infty \sum 
n= - \infty 

vn(\xi ), vn(\xi ) := \varphi n(\xi )v(\xi ).

Since z \in C\setminus \sigma L2(R)(\scrL l), we have (z - \scrL l)
 - 1 as a resolvent on L2(R). From Lemma 3.3,

we also have (z  - \scrL \pm 
l )

 - 1 as resolvents on L2(R). In what follows, we shall estimate
(z  - \scrL l)

 - 1vn, which we rewrite as
(3.15)

(z  - \scrL l)
 - 1
vn =

\left\{   
\bigl( 
z  - \scrL +

l

\bigr)  - 1
vn + (z  - \scrL l)

 - 1
A+
\bigl( 
z  - \scrL +

l

\bigr)  - 1
vn for n\geq 1,\bigl( 

z  - \scrL  - 
l

\bigr)  - 1
vn + (z  - \scrL l)

 - 1
A - \bigl( z  - \scrL  - 

l

\bigr)  - 1
vn for n< 0.

Step 2. We estimate wn := (z  - \scrL +
l )

 - 1vn with n\geq 1. We have

(3.16) wn = g \ast vn, g(\xi ) =
1

2\pi 

\int 
R

eik\xi 

q(k)
dk, q(k) = (z +Q(k, l) - ick - f \prime (0)) .

Here there exists a positive constant C1 such that

(3.17) | g(\xi )| \leq C1

1 + \xi 2
, \xi \in R.

To prove (3.17), we estimate q(k) in (3.16). Since z \in C\setminus \sigma L2(R)(\scrL +
l ) from Lemma 3.3,

we find that q(k) \not = 0 holds for any k \in R. Combining this fact with (2.5), it is easily
found that there exists a positive constant C2 that depends on z and l such that

(3.18) | q(k)| \geq C2(1 + k2), k \in R.

This implies that 1/| q| \in L1(R) and hence that g \in L\infty (R). In addition, integrating
by parts, we have

\bigm| \bigm| \xi 2g(\xi )\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| 12\pi 
\int 
R

\partial 2k(e
ik\xi )

q(k)
dk

\bigm| \bigm| \bigm| \bigm| \leq 1

2\pi 

\int 
R

\bigm| \bigm| \bigm| \bigm| \partial 2k\biggl( 1

q(k)

\biggr) \bigm| \bigm| \bigm| \bigm| dk.
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1572 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

From (3.18) and (2.6), there exists a positive constant C3 such that\bigm| \bigm| \bigm| \bigm| \partial 2k\biggl( 1

q(k)

\biggr) \bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm|  - \partial 2kQ(k, l)

q(k)2
+

2(\partial kQ(k, l) - ic)2

q(k)3

\bigm| \bigm| \bigm| \bigm| \leq C3

(1 + k2)2
.

This implies that \partial 2k(1/q) \in L1(R) and hence that sup\xi \in R | \xi 2g(\xi )| <\infty holds. Thus,
we obtain (3.17). Consequently, from (3.16), wn with n\geq 1 is estimated as

(3.19) | wn(\xi )| = | (g \ast vn)(\xi )| \leq 
\int n+1

n - 1

C1\| v\| L\infty (R)

1 + (\xi  - s)2
ds.

Thus, \widetilde u+ =
\sum \infty 

n=1(z  - \scrL +
l )

 - 1vn =
\sum \infty 

n=1wn is estimated as

\| \widetilde u+\| L\infty (R) \leq sup
\xi \in R

\int \infty 

0

2C1\| v\| L\infty (R)

1 + (\xi  - s)2
ds\leq \pi C1\| v\| L\infty (R).(3.20)

Given that v \in BUC(R), we see that \widetilde u+ \in BUC(R).
Step 3. We estimate (z - \scrL l)

 - 1A+(z - \scrL +
l )

 - 1vn with n\geq 1. By the definition of A+,
there exist positive constants Cf and \nu depending only on the nonlinearity f such
that \bigm| \bigm| \bigm| \bigm| \bigm| 

\infty \sum 
n=1

A+(z  - \scrL +
l )

 - 1vn

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \bigm| 
\infty \sum 

n=1

(f \prime (U) - f \prime (0))wn

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq Cf min

\bigl\{ 
1, e - \nu \xi 

\bigr\} \int \infty 

0

2C1\| v\| L\infty (R)

1 + (\xi  - s)2
ds

\leq Cf min
\bigl\{ 
1, e - \nu \xi 

\bigr\} 
\cdot 2C1\| v\| L\infty (R)

\Bigl( \pi 
2
+ arctan \xi 

\Bigr) 
for each \xi \in R. Thus, we find that there exists a positive constant C4 such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\infty \sum 
n=1

A+(z  - \scrL +
l )

 - 1vn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(R)

\leq C4\| v\| L\infty (R).

Since \scrL l is a closed operator on L2(R) with a domain H2(R), there exists a positive
constant C5 such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\infty \sum 
n=1

(z  - \scrL l)
 - 1A+(z  - \scrL +

l )
 - 1vn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
H2(R)

\leq C5\| v\| L\infty (R).

By the Sobolev inequality, there exists a positive constant C6 such that

(3.21)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty \sum 

n=1

(z  - \scrL l)
 - 1A+(z  - \scrL +

l )
 - 1vn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R)

\leq C6\| v\| L\infty (R)

Consider

(3.22) u+ = \widetilde u+ +
\infty \sum 

n=1

(z  - \scrL l)
 - 1A+(z  - \scrL +

l )
 - 1vn =

\infty \sum 
n=1

(z  - \scrL l)
 - 1vn,

where we used (3.15). Given (3.20) and (3.21), u+ \in BUC(R) and

(3.23) \| u+\| BUC(R) \leq C7\| v\| BUC(R).
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1573

In the same way, we may also conclude that

(3.24) u - =
0\sum 

n= - \infty 
(z  - \scrL l)

 - 1vn \in BUC(R), \| u - \| BUC(R) \leq C8\| v\| BUC(R).

Step 4. We define the function u by

(3.25) u= u+ + u - =
\infty \sum 

n= - \infty 
(z  - \scrL l)

 - 1vn.

By (3.23) and (3.24), the above function u is in BUC(R) and satisfies

(3.26) (z  - \scrL l)u= v and \| u\| BUC(R) \leq C\| v\| BUC(R).

It is also clear, by construction, that the above u is the unique element in BUC(R)
that satisfies the above. Therefore,

(3.27) u= (z  - \scrL l)
 - 1v,

\bigm\| \bigm\| (z  - \scrL l)
 - 1v

\bigm\| \bigm\| 
BUC(R) \leq C\| v\| BUC(R).

This completes the proof.

Lemma 3.5. Suppose

(3.28) z \in 
\bigcap 

l\in (2\pi /d)Z

\bigl( 
C\setminus \sigma BUC(R)(\scrL l)

\bigr) 
.

Then there is a constant C that does not depend on l such that

(3.29)
\bigm\| \bigm\| \bigm\| (z  - \scrL l)

 - 1
\bigm\| \bigm\| \bigm\| 
\scrL (L\infty (R))

\leq C

1 + l2
, l \in (2\pi /d)Z.

Proof. Step 1. In what follows, we let Q - 1 = Q - 1(\cdot , l) and Q - 1
i,e = Q - 1

i,e (\cdot , l). For

any u \in L\infty (R), we have \Lambda  - 1
l u = (\scrF  - 1

\xi Q - 1) \ast u. Then, since Q - 1 = Q - 1
i +Q - 1

e , we
have

(3.30) \Lambda  - 1
l u=

\Bigl( 
\scrF  - 1

\xi Q - 1
i

\Bigr) 
\ast u+

\Bigl( 
\scrF  - 1

\xi Q - 1
e

\Bigr) 
\ast u.

Here we compute \scrF  - 1
\xi Q - 1

i as

(\scrF  - 1
\xi Q - 1

i )(\xi , l) =
1

2\pi 

\int 
R
Q - 1

i (k, l) exp(ik\xi )dk

=
1

2\pi | l| 

\int 
R
Q - 1

i (k,1) exp(ikl\xi )dk=
1

| l| 
KQi

(l\xi ),

KQi
(\xi ) =

1

2\pi 

\int 
R
Q - 1

i (k,1) exp(ik\xi )dk.

The function Qi(k,1) is a positive quadratic polynomial in k, and thus its Fourier
transform KQi

decays exponentially as | \xi | \rightarrow \infty . In particular, the L1 norm of KQi

is finite: \bigm\| \bigm\| \bigm\| \scrF  - 1
\xi Q - 1

i

\bigm\| \bigm\| \bigm\| 
L1(R)

=
1

l2
\| KQi\| L1(R).
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1574 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Likewise, we have

(3.31)
\bigm\| \bigm\| \bigm\| \scrF  - 1

\xi Q - 1
e

\bigm\| \bigm\| \bigm\| 
L1(R)

=
1

l2
\| KQe

\| L1(R), KQe
(\xi ) =

1

2\pi 

\int 
R
Q - 1

e (k,1) exp(ik\xi )dk.

We thus have

(3.32) \| \Lambda  - 1
l u\| L\infty (R) \leq C1

l2
\| u\| L\infty (R), C1 = \| KQi\| L1(R) + \| KQe\| L1(R).

Step 2. Define \scrR := z  - \scrL l  - \Lambda l, namely

\scrR \Lambda  - 1
l u=

\biggl( 
z  - \partial 

\partial \xi 
 - f \prime (U)

\biggr) 
\Lambda  - 1
l u.

Note that \bigm\| \bigm\| \bigm\| \bigm\| \partial \partial \xi \scrF  - 1
\xi Q - 1

i,e

\bigm\| \bigm\| \bigm\| \bigm\| 
L1(R)

=
1

| l| 

\bigm\| \bigm\| \bigm\| \bigm\| \partial KQi,e

\partial \xi 

\bigm\| \bigm\| \bigm\| \bigm\| 
L1(R)

.

We thus have\bigm\| \bigm\| \bigm\| \bigm\| \partial \partial \xi \Lambda  - 1
l u

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R)

=

\bigm\| \bigm\| \bigm\| \bigm\| \partial \partial \xi \scrF  - 1
\xi Q - 1

i \ast u+ \partial 

\partial \xi 
\scrF  - 1

\xi Q - 1
e \ast u

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R)

\leq 1

| l| 

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \partial KQi

\partial \xi 

\bigm\| \bigm\| \bigm\| \bigm\| 
L1(R)

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial KQe

\partial \xi 

\bigm\| \bigm\| \bigm\| \bigm\| 
L1(R)

\Biggr) 
\| u\| L\infty (R).

Thus, by using (3.32), we have

\| \scrR \Lambda  - 1
l u\| L\infty (R)

(3.33)

\leq 

\Biggl( 
C1\| z  - f \prime (U)\| L\infty (R)

l2
+

1

| l| 

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \partial KQi

\partial \xi 

\bigm\| \bigm\| \bigm\| \bigm\| 
L1(R)

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial KQe

\partial \xi 

\bigm\| \bigm\| \bigm\| \bigm\| 
L1(R)

\Biggr) \Biggr) 
\| u\| L\infty (R)

\leq C2

| l| 
\| u\| L\infty (R),

where C2 is a positive constant depending only on Ai,e, f , and z.
Step 3. Since we have

\Lambda  - 1
l  - (z  - \scrL l)

 - 1
= (z  - \scrL l)

 - 1\scrR \Lambda  - 1
l ,

it holds from (3.32) and (3.33) that

\| (z  - \scrL l)
 - 1
u\| L\infty (R) \leq \| \Lambda  - 1

l u\| L\infty (R) + \| (z  - \scrL l)
 - 1\scrR \Lambda  - 1

l u\| L\infty (R)

\leq 
\biggl( 
C1

l2
+
C2

| l| 
\bigm\| \bigm\| (z  - \scrL l)

 - 1
\bigm\| \bigm\| 
\scrL (L\infty (R))

\biggr) 
\| u\| L\infty (R).(3.34)

We thus see that

(3.35)
\bigm\| \bigm\| (z  - \scrL l)

 - 1
\bigm\| \bigm\| 
\scrL (L\infty (R)) \leq 

\biggl( 
C1

l2
+
C2

| l| 
\bigm\| \bigm\| (z  - \scrL l)

 - 1
\bigm\| \bigm\| 
\scrL (L\infty (R))

\biggr) 
.
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If | l| \geq 2C2, we have

(3.36)
\bigm\| \bigm\| (z  - \scrL l)

 - 1
\bigm\| \bigm\| 
\scrL (L\infty (R)) \leq 

2C1

l2
.

The result follows since there are only a finite number of l such that | l| < 2C2.

Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. The second set inclusion in (3.5) follows immediately
from Lemma 3.4. We now show the first set inclusion:

(3.37) C\setminus \sigma BUC(R\times S1
d)
(\scrL )\supset 

\bigcap 
k\in Z

C\setminus \sigma BUC(R)(\scrL 2\pi k/d).

Fix any z \in C satisfying

z \in 
\bigcap 
k\in Z

C\setminus \sigma BUC(R)(\scrL 2\pi k/d).

For any v \in BUC(R), decompose v in terms of a Fourier series as in (2.27). Define
the operator

(3.38) \scrA v=
\sum 

l\in (2\pi /d)Z

\bigl( 
(z  - \scrL l)

 - 1vl
\bigr) 
exp(il\eta ).

By Lemma 3.5, we see as follows that the above operator \scrA is a bounded operator on
BUC(R\times S1

d):

\| \scrA v\| BUC(R\times S1
d)
\leq 

\sum 
l\in (2\pi /d)Z

\bigm\| \bigm\| (z  - \scrL l)
 - 1vl

\bigm\| \bigm\| 
BUC(R)

\leq 

\left(  \sum 
l\in (2\pi /d)Z

C

1 + l2

\right)  sup
l\in (2\pi /d)Z

\| vl\| \leq C1\| v\| BUC(R\times S1
d)
.

We now show that \scrA is the inverse of z  - \scrL .
First, we show that if vl \in BUC\infty (R), then wl = (z  - \scrL l)

 - 1vl \in BUC\infty (R). To
see this, note that

(3.39) (z  - \scrL l)wl = zvl +\Lambda lvl  - c
\partial vl
\partial \xi 

 - f \prime (U)vl =wl.

Using (2.38), we see that

(3.40)
\partial 2wl

\partial \xi 2
+ \beta 

\partial wl

\partial \xi 
=\scrB wl + \delta vl,

where \beta and \delta are constants and \scrB is an operator that maps BUCk(R), k= 0,1,2, . . . ,
to itself. Given that wl \in BUC(R), \partial wl/\partial \xi + \beta wl is in BUC

1(R), which implies that
wl is in BUC

2(R). Repeating this argument, we see that wl \in BUCk(R) for all k \in N.
Take any v \in BUC(R \times S1

d). Now consider a sequence of smooth functions vn
that converges to v in BUC(R \times S1

d) as n \rightarrow \infty . We may even take vn to be band
limited, in the sense that each vn has a finite Fourier series expansion:

(3.41) vn(\xi , \eta ) =
\sum 

l=2\pi k/d,| k| \leq Nn

vn,l(\xi ) exp(il\eta ),
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1576 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

where Nn is a finite number that depends on n. We have

(3.42) \scrA vn =
\sum 

l=2\pi k/d,| k| \leq Nn

\bigl( 
(z  - \scrL l)

 - 1vn,l
\bigr) 
exp(il\eta ).

Note that, since vl \in BUC\infty (R), (z  - \scrL l)
 - 1vl \in BUC\infty (R). Thus, (2.39) of Proposi-

tion 2.11 implies that

(3.43) (z  - \scrL )\scrA vn =
\sum 

l=2\pi k/d,| k| \leq Nn

(z  - \scrL l)
\bigl( 
(z  - \scrL l)

 - 1vn,l
\bigr) 
exp(il\eta ) = vn.

Let n \rightarrow \infty in the above. Since \scrA is a bounded operator from BUC(R \times S1
d) to

BUC(R\times S1
d), \scrA vn converges to \scrA v in BUC(R\times S1

d). Since \scrL is a closed operator
on BUC(R\times S1

d) by Proposition 3.1, we see that

(3.44) (z  - \scrL )\scrA v= v for all v \in BUC(R\times S1
d).

Next, take any w \in \scrD (\scrL ), the domain of \scrL . Note first that there is a sequence of
smooth functions wn such that wn \rightarrow w in \scrD (\scrL ). This follows from the properties of
T (t), the semigroup generated by \Lambda . Since T (t) is an analytic semigroup on BUC(R\times 
S1
d), it is also an analytic semigroup on \scrD (\Lambda ) = \scrD (\scrL ) (see Proposition 3.1). Thus,
T (t)u\rightarrow u as t\rightarrow 0 in \scrD (\Lambda ) if u\in \scrD (\Lambda ). Given (2.8) of Lemma 2.3, T (t)u is smooth.
Expand wn as follows:

(3.45) wn(\xi , \eta ) =
\sum 

l=(2\pi k/d)Z

wn,l(\xi ) exp(il\eta ).

By Proposition 2.11, we have

(3.46) (z  - \scrL )wn =
\sum 

l=(2\pi k/d)Z

((z  - \scrL l)wn,l) exp(il\eta ).

By construction, (z  - \scrL )wn \in BUC(R\times S1
d). Thus,

(3.47) \scrA (z  - \scrL )wn =
\sum 

l=(2\pi k/d)Z

\bigl( 
(z  - \scrL l)

 - 1(z  - \scrL l)wn,l

\bigr) 
exp(il\eta ) =wn.

Taking the limit as n\rightarrow \infty in the above, we see that:

(3.48) \scrA (z  - \scrL )w=w for all w \in \scrD (\scrL ).

From (3.44) and (3.48), we see that \scrA = (z  - \scrL ) - 1 and that z is in the resolvent set
of \scrL as an operator on BUC(R\times S1

d).

3.2. Instability criteria. We now prove some results on the point spectrum
which will be useful in proving planar front instabilities. First, we show some results
estimating the spectrum and the essential spectrum of \scrL l. We let

\sigma +
L2(R)(\scrL l) =\sigma L2(R)(\scrL l)\cap \{ z \in C | Rez > 0\} ,(3.49)

\sigma +
BUC(R)(\scrL l) =\sigma BUC(R)(\scrL l)\cap \{ z \in C | Rez > 0\} (3.50)

and define the constants

fmin = min
0\leq s\leq 1

f \prime (s), fmax = max
0\leq s\leq 1

f \prime (s),

\=f =
fmin + fmax

2
, f\Delta =

fmax  - fmin

2
.

Then the following holds, which is presented as Proposition 2.3 in [27].
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1577

Proposition 3.6 (see [27]). Define the set \widehat Sl \subset C by

\widehat Sl =
\bigl\{ 
z \in C | z = ics - Q\theta (s, l) + \=f, s\in R

\bigr\} 
.

Then the spectrum \sigma L2(R)(\scrL l) satisfies

(3.51) \sigma L2(R)(\scrL l)\subset 
\Bigl\{ 
z \in C | dist(z, \widehat Sl)\leq f\Delta 

\Bigr\} 
,

where dist(z, \widehat Sl) is the distance between the point z \in C and the set \widehat Sl.

Remark 3.7. From Proposition 3.6, we find (i) \sigma +
L2(R)(\scrL l) is uniformly bounded

in l \in R; (ii) \sigma L2(R)(\scrL l) lies in the left-half of the complex plane when | l| is sufficiently
large, or, equivalently, \sigma +

L2(R)(\scrL l) is empty if | l| is sufficiently large. Indeed, since

Q\theta (s, l)\geq \lambda (s2 + l2) holds for some positive \lambda , we have

\widehat Sl \subset 
\bigl\{ 
x+ iy \in C | y= cs, x\leq  - \lambda (s2 + l2) + \=f, s\in R

\bigr\} 
.

Outline of the proof of Proposition 3.6. The operator \scrL l can be written as

(3.52) \scrL lv=\scrL lv+ (f \prime (U) - \=f)v, \scrL lv= - \Lambda lv+ c
\partial v

\partial \xi 
+ \=fv.

Using the Fourier transform, it is easily seen that the spectral set of \scrL l is \widehat Sl and the
norm of the resolvent of \scrL l are given by

(3.53)
\bigm\| \bigm\| (z  - \scrL l)

 - 1
\bigm\| \bigm\| 
\scrL (L2(R)) =dist

\Bigl( 
z, \widehat Sl

\Bigr) 
.

The operator \scrL l is a perturbation of \scrL l by the multiplication operator f \prime (U)  - \=f
whose operator norm is given by f\Delta . The result follows by a standard Neumann
series argument.

Next, we examine the essential and point spectra of \scrL l as an operator on L2(R).
For our purposes, it is convenient to define the essential and point spectra as follows.

Definition 3.8 (essential and point spectra). Let \scrA be a densely defined closed
operator on a Hilbert space \scrH with domain D(\scrA ), and let \sigma (\scrA ) \subset C denote the
spectrum of \scrA . A complex value z \in \sigma (\scrA ) belongs to the point spectrum of \scrA , if
z  - \scrA is a Fredholm operator with index 0 as a bounded operator from D(\scrA ) to \scrH .
Otherwise, z \in \sigma (\scrA ) is in the essential spectrum of \scrA .

We shall denote the essential and point spectra of \scrA by \sigma ess
L2(R)(\scrA ) and \sigma pt

L2(R)(\scrA ),
respectively.

To estimate the essential spectrum of \scrL l on L
2(R), we define the constants

mmin =min\{ f \prime (0), f \prime (1)\} , mmax =max\{ f \prime (0), f \prime (1)\} ,

m=
mmax +mmin

2
, m\Delta =

mmax  - mmin

2
,

where we note that mmax,mmin,m are all negative and m\Delta is positive.

Lemma 3.9. Define the set

Sl = \{ z \in C | z = ics - Q\theta (s, l) +m, s\in R\} .

Then the essential spectrum of \scrL l on L
2(R), which is denoted by \sigma ess

L2(R)(\scrL l), satisfies

(3.54) \sigma ess
L2(R)(\scrL l)\subset \{ z \in C | dist(z,Sl)\leq m\Delta \} .
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1578 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Proof. Define the following function g0 that interpolates monotonically between
f \prime (0) and f \prime (1):

g0(\xi ) =m+m\Delta tanh(\xi ).

Now let

f \prime (U(\xi )) = g0(\xi ) + g1(\xi ).

Since U(\xi ) decays exponentially to 0 and 1 as \xi \rightarrow  - \infty and \xi \rightarrow \infty , the function g1(\xi )
is a smooth function that decays exponentially to 0 as \xi \rightarrow \pm \infty . With this, we have

(3.55) \scrL lv=\scrQ v+\scrR v, \scrQ v= - \Lambda lu+ c
\partial u

\partial \xi 
+ g0u, \scrR u= g1u.

Let us first examine the spectrum of \scrQ . Decompose \scrQ further as follows:

\scrQ =\scrQ 0 +\scrQ 1, \scrQ 0u= - \Lambda lu+ c
\partial u

\partial \xi 
+mu, \scrQ 1u= (g0  - m)u.

We may now apply exactly the same argument that we used in proving Proposition 3.6
to show that

(3.56) \sigma L2(R)(\scrQ )\subset \{ z \in C | dist(z,Sl)\leq m\Delta \} .

Now we consider the Fredholm index of the operator

zI  - \scrL l = zI  - \scrQ  - \scrR with z \in C\setminus \sigma L2(R)(\scrQ ),

viewed as an operator from H2(R) to L2(R). Since z is in the resolvent set of \scrQ ,
(zI  - \scrQ ) - 1 exists, and the Fredholm index of the above is equal to that of

I  - \scrR (zI  - \scrQ ) - 1,

seen as a bounded operator on L2(R). Since (zI  - \scrQ ) - 1 maps L2(R) to H2(R) and
the function g1 decays exponentially as \xi \rightarrow \pm \infty , we see that \scrR (zI  - \scrQ ) - 1 is a
compact operator on L2(R). Therefore, the Fredholm index of the above, and hence
of zI  - \scrL l, is 0 when z is in the resolvent set of \scrQ . From this, we conclude that
\sigma ess
L2(R)(\scrL l)\subset \sigma L2(R)(\scrQ ), and hence (3.54) follows.

Now we are ready to prove Proposition 3.10.
The aim of this subsection is to prove Proposition 3.10 below. We introduce the

notion

\sigma >
L2(R)(\scrL l) = \sigma L2(R)(\scrL l)\cap \{ z \in C | Rez >mmax\} ,(3.57)

\sigma >
BUC(R)(\scrL l) = \sigma BUC(R)(\scrL l)\cap \{ z \in C | Rez >mmax\} ,(3.58)

where we note that these sets are possibly empty. Then the following hold.

Proposition 3.10. For each l= 2\pi k/d with k \in Z, one has

(3.59) \sigma >
BUC(R)(\scrL l) = \sigma >

L2(R)(\scrL l).

Moreover, \sigma >(\scrL l) consists of a finite number of points, and each point in \sigma >(\scrL l) is
an eigenvalue in L2(R) and in BUC(R).
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1579

Proof of Proposition 3.10. Note first that Proposition 3.2 gives

(3.60) \sigma >
BUC(R)(\scrL l)\subset \sigma >

L2(R)(\scrL l).

From Lemma 3.9, we find that

(3.61) \sigma ess
L2(R)(\scrL l)\subset \{ z \in C | Rez \leq m+m\Delta \} ,

where m+m\Delta =mmax < 0. Thus, \sigma >
L2(R)(\scrL l) consists of point spectra, and thus all

points in \sigma >
L2(R)(\scrL l) are eigenvalues. For any z \in \sigma >

L2(R)(\scrL l), therefore, we have:

\scrL lv= zv,

where v \in H2(R). Then the Sobolev embedding theorem gives v \in BUC(R) and hence
z \in \sigma >

BUC(R)(\scrL l). Thus, we obtain

\sigma >
L2(R)(\scrL l)\subset \sigma >

BUC(R)(\scrL l).

This implies (3.59).
Since \sigma >

L2(R)(\scrL l) is bounded by Proposition 3.6, if it consists of an infinite number

of points, there is an accumulation point z\ast . By (3.61), z\ast must belong to the point
spectrum, but any point in the point spectrum must be an isolated point (Theorem 7
of [30]; see also [18]). Thus, \sigma >

L2(R)(\scrL l) consists of a finite number of points.

3.3. Auxiliary result for the spectral properties of \bfscrL and \bfscrL \bfitl . In this
subsection, we provide some auxiliary results for later discussions. Let \sigma +

L2(R)(\scrL l) and

\sigma +
BUC(R)(\scrL l) be defined as in (3.49)--(3.50). Note by Proposition 3.10 that the two

sets coincide.

Lemma 3.11. Suppose that, for a direction n \in S1, the planar front on R2 is
spectrally unstable in the sense of Definition 1.3, namely that there exists a constant
l\ast \in R such that

\sigma +
L2(R)(\scrL l\ast ) \not = \emptyset .

Then there exists a positive constant \delta such that

\sigma +
L2(R)(\scrL l) \not = \emptyset 

holds for all l \in [l\ast  - \delta , l\ast + \delta ].

Proof. Take any point z\ast \in \sigma +
L2(R)(\scrL l\ast ). Given Proposition 3.10, \sigma +

L2(R)(\scrL l\ast ) is
a finite set and thus z\ast is an isolated point of the spectrum of \scrL l\ast . There is thus a
circular contour \scrC of radius r centered at z\ast such that

\scrC \subset \{ z \in C| Rez > 0\} \setminus \sigma L2(R)(\scrL l\ast ).

We may even take r small enough so that z\ast is the only point of the spectrum inside
of \scrC . Consider the Dunford integral

\scrP l =
1

2\pi i

\int 
\scrC 
(z  - \scrL l)

 - 1dz.

When l = l\ast , \scrP l\ast is the spectral projection for z = z\ast , and thus \scrP l\ast \not = 0. Since \scrL l

depends continuously as an operator from H2(R) to L2(R), \scrP l \not = 0 for l sufficiently
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1580 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

close to l\ast . This implies that \scrL l must have a point in the spectrum inside \scrC for all
values of l sufficiently close to l\ast .

We now study the simplicity of eigenvalues.

Lemma 3.12. Let z \in \sigma >
L2(R)(\scrL l) be an algebraically simple eigenvalue of \scrL l in

L2(R). Then z is an algebraically simple eigenvalue in BUC(R).

Proof. Let z be as in the statement of the lemma, and let \varphi be the corresponding
eigenfunction. Define the operator \scrL \ast 

l as

(3.62) \scrL \ast 
l u= - \Lambda lu - c

\partial u

\partial \xi 
+ f \prime (U)u.

If z \in \sigma >
L2(R)(\scrL l), then \=z is in the spectrum of \scrL \ast 

l and is an algebraically simple

eigenvalue in L2(R) with eigenfunction \varphi \ast . The assumption of simplicity implies that
the L2(R) inner product of \varphi and \varphi \ast satisfies \langle \varphi ,\varphi \ast \rangle R \not = 0, which we may normalize
so that \langle \varphi ,\varphi \ast \rangle R = 1. Note that the \varphi and \varphi \ast satisfy a 4th order differential equation
in \xi and that f \prime (U) converges exponentially to a constant as | \xi | \rightarrow \infty . Since \varphi and
\varphi \ast are in L2(R), \varphi and \varphi \ast must decay exponentially.

We first prove that z is algebraically simple in BUC(R): it suffices to show that,
for any given v \in BUC(R), the equation

(3.63) (z  - \scrL l)u= v - \langle v,\varphi \ast \rangle R\varphi 

has a solution u \in BUC(R). Note that \langle v,\varphi \ast \rangle is well-defined for v \in BUC(R) given
that \varphi \ast is exponentially decaying as | \xi | \rightarrow \infty .

We decompose \scrL l as \scrL l =\scrL  - 
l +A - or \scrL l =\scrL +

l +A+, where

\scrL  - 
l u= - \Lambda lu+ c

\partial u

\partial x
+ f \prime (1)u, A - u= f \prime (U)u - f \prime (1)u,

\scrL +
l u= - \Lambda lu+ c

\partial u

\partial x
+ f \prime (0)u, A+u= f \prime (U)u - f \prime (0)u.

We note that the spectra of \scrL \pm 
l are easily determined by the Fourier transform as

\sigma L2(R)(\scrL  - 
l ) = \{ z \in C | ick - Q(k, l) + f \prime (1), k \in R\} ,

\sigma L2(R)(\scrL +
l ) = \{ z \in C | ick - Q(k, l) + f \prime (0), k \in R\} .

Since z \in \sigma +
L2(R) and thus Rez >mmax =max(f \prime (0), f \prime (1)), (z - \scrL \pm 

l )
 - 1 are well-defined

on L2(R).
Let g := v - \langle v,\varphi \ast \rangle \varphi , and decompose g \in BUC(R) into a sum of L2(R)-functions

by a partition of unity. Choose a function \psi 0 \in C\infty 
0 (R) supported on [ - 1,1] such that

\infty \sum 
n= - \infty 

\psi n(x)\equiv 1, \psi n(x) := \psi 0(x - n),

and decompose g as

g(x) =
\infty \sum 

n= - \infty 
gn(x), gn(x) := \psi n(x)g(x).

In the framework of L2(R), we consider the equation

(3.64) (z  - \scrL l)un = gn.
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1581

For n\geq 1, we rewrite gn as

gn = (z  - \scrL l)(z  - \scrL +
l )

 - 1gn +A+(z  - \scrL +
l )

 - 1gn.

Define \Pi w=w - \langle w,\varphi \ast \rangle \varphi . Since z  - \scrL l and \Pi commute, we have

(3.65) gn =\Pi gn = (z  - \scrL l)\Pi (z  - \scrL +
l )

 - 1gn +\Pi 
\bigl( 
A+(z  - \scrL +

l )
 - 1gn

\bigr) 
.

By the assumptions on z, we find that z - \scrL l is invertible on the range of \Pi and hence
that (z - \scrL l)

 - 1gn is well-defined. Thus, from (3.65), the solution un of (3.64) is given
as

un = (z  - \scrL l)
 - 1gn

=\Pi (z  - \scrL +
l )

 - 1gn + (z  - \scrL l)
 - 1\Pi (A+(z  - \scrL +

l )
 - 1gn).

By applying the same argument for the case n< 0, we consider

un =

\Biggl\{ 
\Pi (z  - \scrL +

l )
 - 1gn + (z  - \scrL l)

 - 1\Pi (A+(z  - \scrL +
l )

 - 1gn) for n\geq 1,

\Pi (z  - \scrL  - 
l )

 - 1gn + (z  - \scrL l)
 - 1\Pi (A - (z  - \scrL  - 

l )
 - 1gn) for n< 0.

In what follows, we estimate un and u =
\sum \infty 

n= - \infty un. For this purpose, we provide
some auxiliary lemmas.

Then, by similar computations to those in Step 2 of the proof of Lemma 3.4, we
find that there exists a positive constant C1 such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\infty \sum 
n=1

\bigl( 
z  - \scrL +

l

\bigr)  - 1
gn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R)

\leq C1\| g\| L\infty (R).

Moreover, by computations similar to those in Step 3 of the proof of Lemma 3.4, we
find that there exist positive constants C2 and C3 such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\infty \sum 
n=1

A+(z  - \scrL +
l )

 - 1gn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(R)

\leq C\| g\| L\infty (R)

and that \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty \sum 

n=1

(z  - \scrL l)
 - 1\Pi A+(z  - \scrL +

l )
 - 1gn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (R)

\leq C\| g\| L\infty (R).

For \scrL  - 
l and A - , similar results also hold. Consequently, we can define the function u

by

u=
\infty \sum 

n= - \infty 
un,

where u \in BUC(R), since it is a limit of function series in the topology of L\infty (R).
This is the desired solution of (3.63).

Lemma 3.13. Suppose z \in \sigma >
L2(R)(\scrL l0), l0 \in (2\pi /d)Z, is an algebraically simple

eigenvalue and that z \in C\setminus \sigma L2(R)(\scrL l) for all l \in (2\pi /d)Z such that l \not = l0. Then z is
an algebraically simple eigenvalue of \scrL in BUC(R\times S1

d).
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1582 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Proof. Let \varphi the eigenfunction corresponding to z \in \sigma >
L2(R)(\scrL l0) and \varphi \ast be the

eigenfunction corresponding to the adjoint \scrL \ast 
l0

as in the proof of the previous lemma.
As before, we normalize so that \langle \varphi ,\varphi \ast \rangle R = 1. Then \varphi (\xi ) exp(il0\eta ) is an eigenfunction
of \scrL in BUC(R\times S1

d). To show that this eigenvalue is simple in BUC(R\times S1
d), we

must show that the following equation can be solved for any v \in BUC(R\times S1
d):

(z  - \scrL )u= v - \langle v,\varphi \ast exp(il0\eta )\rangle R\times S1
d
\varphi exp(il0\eta )/d

2,

\langle v,w\rangle R\times S1
d
=

\int 
R\times S1

d

v(\xi , \eta )w(\xi , \eta )d\xi d\eta .

Using the previous lemma and its proof, together with Lemma 3.5, we obtain the
desired result in the same way as in the proof of Proposition 3.2. We omit the details.

4. Nonlinear stability and instability of planar fronts. In this section, we
complete the proof of Theorems 1.10 and 1.11 by using the estimates on the spectrum
of the linearized operator \scrL obtained in the previous section.

4.1. Spectral decomposition due to translation invariance. To prove non-
linear stability and instability, we make some preparations. In the remainder of this
paper, we write \langle u,w\rangle in the sense of

\langle u,w\rangle =
\int 
R\times S1

d

u(\xi , \eta )w(\xi , \eta )d\xi d\eta , u\in BUC(R\times S1
d), w \in L1(R\times S1

d).

We define the functions \varphi (\xi ) and \varphi \ast (\xi ) by

\varphi =
\partial U

\partial \xi 
, \varphi \ast =

exp(c\xi /K2
\theta )\varphi 

\langle \varphi , exp(c\xi /K2
\theta )\varphi \rangle 

,

where K\theta is the constant that appears in (1.13). We note that \langle \varphi ,\varphi \ast \rangle = 1, that
\scrL \varphi = 0, and that \scrL \ast \varphi \ast = 0, where \scrL \ast is the ``adjoint"" of \scrL ; namely,

\scrL \ast v= - \Lambda \theta v - c
\partial v

\partial \xi 
+ f \prime (U)v.

It is well known that \varphi (\xi ) and \varphi \ast (\xi ) are both negative and decay exponentially to
zero as \xi \rightarrow \pm \infty and hence \varphi ,\varphi \ast \in L1(R). We define the projection

(4.1) \Pi u= u - \langle u,\varphi \ast \rangle \varphi ,

which commutes with \scrL ; namely, \scrL \Pi =\Pi \scrL . We also define the space of functions

\scrK =
\bigl\{ 
u\in BUC(R\times S1

d) | u=\Pi u
\bigr\} 
.

Note that v \in \scrK implies \langle v,\varphi \ast \rangle = 0.
To analyze the asymptotic behavior of the solution u(\xi , \eta , t), we introduce the

translation operator \tau \sigma with \sigma \in R by

\tau \sigma u(\xi , \eta , t) = u(\xi + \sigma , \eta , t),

and decompose u(\xi , \eta , t) as

(4.2) u= \tau \sigma (t)(U + v) =U(\xi  - \sigma (t)) + v(\xi  - \sigma (t), \eta , t),

with v(\cdot , t)\in \scrK by virtue of Lemma 4.1 below.
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Lemma 4.1. If w \in BUC(R\times S1
d) is sufficiently small, then there exists a unique

pair (v,\sigma )\in \scrK \times R such that

(4.3) U +w= \tau \sigma (U + v).

Proof. Equation (4.3) is equivalent to

(4.4) \tau  - \sigma (U +w) - U = v.

Since v \in \scrK means \langle v,\varphi \ast \rangle = 0, we consider \langle \tau  - \sigma (U + w)  - U,\varphi \ast \rangle = 0, which is
equivalent to

(4.5) \langle U +w - \tau \sigma U, \tau \sigma \varphi 
\ast \rangle = 0.

Then the implicit function theorem implies that, for any given w \in BUC(R\times S1
d) that

is sufficiently small, there exists a unique constant \sigma = \sigma (w) such that (4.5) holds.
Indeed, we have

\partial 

\partial \sigma 
\langle U +w - \tau \sigma U, \tau \sigma \varphi 

\ast \rangle | (w,\sigma )=(0,0) =

\biggl\langle 
\partial U

\partial \xi 
,\varphi \ast 
\biggr\rangle 
= 1 \not = 0.

Consequently, by determining v from (4.4), we obtain a unique pair (v,\sigma ) \in \scrK \times R
that satisfies (4.3).

We now derive the equations that v and \sigma (t) satisfy. By substituting (4.2) into
the original equation ut = - \Lambda u+ c\partial u\partial \xi + f(u), we have

 - \sigma \prime \tau \sigma \varphi  - \sigma \prime \tau \sigma v\xi + \tau \sigma 
\partial v

\partial t
= - \Lambda \tau \sigma (U + v) + c\tau \sigma (\varphi + v\xi ) + f(\tau \sigma (U + v)).

By applying \tau  - \sigma , we have

\partial v

\partial t
= \sigma \prime \varphi + \sigma \prime v\xi  - \Lambda (U + v) + c(\varphi + v\xi ) + f(U + v).

By using the equality  - \Lambda U + c\varphi + f(U) = 0, we obtain

\partial v

\partial t
= - \Lambda v+ \sigma \prime \varphi + (\sigma \prime + c)v\xi + f(U + v) - f(U)

=\scrL v+ \sigma \prime \varphi + \sigma \prime v\xi +H(v),(4.6)

H(v) = f(U + v) - f(U) - f \prime (U)v.(4.7)

Since v(\cdot , t), vt(\cdot , t)\in \scrK , we have

\langle \scrL v,\varphi \ast \rangle = \langle v,\scrL \ast \varphi \ast \rangle = 0,

\biggl\langle 
\partial v

\partial t
,\varphi \ast 
\biggr\rangle 
= 0,

and hence

0 = \sigma \prime \langle \varphi ,\varphi \ast \rangle + \sigma \prime \langle v\xi ,\varphi \ast \rangle + \langle H(v),\varphi \ast \rangle .

Thus, we obtain

(4.8) \sigma \prime = - \langle H(v),\varphi \ast \rangle 
1 + \langle v\xi ,\varphi \ast \rangle 

.

Finally, by applying \Pi to (4.6), we have

(4.9)
\partial v

\partial t
=\scrL v+N(v), N(v) = - \langle H(v),\varphi \ast \rangle 

1 + \langle v\xi ,\varphi \ast \rangle 
\Pi v\xi +\Pi H(v).
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1584 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Lemma 4.2. For \delta > 0 sufficiently small, there exists a constant M such that, for
any v,w satisfying \| v\| BUC1 \leq \delta ,\| w\| BUC1 \leq \delta , we have

(4.10) \| N(v) - N(w)\| BUC \leq M (\| v\| BUC1 + \| w\| BUC1)\| v - w\| BUC1 .

Proof. Elementary calculus estimates yield the following pointwise bound for H:

(4.11) | H(v) - H(w)| \leq M0 (| v| + | w| ) | v - w| , M0 =
1

2
max

 - \delta \leq s\leq 1+\delta 
| f \prime \prime (s)| .

Noting that \varphi \ast \in L1, it is easily seen that if \delta > 0 is small enough, there is a constant
M1 such that

(4.12)

\bigm\| \bigm\| \bigm\| \bigm\| v\xi 
1 + \langle v\xi ,\varphi \ast \rangle 

 - w\xi 

1 + \langle w\xi ,\varphi \ast \rangle 

\bigm\| \bigm\| \bigm\| \bigm\| 
BUC

\leq M1 \| v\xi  - w\xi \| BUC .

The above two inequalities, together with the definition of \Pi in (4.1), yield the desired
estimate.

4.2. Nonlinear stability of planar fronts. In this subsection, we complete
the proof of the statement (i) of Theorem 1.10 and the proof of Theorem 1.11. The
lemma below is used to prove statement (i) in Theorem 1.10. In what follows, \scrL | \scrK 
denotes the restriction of \scrL on \scrK .

Lemma 4.3 (spectral gap). For a direction n \in S1, if the planar front on R2 is
spectrally stable in the sense of Definition 1.3, for any d > 0, there exists a positive
constant \omega such that

(4.13) \sigma BUC(R\times S1
d)
(\scrL | \scrK )\subset \{ z \in C | Rez \leq  - \omega \} .

Proof. Let any d > 0 be fixed. From Proposition 3.6, there exist a positive
constant \omega 1 and a positive integer k\ast such that\bigcup 

k\in Z, | k| >k\ast 

\sigma L2(R)(\scrL 2\pi k/d)\subset \{ z \in C | Rez \leq  - \omega 1\} .

On the other hand, from the assumption of the lemma, we have\bigcup 
k\in Z,0<| k| \leq k\ast 

\sigma L2(R)(\scrL 2\pi k/d)\subset \{ z \in C | Rez < 0\} .

Moreover, Proposition 3.6 implies that the set\bigcup 
k\in Z,0<| k| \leq k\ast 

\sigma L2(R)(\scrL 2\pi k/d)\cap \{ z \in C |  - 1\leq Rez\} 

(which is possibly empty) is compact. Thus, there exists a positive constant \omega 2 such
that \bigcup 

k\in Z,0<| k| \leq k\ast 

\sigma L2(R)(\scrL 2\pi k/d)\subset \{ z \in C | Rez \leq  - \omega 2\} .

For k= 0, it is well known (see Proposition 3.1 in [27], for instance) that there exists
a positive constant \omega 3 such that

\sigma L2(R)(\scrL 0)\setminus \{ 0\} \subset \{ z \in C | Rez \leq  - \omega 3\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

1/
23

 to
 7

1.
22

4.
20

0.
35

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1585

By combining the above estimates, we obtain

\sigma BUC(R\times S1
d)
(\scrL )\setminus \{ 0\} \subset 

\bigcup 
k\in Z

\sigma BUC(R)(\scrL 2\pi k/d)\setminus \{ 0\} 

\subset 
\bigcup 
k\in Z

\sigma L2(R)(\scrL 2\pi k/d)\setminus \{ 0\} 

\subset \{ z \in C | Rez \leq  - min\{ \omega 1, \omega 2, \omega 3\} \} ,

where we used Proposition 3.2 to obtain the first and second lines of the right-hand
side. By Lemma 3.13, 0 is an algebraically simple eigenvalue of \scrL in BUC(R\times S1

d).
We thus obtain

\sigma BUC(R\times S1
d)
(\scrL | \scrK ) = \sigma BUC(R\times S1

d)
(\scrL )\setminus \{ 0\} .

This completes the proof.

The lemma below is used to prove Theorem 1.11.

Lemma 4.4 (spectral gap). If d > 0 is sufficiently small, there exists a positive
constant \omega such that

(4.14) \sigma BUC(R\times S1
d)
(\scrL | \scrK )\subset \{ z \in C | Rez \leq  - \omega \} .

Proof. From Proposition 3.6, there exist positive constants \omega 1 and d\ast such that
if d< d\ast , then \bigcup 

k\in Z, k \not =0

\sigma L2(R)(\scrL 2\pi k/d)\subset \{ z \in C | Rez \leq  - \omega 1\} .

For k= 0, it is well known (see Proposition 3.1 in [27], for instance) that there exists
a positive constant \omega 2 such that

\sigma L2(R)(\scrL 0)\setminus \{ 0\} \subset \{ z \in C | Rez \leq  - \omega 2\} .

By combining these estimates, we obtain the desired result in a way similar to the
end of the proof of Lemma 4.3.

Now we are ready to prove the nonlinear stability of planar fronts in the sense of
Definition 1.8 stated in Theorems 1.10 and 1.11.

Proof of the statement (i) of Theorem 1.10 and the proof of Theorem 1.11. From
Lemmas 4.3 and 4.4, there exists a positive constant \omega such that for any 0 < \eta < \omega 
and u\in \scrK ,

(4.15) \| exp(t\scrL )u\| BUC(R\times S1
d)
\leq C\eta exp( - \eta t)\| u\| BUC(R\times S1

d)
, t > 0.

We also see from Proposition 3.1 that there is a constant C1 such that

\| exp(t\scrL )u\| BUCk \leq C1\| u\| BUCk for k= 0,1, 0\leq t\leq 1,

\| \scrL exp(t\scrL )u\| BUC \leq C1

t
\| u\| BUC for 0\leq t\leq 1.

(4.16)

Note that, for u\in \scrD 1(\scrL ), we have

\| u\| BUC1(R\times S1
d)
\leq C2\| u\| \gamma /(1+\gamma )

BUC \| u\| 1/(1+\gamma )
C1,\gamma 

\leq C2\| u\| \gamma /(1+\gamma )
BUC (C\scrL (\| u\| BUC + \| \scrL u\| BUC))

1/1+\gamma 

\leq C3

\Bigl( 
\| u\| BUC + \| u\| \gamma /(1+\gamma )

BUC \| \scrL u\| 1/(1+\gamma )
BUC

\Bigr) 
.

(4.17)
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1586 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Combining the above with (4.16), we have

(4.18) \| exp(t\scrL )u\| BUC1 \leq C4

\biggl( 
1 +

1

t1/(1+\gamma )

\biggr) 
\| u\| BUC .

For t > 1, we have, for u\in \scrK ,

\| exp(t\scrL )u\| BUC1 = \| exp((t - 1)\scrL ) exp(\scrL )u\| BUC1

\leq 2C4 \| exp((t - 1)\scrL )u\| BUC \leq 2C4C\eta exp(1) exp( - \eta t)\| u\| BUC .
(4.19)

The above, combined with (4.16), yields, for u\in \scrK ,

\| exp(t\scrL )u\| BUC1 \leq C5

\biggl( 
1 +

1

t1/(1+\gamma )

\biggr) 
exp( - \eta t)\| u\| BUC ,

\| exp(t\scrL )u\| BUC1 \leq C5 exp( - \eta t)\| u\| BUC1 .

(4.20)

Given v0 \in BUC1 \cap \scrK , consider the integral equation corresponding to (4.9):

(4.21) v(t) = exp(t\scrL )v0 +
\int t

0

exp((t - s)\scrL )N(v(s))ds.

We seek a solution to this equation for v in the following function space X, so long
as \| v0\| BUC1 is small enough:

X = \{ u\in C([0,\infty );BUC1(R\times S1
d)\cap \scrK )| exp(t\eta )\| u(t)\| BUC1(R\times S1

d)
<\infty \} ,

\| u\| X = sup
t\geq 0

exp(t\eta )\| u(t)\| BUC1 .(4.22)

It is easily checked that X is a Banach space. Define the operator

(4.23) \Psi (v) = exp(t\scrL )v0 +
\int t

0

exp((t - s)\scrL )N(v(s))ds.

Consider the set

(4.24) B\delta = \{ v \in X| \| v\| X \leq \delta \} .

We shall prove that \Psi is a contraction on B\delta if \delta is small enough. Take \delta > 0
small enough so that Lemma 4.2 applies. Using Lemma 4.2 and (4.20), we have

exp(t\eta )\| \Psi (v)\| BUC1

\leq C5\| v0\| BUC1 + exp(t\eta )

\int t

0

C5

\biggl( 
1 +

1

(t - s)1/(1+\gamma )

\biggr) 
exp( - \eta (t - s))\| N(v(s))\| BUCds

\leq C5\| v0\| BUC1 +

\int t

0

C5

\biggl( 
1 +

1

(t - s)1/(1+\gamma )

\biggr) 
exp( - \eta s)Mds\| v\| 2X .

(4.25)

In the above, we used the fact that N(v)\in \scrK . Note that\int t

0

\biggl( 
1 +

1

(t - s)1/(1+\gamma )

\biggr) 
exp( - \eta s)ds

\leq 
\int 1

0

\biggl( 
1 +

1

(t - s)1/(1+\gamma )

\biggr) 
ds+

\int \infty 

1

exp( - \eta s)ds <\infty .

(4.26)
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1587

Thus,

(4.27) \| \Psi (v)\| X \leq C5\| v0\| BUC1 +C6\| v\| 2X .

This shows that, by taking \| v0\| BUC1 \leq \delta /(2C5) and taking \delta smaller if necessary,
\Psi maps B\delta to itself. Furthermore, we have

\| \Psi (u) - \Psi (v)\| X

\leq sup
t\geq 0

exp(t\eta )

\int t

0

C5

\biggl( 
1 +

1

(t - s)1/(1+\gamma )

\biggr) 
exp( - \eta (t - s))\| N(u(s)) - N(v(s))\| BUC ds

\leq C6 (\| u\| X + \| v\| X)\| u - v\| X \leq 2C6\delta \| u - v\| X ,

(4.28)

where we used Lemma 4.2 and (4.20). Taking \delta small enough, \Psi is a contraction
on B\delta . Substituting this v back into (4.8), we see immediately that \sigma (t) converges
exponentially to a constant as t \rightarrow \infty . This demonstrates stability in the sense of
Definition 1.8 provided that the initial data is in BUC1.

Finally, we must show stability for initial data in BUC. Pick some \delta 0 > 0, and let
u0 \in BUC satisfy \| u0  - U\| BUC \leq \delta 0. By Lemma 2.7, if we take \delta 0 > 0 small enough,
there exist T > 0 and M0 > 0 that do not depend on the choice of u0 so that the
corresponding mild solution u(t) satisfies

(4.29) u(t) = exp(t\Lambda )u0+

\int t

0

exp((t - s)\Lambda )f(u(s))ds, \| u(t)\| BUC \leq M0, 0\leq t\leq T.

Let us estimate the difference between u(t) and U in the BUC1 norm. We have

\| u(t) - U\| BUC1

\leq \| exp(t\Lambda )(u0  - U)\| BUC1 + \| exp(t\Lambda )U  - U\| BUC1

+

\int t

0

\| exp((t - s)\Lambda )f(u(s))\| BUC1 ds

\leq C7

\biggl( 
1 +

1

t1/(1+\gamma )

\biggr) 
\| u0  - U\| BUC + \| exp(t\Lambda )U  - U\| BUC1

+C7

\int t

0

\biggl( 
1 +

1

(t - s)1/(1+\gamma )

\biggr) 
\| f(u(s)\| BUCds

\leq C8

\biggl( 
1

t1/(1+\gamma )
\| u0  - U\| BUC + \| exp(t\Lambda )U  - U\| BUC1 + t\gamma /(1+\gamma )

\biggr) 
,

(4.30)

where we used (4.20) to obtain the second inequality. In the above, we used estimates
on exp(t\Lambda ) similar to (4.18), which can be derived in exactly the same way. Letting
t\ast = \| u0  - U\| BUC , we have

\| u(t\ast ) - U\| BUC1 \leq C8

\Bigl( 
\| u0  - U\| \gamma /(1+\gamma )

BUC +Q(\| u0  - U\| BUC)
\Bigr) 
,

Q(t) = sup
0\leq s\leq t

\| exp(t\Lambda )U  - U\| BUC1 .
(4.31)

Given that U is smooth, function Q(t) is a monotone continuous function that tends
to 0 as t \rightarrow 0. Thus, \| u(t\ast ) - U\| BUC1 can be made arbitrary small by taking
\| u0  - U\| BUC sufficiently small. Applying the BUC1 nonlinear stability result for
the initial data u(t\ast ), we obtain the desired result.
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1588 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

4.3. Nonlinear instability of planar fronts. In this subsection, we complete
the proof of the statement (ii) of Theorem 1.10. Define the sets by

\sigma u = \{ z \in \sigma BUC(R\times S1
d)
(\scrL | \scrK ) | Re z > 0\} ,

\sigma cs = \{ z \in \sigma BUC(R\times S1
d)
(\scrL | \scrK ) | Re z \leq 0\} .

Then the following holds.

Lemma 4.5 (spectral gap).
For a direction n\in S1, if the planar front on R2 is spectrally unstable in the sense

of Definition 1.3 and if d > 0 is sufficiently large, then the set \sigma u is not empty, is
bounded, and satisfies

(4.32) \sigma u \subset \{ z \in C | Rez \geq \omega \} 

for a positive constant \omega .

Proof. We here use the notation \sigma +
L2(R)(\scrL l), etc., given in (3.49) and (3.50). Since

the planar front on R2 is spectrally unstable in the sense of Definition 1.3 by the
assumption of the lemma, there exists a constant l\ast \in R such that

\sigma +
L2(R)(\scrL l\ast ) \not = \emptyset .

Then Lemma 3.11 implies that there exists a constant \delta > 0 such that, for all l \in 
[l\ast  - \delta , l\ast + \delta ], it holds that

\sigma +
L2(R)(\scrL l) \not = \emptyset .

We choose d > 0 sufficiently large to satisfy 2\pi /d \leq 2\delta . Then there exists a k\ast \in R
such that 2\pi k\ast /d\in [l\ast  - \delta , l\ast + \delta ] and hence that

\sigma +
L2(R)(\scrL 2\pi k\ast /d) \not = \emptyset .

Thus, Proposition 3.10 gives that

\sigma +
BUC(R)(\scrL 2\pi k\ast /d) \not = \emptyset 

and that any point in this set is an eigenvalue. Let any z \in \sigma +
BUC(R)(\scrL 2\pi k\ast /d) be fixed;

then there exists a function v \in BUC(R) such that

\scrL lv= zv.

Then we have

\scrL v\ast = zv\ast , v\ast (\xi , \eta ) = v(\xi )ei(2\pi k/d)\eta ,

which means that z is an eigenvalue of \scrL in BUC(R\times S1
d). Thus, we find that

\sigma BUC(R\times S1
d)
(\scrL )\cap \{ z \in C | Rez > 0\} \not = \emptyset .

Next, we show boundedness. From Proposition 3.6, there exists a positive integer
k\ast such that \sigma L2(R)(\scrL 2\pi k/d) is empty if | k| \geq k\ast . On the other hand, Proposition 3.10
implies that \bigcup 

k\in Z, | k| \leq k\ast 

\sigma +
L2(R)(\scrL 2\pi k/d)
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1589

consists of a finite number of points. Thus, since Propositions 3.2 and 3.10 imply

\sigma BUC(R\times S1
d)
(\scrL )\cap \{ z \in C | Rez > 0\} \subset 

\bigcup 
k\in Z

\sigma +
BUC(R)(\scrL 2\pi k/d)

=
\bigcup 
k\in Z

\sigma +
L2(R)(\scrL 2\pi k/d),

we find that

\sigma BUC(R\times S1
d)
(\scrL )\cap \{ z \in C | Rez > 0\} 

consists of a finite number of points. Thus, this set is bounded and satisfies

\sigma BUC(R\times S1
d)
(\scrL )\cap \{ z \in C | Rez > 0\} \subset \{ z \in C | Rez \geq \omega \} 

for some positive constant \omega .

Now we are ready to prove the nonlinear instability stated in Theorem 1.10. The
proof is based on the contraction mapping theorem.

Proof of the statement (ii) of Theorem 1.10. Let \omega > 0 be the constant defined in
Lemma 4.5, and choose a positive constant \eta such that 3\eta < \omega . From Lemma 4.5, we
can choose a simple closed curve \gamma u enclosing \sigma u and define the projection operators

\Pi u =
1

2\pi i

\int 
\gamma u

(zI  - \scrL ) - 1dz, \Pi cs = I  - \Pi u.

We first list two estimates on the semigroup exp(t\scrL ). For any w \in \Pi cs\scrK , and 0<\gamma < 1,
we have

(4.33) \| exp(t\scrL )w\| BUC1 \leq M\gamma 

\biggl( 
1 +

1

t1/(1+\gamma )

\biggr) 
exp(\eta t)\| w\| BUC , t > 0,

where M\gamma is a constant that depends only on \gamma . The above estimate can be derived
in the same way as (4.20) using the assumption on the spectrum. For any w \in \Pi u\scrK ,
we have

(4.34) \| exp(t\scrL )w\| BUC1 \leq M exp(3\eta t)\| w\| BUC , t\leq 0,

where M is a positive constant. We have here used the fact that exp(t\scrL ), t < 0, is
well- defined on \Pi u\scrK since it is a finite dimensional invariant subspace of \scrL . This also
follows easily from the spectral condition and the fact that (zI  - \scrL ) - 1w \in BUC1 for
w \in BUC with z in the resolvent set.

Take any v0 \in \Pi u\scrK such that v0 \not = 0. Define

(4.35) Y = \{ v \in C(( - \infty ,0];BUC1 \cap \scrK )| \| v\| Y := sup
t<0

e - 2\eta t\| v(\cdot , t)\| BUC1 <\infty \} .

It is easily checked that Y is a Banach space. We consider the map \Psi :
(4.36)

\Psi (v) = exp(t\scrL )v0 +
\int t

 - \infty 
exp((t - s)\scrL )\Pi csN(v(s))ds+

\int t

0

exp((t - s)\scrL )\Pi uN(v(s))ds.

If we take \| v0\| BUC1 small enough, the above map \Psi is a contraction on the set
\| v\| Y \leq R for sufficiently small R. This can be shown in essentially the same way as
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1590 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

in the proof of statement (i) of Theorem 1.10 and the proof of Theorem 1.11, using
estimates (4.33), (4.34) and Lemma 4.2.

Let v\ast \in Y be this fixed point of \Psi . Then, given that v\ast \in Y , we have

(4.37) lim
t\rightarrow \infty 

\| v\ast (t)\| BUC1 = 0.

Furthermore, since v\ast is the fixed point of the map \Psi , we have

(4.38) v\ast (0) = v0 +

\int 0

 - \infty 
exp((t - s)\scrL )\Pi csN(v\ast (s))ds.

Since \Pi u(v\ast (0)) = v0 \not = 0, \| v\ast (0)\| BUC1 > 0. This implies the nonlinear instability of
planar fronts in the sense of Definition 1.9.

Appendix A. Nonpositivity of the fundamental solution \bfitG \bfitt . As stated in
the discussion surrounding (1.6), the bidomain operator does not satisfy the maximum
principle unless Ai = \beta Ae for some \beta > 0 (the monodomain case). We present a proof
of this result in Rn, n = 2,3. We will prove the nonpositivity of the fundamental
solution Gt given in (1.5), which we reproduce here to include the case n= 3:

Gt(x) =
1

(2\pi )n

\int 
Rn

exp( - tQ(k)) exp(ik \cdot x)dk,(A.1)

Q(k) =
Qi(k)Qe(k)

Qi(k) +Qe(k)
, Qi,e(k) = kTAi,ek,

where Ai and Ae are n\times n symmetric positive definite matrices.

Proposition A.1. Consider the function Gt(x), t > 0, given in (A.1), n = 2,3.
Suppose Ai and Ae are not proportional to each other, in the sense that there is no
\beta > 0 such that Ai = \beta Ae. Then, for every t > 0, there is an x \in Rn such that
Gt(x)< 0.

Remark A.2. We have not been able to locate a proof of the above nonpositivity
result in the literature. Indeed, a recent paper [16] states that it is unknown whether
the bidomain operator satisfies the maximum principle. We note, however, that nu-
merical computations plotting Gt (see, for example, Chapter 12 of [19]) clearly show
places where Gt(x) is negative for specific examples of Ai and Ae. We also remark
that in section 5 of [27] the authors prove the following. In the nonmonodomain
case, it is always possible to find a bistable nonlinearity f so that the corresponding
bidomain Allen--Cahn equation has a planar front solution that is spectrally unstable.
This implies that the nonmonodomain bidomain operator in dimension 2 violates the
maximum principle. We emphasize that our proof only applies to the constant coef-
ficient case in free space. Failure of the maximum principle is almost certainly true
in the general case of the variable coefficient bidomain operator in a bounded domain
with suitable boundary conditions, but this question is likely open.

Proof. We first consider the case n= 2. Consider the initial value problem

(A.2) ut = - \Lambda u, u(x,0) =w(x),

where we take w(x) to be a smooth compactly supported function. The solution u
can be written as follows:

(A.3) u(x, t) =

\int 
R2

Gt(x - y)w(y)dy.
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1591

Since w(x) is smooth and compactly supported, it is easily seen that the above solution
u satisfies (A.2) pointwise for t \geq 0, where \Lambda in the sense of a Fourier multiplier
operator as in (1.3). Our goal here is to show that if there is no \beta > 0 such that
Ai = \beta Ae, then there are values of x for which Gt(x) < 0. We will exhibit a smooth
compactly supported function w(\bfitx )\geq 0 such that

(A.4) w(x)\geq 0, w(0) = 0,  - (\Lambda w)(0)< 0.

If we can find such a function, this implies that, for sufficiently small t > 0, we have

(A.5) u(0, t) =

\int 
R2

Gt(0 - y)w(y)dy=

\int 
R2

Gt(y)w(y)dy< 0.

Since w(x)\geq 0, this is sufficient to show that Gt(x) is negative for some values of x.
Given that Gt(x) = t - 1G1(x/

\surd 
t), this shows that, for any t > 0, there is an x for

which Gt(x)< 0.
We first make a suitable affine change of coordinates to reduce Ai and Ae to a

simple form. Let P be a 2 \times 2 invertible matrix, and let x\prime = P - 1x be the new
coordinate system. Then from (A.1) we see that

(A.6) Gt(Px
\prime ) =

1

(2\pi )n detP

\int 
Rn

exp( - tQ(PTk)) exp(ik \cdot x\prime )dk.

Let P1 = A
 - 1/2
i , which exists given that Ai is symmetric positive definite. Further-

more, choose an orthogonal matrix P2 so that P1AeP
T
1 is diagonalized. Then

(A.7) P2P1AiP
T
1 P

T
2 =

\biggl( 
1 0
0 1

\biggr) 
, P2P1AeP

T
1 P

T
2 =

\biggl( 
\beta 1 0
0 \beta 2

\biggr) 
,

where \beta 1 > 0 and \beta 2 > 0. If we let

(A.8) P3 =

\biggl( \sqrt{} 
2/(1 + \beta 1) 0

0
\sqrt{} 
2/(1 + \beta 2)

\biggr) 
and P = P3P2P1, we have

PAiP
T =

\biggl( 
1 + \alpha 1 0

0 1 + \alpha 2

\biggr) 
, PAeP

T =

\biggl( 
1 - \alpha 1 0

0 1 - \alpha 2

\biggr) 
, where(A.9)

\alpha k =
1 - \beta k
1 + \beta k

, k= 1,2.

Note that | \alpha 1| < 1 and | \alpha 2| < 1. (Note that this parametrization is slightly different
from (1.24) but equivalent.) If \alpha 1 \not = \alpha 2, Ai and Ae are not proportional to each other.
Given expression (A.6), we thus only have to prove the desired statement when Ai

and Ae have the form given above and \alpha 1 \not = \alpha 2. For the above Ai and Ae, the symbol
of Q(k), k= (k1, k2)

T, is given by (see (A.6))

Q(k) =
((1 + \alpha 1)k

2
1 + (1+ \alpha 2)k

2
2)((1 - \alpha 1)k

2
1 + (1 - \alpha 2)k

2
2)

2(k21 + k22)

=
1

2
(1 - \alpha 2

1)k
2
1 +

1

2
(1 - \alpha 2

2)k
2
2 + (\alpha 1  - \alpha 2)

2 k21k
2
2

2(k21 + k22)
.

(A.10)

Thus, for any compactly supported smooth function w(x), we have

 - (\Lambda w)(x) =
1

2
(1 - \alpha 2

1)
\partial 2w

\partial x12
+

1

2
(1 - \alpha 2

2)
\partial 2w

\partial x22

+
(\alpha 1  - \alpha 2)

2

4\pi 

\int 
R2

log(| x - y| ) \partial 4w

\partial y21\partial y
2
2

dy,

(A.11)
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1592 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

where x= (x1, x2)
T and y= (y1, y2)

T. Let us now apply this to the following function
w. Let \phi be the following smooth radial cutoff function:

(A.12) \phi (r) =

\Biggl\{ 
1 if 0\leq r\leq 1,

0 if r\geq 2

and takes values between 0 and 1 when 1 < r < 2. Let \phi \epsilon (r) = \phi (r/\epsilon ) for any \epsilon > 0.
Let w be the following function expressed in polar coordinates:

(A.13) w(r, \theta ) = \phi (r)(1 - \phi \epsilon (r))(1 - cos(4\theta )),

where we let 0 < \epsilon < 1/2. This function is clearly nonnegative. Now let us evaluate
(A.11) at x= 0 for the above function w. We have

(A.14)  - (\Lambda w)(0) =
(\alpha 1  - \alpha 2)

2

4\pi 

\int 
R2

log| y| \partial 4w

\partial y21\partial y
2
2

dy,

where we used the fact that w is identically equal to 0 in the neighborhood of x= 0.
Noting again that w is identically equal to 0 near the origin and that it is compactly
supported, we may integrate by parts to obtain

 - (\Lambda w)(0) =
(\alpha 1  - \alpha 2)

2

4\pi 

\int 
\epsilon \leq | y| \leq 2

K(y)w(y)dy,

K(y) =
\partial 4

\partial y21\partial y
2
2

log| y| = 6
(y41  - 6y21y

2
2 + y42)

(y21 + y22)
4

=
6cos(4\theta )

r4
.

(A.15)

Let us now evaluate the above integral:

1

4\pi 

\int 
\epsilon <| y| <2

K(y)w(y)dy

=

\int 2

\epsilon 

\int 2\pi 

0

3cos(4\theta )

2\pi r4
\phi (r)(1 - \phi \epsilon (r))(1 - cos(4\theta ))d\theta rdr

= - 
\int 2

\epsilon 

3

2r3
\phi (r)(1 - \phi \epsilon (r))dr\leq  - 

\int 1

2\epsilon 

3

2r3
dr=

3

4

\biggl( 
1 - 1

4\epsilon 2

\biggr) 
< 0,

(A.16)

where we used \epsilon < 1/2 in the two inequalities above. We thus see from (A.15) that
 - (\Lambda w)(0)< 0 if \alpha 1 \not = \alpha 2.

We now turn to the case n = 3. This is a direct consequence of the n = 2
result. Suppose Ai and Ae are not proportional to each other, and consider the 2\times 2
submatrices of the 3\times 3 matrices Ai and Ae. Of the three pairs of 2\times 2 submatrices
extracted from Ai and Ae, at least one pair is not proportional. Without loss of
generality, suppose the principal 2\times 2 submatrices are not proportional, and let them
be \widehat Ai and \widehat Ae. Let x = (x1, x2, x3)

T \in R3,\widehat x = (x1, x2)
T \in R2, and likewise for k and\widehat k. Define \widehat Gt(\widehat x) to be the fundamental solution associated with the two dimensional

bidomain operator defined by the matrices \widehat Ai and \widehat Ae:

\widehat Gt(\widehat x) = 1

(2\pi )2

\int 
R2

exp( - t \widehat Q(\widehat k)) exp(ik \cdot \widehat x)d\widehat k,(A.17)

\widehat Q(\widehat k) = \widehat Qi(\widehat k) \widehat Qe(\widehat k)\widehat Qi(\widehat k) + \widehat Qe(\widehat k) , \widehat Qi,e(\widehat k) = \widehat kT \widehat Ai,e
\widehat k.
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FRONT SOLUTIONS OF BIDOMAIN ALLEN--CAHN EQUATION 1593

By the Fourier inversion formula applied to the variable x3 and k3, we have

(A.18)

\int 
R
Gt(x)dx3 =Gt(\widehat x).

By the proof of the n = 2 case, we know that there is a point \widehat x \in R2 such that
Gt(\widehat x)< 0. The above identity implies that there is an x\in R3 such that Gt(x)< 0.

Finally, we give an alternate proof of the nonpositivity of Gt which applies when\sqrt{} 
Q(k) is a nonconvex function. Note that

\sqrt{} 
Q(k) can be convex even when Ai \not =

\beta Ae, and thus the following proof does not apply to all nonmonodomain cases. (For
example, if | a| \leq 1/2, a \not = 0, in (1.24),

\sqrt{} 
Q(k) is convex but Ai and Ae are not

proportional.) The argument, however, may be of independent interest. We prove the
following proposition, which was kindly communicated to us by Professor Yoshikazu
Giga.

Proposition A.3 (Giga). Let p : Rn \rightarrow R be a function that is a nonconvex
positive function and homogeneous of degree one. Then \scrF  - 1[exp( - p(k)2)] is not
nonnegative, where \scrF is the Fourier transform in Rn.

Proposition A.3 follows immediately from Bochner's theorem and Lemma A.4
below. Recall that a function f : Rn \rightarrow C is called a positive definite function if, for
any x1,x2 \in Rn and any k \in N, the matrix

A= \{ fij\} with fij = f(xi  - xj), 1\leq i, j \leq k,

is positive semidefinite.

Lemma A.4. Suppose that p : Rn \rightarrow R is positively homogeneous of degree one.
Then if p is nonconvex, exp( - p(x)2) is not a positive definite function.

Proof. Let x1 = 0 \in R2. Since p is not a convex function, the set \Omega 1 = \{ x \in R2 | 
p(x= 1)\} is not a convex set. Thus, we can choose x2,x3 \in \Omega 1 and \delta > 0 that satisfy

(A.19) p(x2  - x3)> p(x2) + p(x3) + \delta = 2+ \delta .

Let L be any positive constant. We consider the matrix

AL =

\left(  1 a a
a 1 c
a c 1

\right)  ,

where

a= exp
\bigl( 
 - p(Lx2)

2
\bigr) 
= exp

\bigl( 
 - p(Lx3)

2
\bigr) 
= exp

\bigl( 
 - L2

\bigr) 
,

c= exp
\bigl( 
 - p(Lx2  - Lx3)

2
\bigr) 
< 1.

To complete the proof of the lemma, it suffices to show that AL cannot be positive
semidefinite.

Since p is positively homogeneous of degree one, it follows from (A.19) that

p(Lx2  - Lx3)> (2 + \delta )L.

Thus, by using the Taylor series, we have

a2 = exp( - 2L2) = 1 - 2L2 + o(L2),

c= exp
\bigl( 
 - p(Lx2  - Lx3)

2
\bigr) 
= 1 - p(Lx2  - Lx3)

2 + o(L2)> 1 - (2 + \delta )2L2 + o(L2)
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1594 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

as L\rightarrow +0. Consequently, we have

| AL| = (1 - c)(1 + c - 2a2)> (1 - c)( - (4\delta + \delta 2)L2 + o(L2))

as L\rightarrow +0. Since 1 - c is obviously positive, | A| < 0 holds when L is sufficiently small.
Since AL is a 3\times 3 matrix, this means that A is not positive semidefinite.
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