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STABILITY OF FRONT SOLUTIONS OF THE BIDOMAIN
ALLEN-CAHN EQUATION ON AN INFINITE STRIP"
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Abstract. The bidomain model is the standard model for cardiac electrophysiology. In this
paper, we study the bidomain Allen—Cahn equation, in which the Laplacian of the classical Allen—
Cahn equation is replaced by the bidomain operator, a Fourier multiplier operator whose symbol
is given by a homogeneous rational function of degree two. The bidomain Allen—-Cahn equation
supports planar front solutions much like the classical case. In contrast to the classical case, however,
these fronts are not necessarily stable due to a lack of maximum principle; they can indeed become
unstable depending on the parameters of the system. In this paper, we prove nonlinear stability and
instability results for bidomain Allen—Cahn fronts on an infinite two-dimensional strip. We show
that previously established spectral stability/instability results in L? imply stability/instability in
the space of bounded uniformly continuous functions by establishing suitable decay estimates of the
resolvent kernel of the linearized operator.
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1. Introduction. The bidomain model is the standard mathematical model to
describe propagation of electrical signal in cardiac tissue [31, 19, 10, 14]. Cardiac
tissue can be seen as consisting of an intracellular region connected via gap junctions
together with the extracellular space. In the bidomain model, these two compart-
ments are homogenized as inseparable continua [28, 29]. As a result, quantities in the
intracellular compartment and the extracellular compartment and on the cell mem-
brane are defined everywhere in space. Let u; and u. be intracellular and extracellular
voltages of the cell membrane, respectively. In general, the bidomain model is given
of the form

C’m% — f(u,s) =div (4;Vu;) = —div (A.Vu,), where u=u; — u,,
)

where the constant C,, > 0 is the membrane capacitance, and A;, A, are the conduc-
tivity tensors, symmetric positive definite matrices that may be functions of position.
The function u = w; — u. represents the membrane potential, and s € R"(n > 1)
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represent the gating variables, which describe the opening and closing of ion channels
on the cell membrane. The first equation is a statement of conservation of electric
current applied to the intracellular and extracellular spaces. The leftmost side of the
first equation describes the transmembrane current, which consists of the capacitive
current term C,,0u/dt and the ion channel current term f(u,s). The ion channel
current f(u,s) depends on the gating variables s which in turn obey the differential
equation on the second line. The most important property of this model is that it
supports propagating pulse solutions, which correspond to the cardiac electrical signal
that coordinates the heart beat, the aberrations of which may cause cardiac arrhyth-
mias [19, 10]. Thus, it is of great scientific interest to understand the properties of
the traveling front and pulse solutions of the bidomain model.

There are many computational studies of the bidomain model [15, 6], but there
are relatively few analytical studies. The well-posedness of the bidomain model has
been studied in [32, 4, 11, 12]. A rigorous study of the homogenization limit can be
found in [29], and the paper [13] constructs large amplitude periodic solutions under
periodic forcing. We also mention a recent paper on stochastic forcing of the bidomain
model [16].

As an initial step toward a qualitative understanding of the full bidomain model
above, in [27] the authors studied the bidomain Allen-Cahn equation (see below) in
R2, in which the gating variable dynamics are ignored. Much like the classical Allen—
Cahn equation, the bidomain Allen—Cahn equation supports planar front solutions.
However, in sharp contrast to the classical Allen—Cahn model, it was found that the
planar fronts may become unstable as indicated by the study of the spectrum of the
linearized operator around the planar front solution. The main goal of the present
paper is to prove nonlinear stability and instability results for the planar front based
on the spectral findings in [27].

1.1. Model formulation and well-posedness. We now introduce the the
bidomain Allen-Cahn equation. Consider the following problem in R? or an infinite
strip (to be discussed shortly):

(L.1a) div (4; V) + div (A.Vu,) =0,
(1.1b) % — f(u)=div(A;Vu;), where u=1u; — u,.

In the above, A; and A. are spatially constant 2 x 2 symmetric positive definite
matrices. In (1.1b), the term f(u) is an unbalanced bistable nonlinearity. To be more
precise, we assume the following:

(i) f is smooth.
(ii) f has three zeros u = 0,a,1 with 0 < @ < 1, such that f'(0) <0, f'(a) >0,
(1) <o.

(iii) f(s)>0on (—o00,0)U(a,1) and f(s) <0 on (0,a) U (1,00).

(iv) [y f(s)ds>0.
The last condition (iv) means that f is unbalanced. In the case of the standard
semilinear diffusion equation u; = u, + f(u) with such a nonlinearity f, it is well
known that the traveling front solution connecting 0 and 1 converges to 1 as t — co.

By formally using the Fourier transform, the system (1.1a)—(1.1b) can be reduced
to a scalar equation for v = u; — u., which we call the bidomain Allen—Cahn equation,
of the form

(1.2) uy=—Au+ f(u),
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where A, which we call the bidomain operator, is a Fourier multiplier operator defined
on R? as follows:

Au=F 'QFu,
(13) _ QQek) o x
Q) = T Qo = KAk,

where k = (k,1)T € R%. The symbols F and F~' denote the Fourier transform and
its inverse on R?; namely, by letting x = (z,7)T € R?,

1 .
/ e~ kX (x,t) dx,
R2

a(k,t) = (Fu)(k,t) = o
u(x,t) = (Fta)(x,t) = L / e® x4k, t) dk.
2 R2
The Fourier multiplier symbol Q(k) is rational function in k that is positive and
homogeneous of degree two (Q(ak) = a?Q(k) for a > 0). In this sense, the bidomain
operator is similar to the (anisotropic) Laplacian, whose symbol is a positive second
degree polynomial in k.

As mentioned previously, our goal is to study the planar fronts of the bidomain
Allen—Cahn equation. We shall study the stability of planar fronts in an infinite
strip (see Figure 1). For this, it is necessary first to develop a solution theory on an
unbounded domain in contrast to previous studies in which solutions were constructed
on bounded domains [32, 4, 11, 12]. Here, we make use of the fact that, in our setting,
the fundamental solution to the linear bidomain equation can be written explicitly
using the Fourier transform. We now define the mild solution to the following initial
value problem for the bidomain Allen-Cahn equation:

(1.4) u(x,0) =up(x), up =—Au+ f(u) for ¢>0.

It will be technically convenient for us to construct our solution in the whole of R?
rather than in the infinite strip. Our solution is constructed in the space of bounded
uniformly continuous functions on R?, which we denote by BUC(RR?), endowed with
the topology of L>(R?):

Hu||BUC(R2) = HU||L°°(R2)~

The space BUC(RR?) is a closed subspace of L>(R?). The reason we prefer to work
in BUC(IR?) is that the mild solution, to be defined below, will fail to be continuous
at t =0 for initial data in L°°(R?) (see the proof of Lemma 2.4 item (iii)). Define G,

to be the fundamental solution of the linear equation u; = —Au:
1 .
1. - ik-x ,—tQ(k) k.
(1.5) Gix) = /R k@)

DEFINITION 1.1 (mild solution to the bidomain Allen-Cahn equation). Consider
(1.4), where ug € BUC(R?). For T > 0, we define u(x,t) € C*((0,T]; BUC(R?)) N
C([0,T); BUC(R?)) to be a mild solution of (1.4) if

¢

u(x,t):(Gt*uo)(t)—i-/OGt_s*f(u(~,s))ds, xeR? te(0,7),

where * denotes the convolution in R2.
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planar front
Un(d) X —ct)

planar front
UE+u)

FIG. 1. Planar fronts on R? and Qp,q with the (§,m)-coordinate system, where the §-axis aligns
with the direction of propagation n = (cos6,sinf).

In Lemma 2.6, we shall establish the existence and uniqueness of mild solutions. In
Lemma 2.8, we will see that mild solutions become immediately smooth in x € R? for
t > 0. The proofs of these results are very similar to the proofs of the corresponding
results for the semilinear heat equation in which A is replaced by the Laplacian. The
fundamental solution G; shares analytical similarities with the heat kernel. In fact, if
there is a constant 8 > 0 such that A; = A., then

B

(1.6) Q9 = 5.0,
In this case, —A = 3(1+8) "1V -(A;V), which implies that (1.2), after a suitable affine
transformation, reduces to the classical Allen—Cahn equation u; = Au + f(u). This
is known as the monodomain reduction. The important point is that the maximum
principle does not hold for the bidomain Allen—-Cahn equation (1.2) aside from the
monodomain case when A; = SA.. That is, the fundamental solution (or kernel) G;
is positive if and only if A; = BA.. This fact is proved in the Appendix A. Thus,
results based on the maximum principle for the classical Allen—-Cahn equations may
not hold in the bidomain case. One such result is the stability of planar fronts, which
is the focus of this paper.

The mild solutions constructed in Lemma 2.6 satisfy (1.4) but with the opera-
tor A identified as the generator of the analytic semigroup defined by G acting on
BUC(R?). Indeed, it is not immediately clear whether the original definition of A
as a Fourier multiplier operator makes sense even for sufficiently smooth functions in
BUC(R?), given that such functions do not decay as |x| — co. The semigroup prop-
erties of G; are established in Proposition 2.5. The definition of A here is abstract; in
Proposition 1.2, we prove that this solution is classical when considered on an infinite
strip.

1.2. Planar fronts on an intfinite strip. We now consider the planar front
solutions of the bidomain Allen—Cahn equation (1.2). We first make the following
observation. If a solution wu(x,t) of (1.2) depends on the space variable of only one
direction, then its behavior is identical to that of the standard Allen-Cahn equation.
More precisely, if u is expressed in the form u(x,t) = v(n(f) - x,t) with some unit
vector n(f) = (cosf,sinf)T and a function v(&,t) (€ € R,t > 0), then v satisfies the
following one-dimensional reaction diffusion equation:

ov 9%v
(17) 5 = Q)+ )
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Thus, as long as we deal with solutions of (1.2) with such symmetry, their behavior
is the same as that of the standard Allen—Cahn equation.

It is well known (see [5, 9], for instance) that, under the assumptions on f(u)

stated previously, the standard Allen-Cahn equation %1; = Au+ f(u) on R? has

planar front solutions of the form
u(x,t):@(n(9)~x—c*t), X:(x?y)TERZa
for each direction of propagation n(#) € S*, where ® and c, satisfy

(1.8) (&) + . ®'(€) + f(2(£)) =0,
(1.9) O(—00)=1, ®(+00)=0, ®(0)=a.

Since f is a bistable nonlinearity, the speed ¢, is uniquely determined, and the profile
® is also unique under the condition ®(0) = « in (1.9).

Similarly, by substituting u(x,t) = U(n(#)-x — ct) into the bidomain Allen-Cahn
equation (1.2), we obtain

(1.10) Qm(0)U" (&) +cU'(§) + f(U(£) =0,
(1.11) U(—oc0)=1, U(+o0)=0, a.

Thus, we find that, for each n(f) € S*, (1.2) on R? has the planar front solutions of
the form

(1.12) u(x,t)=Um(0) -x —ct), x=(z,9)T €R?
where U and c are given by
(1.13) U)=2(&/Kp), c=c.Ky, Kyg=+/Qn(h)).

We note that any translate u(x,t) =U(m(f) -x —ct+&p),&0 € R is also a planar front
of the bidomain equations. We also note that the profile and the speed of the planar
fronts depend on the value of Kjy. Such anisotropy may play a key role in the stability
and instability of front solutions.

The objective of the present paper is to study the stability of the planar fronts
given by (1.12)—(1.13) in the bidomain Allen—Cahn equation (1.2) on an infinite strip
in R? given by

Dy a= {X€R2 [0<x- (fsine,cosﬂ)T gd}.

This domain represents an infinite strip of width d that stretches in the direction
n = (cosf,sinf)T; see Figure 1. We consider the initial value problem of the form

(1.14a) up=—Au+ f(u), x€Qpq,t>0,

(1.14b) u(x,0) =up(x), x€Qgq,

under periodic boundary conditions. Here, by periodic boundary conditions, we mean
that a function w(x) defined on Qg 4 can be extended over R? that satisfies

(1.15) w(x + d(—sinf,cos0)T) =w(x), xcR>.

It is clear that if a function ug(x) on R? satisfies the periodicity condition (1.15), then
the solution u(x,t) of (1.2) on R? with the initial value ug satisfies (1.15) for all ¢ >0

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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so long as the solution is unique. This is because (1.2) is equivariant with respect to
spatial translation (1.15). This means that the well-posedness and regularity of the
solution for the problem (1.14) follow immediately from those for the problem on R,

The main reason we consider the problem in an infinite strip rather than in R? is
that this will greatly facilitate the study of planar front stability, as we will discuss
shortly. An added benefit of working in the infinite strip is that we can claim that mild
solutions, defined in Definition 1.1, are classical in the sense to be specified below.
Let BUC(€g,4) be the set of functions in BUC(R?) which are periodic in the sense
of (1.15).

PROPOSITION 1.2. Let ug € BUC(Qg,q). The initial value problem (1.14) has
a unique mild solution as defined in Definition 1.1. Furthermore, this solution is
classical in the following sense. For t >0, there are smooth bounded functions w;(x,t)
and u.(x,t) satisfying u; — ue = u(x,t) such that (1.1a) and (1.1b) are satisfied. The
functions u; and u. are uniquely determined up to an additive constant.

The proof of this assertion uses a Fourier series decomposition of u with respect
to the direction parallel to the planar front (n-direction defined below; see Figure 1)
and thus depends on the fact that the solution is defined on an infinite strip and not
the whole of R%2. For general mild solutions defined on R?, there are fundamental
difficulties associated with solving the second order elliptic equation (1.1a) satisfied
by u; and u,.

1.3. Spectral stability of planar fronts. Let us now turn to the problem of
the stability of planar fronts. We first introduce a coordinate system (£,n) where the
£-axis coincides with the direction of propagation n and the n—axis is parallel to the
planar front. In this coordinate system, (1.14) can be written as

ou

(1.16a) 5 = —Aout f(uw), (EmeRxSL, >0,

(1.16b) w(€,n,0) =uo(E,7m), (£,n) R x S4,

where Ay denotes the transformed operator Agu=F ~1QyFu. Here, F is the Fourier
transform in (£,7) € R? and the Fourier multiplier symbol Qg (k) is given by

Q! (k)Q° (k) 0 T 40

(0 G gl rquag QeI
0 4 [ cosf —sinf

(1.18) Aj.=RoAi Ry, R9_< sinf  cos@ >

More precisely, Ag should be seen as the generator of the analytic semigroup G (with
Q replaced by Qg in (1.5)) acting on BUC(R?) (or BUC(Qg.4)); see Lemma 2.6 and
the discussion between (1.6) and (1.7). The traveling front solutions in this coordinate
system are given by U(§ — ct + &) for any constant & € R. In order to facilitate our
analysis of planar fronts, we will mostly make use of the moving coordinate system

~

(&,m)= (£ —ct,n). Then (1.16a) in this new coordinate system is given by

Ou ou
(1.19) a:—A9u+ca—§+f(u).

In this moving coordinate system, the traveling front solutions U (€ + &p),&p € R are
stationary solutions.
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In order to study the stability of the planar fronts, consider the linearized equation
around U =U (§):

(1.20) %zﬁv, Cv——Agv—l—c—E + f/(U)v.
In [27], the authors studied the spectrum of £ as a closed operator on L?(R?). First,
take the Fourier transform in 7. We have, for each [ € R,

c%l

7 _A vur /
(1.21) 5 Ly, L= lvl+caf+f< vt

A =F'Qolk, ) Fe,  wi(&,t)=Fpu(&n.t),

where F¢ and F,;, are the Fourier transform in £ and 7, respectively. The operator
L; governs the growth of perturbations with wave number [ in the 7-direction. For
each | € R, L; is a closed operator on L?(R) with domain H?(R). Let o72g2)(£) and
or2(r)(L1) be the spectra of £ and L, respectively, as operators L?(R?) and L?*(R).
By Proposition 2.2 in [27], we have

UL?(W)(E) = U orzw) (L)
lER

The study of the spectrum of £ thus reduces to the study of £;. Note that, in the
case of the infinite strip, the relevant spectra will be those at | =2xk/d, k € Z.

It is important to note that the operator £y governs the growth of the solutions
of (1.20) under perturbations that are independent of 1. In other words, this operator
coincides with the linearization of the classical Allen—-Cahn equation:

ov ov
81& *;C()U ,Co’U:* +c= +f

(1.22) Keggg o€ (U)v,

where Ky is the constant that appears in (1.13). The spectrum of Lo on L?(R) is thus
well known; namely, o2 (Lo) contains 0 as a simple eigenvalue, which comes from
the translation equivariance of (1.13) in the direction ¢, and

(1.23) o(L£0)\{0} C {2 € C|Rez < 4}

for some constant § > 0 that depends only on f.
We now define the spectral stability of the planar front in L?(R?).

DEFINITION 1.3 (spectral stability of planar fronts in L2(R?) [27]). Let U and ¢
be defined as in (1.12)—(1.13), and let L; be the operator defined by (1.21). The planar
front U(€) in (1.19) on R? is spectrally stable if

or2mw) (L) C{z€C|Rez< 0} forall 1#0.
It is spectrally unstable if there exists a value of | such that
or2®) (L) N{z€C|Rez >0} #0.
Remark 1.4. We exclude the case [ = 0 in the above definition since Lo does

not play a role in the stability properties of the planar front. This is because Ly is
concerned with perturbations that are independent of 1, under which (1.2) reduces to
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the standard Allen—Cahn equation (1.7); hence the planar front is always stable (with
asymptotic phase) under such perturbations. As mentioned above, the eigenvalue
0 € o2(r)(Lo) comes from the translation equivariance of (1.2) in the direction £, and
its corresponding eigenfunction U’(£) represents a phase shift of the traveling front.

We now summarize, without proof, the main results of [27] on the spectral stability
of the planar fronts.

PROPOSITION 1.5 (see [2, Proposition 2.3]).
One has

2wy (L) C {z €C|Rez < frmax — lez} ,

where fmax and mg are positive constants defined by

p .
Jmax = Orél?gl f'(s), mqg= glel]leQH(Sa 1).

The above proposition shows that the wave is stable to short wave-length per-
turbations (|I| large). The value of fiax, however, is positive, and the above does
not rule out the possibility that the planar front may be unstable to perturbations of
longer wave-lengths. Planar fronts of the bidomain Allen-Cahn equation can indeed
become spectrally unstable. To state the instability results, we introduce the notion
of the Frank diagram.

DEFINITION 1.6 (Frank diagram).
The Frank diagram F C R? is the region enclosed by the Frank plot defined by

OF = {(cos@,sine)T/Kg, 0<6<2r},

which is equivalent to OF = {k = (k,1)" ¢ R* | Q(k) =1}.
In Figure 2, we plot the Frank diagram for the following choices of A; and A.:

_(1+a 0 _(l—a 0
a2o (0 )= ( )<

The importance of the Frank diagram in the study of the bidomain model has been
recognized in many studies [1, 2, 3]. In particular, [10] argues that the loss of convexity
of the Frank diagram may play an important role in the electrophysiology of the heart
after myocardial infarction.

We point out that the notion of the Frank diagram plays a central role in aniso-
tropic growth models, which is important, for example, in crystal growth problems
[20]. In this context, the most closely related to the bidomain Allen—-Cahn equation
may be the anisotropic Allen-Cahn equations studied, for example, in [7, 8, 23].

We now state the instability results relating the Frank diagram to the spectral
instability of fronts.

PROPOSITION 1.7 (see [27, Theorem 4.2 and Corollary 4.3]). There is a 6 > 0
such that for |l <& there is an eigenvalue \; of L; satisfying the following properties:

1. The eigenvalue A\ is simple and is the principal eigenvalue of L; in the fol-
lowing sense: there is a positive constant vs independent of | such that

OL2(R) (El)\{)\l} C {Z € C|Rez < —V(;}.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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25F
2r \ /
1B\ /
e L \\ /)
< I 4
05 \ a=0.3 ’
0
a=05
05 a=0.7
-1 .
0 w/4 w/2
0

Fi1G. 2. (Top) The Frank diagrams for three different parameter values when A; and Ae are
as in (1.24). Here a =0.7, 0.5, and 0.3. The value a = 0.5 is the threshold below which the Frank
diagram is convex. The directions for which the Frank diagram is locally concave correspond to the
directions where k(0) < 0. (Bottom) Plot of the curvature x(0) of the Frank diagrams given in the
top 1mage.

2. The eigenvalue \; is a C? function of | and has the following expansion near
1=0:

(1.25) N =iaicl — apl? + O(1%),
where ¢ is the speed of planar front (see (1.13)), and a1,aq depend only on
A; A, and 0.

3. Let k() be the curvature of the Frank plot OF at the point (cosf,siné)/Ky.
Then g in (1.25) can be written as

(1.26) ap = Ko(1+a2)*2k(0).

In particular, the planar front propagating in the direction n(6) = (cos6,sin )
is spectrally unstable in the sense of Definition 1.3 if k() <0.

As can be seen from Figure 2, for different choices of a and b in (1.24), k(f) can
indeed be negative for a range of values of §. For instance, if b=10 and |a| > 1/2 in
(1.24), k(0) <0 if 0 satisfies the following condition:

1 2
(1.27) |cos(20)] < al 1-— ﬁ\/ 1—a?.
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In [27], a more detailed description, especially the explicit expressions for ag,a; in
terms of a,b,0 are given for the case (1.24).
We make some further remarks on the results of [27]:

(i) From Proposition 1.5, we find that, for every direction n, the planar front is
spectrally stable under short wave-length (i.e., |I| is sufficiently large) pertur-
bations.

(ii) From Proposition 1.7, we find that, for every direction n, spectral stability un-
der long wave-length (i.e., |{| is sufficiently small) perturbations is determined
by the convexity of the Frank diagram F' in the direction n. In particular,
stability to long wave-length perturbations do not depend on the specific form
of the bistable nonlinearity f.

(iii) Spectral stability for intermediate wave-length perturbations (|!| is neither
sufficiently large or sufficiently small) is largely unknown. However, in certain
specific examples of f, the spectral stability can be studied in greater detail.
There are choices of f for which planar fronts are spectrally unstable in every
direction of propagation. See section 5 of [27] for details.

Note that, in (1.25), A; — 0 as |I| — 0. This implies that even if we exclude the
translational mode Ao = 0, the spectral set o2(g2)(£) comes arbitrarily close to the
origin. This lack of spectral gap presents considerable difficulty in studying nonlinear
stability of the front. Working in the infinite strip Qg 4, the values of [ are restricted
to I = 27k/d,k € Z, and we have a spectral gap. Even in the classical Allen-Cahn
case, the stability of planar fronts on the whole of R? is subtle and relies heavily
on the maximum principle. Certain ergodicity conditions must be placed on the
perturbations to ensure convergence to the planar front, and even when convergence
can be proved, the rate is not necessarily exponential because of the lack of a spectral
gap [17, 21, 25, 26, 33].

1.4. Nonlinear stability of planar fronts. We are now ready to state the
definitions of nonlinear stability and instability of planar fronts on the infinite strip

o~

Q4. Recall that U(§ — ct) (or U(£)) is the planar front solution to (1.16).

DEFINITION 1.8 (nonlinear stability of planar fronts on Qg 4). Let U and c be
defined as in (1.12)~(1.13). The planar front U is stable if, for any ¢ > 0, there
exists a constant 6 > 0 such that, for any solution u of (1.16) satisfying ||uo(&,n) —

o~

Ul uc@xsyy <90, it holds that

o~

sup u(f,n,t)—U(fA—ct)‘SE for all ¢>0.

(E,n)ERX S}

It is called stable with asymptotic phase if it is stable and if there exists a constant
65 >0 such that, for any solution u of (1.16) satisfying |luo(&,n) — U(§)l| ucmxsy) <
O, it holds that

~ ~

(1.28) lim sup[u(@n,t) ~ UE—ct+&)| =0

t—o00 o~
(€,m)€ERXS]

for some constant £ € R. We say that it is exponentially stable with asymptotic
phase if the convergence (1.28) takes place exponentially:

sup
(EmERxX S}

W@ t) —UE —ct+ 50)] <Ce " forall t>0

for some constants &g € R, C' >0, and v > 0.
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DEFINITION 1.9 (nonlinear instability of planar fronts on g 4).

Let U and ¢ be defined as in (1.12)—(1.13). The planar front U is unstable if it
is not stable, namely if there exists a constant €, >0 such that, for any § >0, there
exists a solution of (1.16) satisfying |[uo(&,n) — Ul pucmxsy) <6 and

sup  |u(€n,T) —U(€ —ct)| > e,
(En)eRxSY

for some T'> 0. We say that U is orbitally unstable if there exists a constant e, >
0 such that, for any § > 0, there exists a solution of (1.16) satisfying ||uo(&,n) —

~

Ul sucmxsyy <6 and

inf  sup u(E,n,T)—U(fA— ct+&)| > e
¢'€R (¢,n)eRx S}

for some T > 0.

Note that the above definitions of nonlinear stability and instability are in the
BUC(Qg,q) topology and we thus allow perturbations that do not decay to 0 as § tends
to infinity. In contrast, all spectral results quoted above were in L?(R?). In section
3, we first prove that the linearized operator £ generates an analytic semigroup on
BUC (Proposition 3.1), which follows from our earlier result on semigroup generation
by the bidomain operator A (Proposition 2.5). To understand the decay and growth
properties of the linear semigroup generated by L, it is thus sufficient to study the
spectrum of £ in BUC(Qy, 4). The rest of section 3 is devoted to relating the spectral
results in L?(R?) with the spectral properties of £ acting on BUC(R?) resolvent
(Proposition 3.2). This hinges on a careful study of the resolvent kernel of £; and its
dependence on . By proving that the resolvent kernel of £; decays sufficiently fast as
|€] — oo, we show that any point in the resolvent set of £;, considered as an operator
in L%(R), is also in the resolvent set of BUC(R). A further study on the dependence
of the size of the resolvent kernel with respect to [ allows us to obtain Proposition
3.2, stating that the spectrum of £ as an operator on BUC(Qy,d) is contained in the
L?(R) spectra of £;,]=277Z. In section 3.2, the foregoing results on the resolvent set
are combined with observations on the Fredholm properties of the operator £; to prove
that the nonnegative real parts of the BUC and L? spectra of £ are identical. For
details of the standard theory of analytic semigroup we applied, see [22], for instance.

In section 4, we prove our main results concerning the relationship between spec-
tral stability (instability) and nonlinear stability (instability). Statement (i) in The-
orem 1.10 is concerned with the case that the planar front is spectrally stable in
the direction of the strip, while statement (ii) is concerned with the case that it is
spectrally unstable in the direction of the strip.

THEOREM 1.10 (spectral stability and nonlinear stability).
The following hold:

(i) nonlinear stability: if the planar front on R? is spectrally stable in direction
n(0) € St in the sense of Definition 1.3, then, for any d >0, the planar front
on Qg q is exponentially stable with asymptotic phase in the sense of Definition
1.8.

(ii) nonlinear instability: if the planar front on R? is spectrally unstable in
direction n € S* in the sense of Definition 1.3 and if d > 0 is sufficiently large,
then the planar front on Qg 4 is orbitally unstable in the sense of Definition
1.9.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/23 to 71.224.200.35 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1556 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

Our second result below states that the planar fronts on a sufficiently narrow strip
are stable regardless of the direction of the strip. We note that, only short wave-length
perturbations can exist in narrow strips due to the periodic boundary conditions.

THEOREM 1.11 (nonlinear stability on narrow strips). If d > 0 is sufficiently
small, then for every n(f) € S* the planar front on Qg 4 is exponentially stable with
asymptotic phase in the sense of Definition 1.8.

To prove Theorems 1.10 and 1.11, in section 4.1, we first decompose the solution
near a traveling front profile into a component that aligns with the traveling front and
the component that is transverse to the family of front solutions. We then estimate
the growth and decay of the component transverse to the front solutions by standard
arguments using the variation of constants formula (see, for example, [22, 18]). For
this, the decay and growth properties of the analytic semigroup generated by L,
implied by the spectral results in section 3, plays a crucial role.

Finally, in Appendix A, we prove that the bidomain operator does not satisfy the
maximum principle unless A; and A, are proportional to each other.

1.5. Bifurcation of planar fronts. In concluding this introduction, let us
briefly describe what happens to the front after it has been destabilized.

According to Proposition 1.7 mentioned above, the principal eigenvalue \; of £;
can become positive for sufficiently small |I| when the planar front is propagating in
a direction € for which the curvature x(6) of the Frank plot OF is negative. On the
other hand, when || is sufficiently large, the spectrum of £; is in the left half of the
complex plane, as stated in Proposition 1.5. This indicates that, in such directions, a
planar front can be destabilized as the width d of the strip becomes larger. This and
other properties of the bidomain Allen—Cahn and FitzHugh—-Nagumo systems were
explored computationally in a recent paper [24]. Simulations indicate that, when a
planar front is destabilized, the solution typically develops a front of saw-toothed
profile; see Figure 3. Such front solutions rotate periodically along the direction 7
(right-bottom of Figure 3), except for special symmetric cases (for example, 8 =7 /4
and b=01n (1.24)), in which the saw-tooth fronts do not rotate (right-top of Figure 3).
A rigorous mathematical analysis of these and related phenomena will be a subject
of future study.

2. Existence and regularity of the solution. The aim of this section is to
show the existence and basic properties of the solution of the bidomain Allen—-Cahn
equation (1.2) on R? and Q9,q. The bidomain operator A introduced in the previous
section is a self-adjoint operator on L?(R?). In this section, we shall first show that —A
generates an analytic semigroup on BUC' (Rz) in a certain appropriate sense, where the
explicit expression for the fundamental solutions of the linear bidomain equation plays
an important role. Then we shall discuss the existence and uniqueness of the initial
value problem of the bidomain Allen—Cahn equation on R?, where by the solution we
mean mild solution; see Lemma 2.6. Finally, we discuss the problem on the infinite
strip g 4. Throughout this section, we let x = (z,9)T € R?, x' = (2/,/)T € R?, and
k= (k)T R

2.1. Linear bidomain equation on R?. Let BUC*(R?) be the space of func-
tions on R? all of whose partial derivatives of order k and below are bounded and
uniformly continuous with norm

(2.1) llull puck w2y = Z 0% ull oo (2),

0<al<k
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0=31/16 6=31/16
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F1G. 3. An unstable front for the bidomain Allen—Cahn model. Here a =0.9 and b=0 in (1.24)
and the nonlinear bistable function f(u) = —u(u — 0.4)(u — 1). Planar fronts propagating in the
directions of 6 =7/4 and 6 = 3w /16 are shown. Left images are well-developed destabilizing fronts
at a large time. Right images are the time sequences of the front location. When a planar front is
destabilized, the solution typically develops a front of saw-toothed profile. For numerical procedure,
see [27, 24].

where @ = (a1, a2), a; = 0,1,2,... is a multi-index and |a| = a; + ag. It is eas-
ily checked that BUC¥(R?) is a Banach space under the above norm. Note that
BUC°(R?) = BUC(R?). To study the analytic semigroup on BUC¥(RR?) generated
by —A, we first consider basic properties of the solution to the Cauchy problem of the
linear bidomain equation on R?. Namely, we consider the problem of the form

(2.2a) u=—Au, xeR? >0,
(2.2b) u(x,0) =up(x), xcR?

where ug € BUC(R?).
Suppose g is sufficiently smooth and decays sufficiently fast as |x| — co. We may
then take the Fourier transform in x € R? in the above equations to obtain

(2.3a) iy =—-Q(k)i, keR? >0,
(2.3b) i(k,0) =ao(k), keR?
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The solution 4(k, t) of (2.3) is given by d(k,t) = e 9™ g4 (k), and hence the solution
u(x,t) of (2.2) is expressed by using the inverse Fourier transform as
1
u(x,t) = 5= (F71eT909 ) wug(x) = (Go o) (%),
T
where G, is given by
1

Gi(x) = W /R2 ek xR gi .

Since Q(k) is homogeneous of degree two, by setting K = v/tk, it is rewritten as

(2.4) Gi(x) = (271)% /R exp <’K\/EX) e QK = %Gl (2) .

Observe that the expression G * up will make sense even when ug € BUCF(R?)
so long as Gy is in L'(R?). In what follows, we derive estimates for G; and G; and
establish some basic properties of the expression (Gy * ug)(X).

Before we state and prove our results, let us make some simple observations about
the multiplier Q(k). By the positive definiteness of the matrices A; and A, (see (1.3)),
it is easily seen that there are positive constants Ay, and Anpax satisfying:

(2.5) Amin k|2 € Q(K) < Amax|k|?.

Moreover, for any multi-index a, the function 9 Q(k) is homogeneous of degree 2 —|«/|
and satisfies

(2.6) 102 Q(K)| < Co k|21

for a positive constant Cl,.
LEMMA 2.1. For any multi-index o, one has 903G, € L'(R*) N L>®(R?).
Proof. 892Gy € L= (R?) follows easily from (2.5). Indeed, we have

1
(2r)?

1
0261 0)| < gy [ e @M < o [ ek < o,
0 R2 R2

To prove 2G4 € L'(R?), we estimate z302 G, (x). By integrating by parts, we have
1

|2208 Gy (x)] = ’ k® (9pe™ ™) eQ(k)dk‘

(

(
= Gny /R

From (2.5) and (2.6), there exists a positive constant C' such that

o7
1 ik-x 93 a,—Q(k)

272 /Rge d; (k e )dk
1

83 (k“e—Q“‘)) ’ dk.

‘a,?; (kae_Q(k)) ‘ - ]a;jka — 302k°9,Q(k) — 39, k“02Q(K) + 39,k (8,Q(k))?
+3k* Q) Q (k) — kT Q(k) — k™ (3 Q(K))*|e~ M
<O (KPPHoT 4 i) b P,
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This implies 9 (k*e~ W) € L1(R?), and hence supycpz [£°92G1(x)| < 0o holds. In
the same way, we can prove supy gz |y202G1(x)| < co. Consequently, we obtain

sup [(1+4[x[*)05G1(x)| < cc.
x€R?

This implies 02G; € L' (R?). 0

LEMMA 2.2. There exists a positive constant C such that
(2.7) 10:Gel| 1 g2y <CtF, £>0.

Proof. By direct computations, we have

8th(X) = 7® Az Q(k)eikxeftQ(k)dk _ 7t72H (X) ’
— L ik-x _—Q(k)
H(X) - (27’()2 /R? Q(k)e e dk.

In what follows, we shall prove H € L'(R?). It suffices to prove (2.7) since | HIl L1 (r2)
is equal to ||t’1H(-/\/f)HL1(R2). For this purpose, we first estimate z3H(x). By
integrating by parts, we have

(271T)2

’IJH(X)| /]Rz Q(k) (8£6ik-x) eQ(k)dk‘
1

(27T)2/]R ekxp3 (Q(k)eiQ(k)> dk‘

L

From (2.5) and (2.6), there exists a positive constant C such that

07 (Qe20)| = |oFQ(K) - 622QM)AQK) + 3(:Q(K))* - QURQ(K)
+3QUAQKEQ(K) — QK) (BQ(K))? e~
< C (k[P + k|7 e Aminlkl®,

This implies 93(Q(k)e~2®)) € L'(R?), and hence supyeg2 |+ H(x)| < oo holds. In
the same way, we can prove supyeg2 |y>H(x)| < 0o. On the other hand, H € L>=(R?)
follows easily because (2.5) and (2.6) imply that

1 2
Hx)| < = [ Ck]Pe ik gk < 0o
1(x)| < s [, CIK
for some constant C'. By combining these estimates, we have

sup |(1+ |x|3)H(x)\ < 0.
xER?

This implies H € L'(R?). u|

Lemmas 2.1 and 2.2 lead to Lemma 2.3 below. It implies that the regularity of
Gt xug is basically the same as that of the solution of the linear heat equation u; = Au
on R?.
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LEMMA 2.3 (regularity of Gy x ug). Let ug € BUCF(R?). Then the solution
u(x,t) = (Gt * ug)(x) of the linear problem (2.2) satisfies the following:

(i) For any multi-indezx o, one has
« —laly aa
(2.8) 105 (Ge*uo)ll puckmey <t~ 2 905Gl L1 w2y lluoll puck w2y, t>0.
(ii) There exists a positive constant C such that
(2.9) 100(Gy xwo) | uer ey <t~ Clluollpuer®ey, t>0.

Proof. We first note that if w € BUC(R?) and g € L' (R?), then g*w € BUC(R?)
and

(2.10) llg *wl pucm) <9l @)llwl srem?)-

This is a consequence of Young’s inequality and the fact that translation commutes
with convolution:

(2.11)
g * wl| oo (r2) < (|9l L1 (r2) lw]| oo (R2),
HTx’ (g * w) —g* U}||Loo(R2) = ||g * (Tx/w — 'LU)HLOO(R2) S ||g||L1(R2)||Tx/w — wHLoo(]Rz),

where (Txw)(x) =w(x —x’).
Since 902G € L'(R?) holds from Lemma 2.1, we have

092Gy [ —=
()
for any ¢ > 0. This gives (2.8) since, for any multi-index « and |3| < k, we have
(2.12)

1082 (G *uo) || puowe) = 102Gy x Oduoll uc ) < 108 Gl 1 2y 10200l By 2y

[} — Lo _ ol o
||ath||L1(R2) =t (1+ 2 )‘ =t 2 ||8xG1||L1(]R2)

L1 (R?)

where we used (2.10). Similarly, (2.9) follows immediately from Lemma 2.2. |

LEMMA 2.4. The family of linear operators {T(t)}+~o defined by T (t)ug = G¢*ug
is an analytic semigroup on BUC*(R?).

Proof. T(t) satisfies the following:
(i) T(t)T(s) =T(t+ s) holds for any t,s > 0. This follows immediately from

GGy = 1 (f—le—tQ(k)) « 1 <]_——16—5Q(k)>

2 27
1 — - s
= F 1 {e (t+ )Q(k)} = Glirs).

(ii) It holds from Lemma 2.3 that there exists a positive constant C' such that
1T ()uoll puck 2y < |Gl L1 m2)lluoll Buck 2y,
ItT" (t)uoll sk 2y < Clluoll puck w2y

hold for any ¢ > 0, where T”(¢) is the derivative in the strong sense.
(iii) limy_, 40T (t)up = ug holds in the topology of BUC* (RQ). This follows from
the explicit expression of Gy given in (2.4).
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Thus, {T'(t)}¢>0 is an analytic semigroup in BUC*(R?); see Proposition 2.1.9 of [22],
for instance. o

For functions that decay sufficiently fast at infinity, the bidomain operator A may
be defined as a Fourier multiplier operator as in (1.3). However, this does not work
in BUC*(R?). Functions that do not decay at infinity (such as the constant function
u= 1) have a Fourier transform that is not regular at the origin, making it difficult to
define A as a Fourier multiplier since the symbol Q(k) is discontinuous at the origin
(see (1.3)). To avoid this technical difficulty, we make use of the above lemma and
define A on BUC*(RR?) as the generator of T'(t) as follows. Let Dy(A) C BUCK(R?)
be the domain of A:

T _
(2.13) ~Au= lim, Wu=v ) puckm®?),
t—
T _
(2.13) DuAyz{ueBUOWR%}TO(ﬂ?“emaMnBUCWR%}.
—

We may define the norm Dy (A) as follows:

(2.15) llullp, () = lull Buck w2y + [[Aull puck r2)-

We will not attempt to characterize Dy (A). We will, however, prove the following
result. Let C¥7(R?), k=0,1,2,..., 0 <~ < 1, be the space of functions whose kth
order partial derivatives are v Holder continuous. The C*Y norm is defined as

HUHc’m(R?) = ||u||BUck(JR2) + Z ||‘9§?UHCW(R2) )
lor|=Fk
u(x +x') — u(x)|
x| '

lullcv 2y = sup
x,xIE]R2

PROPOSITION 2.5. Consider the operator A and its domain Dy(A) defined in
(2.13) and (2.14). We have Dy(A) C C**17(R2), 0 <y < 1. Furthermore, we have
the following estimate for u € Dy(A):

(2.16) [ullortrv ey < Crqyllullp,ay, 0<y <1,

for a constant Cy ~ that depends only on k and .
Proof. Using (2.8), we have

ullpuck®r?) = Lol|U||BUCk(R?)>
1T (@)ull < Collul
1
o IT@ullsvorn <Cr (2 +1) lullsvore,
1
1T (t)ull pucrrzmey < Co (t + 1) llull Bucr (2

for some positive constants Cy, C7, and C5. First, note that

/ "~ exp(—)T(t)udt
0

< / exp(—) [T (E)ull puor gaydt
0

<Cy / exp(—t)dt]|ul| gy z2) = Collull suon e,
0
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where we used the first inequality in (2.17) in the second inequality. This implies that
(1+ A) has a bounded inverse and, for u € BUC*(R?), we have

(2.19) (1+A)lu= / exp(—t)T(t)udt.
0
Using the interpolation inequality on Holder spaces, we have

HT(t)uHC’“‘*'lv’Y(]RQ) < O|‘T(t)u||g_[jvck+2(ﬂg2) ||T(t)u||%Uck+1(R2)

(2.20) 1
<Cj3 <t(1+7)/2 + 1) [ull Bucrrz),

where we used (2.17) in the second inequality. We have
10+ 8) Mallcusaoen < [ esp(-OIT(Oulonmayde
0

(2.21) /o
< ([ (s +1) expl-0)t ) lull v < lullaves s

where we used the fact that (1++)/2 <1 to conclude that the integral in the last line
is finite. Any element v € Di(A) can be written as v = (1 + A)~tu. Thus, the above
inequality can be written as

(2.22) lvller+ry @y < Cyl[(1+ A)vl|gyermey  for any v € Dy (A).

The triangle inequality applied to the last expression yields the desired inequality. O

2.2. Bidomain Allen-Cahn equation on R2. In this subsection, by using
the fundamental solution G; and the analytic semigroup constructed in the previous
subsection, we discuss the existence and basic properties of the solution u(x,t) of the
initial value problem of the bidomain Allen-Cahn equation on R? of the form

(2.23a) ug = —Au+ f(u), xeR? >0,
(2.23Db) u(x,0) = up(x), x€R?

The first lemma implies the local existence of the solution, which is derived im-
mediately from Theorem 7.1.2 and Proposition 7.1.10 of [22]. Thus, we omit the
proof.

LEMMA 2.6 (local existence of solutions of (2.23)). Assume uy € BUCF(R?).
Then there exists a constant T >0 such that the problem (2.23) has a unique mild so-
lution u(x,t) € C*((0,T]; BUC*(R*))NC([0, T]; BUC*(R?)) in the sense of Definition
1.1. Furthermore, u(x,t) satisfies

ou
E__Au+f(u)7 t>07

where A is defined in (2.13).

We also state the following result on the continuity with respect to initial data,
which is also standard (see [22]).
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LEMMA 2.7 (continuity with respect to initial data). For any ug € BUCF(R?),
there is a constant § > 0 such that the time T in Lemma 2.6 can be taken uniformly
for initial data uo satisfying ||[to — uoll pucr w2y < 0. Let u be the mild solution cor-
responding to ug. Then ||u(t)|| pucrme)y < Mo, 0 <t < T, for some positive constant
My >0 that does not depend on the choice of ug.

The next lemma shows the regularity of the solution of (2.23) in x € R?, which is
derived by estimating the fundamental solution G directly. Let BUC*(R?) consist
of functions that belong to all BUC*(R?),k € N.

LEMMA 2.8 (regularity of the solution of (2.23) in x). Let u(x,t) be the solution
of (2.23) defined on R? x [0,T]. Then u(-,t) € BUC™(R?) for each t € (0,T].

Proof. Let any t € (0,T] be fixed, and let « be any given multi-index satisfying
|a] = 1. Differentiating the formula

(2.24) u(x,t) = (G *up)(t) + /Ot Gi_s* f(u(-,9))ds
and then applying (2.8) in Lemma 2.3, we have
102 w(x, t)|| oo (2) < 7202 G| 1 2y 1ol oo m2)
+ /Ot(f = 8) 2|02 G1 [l ) | F (s 9)) [ oo 2y s

=172||0x G1ll L1 2y [[uo | Lo (r2)
+ 2VE|102 G || 1 2y | f ()| oo (r2 [0,
< 0.
This implies u(-,t) € W (R?) for each t € (0,T].
Let any t € (0,7] be fixed, and let « be any given multi-index satisfying |aJ =2.
!/

We choose multi-indexes o and o'’ that satisfy || =1, |&/'| =1, and 03 = 0% 8,0(‘/ .
Setting u.(x) :=u(x,t/2), we have
t
(2.25) u(x,t) = (Gyyo * us ) (t) + Gi_s * f(u(-, 8))ds.
t)2

Differentiating this formula and then applying (2.8) in Lemma 2.3, we have
!
fogutOll e < (5)  102Gallscan el

¢ 1 1 ’
+/t (t=5)72110% Gillpawe)llf (u(-; )08 ul-, s)|| Lo (r2) ds

/2
t —1
(3) 106 osgen e
! /
+ V2|05 Grllpr w2yl ()T wll oo (2 [t /2,1))
< o0.

This implies u(-,t) € W°(R?) for each t € (0,T]. From the bootstrap argument,
for any k = 3,4,..., we obtain u(-,t) € W for each t € (0,T]. Consequently,
u(-,t) € BUC*(R?) holds for each t € (0,7]. 0
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2.3. Bidomain Allen-Cahn equation on the infinite strip ¢ 4. In this
subsection, we consider well-posedness and the regularity of the solution of the bido-
main Allen-Cahn equation on the infinite strip Qg 4 as given in (1.14). There is a
one-to-one correspondence between any function on g 4 and its periodic extension
to all of R? using (1.15). Recall that BUC(Qg 4) consist of functions of BUC(R?)
which are periodic in the sense of (1.15). The space BUC (€, 4) may thus be viewed
as bounded uniformly continuous functions defined on the strip 2 ¢ with periodic
boundary conditions.

DEFINITION 2.9 (mild solution of the bidomain Allen-Cahn equation in g 4).
Consider the problem (1.14) where ug(x) € BUC(Qgq). The function u(x,t) €
CH((0,T); BUC(Q9,4)) N C([0,T); BUC(Q9.,4)),T > 0, is a mild solution to (1.14) if
the periodic extension of u(x,t) via (1.15) is a mild solution in the sense of Definition
1.1 with initial data given by the periodic extension of ug(x).

The well-posedness and the regularity of the solution u(x,t) of (1.14) follows
immediately from those in the previous subsection. This establishes the first half of
Proposition 1.2.

We now show that this solution is classical. To proceed further, we first introduce
a coordinate system on €y 4. We let

T cosf —sinf
(2.26) x= (y) - (sin9> &+ ( cosf )7]~

In this coordinate system, (£,7) € R x S} =y 4. The definition of the coordinate £ is
what we referred to as E in section 1. In this section only, we shall use £ instead of E
to avoid cumbersome notation.

We shall often expand a function v(§,n) € BUC(R x S}) in terms of its Fourier
series in the n-direction:

) d
27) wlem) = Y vamnsalexplnibn/d). (€)= [ o) exp(=ita)d.
k=—o0

We first prove the following result. Let BUC*(Qg4),k € N, be the subset of
BUC(Qg,4) with bounded continuous kth order derivatives in BUC(€g,4). A function
in BUC®(£2y.4) belongs to all function BUC*(Qy 4),k € N.

The operator Ag, the matrices A%, A%  the symbol Qg, and other mathematical
objects all depend on 6. In what follows, however, we will mostly be working with a
fixed value of 0, and we will thus omit this dependence to avoid cluttered notation.

PROPOSITION 2.10. Consider a function v € BUC™(§Qg,q). Then there exist
v, Ve € BUC™(Qy q4) satisfying
(2.28) V- (A;Vu;) + V- (A Vo) =0, v, —v.=0.

The functions v; and v, are uniquely determined up to a constant.

It is possible to relax the assumption on the regularity of v with corresponding
changes in the regularity of v; and v., as will be clear in the proof. We will only need
the smooth case, and we will thus not pursue this here.

Proof. Equation (2.28) may be rewritten as the following equation for v;:

(2.29) V(A + A) V) = V- (A.V).
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Let ¢;(k) = Qi(k,1) and ¢.(k) = Q.(k,1). Note that ¢; and ¢, are both quadratic in
k. Let
qi(k) ca(k)

(2.30) a®ra® tTa®ram)

where ¢ is a constant and co(k) is first order in k. Let

- 1 Cg(k)
(2.31) K(z)=F (q(k)+q(k)) ’

where F~! is the one-dimensional inverse Fourier transform. Given that ¢; + ¢ is
a positive quadratic function of k, K(x) is a function that decays exponentially as
|x| = oo.

Expand the v(x) in terms of Fourier series as in (2.27). Given that v € BUC®™,
vy(x) are smooth functions and satisfy the bound

(2.32) ld™ vy /da™ || e < C;—nm for any n,m e N,

where the constant C,, ,,, depends on n,m but not on [. Define

(2.33) w= Z wy(x) exp(iln), wi(x) = crv(z) + / K ((x — z))v(z)dz.
le(2n/d)Z R

It can be checked that v; = w is a smooth function that satisfies (2.29). Indeed, direct
computation shows that

(2.34) V- ((Ai + Ae)V(wrexp(iln))) = V - (A V (v exp(iln))).

Given the decay estimate (2.32), the claim follows. To prove uniqueness, suppose v;
is another solution. We see that v; — v; satisfies

(2.35) V- ((Ai + AV (v; — T;)) = 0.

Given that v; — v; must be bounded, we see that v; — v; is spatially constant by
Liouville’s theorem. 0

We now consider the action of A on sufficiently smooth functions v(§,n) defined
on Qg 4. As was introduced in (1.21), using the expansion (2.27), formal computations
indicate that

(2.36) —Av=" Y (Aw)(€exp(iln), (Aw)(€) =F¢ ' Qk, 1) Feui(€).
le(2r/d)Z

This expression, however, does not make sense even for sufficiently smooth functions
in BUC(§,4) since v;(£) does not, in general, belong to L?(R). This can be remedied
by rewriting A; in the following way, as was first done in [27]. Let

Qb Quk ) o(k)
S0+ kD PP D + kD

where ¢4 (k) is linear in k and p(k) is a second degree polynomial in k obtained as a
quotient by performing polynomial division with remainder. Let

(2.38)
M () = Pp(—ide/1yw(©) + (14018 w)(©),  a(6) = (Falk))(©)  for 10,
Mow() = 7y

(2.37)  qBp(k) =p(k) +q(k),
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where * denotes the convolution on R and ¢, is the coefficient of k% in the quadratic
polynomial p(k). It is easily seen that §(§) decays exponentially as [£| — oo, and thus
the above convolution is well-defined for bounded functions w(§). For sufficiently
smooth functions that decay sufficiently fast as |£| — oo, by construction, the above
definition of A; coincides with (2.36). We shall henceforth take (2.38) to be the def-
inition of A;. This has the advantage that it is well-defined for any bounded function
that is sufficiently smooth. We now prove the following result on the operator A.

PROPOSITION 2.11. Suppose v € BUC*(Qq q4). Then
(2:39) (Ao)(&m =D (Awn)(&)expliln),
le(2n/d)Z

where A was defined in (2.13) and A; is given as in (2.36). Suppose v € BUC™(Qp.q),
and let v; be a solution to (2.28), whose existence is guaranteed by Proposition 2.10.
Then

Proof. We first consider the operator —A acting on a single term in the Fourier
expansion w(&) exp(iln):

— Aw(€)expitn)) = lim ¢ (T(1)(w(€) exp(il) — w(€) exp(iln)
(2.41)
=i ([ Gt - €)exslittn - gt — w(e)explit) ).

By the definition of G, we see that

/ Gule!,m )w(E — &) explil(n — 1)) d€'dr’
(2.42) R
_ /R Goa(€w(€ — €)de expliln),  Gua(x) = F~(exp(—tQ(k,1))).

We first consider the case [ =0. In this case,
(2.43) Gio(z) = F Hexp(—tQ(k,0))) = F~*(exp(—cptk?)).

This is nothing other than a scaled heat kernel, and it is well known that if w €
BUC?(R), we have

d*w
= — Qi -1 — = — —_—
Qat)  Aw== Jim e (Groxw)(E) ~ wl€) =~y = (Row)€),
where the convergence above is in BUC(R?).
We next consider the case [ # 0. Define the kernel
1 1 -
(2.45) Ki(€) = - Kpp(l§),  Kpp(€)=(F app(k))(©).

U

We note that Kpp(z) is exponentially decaying as || — oo. It is clear from the above
construction that K;(z) is the fundamental solution to the operator A;. Indeed, for a
function w(¢) € BUC?(R), it can be shown that

(2.46) K x (Aw) =w.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/23 to 71.224.200.35 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FRONT SOLUTIONS OF BIDOMAIN ALLEN-CAHN EQUATION 1567

Combining the above, we have

— A(w(&) exp(iln))
(2.47) = tljfglj_l (G * (Kp+ (Aw)) = Kp + (Aqw)) exp(iln)
- t£%1+ 7 (G Ko = Ep) # (Aqw)) exp(il).

Given the definition of K; and of G, we see that

G+ K — K =F! (eXp(_gg]i]fl’)l)) - 1) =—F! (/Ot exp(—sQ(k, l))ds)

t
_ / Got(€)ds,
0

where we used Fubini’s theorem in the last equality. Note that

(2.48)

t
/ / Go(§ =& n—n)dsw(§ — &) exp(il(n —n'))dE'dn'
R2J0O
t
ea) = [ [ Gue—em—nule—)explittn—n))de iy

:/R(/OtGSJ(g’)ds> w(§ —&)d¢ exp(iln),

where we used Fubini’s theorem in the above equalities. We thus see that

(2.50)

s ([ ) o) et

~ lim ¢! / / Gl — &, 11— Yw(E — &) exp(il(y — 1)) d€'diy = w(€) expliln),
0 R2

t—0+

where the above limit is valid in the BUC(R?) topology. Furthermore, we have

‘t‘l (( /O t Gsts) *w) (a:)exp(iln)‘

= ‘t‘l /0 /R2 Gs(§ =& n—n" Yw(& —E& ) exp(il(n —n'"))dE dnyf

<Gl @) llw] oo (m) -

(2.51)

Combining the above, we have

(2.52) —A(w(§) exp(iln)) = —(Aw) (&) exp(iln),
(2.53)  [[t7H(T () (w(€) exp(iln)) — w(€) exp(iln))|| o < [G1llLr g2) [ Arw]] Lo sy

Finally, let us consider the general case (2.39). First, note that there is a constant
cx that does not depend on [ such that

(2.54) 1A Lo ) < exc(lwll Bucsr) + Ellwll pue))-

For v € BUC*(R?), we have the estimate

Cy
(2.55) lvill Buczm) + Pllull suor) < =
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for a constant C, that does not depend on [. Let
(2.56) Av={l=2rk/d, k€ Z, |k|< N}, By=(27/d)Z)\An.

For v € BUC*(R?), we have, for positive integers N,

D (Agwr)(€) expliln)
(2.57) teBy L= (R?) 2
_ cxCy (21
< Z cx(loll Bucz @) + Pllol Buom) < Z cxCyl 2 < ICTSV)
leBn leBn
Likewise, we have
-0 3 w@exin
leBN L= (R?)
(2.58) < Y exlGillue) ([l Buce @ + Pl suem)
leEBN
_o _ Gy 2y Co(2m)?
< G @eyexCul 2 < S .
lEBN
Fix € >0, and let N >1/e. Then
(2.59)
—Av— > (Aw) (&) expliln)
le(2n/d)Z BUC(R2)
S N GOR ( S () exp(z'lm) = 3 (Am(€)) expliln)
leAN leAn
|| fim 7T () = 1) D wn(€) expliln) +11 D (M) (&) exp(iln)
BN Lo (R2) leBn L (R2)

< cx Oy (27)?
S—x2
where (2.52), (2.57), and (2.58) were used in the last inequality. Since ¢ > 0 was

arbitrary, we have (2.39) for v € BUC*(R?).
Finally, we must show that

(2.60) = Y (Aw)(@)exp(iln) =V - (A4;Vv;).
le(2r/d)Z

(L + Gl @2))e,

It can be directly checked that this is true for finite Fourier sums. The general case
follows given the decay estimate (2.32). ad

We may now prove the rest of Proposition 1.2.

Proof of Proposition 1.2. The existence and uniqueness for the mild solution for
problem (1.14) is an immediate consequence of Lemma 2.6. By Lemma 2.8, u(z,t) €
BUC™(Qp,q) for t > 0. By Propositions 2.10 and 2.11, one may obtain functions u;
and u, belonging to BUC™ (€ ) that satisfy the system (1.1). 0
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3. Spectrum of linearized operators. In this section, we study the properties
of the spectrum of the linearized operator L for later discussion. Throughout this
section, we consider (1.20), namely the linearized equation around the front U:

v
ot
where v =v(£,n,t) and (£,77) € R x S}. Note here that the £ coordinate moves with
the front, and we thus have a term in the expression above that is proportional to the

front speed c. Let us first prove that £, like A, is a generator of an analytic semigroup
on BUCK(Qp.4).

ProprosiTiON 3.1. The operator L generates an analytic semigroup on
BUC*(4g.q4) where the domain of L, denoted by Dy(L), is the same as Dy(A). Fur-
thermore, for u in the domain of L, we have the estimate

=Lyv, Lv= Agv—i—c— + f(U)v,

(3.1) HUHC"“W(Q(,@) <C¢ (||U||BUck(Qe,d) + HCUHBUC”G(QQA)) )
where Cr is a positive constant.

Proof. For any u € Di(A), by Proposition 2.5, we have, for any ¢ > 0,

l[u ||’Y/(1+’Y) [u Hl/(l-&-’v)
af pvosgey VORI

Cvy €
3.2 < __~r
(3:2) < (1+,Y)€,Y||UHBUC’“(R2) + 1+,y||uHC’°+1v“/(]R2)

Cy €

STty [ullucsre) + 1+~ [ullp, (a)
Thus, for u € Dy (A), we have
v
(3.3) Caff + f{(U)v o <allul| puek w2y + 0l|Aul| pror r2)
BUCk(R?)

for a constant a > 0 and a constant § >0 can be made arbitrarily small. This implies
the desired result. 0

To study the spectrum of £, we expand v in a Fourier series in 7 as in (2.27).
Each Fourier coefficient v; is acted upon by the following operator L;:

(3.4) Livg=—Nwv, + C f + b ( )vl,

where A; was defined in (2.38). The results in section 3.1 are used mainly for proving
nonlinear stability of planar fronts stated in Theorems 1.10 and 1.11, and the results
in section 3.2 are used for proving nonlinear instability stated in Theorem 1.10.

3.1. Stability criteria. The aim of this subsection is to prove Proposition 3.2
below, which allows us to apply the results in [27] concerning the spectral properties of
L; as an operator on L?(R) to prove our main theorems in the topology of BUC (R x
Sh.

PROPOSITION 3.2. For the operator L and L; defined in (1.20) and (3.4), one
has

(3.5) C\opvemrxsy (L) D [ C\osuem) (Lanka) O [ C\or2@) (Lamn/a)-
kez kez
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To prove Proposition 3.2, we decompose £; defined in (3.4) as £; =L, + A~ or
L, =L} + AT, where

(3.6) Lyu=—-Nu+ C%Z +f(Du, A u=f"(U)u-— f'(1)u,
(3.7) Liu=—Nu+ cg—g +f(0)u, Atu=f(U)u— f'(0)u.

In what follows, we provide some auxiliary lemmas. The first one is concerned with
the relation of the spectrum of £; and Eli as operators on L?(R).

LEMMA 3.3 (spectrum of £iF). For each | =2nk/d with k € Z, one has

(3.8) ULQ(R)(E?_) Cor2(R) (L)),
(3.9) or2®)(L; ) Corzr)(Lr)-

Proof. Let z € o2 (L;F). To show that z € or2r) (L), it is sufficient to show
the following:

(3.10) Ve >0, Fve L*(R) such that [|v]|2®) =1, [|(z — Li)v]| <e.
Note that z can be expressed as
2= —Q(ky,1) +ick, + f'(0)
for some k, € R. Consider the function vg for § > 0:
vs(€) = (6/m) ™1/ exp(—0€?/2) exp(ik.£).
It is easily seen that ||vs][z2(r) = 1. Note that
[(2 = £ )vs | 2.y = QR L) = QU ) + ie(k — k) (Fevs) (Bl L2 ) -
We may compute the Fourier transform of vs as
(Fevs) (k) = (m6) ™/ * exp(—(k — k.)?/(23)).

The function (Fevs)(k) is sharply peaked at k =k, as 6 — 0, and it is thus readily
seen that

(3.11) lim [|(z = £7)vs | 12y = 0-

Let

v5,0(§) =vs(§ — L).

Since vs 1, is merely a translation of vs, we have

(312)  vsllr2® = lvsllzwy =1, |(z— LZ+)U5HL2(R) =||(z - ﬁfr)vé,LHp(R)'
We also have, for each fixed § > 0,

(313) ([ ATusL]l o = I(F©) = F(0)s(E ~ Dll oy 0 as L— oo,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/23 to 71.224.200.35 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FRONT SOLUTIONS OF BIDOMAIN ALLEN-CAHN EQUATION 1571
where we used the fact that f/(U) — f/(0) decays exponentially to 0 as & — co. Now,

lI(z — El)U&L)HL?(R) < ||(Z - 57)”6HL2(R) + ||A+051L||L2(]R)’

where we used the triangle inequality and (3.12). By (3.11) and (3.13), the right-hand
side of the above can be made arbitrarily small by taking § sufficiently small and L
sufficiently large. Together with (3.12), this establishes (3.10).

We may show that z € o72(r)(£;") implies z € o2y (£;) in a similar fashion. O

LEMMA 3.4.
(3.14) (C\O’Lz(R)(L:I) C(C\UBUC(R)(ACZ)-

Proof. Step 1. Fix z € C\or2(g)(£;) and v € BUC(R) arbitrarily. We decompose
v into a sum of L?(R)-functions by a partition of unity. Choose a function ¢ € C5°(R)
supported on [—1,1] such that

> en©) =1, u(&)=gpo(¢—n),
and decompose v as
v(§) = Z v (€),  vn(€) == pn(§)v(§).

Since z € C\ o r2(r)(L1), we have (z—L;)~" as a resolvent on L?(R). From Lemma 3.3,
we also have (z — £;")~! as resolvents on L?(R). In what follows, we shall estimate
(z — L;)"tv,, which we rewrite as

(3.15)

(z — E;r)_l v+ (2 — [,l)fl At (z — Ef)_lvn forn>1,

(z— L) o, = ) . .
(z—Ef) v+ (2= L) A’(z—ﬁf) v, forn<0.

Step 2. We estimate w,, := (z — £;7) ~1v,, with n > 1. We have

1 etké
(316)  wa=gruva, g() / E_k, q(k) = (z+ Q(k, 1) — ick — f'(0)).

21 Jg q(k)
Here there exists a positive constant C such that
Cy
3.17 < R.
(317) 9O < T €<

To prove (3.17), we estimate g(k) in (3.16). Since z € C\ o 72g)(L;") from Lemma 3.3,
we find that ¢(k) # 0 holds for any k& € R. Combining this fact with (2.5), it is easily
found that there exists a positive constant Cy that depends on z and [ such that

(3.18) lg(k)| > Ca(1+k*), keR.

This implies that 1/|¢| € L'(R) and hence that g € L°(R). In addition, integrating

by parts, we have
1 [ 92(e*e) ' 1/ 2( 1 )‘
— dk| < — oZ | —= )| dk.
zw/R ) = 2w Je |7 e

|€2g()| =

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/23 to 71.224.200.35 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1572 HIROSHI MATANO, YOICHIRO MORI, AND MITSUNORI NARA

From (3.18) and (2.6), there exists a positive constant Cs such that

(N | 8D | 20:QkD — ic)? Cy
8’f(q<k>)H dBE T by s

This implies that 9 (1/q) € L' (R) and hence that supgcp [£%g(£)] < oo holds. Thus,
we obtain (3.17). Consequently, from (3.16), w, with n > 1 is estimated as

ntl V|| oo
(3.19) @l =lgro@l< [ TS

Thus, Uy =Y ne (2 — L) to, =307 | wy, is estimated as

RJo 1+(§—15)?

Given that v € BUC(R), we see that uy € BUC(R).

Step 3. We estimate (z — £;) "' AT (2 — £;)~'v, with n > 1. By the definition of A*,
there exist positive constants C'y and v depending only on the nonlinearity f such
that

_ % 20 oll =
(3.20) ey < sup / ®) s < 7Ch o]
S

(2= L) oa| < [S(F(W) = £(0))wn
n=1
<Cfm1n{1 e”’f}/ Mds

<Cymin{l, e "} 201 ||| 1 R)( Jrarctanf)

for each £ € R. Thus, we find that there exists a positive constant C4 such that
o0

Z At (z—L)

n=1

Since £, is a closed operator on L?(R) with a domain H?(R), there exists a positive
constant Cy such that

< Cylv]| Lo (w)
L2(R)

o0
Z (z—Ly) 1A+(z—£?')_1vn < Cs||v||Loo (r)-

By the Sobolev inequality, there exists a positive constant Cg such that

(3.21) Z(Z—ﬁl)_1A+(Z—L?_)_1Un < Col|v]| oo (m)
n=1 L (R)
Consider
(3.22) Uy =Uy + Z(z — L) TAT (2 - L) e, = Z(z — L) oy,
n=1 n=1

where we used (3.15). Given (3.20) and (3.21), uy € BUC(R) and

(3.23) lutllBucm) < CrllvllBucm)-
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In the same way, we may also conclude that

0
(3.24) u_= Y (z=L) v, € BUCR), |lu_|pvcw <Csllvlsvc)-

n=—oo

Step 4. We define the function u by

oo

(3.25) u=uy +u_ = Z (z— L) o,.

n=-—oo
By (3.23) and (3.24), the above function u is in BUC(R) and satisfies
(3.26) (z=L)u=v and ||ullprer) < ClvlBror)-

It is also clear, by construction, that the above w is the unique element in BUC(R)
that satisfies the above. Therefore,

(3.27) u=(z— L) v,

(z— L)~ ”HBUC ®) = ClvlBuoe)-

This completes the proof. ]
LEMMA 3.5. Suppose

(3.28) FAS m ((C\UBUC(]R) (ﬁl)) .
le(2n/d)Z

Then there is a constant C' that does not depend on | such that

C
crem) ~ 14127

N

(3.29) H(z - .cl)*lH € (21/d)Z.

Proof. Step 1. In what follows, we let Q=1 =Q~1(-,1) and Qz_el = QZ;(J). For
any u € L=(R), we have A, 'u = (]-"ng 1) % u. Then, since Q7' = Q; '+ Q.!, we
have

(3.30) A= (fng;l) wu+ (fnggl) -

Here we compute fngi_l

(FQrh)e /Q (k. 1) exp(ik)dk

_ . 1
:%WA@(WWWW@%:*MM@,

i
Kau(€)= 3= [ @7k exp(ike)a

The function Q;(k,1) is a positive quadratic polynomial in k, and thus its Fourier
transform K¢, decays exponentially as || — co. In particular, the L' norm of K,
is finite:

|7

g~ EIEaeln®:
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Likewise, we have

1 1
—1-1 _ L _ -1 .
a7, = pleue. Ko.© =5 [ Qb bexp(ine)dn
We thus have
—1 Cl
(3.32) 1A ullze @) < Fllullee®,  Cr=I1Kqillo @ +I1Kq. @)
Step 2. Define R :=z — L; — Aj, namely
—1 0 / -1
RA u= z—a—g— U) | A .
Note that
0Kq, .
s 1 o
L1(R) L1(R)

We thus have

0 0
L :H]:_lQi *u+ oo Fe Qo1 «
Loo(R) ¢ ¢ o¢” ¢

HﬁKQl
- |l|

Thus, by using (3.32), we have

0 . _
H%A

Lw(R)

0K,
= ) |l o0 (R)-
L1(R)

L1(R) H 73

(3.33)

IRAT  ul| oo )

. <01||zf’l<2U)||Loo (Ham

Cs
< WHUHLOO(R);

i
L1(R) 23

)) ”uHLOO(]R)
L(R)

where (5 is a positive constant depending only on A4, ., f, and z.
Step 3. Since we have

A= (z—L) = L) ' RAY
it holds from (3.32) and (3.33) that
(2= £0) ™ ul| ooy < ||A_1u||L°°(R + (2= L) RA; M| e ey

C
(334 < (T4 6= 00 egeqay ) Mol o

We thus see that

C _
(335) H(Z— 1”[, (L>°(R)) = ( : |l‘ || ‘Cl) 1“[,(L°°(]R))) !
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If |I] > 2C%, we have

_ 20,

1

(3.36) (= = £1) ||L(L°°(]R)) < 2

The result follows since there are only a finite number of ! such that |I| < 2C%. a
Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. The second set inclusion in (3.5) follows immediately
from Lemma 3.4. We now show the first set inclusion:

(3.37) C\oprcmxsy)(£) D ﬂ C\osuem) (Lark/d)-
kez
Fix any z € C satisfying
zZ€ m C\opucm)(Lark/a)-
kez

For any v € BUC(R), decompose v in terms of a Fourier series as in (2.27). Define
the operator

(3.38) Av= Z ((z = L)~ o) exp(iln).

le(2n/d)Z

By Lemma 3.5, we see as follows that the above operator A is a bounded operator on
BUC(R x S}):

||AU||BUC(Rxs;)§ Z ||(Z_£l)7lvl||BUC'(R)

l€(2n/d)Z
c
<| Y ) sl <Cilblsrossy:
le(2n/d)Z le(2r/d)Z

We now show that A is the inverse of z — L.
First, we show that if v; € BUC®(R), then w; = (2 — £;)"1v; € BUC*(R). To
see this, note that

(3.39) (2 = Lijwr = s+ Ao — 5k — (O =
Using (2.38), we see that

8211)1 8wl
(340) 652 + 7& = B'IU[ + 6'0[,

where 3 and § are constants and B is an operator that maps BUC*(R),k=0,1,2,...,
to itself. Given that w; € BUC(R), dw;/0¢ + Bw; is in BUC(R), which implies that
wy is in BUC?(R). Repeating this argument, we see that w; € BUC*(R) for all k € N.

Take any v € BUC(R x S}). Now consider a sequence of smooth functions v,
that converges to v in BUC(R x S}) as n — co. We may even take v,, to be band
limited, in the sense that each v, has a finite Fourier series expansion:

(3.41) vn(&m) = > Un(€) exp(iln),

1=2rk/d,|k| <N,
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where N, is a finite number that depends on n. We have

(3.42) Av, = Z ((z = L) ony) exp(iln).

1=27k/d,|k|<N,

Note that, since v, € BUC™®(R), (2 — £;)"1v; € BUC*®(R). Thus, (2.39) of Proposi-
tion 2.11 implies that

(3.43) (z—L)Av, = Z (z— L)) ((z — £l)_1vn,l) exp(iln) = vy,.
1=2rk/d,|k|<N,

Let n — oo in the above. Since A is a bounded operator from BUC(R x S}) to

BUC(R x S}), Av,, converges to Av in BUC(R x S}). Since L is a closed operator

on BUC(R x S}) by Proposition 3.1, we see that

(3.44) (z—L)Av=wv for all v€ BUC(R x S}).

Next, take any w € D(L), the domain of £. Note first that there is a sequence of
smooth functions w,, such that w, — w in D(L). This follows from the properties of
T'(t), the semigroup generated by A. Since T'(t) is an analytic semigroup on BUC (R x
Sh), it is also an analytic semigroup on D(A) = D(L) (see Proposition 3.1). Thus,
T(t)u—uast—0in D(A) if ue D(A). Given (2.8) of Lemma 2.3, T'()u is smooth.
Expand w,, as follows:

(3.45) wa(&m) = > wna(§)exp(iln).
I=(27k/d)Z

By Proposition 2.11, we have

(3.46) (z—Lywn= > ((z=Li)wny)exp(iln).
I=(2rk/d)Z.
By construction, (z — £L)w, € BUC(R x S}). Thus,
(3.47) Az = L)w, = Z ((z— L)z - L) wn,) exp(iln) = wy,.
1=(27k/d)Z

Taking the limit as n — oo in the above, we see that:
(3.48) A(z—L)w=w for all we D(L).

From (3.44) and (3.48), we see that A = (2 — £)~! and that z is in the resolvent set
of £ as an operator on BUC(R x S}). d

3.2. Instability criteria. We now prove some results on the point spectrum
which will be useful in proving planar front instabilities. First, we show some results
estimating the spectrum and the essential spectrum of £;. We let

(3.49) 0-2_2(]1{)(‘61) ZULz(R)(ﬁg)ﬂ{ZE(C‘ReZ>O},
(350) O-EUC(R) (ﬁl) =0BUC(R) (El) N {Z eC ‘ Rez > 0}
and define the constants

Sumin= min f(s), fmax = max f'(s),

0<s<1 0<s<1
f—-:fmin';frnax7 fA:fmax;fmin'

Then the following holds, which is presented as Proposition 2.3 in [27].
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PROPOSITION 3.6 (see [27]). Define the set S; C C by

§l:{z€C\z:ics—Q9(s,l)+ﬁ SER}.
Then the spectrum or2w)(L1) satisfies

(3.51) ooy (L)) C {26C|dist(z,§l)§fA},

where dist(z,gl) is the distance between the point z € C and the set §l.

Remark 3.7. From Proposition 3.6, we find (i) o, (R)(ﬁl) is uniformly bounded
in [ €R; (ii) or2(r) (L) lies in the left-half of the complex plane when || is sufficiently
large, or, equivalently, 0'2_2 ry(£1) is empty if |I] is sufficiently large. Indeed, since
Qo(s,1) > \(s% +1?) holds for some positive A, we have

§1C{x+iy€(C|y:cs7xg—)\(82+l2)+f,seR}.

Outline of the proof of Proposition 3.6. The operator £; can be written as

_ _ _ 9 _
(3.52) Liv=Lw+ (f(U)- ), lllv:—Alv—i-ca—Z—l—fv.
Using the Fourier transform, it is easily seen that the spectral set of L is §l and the
norm of the resolvent of £; are given by

(3.53) G =207 ooy = st (=)

The operator £; is a perturbation of £; by the multiplication operator f(U) — f
whose operator norm is given by fa. The result follows by a standard Neumann
series argument. O

Next, we examine the essential and point spectra of £; as an operator on L?(R).
For our purposes, it is convenient to define the essential and point spectra as follows.

DEFINITION 3.8 (essential and point spectra). Let A be a densely defined closed
operator on a Hilbert space M with domain D(A), and let o(A) C C denote the
spectrum of A. A complex value z € o(A) belongs to the point spectrum of A, if
z — A is a Fredholm operator with index 0 as a bounded operator from D(A) to H.
Otherwise, z € o(A) is in the essential spectrum of A.

ess

We shall denote the essential and point spectra of A by o7% ) (A) and o ® (A,
respectively.
To estimate the essential spectrum of £; on L?(R), we define the constants

Mumin = min{ f'(0), (1)},  Mmax = max{f'(0), f'(1)},
Mmax + Mmin Mmax — Mmin
—_—, MA=

2 2
where we note that mmyax, Mmin, 70 are all negative and ma is positive.

LEMMA 3.9. Define the set

m=

Si={z€C|z=1ics— Qp(s,l) +m, s € R}.
Then the essential spectrum of L; on L*(R), which is denoted by creLSQS(R)(El), satisfies
(3.54) 072wy (L1) C{z € Cldist(z,5) <ma}.
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Proof. Define the following function gg that interpolates monotonically between

f'(0) and f'(1):
90(§) =M 4 ma tanh(§).

Now let

FIUE)) = g0(§) + g1().

Since U (&) decays exponentially to 0 and 1 as £ = —oo and £ — oo, the function ¢ (§)
is a smooth function that decays exponentially to 0 as £ — +co. With this, we have

0
(3.55) Liv= Qv+ Ruv, sz—Alu—l—ca—qg + gou, Ru=giu.
Let us first examine the spectrum of Q. Decompose Q further as follows:
ou __ _
Q=090+ Q1, Qou=-ANu+ 6875 +mu,  Qiru=(go —M)u.

We may now apply exactly the same argument that we used in proving Proposition 3.6
to show that

(356) JLz(R)(Q)C{zGC|dist(z,Sl)§mA}.

Now we consider the Fredholm index of the operator

2l —L=2I-Q~-R with z€C\or2r)(Q),

viewed as an operator from H?(R) to L?(R). Since z is in the resolvent set of Q,
(2I — Q)™ 1 exists, and the Fredholm index of the above is equal to that of

I—-R(z:I-Q) 1,

seen as a bounded operator on L%(R). Since (2I — Q)~! maps L?(R) to H?(R) and
the function g; decays exponentially as ¢ — oo, we see that R(z2I — Q) ! is a
compact operator on L?(R). Therefore, the Fredholm index of the above, and hence
of zI — L;, is 0 when z is in the resolvent set of Q. From this, we conclude that
o7y (L1) Cor2(r)(Q), and hence (3.54) follows. O

Now we are ready to prove Proposition 3.10.
The aim of this subsection is to prove Proposition 3.10 below. We introduce the
notion

(357) UEQ(R) (ﬁl) =0L2(R) (ﬂl) n {Z eC | Rez > mmax},
(3.58) U;UC(R) (L1) =opucm) (L) N{z € C|Rez > mmax},

where we note that these sets are possibly empty. Then the following hold.
PROPOSITION 3.10. For each | =27k/d with k € Z, one has

(3.59) UEUC(R) (L) =07 (&) (L£0):

Moreover, o~ (L;) consists of a finite number of points, and each point in o= (L;) is
an eigenvalue in L*(R) and in BUC(R).
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Proof of Proposition 3.10. Note first that Proposition 3.2 gives
(3.60) UEUC(R)(EZ) C 052(]1{) (Ly).
From Lemma 3.9, we find that
(3.61) 02wy (L1) C{z €C|Rez<m+ma}l,

where M 4+ ma = Mmax < 0. Thus, Uzz(R) (L;) consists of point spectra, and thus all
points in o7, (R)(ﬂl) are eigenvalues. For any z € UEQ(R) (L;), therefore, we have:

Liv=2zv,

where v € H2(R). Then the Sobolev embedding theorem gives v € BUC(R) and hence
2 € 05y oy (£1). Thus, we obtain

072y (L1) C0Buom (L)

This implies (3.59).

Since Ume)(El) is bounded by Proposition 3.6, if it consists of an infinite number
of points, there is an accumulation point z.. By (3.61), z, must belong to the point
spectrum, but any point in the point spectrum must be an isolated point (Theorem 7
of [30]; see also [18]). Thus, UEZ(R)(Q) consists of a finite number of points. d

3.3. Auxiliary result for the spectral properties of £ and £;. In this
subsection, we provide some auxiliary results for later discussions. Let JZLQ(R) (£;) and

O’EUC(R)(,CZ) be defined as in (3.49)—(3.50). Note by Proposition 3.10 that the two
sets coincide.

LEMMA 3.11. Suppose that, for a direction n € S, the planar front on R? is
spectrally unstable in the sense of Definition 1.3, namely that there exists a constant
l« € R such that

0 (L1.) 0.

Then there exists a positive constant 6 such that

JzQ(R)(ﬁl) #@
holds for alll € [, — §,1. +9].

Proof. Take any point z, € ozr?(R) (£;,). Given Proposition 3.10, UITQ(R)(Q*) is
a finite set and thus z, is an isolated point of the spectrum of £;, . There is thus a
circular contour C of radius r centered at z, such that

CC{ze€Cl|Rez>0}\or2r) (L1, )-

We may even take r small enough so that z, is the only point of the spectrum inside
of C. Consider the Dunford integral

1
=— — L)) Yz,
! 21 C(Z l) i
When [ = I, P, is the spectral projection for z = z,, and thus P;, # 0. Since L,
depends continuously as an operator from H?(R) to L?(R), P; # 0 for [ sufficiently
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close to l,. This implies that £; must have a point in the spectrum inside C for all
values of [ sufficiently close to . ]

We now study the simplicity of eigenvalues.

LEMMA 3.12. Let z € JEZ(R) (L) be an algebraically simple eigenvalue of L; in
L?(R). Then z is an algebraically simple eigenvalue in BUC(R).

Proof. Let z be as in the statement of the lemma, and let ¢ be the corresponding
eigenfunction. Define the operator £} as

(3.62) Liu=—Nu— C%Z + f'(U)u.
If z € UEQ(R) (L;), then Z is in the spectrum of £; and is an algebraically simple
eigenvalue in L2(R) with eigenfunction ¢*. The assumption of simplicity implies that
the L?(R) inner product of ¢ and ¢* satisfies (@, p*)r # 0, which we may normalize
so that (p,p*)r = 1. Note that the ¢ and ¢* satisfy a 4th order differential equation
in ¢ and that f/(U) converges exponentially to a constant as |£| — oo. Since ¢ and
@* are in L*(R), ¢ and ¢* must decay exponentially.

We first prove that z is algebraically simple in BUC(R): it suffices to show that,
for any given v € BUC(R), the equation

(3.63) (z—LDu=v— (v, )re

has a solution u € BUC(R). Note that (v,*) is well-defined for v € BUC(R) given
that ¢* is exponentially decaying as || — oo.
We decompose £; as £, =L, + A~ or L, =L + A*, where
Lyu=—Nu+ c% +f(Du, A u=f'(U)u— f'(1)u,

Lru=—Nu+ c% + f(0)u, Atu=f"(U)u— f'(0)u.
We note that the spectra of /Jli are easily determined by the Fourier transform as
o2y (L) ={z€Click — Q(k,1) + f'(1), k R},
or2w) (L) ={z€Click — Q(k,1) + f'(0), k e R}.
Since z € 0, (r) and thus Rez > muyax = max(f'(0), f'(1)), (z— L) " are well-defined
on L%(R).

Let g:=v — (v,¢*)¢, and decompose g € BUC(R) into a sum of L?(R)-functions
by a partition of unity. Choose a function 4y € C5°(R) supported on [—1,1] such that

Z () =1, Yu(z):=1o(z—n),

n=-—o0o
and decompose g as

oo

9(@) = Y gu(®), gn(@):=1n(x)g(@).

n=-—oo
In the framework of L?(R), we consider the equation

(3.64) (z — L)) Up = gn.
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For n > 1, we rewrite g,, as

gn = (Z - El)(z - L?_)ilgn + A+(Z - E?)ilgn
Define ITw = w — (w, *)y. Since z — £; and II commute, we have
(3.65) gn=Ugn = (2 = LOW(z = L) gn + (AT (2 = L) g0) -

By the assumptions on z, we find that z — £; is invertible on the range of II and hence
that (z — £;)"'g, is well-defined. Thus, from (3.65), the solution w,, of (3.64) is given
as

Uy = (2 — L) g
=Mz — L) gn + (2 — L) (AT (2 — £) P gn).

By applying the same argument for the case n <0, we consider
H(z— L) rgn + (2 — L) HI(AT (2 — L) Lg,) for n>1,
Tl M=) g+ (2 — £)TMI(A (2 — £])"Lgn)  for n<0.

oo

e —oo Un. For this purpose, we provide

In what follows, we estimate w,, and u =)
some auxiliary lemmas.
Then, by similar computations to those in Step 2 of the proof of Lemma 3.4, we

find that there exists a positive constant C such that

i z—£+

Moreover, by computations similar to those in Step 3 of the proof of Lemma 3.4, we
find that there exist positive constants Cs and C3 such that

< Cillgller)-
L“(R)

(z—L) g < Cllgllzew)

L2 (R)

and that

<Cllgll Lo (r)-
Lo (R)

Z z— L) TIAT (2 — L) g

For £; and A, similar results also hold. Consequently, we can define the function u
by

U= E U,

n=—oo

where v € BUC(R), since it is a limit of function series in the topology of L*°(R).
This is the desired solution of (3.63). |

LEMMA 3.13. Suppose z € UEZ(R)(QO), lo € 2n/d)Z, is an algebraically simple
eigenvalue and that z € C\or2w)(L1) for all | € (2r/d)Z such that | # lo. Then z is
an algebraically simple eigenvalue of £ in BUC(R x S}).
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Proof. Let ¢ the eigenfunction corresponding to z € 052 R (L1,) and ¢* be the
eigenfunction corresponding to the adjoint £} as in the proof of the previous lemma.
As before, we normalize so that (p,¢*)r =1. Then ¢(§) exp(ilon) is an eigenfunction
of £ in BUC(R x S}). To show that this eigenvalue is simple in BUC(R x S}), we
must show that the following equation can be solved for any v € BUC(R x S}):

(z=Lyu=v— (v, exp(ilm))RXsé @exp(ilon)/dz,

(vthssy = [ ol€mulendedn

Using the previous lemma and its proof, together with Lemma 3.5, we obtain the
desired result in the same way as in the proof of Proposition 3.2. We omit the details. O

4. Nonlinear stability and instability of planar fronts. In this section, we
complete the proof of Theorems 1.10 and 1.11 by using the estimates on the spectrum
of the linearized operator £ obtained in the previous section.

4.1. Spectral decomposition due to translation invariance. To prove non-
linear stability and instability, we make some preparations. In the remainder of this
paper, we write (u,w) in the sense of

wh= [ u(emulEmdsdn, we BUC(Rx S, we L (R x 5)).

We define the functions ¢(£) and ¢*(£) by
_oU . exp(ct/KR)e
o T lpien(cl/KDp)

where Kjy is the constant that appears in (1.13). We note that (p,¢*) = 1, that
Lo =0, and that L*¢* =0, where L* is the “adjoint” of £; namely,

0
L'v=—Agv— ca—z + f(U)v.

It is well known that ¢(€) and ¢*(§) are both negative and decay exponentially to
zero as £ — +o0o and hence @, ¢* € L*(R). We define the projection

(4.1) Mu=u— (u,")p,
which commutes with £; namely, LII =1IL. We also define the space of functions
K={ueBUC(Rx S})|u=Tu}.

Note that v € K implies (v, p*) = 0.
To analyze the asymptotic behavior of the solution u(&,n,t), we introduce the
translation operator 7, with o € R by

Tou(§,n,t) =u(§ +o,n,t),
and decompose u(£,1,t) as
(4.2) u="To)(U+v)=U(§ —o(t)) +v(—o(t),nt),

with v(-,t) € K by virtue of Lemma 4.1 below.
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LEMMA 4.1. Ifwe BUC(R x SY) is sufficiently small, then there exists a unique
pair (v,0) € K x R such that

(4.3) U+4w=1,U+).
Proof. Equation (4.3) is equivalent to
(4.4) T_o(U+w)—U=nv.
Since v € K means (v,¢*) = 0, we consider (7_,(U + w) — U, ¢*) = 0, which is
equivalent to
(4.5) U+ w—1,U15¢") =0.

Then the implicit function theorem implies that, for any given w € BUC (R x S}) that
is sufficiently small, there exists a unique constant o = o(w) such that (4.5) holds.
Indeed, we have

9 . ou
%<U+w*TUUvTU‘P >|(w,a)=(0,0) = <8£,80 >17é0.

Consequently, by determining v from (4.4), we obtain a unique pair (v,0) € K x R
that satisfies (4.3). ad

We now derive the equations that v and o(t) satisfy. By substituting (4.2) into
the original equation u; = —Au + cg—g + f(u), we have

0
—0' 10 — o' Tove + Tga—:; =—A7, (U +v) + o (0 +ve) + f(15 (U +0)).

By applying 7., we have

0
= =0/ + 0've — AU +) + el + ve) + f(U + ).

ot
By using the equality —AU + cp + f(U) =0, we obtain
0
S5 = —Av+ 0o+ (0" + e + (U +0) — f(U)
(4.6) =Lv+ 0 ¢+ 0've + H(v),
(4.7) H(v) = f(U+v) = fU) = f'(U)v.

Since v(+,t),v:(+,t) € K, we have
* * ok ov
(Lo, ") = (v, L7p") =0, <8t,<p >0,
and hence

0=0"(p,¢") + 0" (ve, ") + (H(v),¢").

Thus, we obtain

(H(v),¢")
4.8 ol=—"—""
( ) I+ <U§v‘p*>
Finally, by applying II to (4.6), we have
% (H(v),¢")
4. — = N Nw)=——>"—"+1II 11H (v).
(19) 5, =L+ N, N(w) =~ 10 T 11H ()
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LEMMA 4.2. For § >0 sufficiently small, there exists a constant M such that, for
any v,w satisfying ||v| pucr <9, [|lw|puer <9, we have

(4.10) [N (v) = N(w)llue <M ([vllpuc + [wlsuer) lv —wllpuc.

Proof. Elementary calculus estimates yield the following pointwise bound for H:

1
— < _ I 11
(411)  [H() = H(w)| < Mo (o] + [w) [ —w|. My=3 max|f"(s)]

Noting that o* € L', it is easily seen that if 6 > 0 is small enough, there is a constant
M such that

< My [Jve — w§||BUC'

(4.12) H ve we
BUC

1+ <U§7S0*> - 1+ <w§>¢*>

The above two inequalities, together with the definition of IT in (4.1), yield the desired
estimate. O

4.2. Nonlinear stability of planar fronts. In this subsection, we complete
the proof of the statement (i) of Theorem 1.10 and the proof of Theorem 1.11. The
lemma below is used to prove statement (i) in Theorem 1.10. In what follows, £|x
denotes the restriction of £ on K.

LEMMA 4.3 (spectral gap). For a direction n € S*, if the planar front on R? is
spectrally stable in the sense of Definition 1.3, for any d > 0, there exists a positive
constant w such that

(4.13) opuc®xsy)(Llx) C{z€C| Rez < —w}.
Proof. Let any d > 0 be fixed. From Proposition 3.6, there exist a positive
constant w; and a positive integer k, such that
U ULQ(R)(EQﬂk/d)C{zEC\RezS—wl}.
kEZ, |k|>k.
On the other hand, from the assumption of the lemma, we have
U or2®)(Larksa) C {2z € C|Rez <0}
kEZ,0<|k|<k«
Moreover, Proposition 3.6 implies that the set
U O'LZ(R)(ﬁgﬂk/d)ﬂ{ZE(C|—ISReZ}
keZ,0<|k|<k.
(which is possibly empty) is compact. Thus, there exists a positive constant ws such
that
U JL2(R)(£27Tk/d)C{Z€C|R62§—UJ2}.
kEZ,0<|k|<k.

For k=0, it is well known (see Proposition 3.1 in [27], for instance) that there exists
a positive constant ws such that

or2m)(Lo)\{0} C{z€C|Rez < —ws}.
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By combining the above estimates, we obtain

UBUC(Rxsi)(ﬁ)\{O} c U opuc®)(Lark/a) \{0}
kEZ

c |J or2@) (Lanrya) \{0}
kEZ
C{z€C|Rez < —min{wy,ws,w3}},

where we used Proposition 3.2 to obtain the first and second lines of the right-hand
side. By Lemma 3.13, 0 is an algebraically simple eigenvalue of £ in BUC(R x S}).
We thus obtain

UBUC(Rxs}i)(QIC) = UBUC(Rxs;)([')\{O}
This completes the proof. ]

The lemma below is used to prove Theorem 1.11.

LEMMA 4.4 (spectral gap). If d > 0 is sufficiently small, there exists a positive
constant w such that

(4.14) opvcrxsy)(Llc) C{z€C|Rez < —w}.

Proof. From Proposition 3.6, there exist positive constants w; and d, such that
if d <d,, then

U o’Lz(R)(ngk/d)C{z€C|Rez§—w1}.
kEZ, k£0

For k=0, it is well known (see Proposition 3.1 in [27], for instance) that there exists
a positive constant wo such that

O'LQ(R)(E())\{O} C {Z eC | Rez < —wg}.
By combining these estimates, we obtain the desired result in a way similar to the

end of the proof of Lemma, 4.3. O

Now we are ready to prove the nonlinear stability of planar fronts in the sense of
Definition 1.8 stated in Theorems 1.10 and 1.11.

Proof of the statement (1) of Theorem 1.10 and the proof of Theorem 1.11. From
Lemmas 4.3 and 4.4, there exists a positive constant w such that for any 0 <n <w
and u € IC,

(4.15) lexp(tL)ull pyc sty < Cnexp(=nt)||ull promxsyy, >0
We also see from Proposition 3.1 that there is a constant C7 such that

Hexp(tﬁ)uHBUck < Cl”UHBUck for k:(),]., 0<t< 1,

(4.16) C
[£exp(tL)ul pye <

TlnuHBUC for 0 <t <1.

Note that, for u € D1(L), we have

1+ 1/(1+
lull pren sty < Collull g™ ull hSH

1
(4.17) < Oollul Y™ (O (J[ull pue + 1£ull gye))

1+ 1/(1+
< G (lull e + Iullse ™ ILullgse ™)
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Combining the above with (4.16), we have

1
(1.18) Jesp 2l e < Ca (14 sy ) e

For t > 1, we have, for u € IC,

lexp(tL)ull pyen = llexp((t — 1) L) exp(L)ul| gy ea

4.19
(4.19) <9C, [lexp((t — 1)L)ul e < 2C4Cyexp(1) exp(—t) Jull v

The above, combined with (4.16), yields, for u € K,

1
lexp 20l o < Cs (14 sy ) vl v,

lexp(tL)ull gy < Csexp(—nt)||lull puer

(4.20)

Given vy € BUC' N K, consider the integral equation corresponding to (4.9):

(4.21) v(t) =exp(tL)vy + /0 exp((t — s)L)N(v(s))ds.

We seek a solution to this equation for v in the following function space X, so long
as ||vo||uct is small enough:

X = {u € C([0,00); BUC (R x S3) N )| exp(tn) [u(t) || et sy < 00}

(422) jullx = supesp(tmlju(t) v
t>

It is easily checked that X is a Banach space. Define the operator

(4.23) W(v) = exp(tL)vy + /O exp((t — $)L)N (v(s))ds.
Consider the set
(124) By = {ve X]lulx <},

We shall prove that W is a contraction on By if § is small enough. Take § > 0
small enough so that Lemma 4.2 applies. Using Lemma 4.2 and (4.20), we have

(4.25)
exp(tn)[[¥(v)|| prcs

¢ 1
< Callulves +exp(on) [ s (14 ey ) expl-nte = sDIN oo |aveds
¢ 1
< Cs||vol[sucn +/0 Cs (1 + (ts)l/(H’Y)) exp(—ns) Mds||v||%.

In the above, we used the fact that N(v) € K. Note that

k 1

(4.26) ) X .
S/o (1 + (t—s)1/(1+7)) ds +/1 exp(—ns)ds < co.
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Thus,
(4.27) 1 (v)[lx < Cslvollpuct + Collv]l%-

This shows that, by taking ||vg||prer < 6/(2C5) and taking ¢ smaller if necessary,
U maps By to itself. Furthermore, we have

(4.28)
() - B(0)llx
t
1

< ilzlgeXP(“?)/o Cs (1 + (ts)l/(HA/)) exp(—n(t — 5)) [N (u(s)) = N(v(s))ll pyc ds
< Cs (lullx + ol x) flu — vl x <2Csblju—v]|x,
where we used Lemma 4.2 and (4.20). Taking § small enough, ¥ is a contraction
on Bs. Substituting this v back into (4.8), we see immediately that o(t) converges
exponentially to a constant as ¢t — oo. This demonstrates stability in the sense of
Definition 1.8 provided that the initial data is in BUC'.

Finally, we must show stability for initial data in BUC'. Pick some dp > 0, and let
ug € BUC satisty |[up — Ul|puc < do. By Lemma 2.7, if we take dg > 0 small enough,

there exist T' > 0 and My > 0 that do not depend on the choice of uy so that the
corresponding mild solution wu(t) satisfies

(4.29) u(t) = exp(tA)u0+/0 exp((t—s)A) f(u(s))ds, |u(®)|lpuec <My, 0<t<T.

Let us estimate the difference between u(t) and U in the BUC! norm. We have

[u(t) = Ullues
< llexp(tA)(uo = U)ll puor + lexp(tA)U = Ul gy

+ / lexp((t — $)A) ()| gy ds
0

! 1
+ 07/0 (1 + HM) |lf(u(s)|Bucds

1
<Cs (151/(14—'y)|“0 —Ulluc + lexp(tA)U = U gyyen +t7/(1+7)) ,

)) luo — Ullpuc + llexp(tA)U — Ul gyyen

where we used (4.20) to obtain the second inequality. In the above, we used estimates
on exp(tA) similar to (4.18), which can be derived in exactly the same way. Letting
t. = ||luo — Ul|Buc, we have

1
lu(t.) = Ullgyen < Cs (luo = UIHSE™ +Qlluo — Ullsuc) )

3y Q)= sup exp(tAU = Ul gy -

0<s<t
Given that U is smooth, function @Q(t) is a monotone continuous function that tends
to 0 as t — 0. Thus, ||u(ts) —Ul|pycr can be made arbitrary small by taking
|lugp — Ul|puc sufficiently small. Applying the BUC! nonlinear stability result for
the initial data u(t,.), we obtain the desired result. d
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4.3. Nonlinear instability of planar fronts. In this subsection, we complete
the proof of the statement (ii) of Theorem 1.10. Define the sets by

ou=1{z€ UBUC(JRxs}l)(/J\IC) |Re 2> 0},
ocs ={2 € opuomxsy)(Llc) |Re 2 <0}
Then the following holds.

LEMMA 4.5 (spectral gap).

For a direction n € S, if the planar front on R? is spectrally unstable in the sense
of Definition 1.3 and if d > 0 is sufficiently large, then the set o, is not empty, is
bounded, and satisfies

(4.32) o, C{z€C|Rez>w}
for a positive constant w.

Proof. We here use the notation JZLQ(R) (L1), etc., given in (3.49) and (3.50). Since

the planar front on R? is spectrally unstable in the sense of Definition 1.3 by the
assumption of the lemma, there exists a constant [, € R such that

0-22(]1{) (['l*) 7é 0.

Then Lemma 3.11 implies that there exists a constant § > 0 such that, for all [ €
[lx — 8,1« + J], it holds that

OzQ(R) (El) 75 [Z)

We choose d > 0 sufficiently large to satisfy 2w/d < 2. Then there exists a k., € R
such that 27k, /d € [l, — §,1. + J] and hence that

Uzrz(R) (£27rk*/d) # 0.
Thus, Proposition 3.10 gives that

UEUC(R)(ﬂwk*/d) #0
and that any point in this set is an eigenvalue. Let any z € O‘EUC(R)(£27rk*/d) be fixed;
then there exists a function v € BUC(R) such that
Liv=2zv.

Then we have
LoF = ZU*, ,U*(g’n) — ’l}(f)ei@ﬂk/d)n,
which means that z is an eigenvalue of £ in BUC(R x S}). Thus, we find that

Next, we show boundedness. From Proposition 3.6, there exists a positive integer
k. such that o2y (Larr/a) is empty if [k| > k.. On the other hand, Proposition 3.10
implies that

U Uz_z (R)(E%rk/d)
kEZ, k| <k,
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consists of a finite number of points. Thus, since Propositions 3.2 and 3.10 imply

opucmxsy(L)N{z€C[Rez>0}C U UEUC(R) (Lork/a)
kez

= U 0-2,_2(]1&) ('C'ka/d)v
keZ

we find that
oBuc(Exs) (L) N{z € C|Rez >0}
consists of a finite number of points. Thus, this set is bounded and satisfies
opucrxsy)(L)N{z€C|Rez>0} C {z€C|Rez > w}

for some positive constant w. 0

Now we are ready to prove the nonlinear instability stated in Theorem 1.10. The
proof is based on the contraction mapping theorem.

Proof of the statement (ii) of Theorem 1.10. Let w > 0 be the constant defined in
Lemma 4.5, and choose a positive constant 7 such that 3n <w. From Lemma 4.5, we
can choose a simple closed curve 7, enclosing o, and define the projection operators

1
I, =— / (2 — L) 'z, Tlo=1-TI,.
27 Jy,
We first list two estimates on the semigroup exp(tL£). For any w € II;sK, and 0 <y < 1,
we have

1
(4.33) lexp(tL)w]| gyen < My (1 + tl/(1+7)> exp(nt)|w|suc, >0,

where M., is a constant that depends only on . The above estimate can be derived
in the same way as (4.20) using the assumption on the spectrum. For any w € I, C,
we have

(4.34) lexp(tL)wl pyer < M exp(3nt)|lw]suc, ¢ <0,

where M is a positive constant. We have here used the fact that exp(tL), t < 0, is
well- defined on II, KC since it is a finite dimensional invariant subspace of £. This also
follows easily from the spectral condition and the fact that (21 — £)~'w € BUC? for
w € BUC with z in the resolvent set.

Take any vg € I, K such that vy # 0. Define

(435) Y ={veC(—o0,01; BUC N K)[olly :=supe " o, )] per < oo}.
t<0

It is easily checked that Y is a Banach space. We consider the map U:

(4.36)

U(v) =exp(tL)vg + /

— 00

t

exp((t — ) L) s N (v(s))ds + /0 exp((t — ) L), N (v(s))ds.

If we take ||vg||pyct small enough, the above map ¥ is a contraction on the set
lv|ly < R for sufficiently small R. This can be shown in essentially the same way as
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in the proof of statement (i) of Theorem 1.10 and the proof of Theorem 1.11, using
estimates (4.33), (4.34) and Lemma 4.2.
Let v, €Y be this fixed point of . Then, given that v, € Y, we have

(4.37) Tim [0, (1) e = 0.

Furthermore, since v, is the fixed point of the map ¥, we have

0
(4.38) 02(0) = o + / exp((t — $)L)TLs N (v. (s))ds.

Since IL,, (v4(0)) = vg # 0, ||v«(0)||syct > 0. This implies the nonlinear instability of
planar fronts in the sense of Definition 1.9. O

Appendix A. Nonpositivity of the fundamental solution G;. As stated in
the discussion surrounding (1.6), the bidomain operator does not satisfy the maximum
principle unless A; = A, for some > 0 (the monodomain case). We present a proof
of this result in R”,n = 2,3. We will prove the nonpositivity of the fundamental
solution G; given in (1.5), which we reproduce here to include the case n = 3:

1 )
(A.1) Gi(x) = @ /n exp(—tQ(k)) exp(ik - x)dk,
QR oo,
Q(k) - Qz(k) 4 Qe(k)v Qz,e(k) k Az,ek»

where A; and A, are n X n symmetric positive definite matrices.

PROPOSITION A.1. Consider the function G¢(x),t > 0, given in (A.1), n=2,3.
Suppose A; and A, are not proportional to each other, in the sense that there is no
B > 0 such that A; = BA.. Then, for every t > 0, there is an x € R™ such that
Gy (X) <0.

Remark A.2. We have not been able to locate a proof of the above nonpositivity
result in the literature. Indeed, a recent paper [16] states that it is unknown whether
the bidomain operator satisfies the maximum principle. We note, however, that nu-
merical computations plotting G; (see, for example, Chapter 12 of [19]) clearly show
places where G;(x) is negative for specific examples of A; and A.. We also remark
that in section 5 of [27] the authors prove the following. In the nonmonodomain
case, it is always possible to find a bistable nonlinearity f so that the corresponding
bidomain Allen—Cahn equation has a planar front solution that is spectrally unstable.
This implies that the nonmonodomain bidomain operator in dimension 2 violates the
maximum principle. We emphasize that our proof only applies to the constant coef-
ficient case in free space. Failure of the maximum principle is almost certainly true
in the general case of the variable coefficient bidomain operator in a bounded domain
with suitable boundary conditions, but this question is likely open.

Proof. We first consider the case n =2. Consider the initial value problem
(A.2) ur =—Au, u(x,0)=w(x),

where we take w(x) to be a smooth compactly supported function. The solution u
can be written as follows:

(A.3) u(x,t) = . Gi(x —y)w(y)dy.
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Since w(x) is smooth and compactly supported, it is easily seen that the above solution
u satisfies (A.2) pointwise for ¢ > 0, where A in the sense of a Fourier multiplier
operator as in (1.3). Our goal here is to show that if there is no 5 > 0 such that
A; = BA., then there are values of x for which G¢(x) < 0. We will exhibit a smooth
compactly supported function w(z) > 0 such that

(A.4) w(x) >0, w(0) =0, —(Aw)(0) <O0.

If we can find such a function, this implies that, for sufficiently small ¢ > 0, we have

(A.5) u(0,t) = . Gi(0 —y)w(y)dy = . Gi(y)w(y)dy <O0.

Since w(x) > 0, this is sufficient to show that G;(x) is negative for some values of x.
Given that Gy(x) = t~'G1(x/V/t), this shows that, for any ¢ > 0, there is an x for
which G;(x) <0.

We first make a suitable affine change of coordinates to reduce A; and A, to a
simple form. Let P be a 2 x 2 invertible matrix, and let X’ = P~ !'x be the new
coordinate system. Then from (A.1) we see that

! / ) exp(—tQ(PTk)) exp(ik - x')dk.

(A.6) GPX) = G g

Let P, =A, 1 2, which exists given that A; is symmetric positive definite. Further-
more, choose an orthogonal matrix P, so that P; A, P{' is diagonalized. Then

0 1 0 B
where 81 >0 and 85 > 0. If we let

_(VATHB) 0
(A8) (VA )

(A.7) P,P A, PI P} = (1 0) , PP A PIPY = (51 0> ,

and P = P3P, Py, we have

(A.9) PA;PT = (1 T 0 ) , PAPT= (1 70041 1 0 ) , where
2

0 1+()é2 —
1— Bk
- k=12
T8

Note that |ag]| <1 and |ag| < 1. (Note that this parametrization is slightly different
from (1.24) but equivalent.) If oy # e, A; and A, are not proportional to each other.
Given expression (A.6), we thus only have to prove the desired statement when A;
and A, have the form given above and «y # ap. For the above A; and A, the symbol
of Q(k), k= (k1,k2)7T, is given by (see (A.6))

(1 +a)k? 4+ (14 a2)k3) (1 — aa)ki + (1 — ag)k3)

k =
(A.10) e 2(kt + k3)
' 1 1 k3 k3
=5 (L —akf + (1 - ad)k3 + (a1 — aﬁm.
Thus, for any compactly supported smooth function w(x), we have
1 Pw 1 0w
—(Aw)(x) :7(1_a%) 2 +*<1—Oé%> 2

(a1 —ap)? / *w
M T2 og(x — y]) = d
+ A R2 Og(|x Y|)ay%8y§ Y,
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where x = (x1,22)T and y = (y1,2)". Let us now apply this to the following function
w. Let ¢ be the following smooth radial cutoff function:

1 ifo<r<1
A2 = - =7
(A.12) o(r) {0 e

and takes values between 0 and 1 when 1 <r < 2. Let ¢.(r) = ¢(r/e) for any € > 0.
Let w be the following function expressed in polar coordinates:

(A.13) w(r,0) = ¢(r)(1 — gc(r)) (1 — cos(49)),

where we let 0 < € < 1/2. This function is clearly nonnegative. Now let us evaluate
(A.11) at x=0 for the above function w. We have

a1 — an)? 1
(A.14) —(Aw)(()):% /R logly| 62 i

where we used the fact that w is identically equal to 0 in the neighborhood of x =0.
Noting again that w is identically equal to 0 near the origin and that it is compactly
supported, we may integrate by parts to obtain

(o) =2l o K.

(A.15) 4m
| K(y)= -2 logly] = 6 1 —6yiys +y3) _ 6cos(46)
2ui0} F+ i) o

Let us now evaluate the above integral:

= Ky
(A.16) / /W?’C;frie $(r) (1 — b (1)) (1 — cos(46))dbrdr

3 13 3 1
:7/6 21— 6u(r)dr < — | adr= 4(142><0,

where we used € < 1/2 in the two inequalities above. We thus see from (A.15) that
—(Aw)(0) <0 if oy # as.

We now turn to the case n = 3. This is a direct consequence of the n = 2
result. Suppose A4; and A, are not proportional to each other, and consider the 2 x 2
submatrices of the 3 x 3 matrices A; and A.. Of the three pairs of 2 x 2 submatrices
extracted from A; and A., at least one pair is not proportional. Without loss of
generality, suppose the principal 2 x 2 submatrices are not proportional, and let them
be A; and A,. Let x = (21,22,23)T € R®, X = (21, 22)" € R2, and likewise for k and
k. Define Gt( ) to be the fundamental solutlon associated with the two dimensional
bidomain operator defined by the matrices A and A

~ 1 ~ o~ e
(A.17) Gi(X) = (21T)2A/uzf eip(—tQ(k))exp(zk~X)dk7
A Qi(k)Qe(k) A (L T 1.
k)=—=—= ~ =~ i,e k)=k Ai,ek
@ Qi(k) + Qe (k) @ielld
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By the Fourier inversion formula applied to the variable x3 and k3, we have
(A.18) / Gi(x)dxz = G4(X).
R

By the proof of the n = 2 case, we know that there is a point X € R? such that
G4(X) < 0. The above identity implies that there is an x € R? such that G;(x) <0. O

Finally, we give an alternate proof of the nonpositivity of G¢ which applies when
Q(k) is a nonconvex function. Note that /Q(k) can be convex even when A; #
BA., and thus the following proof does not apply to all nonmonodomain cases. (For
example, if |a] < 1/2,a # 0, in (1.24), 1/Q(k) is convex but A; and A. are not
proportional.) The argument, however, may be of independent interest. We prove the
following proposition, which was kindly communicated to us by Professor Yoshikazu
Giga.
ProrosITION A.3 (Giga). Let p : R"™ — R be a function that is a nonconvex
positive function and homogeneous of degree one. Then F~llexp(—p(k)?)] is not
nonnegative, where F is the Fourier transform in R™.

Proposition A.3 follows immediately from Bochner’s theorem and Lemma A.4
below. Recall that a function f:R"™ — C is called a positive definite function if, for
any x1,Xs € R" and any k € N, the matrix

A={fi;} with fi;=f(xi—x;),1<4,j<k,
is positive semidefinite.

LEMMA A.4. Suppose that p: R"™ — R is positively homogeneous of degree one.
Then if p is nonconvex, exp(—p(z)?) is not a positive definite function.

Proof. Let x; =0 € R?. Since p is not a convex function, the set Q; = {x¢€ R? |
p(x=1)} is not a convex set. Thus, we can choose x3,x3 € 7 and § > 0 that satisfy

(A.19) p(x2 —x3) > p(x2) +p(x3) +0=2+6.

Let L be any positive constant. We consider the matrix

1
AL: a
a

o =
— o

where
0= exp (—p(Lx2)?) = exp (—p(Ixs)?) exp (~I2).
c=exp (—p(LxQ — LX3)2) <1.

To complete the proof of the lemma, it suffices to show that Ay cannot be positive
semidefinite.
Since p is positively homogeneous of degree one, it follows from (A.19) that

p(Lxa — Lxg) > (24 9)L.
Thus, by using the Taylor series, we have
a®? =exp(—2L?)=1—-2L? + o(L?),
c=exp (—p(Lxz — Lx3)*) =1 — p(Lxs — Lx3)* + o(L?) > 1 — (2 + 0)°L* + o(L?)
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as L — +0. Consequently, we have
|AL| = (1 —¢)(14 ¢ —2a%) > (1 —¢)(—(46 + §?)L* 4 o(L?))

as L — 40. Since 1—c is obviously positive, |A| < 0 holds when L is sufficiently small.
Since Ay, is a 3 x 3 matrix, this means that A is not positive semidefinite. 0
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