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Abstract
In many biological systems, natural selection acts simultaneously on multiple levels
of organization. This scenario typically presents an evolutionary conflict between the
incentive of individuals to cheat and the collective incentive to establish cooperation
within a group. Generalizing previous work on multilevel selection in evolutionary
game theory, we consider a hyperbolic PDE model of a group-structured population,
in which members within a single group compete with each other for individual-
level replication; while the group also competes against other groups for group-level
replication. We derive a threshold level of the relative strength of between-group
competition such that defectors take over the population below the threshold while
cooperation persists in the long-time population above the threshold. Under stronger
assumptions on the initial distribution of group compositions, we further prove that
the population converges to a steady state density supporting cooperation for between-
group selection strength above the threshold. We further establish long-time bounds
on the time-average of the collective payoff of the population, showing that the long-
run population cannot outperform the payoff of a full-cooperator group even in the
limit of infinitely-strong between-group competition. When the group replication rate
is maximized by an intermediate level of within-group cooperation, individual-level
selection casts a long shadow on the dynamics of multilevel selection: no level of
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between-group competition can erase the effects of the individual incentive to defect.
We further extend our model to study the case of multiple types of groups, showing
how the games that groups play can coevolve with the level of cooperation.

Keywords Multilevel Selection · Evolutionary Game Theory · Evolution of
Cooperation · Replicator Equations · Hyperbolic PDEs

Mathematics Subject Classification 92D15 · 91A22

1 Introduction

Across a variety of biological and social systems, population structure often induces
selective forces operating at multiple levels of organization. Of particular interest are
hierarchical structures in which there is a tug-of-war between the interests at a one
level of organization and the interests at a larger level. For problems of cooperation
or collective behavior, the incentives of an individual to be a free-rider are often
misaligned with the incentives of its group to produce a collective benefit for all of
its members (Levin 2010). Considering the effects of selection at multiple levels of
organization is particularly important in systems on the cusp of undergoing a transition
to a higher order of complexity, establishing a collective that can compete or replicate
as a single unit. Multilevel selection has been invoked to describe major evolutionary
transitions, with examples ranging from the evolution of multicellularity (Rainey and
Rainey 2003; Tarnita et al. 2013; Rose et al. 2020; Pichugin et al. 2015; Pichugin and
Traulsen 2018; Staps et al. 2019), to the evolution of social group structure (Nowak
et al. 2010; Fu et al. 2015). The transition to higher levels of biological complexity can
be understood as a triumph of cooperative behavior via multilevel selection, in which
groups can form a cooperative population structure overcoming individual competition
within the group (Szathmáry and Smith 1995; Nowak 2006; Taylor and Nowak 2007).

Questions about multilevel selection have ranged widely across scales. On one end
of the spectrum, ideas of conflict between individuality and collective behavior have
been considered for the evolution of multicellularity (Tarnita et al. 2013; Pichugin and
Traulsen 2018), replication control of plasmids (Paulsson 2002), and the evolution of
mutualism in themicrobiome (VanVliet andDoebeli 2019).At the other end, the align-
ment of the individual-level and group-level incentives have been studied for problems
ranging from collective hunting in animal groups (Boza and Számadó 2010) and the
eusocial structure of insect colonies (Nowak et al. 2010; Fu et al. 2015) to the estab-
lishment of cooperative institutions for the management of common-pool resources
(Ostrom 2010; Schlüter et al. 2016; Tavoni et al. 2012) and within-group cooperation
coevolving with warfare (Henriques et al. 2019; Turchin 2010) in human societies.
Experimental and field work has addressed problems ranging from the cooperative
cofounding of ant colonies (Shaffer et al. 2016), to the establishment of multicel-
lularity in biofilms (Rose et al. 2020) and the artificial selection for nonaggression
in chickens (Muir 1996; Bijma et al. 2007b, a; Wade et al. 2010). A natural ten-
sion between selective forces at different levels of selection arises in the evolution of
virulence in infectious disease dynamics, in which competition for pathogen replica-
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tion within an individual host promotes selection for more virulent pathogens, while
increased virulence can also harm the host and prevent onward transmission within
the host population (Levin and Pimentel 1981; Dwyer et al. 1990; Gilchrist et al. 2004;
Gilchrist and Coombs 2006; Blackstone et al. 2020; Boni et al. 2013).

One framework that has often been used to study multilevel selection is evolu-
tionary game theory, which provides stylized models for the evolution of cooperative
behavior in which individuals can maximize payoff by cheating, while groups achieve
higher collective payoffs when at least some of their members cooperate. Traulsen
and coauthors have studied the evolution of cooperation in the presence of multilevel
selection, showing that group-level competition for replication could help to promote
the fixation of cooperators over defectors in finite populations (Traulsen et al. 2005;
Traulsen andNowak 2006; Traulsen et al. 2008). Thework of Simon and coauthors has
further explored how more realistic mechanisms like group-level fission and fusion
events and the possibility of non-constant group size can help to facilitate cooperation
win out over the defection that is favored by individual-level selection (Simon 2010;
Simon and Nielsen 2012; Simon et al. 2013; Simon and Pilosov 2016). Further work
on stochastic multilevel selectionmodels in evolutionary games have explored the role
of group-level extinctions (Böttcher and Nagler 2016), the role of spatial structure on
between-group competition (Akdeniz and van Veelen 2020), and asymptotic formulas
for fixation probabilities in the limit of large population size (McLoone et al. 2018).

Luo (2014) introduced a stochastic model of two-level selection featuring two
types of individuals: one with a constant reproductive advantage at the individual
level (i.e. defectors), and the other that confers a selective advantage to its group
(i.e. cooperators) (Luo 2014; van Veelen et al. 2014). In the limit of infinitely many
groups of infinite size, Luo (2014) derived a non-local hyperbolic PDE describing
the simultaneous competition within and between groups. Luo and Mattingly (2017)
characterized the long-time behavior of this PDE based upon the relative strengths of
selection at the two levels and the Hölder exponent of the initial condition near the
full-cooperator group. They showed that there was a threshold level of between-group
selection strength such that defectors would fix in the population when between-group
competition below the threshold, while the population converges to a steady state
density supportingpositive levels of cooperation for between-group selection above the
threshold. Further work on related nested birth-death models for multilevel selection
has explored application to host-pathogen dynamics (Pokalyuk and Goerzer 2019;
Pokalyuk and Wakolbinger 2019; Osorio and Winter 2020), as well as mathematical
aspects of behavior in alternate infinite-population scaling limits, including fixation
probabilities in stochastic Fleming-Viot models (Luo and Mattingly 2017; Dawson
2018; Meizis 2020) and quasi-stationary distributions in a Wright-Fisher diffusion
equation with multilevel selection (Velleret 2019, 2020).

This model of two-level selection was later extended to include individual-level and
group-level birth rates that depended on the personal and collective payoffs obtained
from a two-strategy games played between members of the groups (Cooney 2019b).
Results analogous to those ofLuo andMattinglywere demonstrated for special cases of
the Prisoners’ Dilemma (PD) and Hawk-Dove (HD) games in which the within-group
dynamics were exactly solvable, and further work explored the multilevel dynamics
all two-player, two-strategy social dilemmas (Cooney 2020a) and in the presence
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of within-group mechanisms of assortment or reciprocity (Cooney 2019a). For the
PD and HD games, it was conjectured that, for sufficiently strong between-group
competition, the population would converge to the unique steady state with the same
Hölder exponent near x = 1 as that of the initial distribution. These steady state
densities displayed a surprising property, called the “shadow of lower-level selection",
in which the payoff of the modal group composition at steady state and the average
payoff of the steady state population were limited by the payoff of the full-cooperator
group. As a result, for games in which group payoff was maximized by intermediate
levels of cooperation, the population always features less cooperation than optimal,
even in the limit of infinitely strong between-group competition.

The PDEmodels of multilevel selection derived from two-level birth processes typ-
ically assume that between-group competition takes place through group-level birth
events in which groups faithfully produce a copy of itself as an offspring group (Luo
2014; van Veelen et al. 2014; Cooney 2019b). In practical biology applications, com-
petition between groups often manifests through differences in average growth rates
(Chuang et al. 2009), fission events for cells or social groups with potentially uneven
segregation of genes or behaviors (Szathmáry and Demeter 1987; Maynard Smith and
Száthmary 1993; Van Vliet and Doebeli 2019; Simon and Pilosov 2016), differing
rates of group-level extinction events (Böttcher and Nagler 2016), or explicit events
of intergroup conflict (Boyd et al. 2003; Henriques et al. 2019). While the models
with faithful group-level replication events provide a more stylized depiction of natu-
ral selection operating at multiple levels, the resulting PDE models provide a simple
setting for exploring the tension between evolutionary forces favoring defection at the
individual level and favoring positive levels of cooperation at the group level. The
goal of this paper is to provide a complete analytical characterization of this class of
PDE models for multilevel selection, allowing us to understand the ways in which
our assumptions about individual-level and group-level competition impact the possi-
bilities for long-time support for cooperation in group-structured populations. These
results provide an analytical benchmark against which we can compare numerical
study of more realistic models of multilevel selection that either feature stochastic,
finite population effects (Traulsen and Nowak 2006; Luo 2014; Markvoort et al. 2014)
or featuring group-level fission events (Szathmáry and Demeter 1987; Maynard Smith
and Száthmary 1993; Simon and Pilosov 2016), and we hope that this analysis can be
used as well to generate hypotheses for further empirical work onmultilevel selection.

In this paper, we characterize the long-time behavior for a broad class of models for
multilevel selection. While previous work had shown convergence to steady state den-
sities for several one-parameter families ofmodels formultilevel selection arising from
special cases of PD games (Luo and Mattingly 2017; Cooney 2019b), the techniques
used in those cases relied on the ability to obtain explicit solutions for the characteristic
curves describing the within-group dynamics, making it difficult to extend the results
to the more general situation. Here, we obtain careful estimates on the solutions along
characteristics and extract a principal growth rate for themultilevel dynamics, allowing
us to prove convergence to steady state for multilevel PDEs with continuously differ-
entiable individual-level and group-level replication rates in which defectors have an
individual-level advantage over cooperators and all-cooperator groups have a collec-
tive advantage over all-defector groups. This result confirms a previous conjecture for
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the long-time dynamics multilevel replicator equations arising from any PD game, and
extends the scope of that conjecture to include applications to a range of topics includ-
ing protocell evolution and the origin of chromosomes (Cooney et al. 2021). Through
this more general formulation of our model for multilevel selection, we are able to for-
malize previous intuition to understand how the possibility of achieving cooperation at
steady state relies on the ability for the collective advantage of full-cooperator groups
over full-defector groups to overcome the individual-level advantage of defecting in
a group with many cooperators.

We also extend our analysis of our generalization of the multilevel Prisoners’
Dilemma dynamics to study long-time behavior for initial populations beyond the
class of measures with a well-defined Hölder exponent near full-cooperation that was
considered in previous work (Luo and Mattingly 2017; Cooney 2019b, 2020a). By
characterizing the tail behavior of the initial measure through quantities that we call
the supremum and infimum Hölder exponent, we can obtain upper and lower bounds
for the principal growth rate for solutions along characteristics for any initial measure.
Using these estimates, we find that the population will not converge to a density steady
for any initial measure without a well-defined Hölder exponent near full-cooperation.
However, we show that, for any initial measure, defectors will take over the population
when between-group competition is sufficiently weak, while cooperation will survive
in the long-time limit in the sense of weak persistence when between-group selection
exceeds a threshold value that depends on the supremumHölder exponent of the initial
measure. We also use our estimates on the principal growth rate to derive long-time
upper and lower bounds on the time-average of the average group-level replication
rate of the population, showing that the long-time collective outcome cannot exceed
the group-level replication rate of the all-cooperator group. This observation serves
as a dynamical analogue of the “shadow of lower-level selection", showing how this
limitation on collective outcome stems from the tug-of-war between the collective
incentive to cooperate and the individual incentive to defect.

We also characterize the multilevel dynamics for a generalization of the Prisoners’
Delight game, in which cooperation is favored at both levels of selection, extracting
a principal growth rate to show how full-cooperation is achieve via multilevel selec-
tion. Combining this with the results mentioned above for our generalization of the
multilevel Prisoners’ Dilemma dynamics, we fully characterize the dynamics of our
two-level replicator equation for scenarios in which the within-group dynamics fea-
tures no interior equilibria. This approach of extracting a principal growth rate for a
population can be further applied to understand the a generalization of the multilevel
dynamics to a case in which our group-structured population may feature different
possible individual-level and group-level replication rates. We provide a sufficient
condition for the long-time concentration of the population upon a single type of
group under ourmulti-type two-level birth-death dynamics, showing that the long-time
dynamics will favor the dominance of the group type feature the maximal principal
growth rate. This result can be used to study the coevolution of group features and
the strategic composition of groups, showing how multilevel competition can help to
select the games played within groups. As one application of this framework with
multiple group types, we show that this concentration result can be used to study the
dynamics of generalized versions of Hawk-Dove and Stag-Hunt games, which each
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feature an interior within-group equilibrium. The results for these cases confirm and
extend existing conjectures on convergence to steady state for the multilevel dynamics
of those games (Cooney 2020a).

In Sect. 1.1, we describe the mathematical formulation of our model of multilevel
selection with comparisons to previous work on multilevel selection in evolutionary
games. In Sect. 1.2, we summarize our main results for the long-time dynamics of our
PDE model of multilevel selection. Section 1.3 provides an outline for the remainder
of the paper.

1.1 Model of multilevel selection

For our model of multilevel selection, we consider a population with m groups that
are each composed of n members. The within-group selection follow a frequency-
dependent Moran process replacing a randomly chosen member of the same group. In
a groupwith i cooperators, cooperators and defectors give birthwith rates 1+wI πC ( i

n )

and 1+wI πD( i
n ), respectively, where πC (·) and πD(·) are C1 functions on [0, 1] and

wI is the intensity of selection for within-group competition. We can further consider
the advantage of defectors over cooperators under within-group competition in an
i-cooperator group through the quantity

π
( i

n

) := πD
( i

n

) − πC
( i

n

)
. (1.1)

Between-group competition takes place through a group-level birth-death process
in which a group with i cooperators produces a copy of itself and replaces a ran-
domly chosen group with rate �(1 + wG G( i

n )), where wG is the selection intensity
of between-group competition and � describes the relative rate of within-group and
between-group replication events. We note that, for any constant s > 0, the choice of
π(x) = s and G(x) = x recovers the functions for within-group and between-group
competition for the Luo-Mattingly model (Luo 2014; Luo and Mattingly 2017).

In the limit as the number of groups and group size tend to infinity (m → ∞, n →
∞), we can describe the composition of strategies in the group-structured popula-
tion by u(t, x), the probability density of groups composed x cooperators and 1 − x
defectors at time t . Using either a heuristic derivation (Luo 2014; van Veelen et al.
2014; Cooney 2019b) or a weak convergence argument (Luo and Mattingly 2017),
we can show that the large-population limit of the stochastic ball-and-urn process can
be described by the following partial differential equation for the change of u(t, x) in
time

∂u(t, x)

∂t
= ∂

∂x
(x(1 − x)π(x)u(t, x)) + λ

(
G(x) −

∫ 1

0
G(y)u(t, y)dy

)
u(t, x),

(1.2)

where λ := �wG
wI

describes the relative strength of within-group and between-group
competition. The first term on the right-hand side of Eq. (1.2) describes the dynamics
of within-group competition, in which defectors (respectively cooperators) increase
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in frequency within groups when π(x) > 0 (respectively π(x) < 0). The second
term in Eq. (1.2) describes the impact of between-group competition, and groups with
composition x increase in frequency when their replication rate G(x) exceeds the
average group-replication rate in the population

∫ 1
0 G(y)u(t, y)dy.

Equation (1.2) is paired with an initial density given by

u(0, x) = u0(x) ≥ 0,
∫ 1

0
u0(x)dx = 1. (1.3)

We can check that, if u(x, t) is a solution to Eq. 1.2, it will be of unit mass for all t .
Equation (1.2) is a hyperbolic PDE, whose characteristic curves are given by solutions
of the following ODE

dx(t)

dt
= −x(1 − x)π(x) , x(0) = x0, (1.4)

which we note is the well-known replicator equation for individual-level selection
within a given group (Hofbauer and Sigmund 1998). The function π(x), sometimes
called the gain function (Bach et al. 2006; Kaznatcheev et al. 2017), describes the
relative advantage of defectors over cooperators under within-group competition in
an x-cooperator group.

We can also consider a measure-valued formulation corresponding to themultilevel
dynamics described by Eq. (1.2). For an initial Borel probability measure μ0(dx) and
any C1([0, 1]) test-function v(x), the measure μt (dx) changes in time according to

∂

∂t

∫ 1

0
v(x)μt (dx) = −

∫ 1

0

∂v(x)

∂x
x(1 − x)π(x)μt (dx)

+λ

∫ 1

0
v(x)

[
G(x) −

∫ 1

0
G(y)μt (dy)

]
μt (dx). (1.5)

To study solutions for Eq. 1.5, we can introduce an auxiliary linear equation given by

∂

∂t

∫ 1

0
v(x)μt (dx) = −

∫ 1

0

∂v(x)

∂x
x(1 − x)π(x)μt (dx) + λ

∫ 1

0
v(x)G(x)μt (dx),

(1.6)

paired with initial the measure μ0(dx). We can check that solutions μt (dx) to the
measure-valued multilevel dynamics of Eq. (1.5) can be related to solutions μt (dx)

of Eq. (1.6) through the normalization given by

μt (dx) = μt (dx)
∫ 1
0 μt (dy)

. (1.7)

The dynamics of Eq. (1.6) also have independent biological interest for studying
multilevel selection in which x-cooperator reproduce with rate G(x) and no groups
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are removed from the population. Such models of an expanding group-structured
population may be relevant in applications in which the group-level reproduction
corresponds to cell division (Fontanari et al. 2006; Fontanari and Serva 2013, 2014a, b)
or fission of social groups (Simon and Pilosov 2016; Gueron and Levin 1995).

We will also consider an extension of the multilevel dynamics in which groups
belong to one of N possible subpopulations, with each subpopulation featuring its
own reproduction rates π j (·) and G j (·). Within-group competition proceeds accord-
ing to π j (·), while between-group competition consists of group replicating with
rate proportion to G j (·) and replacing a randomly-chosen group from any of the
N subpopulations. For example, each subpopulation could be defined by a different
two-strategy game played within its groups, and then the corresponding multilevel
dynamics describe the coevolution of cooperation and the fraction of groups playing
each game.

Denoting the set of subpopulations by N = {1, · · · , N }, we describe the compo-
sition of x-cooperator groups in the subpopulation j ∈ N at time t by the density
u j (t, x). This family of densities changes in time according to PDEs of the form

∂u j (t, x)

∂t
= ∂

∂x

[
x(1 − x)π j (x)u j (t, x)

]

+λu j (t, x)

[

G j (x) −
N∑

k=1

Gk(y)uk(t, y)dy

]

, (1.8)

for each j ∈ N , and this system is paired with an initial density satisfying

u j (t, x) = u j
0(x) ≥ 0,

N∑

k=1

∫ 1

0
u j
0(x)dx = 1. (1.9)

We can also consider a measure-valued analogue of our multipopulation model by
describing the strategic composition of groups in the j th subpopulation by themeasure
μ

j
t (dx). For a C1([0, 1]) test-function v j (x), this measure changes according to the

following equation

∂

∂t

∫ 1

0
v j (x)μ

j
t (dx) = −

∫ 1

0

∂v j (x)

∂x
x(1 − x)π j (x)μ

j
t (dx)

+λ
∫ 1
0 v j (x)

[

G j (x) −
n∑

k=1

(∫ 1

0
Gk(y)μk

t (dy)

)]

μ
j
t (dx), (1.10)

where the subpopulations are coupled through the nonlocal regulation term describ-
ing between-group competition. The system described by Eq. (1.10) is paired with
initial measures given by the measures μ

j
0(dx) for j ∈ N , which together satisfy the

123



Long-time behavior of a PDE replicator equation… Page 9 of 67 12

normalization condition given by

N∑

j=1

μ
j
0 ([0, 1]) =

N∑

j=1

∫ 1

0
μ

j
0(dx) = 1. (1.11)

We can also associate with Eq. (1.10) a system of N decoupled linear equations of
the form

∂

∂t

∫ 1

0
v j (x)μ

j
t (dx) = −

∫ 1

0

∂v j (x)

∂x
x(1 − x)π j (x)μ

j
t (dx)

+ λ

∫ 1

0
v j (x)G j (x)μ

j
t (dx). (1.12)

Given solutions μ1
t (dx), · · · , μN

t (dx) to the linear dynamics of Eq. (1.12), we can

find a corresponding solution μ
j
t (dx) to Eq. (1.10) for the j th subpopulation through

the normalization given by

∫ 1

0
v j (x)μ

j
t (dx) =

∫ 1
0 v j (x)μ

j
t (dx)

∑N
k=1 μk

t ([0, 1])
(1.13)

1.1.1 Motivating example: two-strategy evolutionary games

To formulate assumptions about the behavior of the functions π(x) and G(x) char-
acterizing within-group and between-group competition, we can consider the special
case of the multilevel selection dynamics depend on payoffs from two-player, two-
strategy social dilemmas (Cooney 2019b, 2020a). We consider games with symmetric
payoff matrices of the form

C D( )
C R S
D T P

, (1.14)

where the entries of the payoff matrix correspond to the reward for mutual cooperation
(R), the sucker payoff from cooperating with a defector (S), the temptation to defect
against a cooperator (T ), and the punishment for mutual defection (P). In this paper,
we will consider the multilevel dynamics corresponding to generalizations of four
two-strategy social dilemmas: the Prisoners’ Dilemma (PD), the Hawk-Dove game
(HD), the Stag-Hunt (SH), and the Prisoners’ Delight (PDel). These four games are
characterized by the following rankings of payoffs

PD : T > R > P > S (1.15a)

HD : T > R > S > P (1.15b)

SH : R > T > P > S (1.15c)
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PDel : R > T > S > P. (1.15d)

For a group composed of fractions x cooperators and 1 − x defectors, the average
payoff for a cooperator and defector are given by

πC (x) = Rx + S(1 − x) (1.16a)

πD(x) = T x + P(1 − x). (1.16b)

For this example of multilevel selection with replication rates arising from the payoffs
of two-player, two-strategy games, we will assume that the group-level reproduction
rate in an x-cooperator group depend on the average payoff of groupmembers G(x) =
xπC (x) + (1 − x)πD(x) (Cooney 2019b, 2020a). Using the cooperator and defector
payoffs fromEq. (1.16), we then have that the dynamics of Eq. (1.2) have the following
dependence on the payoff matrix from Eq. (1.14)

π(x) = P − S − (R − S − T + P) x (1.17a)

G(x) = P + (S + T − 2P) x + (R − S − T + P) x2. (1.17b)

From Eq. 1.17b, we can see that the group-reproduction function satisfies

G(1) = R > P = G(0) (1.18)

for each of the social dilemmas described in Eq. (1.15). Under the game-theoretic
model, the characteristic curves from Eq. (1.4) change with time according to

dx(t)

dt
= −x(1 − x) [P − S − (R − S − T + P) x] , (1.19)

which has equilibria at x = 0, x = 1, and a possible interior equilibrium x = xeq

given by

xeq = P − S

R − S − T + P
. (1.20)

Furthermore, we note from Eq. (1.17a) that π(0) = P − S, π(1) = T − R, and
that π(x) interpolates linearly between π(0) and π(1) as x moves between 0 and
1. Using these facts and the payoff rankings from Eq. (1.15a), we can deduce that
π(x) > 0 for x ∈ [0, 1] for the PD game, and therefore defectors always have an
individual-level advantage over cooperators in this game. Using Eq. (1.15d), we see
by analogous reasoning that π(x) < 0 for x ∈ [0, 1] for the PDel game, resulting in
an individual-level advantage for cooperators over defectors in this game.

Using these properties, we formulate a generalization of the multilevel PD and
PDel dynamics by considering G(x), π(x) ∈ C1 ([0, 1]) satisfying G(1) > G(0) and
either π(x) > 0 (in the PD case) or π(x) < 0 (in the PDel case). Notably, this class
of reproduction functions G(x) and π(x) allows us to consider group-reproduction
rates G(x) which are not given by the average of the individual-level replication rates
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of cooperators πC (x) and defectors πD(x), and this broader class of models includes
those used in the Luo-Mattingly model (Luo 2014), in models used to describe the
evolution of protocells (Cooney et al. 2021), and within-group dynamics following
the Fermi update rule for social learning (Traulsen et al. 2005). We will take this gen-
eralization of the PD and PDel dynamics as a generic picture of multilevel selection in
populations without internal within-group equilibria, and will assume that the dynam-
ics of multiple subpopulations described by Eq. (1.8) reflects a PD or PDel scenario
within a given subpopulation. For games such as the HD and SH with internal within-
group equilibria, we will apply the multiple subpopulation formulation using the fact
that the dynamics above and below the within-group equilibria for such games reflect
either a PD or PDel scenario.

For the more general class of models considered in this paper, we only impose
assumptions on the value of the group-level replication rate G(x) for levels of coop-
eration x that correspond to equilibria of the within-group dynamics. In particular, by
only imposing the assumption that G(1) > G(0) for our generalization of multilevel
PD and PDel competitions, we can consider a variety of group-level replication rates
for which G(x) can exceed the all-cooperator replication rate G(1) for a range of
intermediate levels of cooperation x ∈ (0, 1). In addition to the example considered
above of PD games with S + T > 2R, the possibility of group-level competition
most favoring a mix of cooperators and defectors arises in biological settings in which
individuals pay a cost to provide a public good for their group. Experimental work
in yeast has shown the possibility of populations achieving maximal growth rate by
containing only a fraction of individuals with a gene required to produce proteins that
break down sugars (MacLean et al. 2010), showing that a mix of producers and non-
producers can best balance the collective benefit from the presence of the protein and
the individual metabolic cost of producing this diffusible public good. This form of the
generalized multilevel PD dynamics may arise in scenarios in which individual-level
competition for reproduction is paired with a collective benefit for complementary
genes or behaviors, with examples ranging from division-of-labor in animal groups
(Boza and Számadó 2010) to the evolution of complementary genes in early cellular
life (Maynard Smith and Száthmary 1993; Fontanari et al. 2006; Fontanari and Serva
2014b). Empirical studies for this kind of competition have been explored in several
settings in the context of infectious disease, from the demonstration of heterotypic
competition between complementary strains of influenza (Xue et al. 2016) to the evo-
lution of genetic linkage and antiobiotic multiresistance that arises from competition
between bacteriophages that confer resistance to alternate antibiotics (Sachs and Bull
2005).

1.2 Summary of main results

Now we present our main results for the dynamics of solutions to Eq. (1.2). In
Sect. 1.2.1, we introduce the family of probability densities that are steady state solu-
tions of Eq. (1.2) in the PD case, highlighting how the collective at steady state is
limited by the group-level reproduction rate of the all-cooperator group. In Sect. 1.2.2,
we present Theorem 1, showing convergence of the population to a steady state density
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for the special of initial measures with a well-defined Hölder exponent near x = 1.
In Sect. 1.2.3, focus on the characterization of long-time behavior of the multilevel
PD dynamics for all possible initial measures, providing bounds on the long-time col-
lective outcome in Theorem 2 and classifying the conditions for long-time extinction
or persistence of cooperation in Theorem 3. In Sect. 1.2.4, we turn to the dynamics
of Eq. (1.8) describing multilevel competition in the presence of multiple types of
groups. We present Theorem 4, providing a sufficient condition for the population to
concentrate upon the group type with maximal principal growth rate.

1.2.1 Steady state densities for multilevel PD dynamics

Wefirst look to understand steady-state solutions toEq. (1.2) in thePrisoners’Dilemma
case, and the conditions under which such solutions can be achieved under the mul-
tilevel dynamics. In Sect. B, we show that, under generic conditions on λ, G(·), and
π(·), the achievable steady states are delta-concentrations of full-defector groups δ(x)

and full-cooperator groups δ(1− x), as well as a family of density steady states which
we characterize below.

In previous work on special cases of Eq. (1.2), the long-time behavior and con-
vergence to steady state of the multilevel dynamics was studied for initial measures
μ0(dx) with given Hölder exponent near x = 1 (Luo and Mattingly 2017; Cooney
2019b, 2020a). This Hölder exponent and its associated Hölder constant quantify the
extent to which the initial distribution concentrates or decays near the full-cooperator
group, and is defined as follows.

Definition 1 The measure μt (dx) has Hölder exponent θt ≥ 0 near x = 1 with
associated Hölder constant Cθ ∈ R≥0 ∪ {∞} if it satisfies the following limiting
behavior

lim
x→0

μt ([1 − x, 1])
x�

=
⎧
⎨

⎩

0 : � < θ

Cθ : � = θ

∞ : � > θ

. (1.21)

Measures of the form μ(dx) = θ(1 − x)θ−1dx for finite θ > 0 have Hölder
exponent θ near x = 1. Examples with Hölder exponent of 0 and ∞ are measures
satisfying μ({1}) > 0 and μ ([1 − ε, 1]) = 0 for some ε > 0, respectively.

We show in Sect. 2 that steady state density solutions to Eq. (1.2) can be
parametrized by λ and their Hölder exponent θ > 0 near x = 1. We calculate that
these steady states are given by the following densities

pλ
θ (x) = f λ

θ (x)
∫ 1
0 f λ

θ (x)dx
,

f λ
θ (x) = xνθ−1(1 − x)θ−1 π(1)

π(x)
exp

(

−λ

∫ 1

x

C̃(s)ds

π(s)

)

, (1.22)
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where the parameter νθ corresponds to

νθ :=
(

1

π(0)

)
(λ [G(1) − G(0)] − θπ(1)) (1.23)

and the term −λC̃(x) is given by

− λC̃(x) = λ

(
G(x) − G(0)

x

)
+ νθ

(
π(x) − π(0)

x

)

+λ

(
G(x) − G(1)

1 − x

)
− θ

(
π(x) − π(1)

1 − x

)
. (1.24)

The form of these steady state densities highlights the key contribution of the collective
reproduction rates G(1) and G(0) and individual-level gain functions π(1) and π(0)
for the all-cooperator and all-defector groups.

Furthermore, our assumption of C1([0, 1]) replication rates G(·) and π(·) allows
us to use Equation (1.24) to deduce the boundedness of λC̃(x) on [0, 1]. Because we
are considering θ > 0, we see from Eqs. (1.22) and (1.23) that the density f λ

θ (x) is
integrable provided that νθ > 0, which occurs when between-group competition is
sufficiently strong so that

λ > λ∗ := θπ(1)

G(1) − G(0)
. (1.25)

This threshold condition is increasing in π(1), the relative within-group advantage of
a defector over a cooperator in a full-cooperator group, and is decreasing in G(1) −
G(0), the relative between-group advantage of a full-cooperator group over a full-
defector group. From this we see that the ability to promote cooperation via multilevel
selection can be understood as the collective incentive to cooperate winning out over
the individual incentive to defect against cooperators. In addition, λ∗ is an increasing
function of θ , whichmeans that larger cohorts of near full-cooperator groups are able to
maintain a steady state density featuring cooperation over a large range in the strength
of between-group competition.

We further show in Sect. 2 that the average level of group reproduction G(x)

achieved in the steady state distribution pλ
θ is given by

〈G(·)〉pλ
θ

=
∫ 1

0
G(y)pλ

θ (y)dy =
(

λ∗

λ

)
G(0) +

(
1 − λ∗

λ

)
G(1). (1.26)

The average group reproduction function (or collective payoff in the game-theoretic
scenario) interpolates between the collective outcome of all-defector groups to that
of all-cooperator groups as λ ranges from λ∗ to ∞, and that the average at steady
state 〈G(·)〉pλ

θ
is limited by the collective outcome for the all-cooperator group. In

particular, this means that if G(x) is maximized by an interior level of cooperation x∗,
then the average collective reproduction at steady state does not achieve its optimal
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(a) x∗ = x = 1. (b) x∗ = 3
4 , x = 1

2 .

Fig. 1 Steady state densities from Eq. (1.22) for various values of between-group selection intensity λ for
the game-theoretic case of Sect. 1.1.1 and scenarios in which G(x) is maximized by full-cooperation (left)
or by 75 percent cooperators (right). The dashed lines in the bottom panel correspond to the group type x∗
maximizing G(x) and the group type x for which G(x) = G(1). Densities have Hölder exponent θ = 3
near x = 1, and payoff parameters are chosen from the family of games with S = 1, P = 2, T = R + 2
with either R = 2.5 (left) or R = 3 (right)

possible level even in the limit of infinitely strong between-group competition when
λ → ∞. This generalizes the so-called “shadow of lower-level selection" seen in
previous work on multilevel selection in evolutionary games.

We may also visualize the impact of increasing the intensity of between-group
competition by plotting the steady state densities from Eq. (1.22) for various values
of λ. In Figure 1, we display these steady state densities for special cases of the game-
theoretic examples from Sect. 1.1.1 in which the collective payoff of the group is
either maximized by full-cooperation (x∗ = 1, Figure 1a) or by a composition of 75
percent cooperators (x∗ = 3

4 , Figure 1b). In the former case, we see arbitrarily high
levels of cooperation are achieved by the group for sufficiently large λ, whereas in the
latter case the densities do not come close to achieving the optimal composition of
cooperators. In fact, in the latter case, the density appears to concentrate around x = 1

2 ,
the unique interior level of cooperation satisfying G(x) = G(1). In the appendix, we
formalize this intuition from Figure 1 to show that the steady states of Eq. (1.2) in the
PD case concentrate as λ → ∞ upon measures supported only at points satisfying
G(x) = G(1).

1.2.2 Convergence to steady state densities

Next, we explore the conditions under which steady states of the form pλ
θ (x) are

achieved as the long-time behavior under the dynamics of Eq. (1.2). Considering
initial populations that have a well-defined Hölder exponent, we show in Theorem 1
that solutions μt (dx) to Eq. (1.2) converge weakly to a steady state density when
λ > λ∗ . This result confirms and generalizes (Cooney 2020a, Conjecture 1), which
addresses convergence to steady-state for multilevel selection in the case of replication
rates arising from Prisoners’ Dilemma games with the payoff matrix of Eq. (1.14).
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Theorem 1 Suppose that G(x), π(x) ∈ C1 ([0, 1]), G(1) > G(0), and π(x) > 0 for
x ∈ [0, 1]. Consider an initial measure μ0(dx) having a Hölder exponent θ > 0 near
x = 1 with corresponding positive, finite Hölder constant Cθ . If λ [G(1) − G(0)] >

θπ(1), then μ̄t converges weakly to the probability measure defined by the density
function pλ

θ (x) defined in Eq. (1.22):

lim
t→∞

∫ 1

0
v(x)μt (dx) =

∫ 1

0
v(x)pλ

θ (x)dx (1.27)

where v(x) is an arbitrary continuous function on [0, 1].

The above, and indeed, many of our main results to follow depend on the careful
study of the characteristic curves solving Eq. (1.4) and the solutions along charac-
teristics, which respectively describe the effects of within-group and between-group
competition. Because π(·) is positive for the Prisoners’ Dilemma case, x = 0 and
x = 1 are the only steady states of this ODE and therefore the characteristic curves
spend most of their time near x = 0 or x = 1. Thus, G(0) and G(1), the group repli-
cation rates near x = 0 and x = 1 respectively, and π(1), the speed with which the
ODE trajectory leaves x = 1, can be expected to control growth of the unnormalized
solution μt (dx) to Eq. (1.6). This intuition is made precise by Lemma 7, where we
use the continuous differentiability of π(·) and G(·) on [0, 1] to decompose μt (dx)

into the product of a bounded, continuous function and an exponentially growing
term whose growth rate is given by max{λG(0), λG(1)−θπ(1)}. This decomposition
allow us to prove Theorem 1 using our knowledge of G(·) and π(·) at the endpoints
0 and 1, without requiring explicit expressions for the characteristic curves and solu-
tions alongs characteristics only available in special cases (Luo and Mattingly 2017;
Cooney 2019b). In addition to generalizing previous results, this approach allows us to
glean further biological intuition into how the long-time behavior of Eq. (1.2) results
from a tension between the collective incentive to achieve full-cooperation over full-
defection G(1) − G(0) and the individual-level incentive to defect π(1) in a group
with many cooperators.

1.2.3 Long-time behavior for more general initial measures

Not all initial measures have awell-definedHölder exponent as defined inDefinition 1,
as the limit characterizing the Hölder exponent and constant in Eq. (1.21) does not
necessarily exist. For suchmeasures, the foregoing results do not apply, but we can still
provide a characterization of the long-time behavior that holds for any initial measure
and any relative strength of between-group selection. In Theorem 2, we derive long-
time upper and lower bounds for the time-averaged collective payoff of the population,
showing that the long-time collective outcome is limited by the replication rate of the
all-cooperator group. In Proposition 3,we show that, for a given initialmeasure, there is
a threshold strength of between-group competition required for cooperation to survive
in the long-time population.

123



12 Page 16 of 67 D. B. Cooney, Y. Mori

To supplement the Hölder exponent in characterizing initial measures by the behav-
ior near x = 1, we introduce the following quantities that can be defined for any initial
measure.

Definition 2 The infimum Hölder exponent θ near x = 1 satisfies

θ := sup

{
� ≥ 0 : lim inf

x→0

μt ([1 − x, 1])
x�

= 0

}
(1.28)

Furthermore, the infimum Hölder constant Cθ is given by

lim inf
x→0

μt ([1 − x, 1])
xθ

= Cθ . (1.29)

Definition 3 The supremum Hölder exponent θ near x = 1 satisfies

θ := sup

{
� ≥ 0 : lim sup

x→0

μt ([1 − x, 1])
x�

= 0

}
(1.30)

Furthermore, the supremum Hölder constant Cθ is given by

lim sup
x→0

μt ([1 − x, 1])
xθ

= Cθ . (1.31)

Remark 1 The infimum and supremumHölder exponents satisfy the inequality θ ≤ θ .
This is true because, for any � ≥ 0,

lim inf
x→0

μt ([1 − x, 1])

x�
≤ lim sup

x→0

μt ([1 − x, 1])

x�
. (1.32)

Therefore if the left-hand side is positive for a given�, then right-hand side is positive
as well.

Furthermore, if there are θ and Cθ such that the infimum and supremum Hölder
exponents satisfy θ = θ = θ and infimum and supremum Hölder constants satisfy
Cθ = Cθ = Cθ , then Definitions 2 and 3 imply that the limiting behavior of Eq. (1.21)
is satisfied by the measure μt (dx). In other words, if the infimum and supremum
Hölder data agree for a measure μt (dx) near x = 1, then μt (dx) has a well-defined
Hölder exponent θ and Hölder constant Cθ near x = 1 in the sense of Definition 1.

Remark 2 It can be shown that, if our initial measure μ0(dx) has infimum and supre-
mumHölder exponents θ and θ near x = 1with constantsCθ andCθ , then the solution
μt (dx) to Eq. (1.6) has the same infimum and supremum Hölder exponents θ and θ

near x = 1 with constants Cθe[λG(1)−θπ(1)]t and Cθe[λG(1)−θπ(1)]t . This allows us to
see that the set of measures with well-defined Hölder exponent and Hölder constant
near x = 1 is closed under our multilevel dynamics.
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We can now use this characterization of the initial measure μ0(dx) in terms of its
infimum and supremum Hölder exponents θ and θ near x = 1 to study the long-time
behavior of measure-valued solutionsμt (dx) to Eq. (1.2). To understand the collective
outcome achieved by the population, we consider the average group-level replication
rate across all the groups in the population, which we denote by

〈G(·)〉μt :=
∫ 1

0
G(x)μt (dx). (1.33)

In Theorem 2, we show that the time-average of this collective reproduction rate
〈G(·)〉μs eventually satisfies bounds in terms of the supremum and infimum Hölder
exponents of the initial measure μ0(dx).

Theorem 2 Suppose that G(x), π(x) satisfy the assumptions of Theorem 1 and that
the initial distribution μ0(dx) has positive supremum and infimum Hölder exponents
θ and θ near x = 1. Under these assumptions, the average group-level reproduction
rate 〈G(·)〉μt of solutions μt (dx) to Eq. (1.2) satisfy

lim sup
t→∞

1

t

∫ t

0
〈G(·)〉μs ds = max

{
G(1) − θπ(1)

λ
, G(0)

}
(1.34a)

lim inf
t→∞

1

t

∫ t

0
〈G(·)〉μs ds = max

{

G(1) − θπ(1)

λ
, G(0)

}

. (1.34b)

The bounds fromTheorem2 tell us that, in a time-averaged sense, the long-time col-
lective outcome is limited by the group-reproduction rate G(1) of the full-cooperator
group. This extends our idea of the shadow of lower-level selection seen in Eq. (1.26),
showing that this limitation on the collective reproduction rate holds for any initial
measure and making an explicit connection between this limitation and the dynamics
of Eq. (1.2).

The proof of Theorem 2 relies on the following implicit representation for the mass
of the unnormalized solution μt (dx) of Eq. (1.6), which is derived in Sect. 3.1.1:

μt ([0, 1]) =
∫ 1

0
μt (dx) = exp

(
λ

∫ t

0
〈G(·)〉μs ds

)
. (1.35)

This expression can be combined with our estimates for the principal growth rates for
μt ([0, 1]) derived in Lemmas 5, 7, and 8 to deduce the bounds of Eq. (1.34). This
relationship between the principal growth rates and long-time average group-level
replication rate for the population illustrates the importance of collective group-level in
the structure of themultilevel replicator dynamics described byEq. (1.2). Furthermore,
the form of the bounds we obtain on the collective outcome highlights the key roles
played by all-cooperator group in maintaining cooperation in the population, and
how the tension between individual and group incentives hinges upon the interaction
between reproduction rates G(0), G(1), and π(1) and the infimum and supremum
Hölder exponents θ and θ of the initial measure near x = 1.
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Examining the bounds of Eq. (1.34), we see that lim supt→∞ 1
t

∫ t
0 〈G(·)〉μs ds =

G(1)−λ−1θπ(1) > G(0)when λ [G(1) − G(0)] > θπ(1). This allows us to identify
the following threshold value λ∗(θ)

λ∗(θ) := θπ(1)

G(1) − G(0)
, (1.36)

such that the time-averaged value of 〈G(·)〉μt exceeds the all-defector reproduction rate
G(0) infinitely often if λ > λ∗(θ). If λ > λ∗(θ) and θ �= θ , we see fromEq. (1.34) that
lim inf t→∞ 1

t

∫ t
0 〈G(·)〉μs ds �= lim supt→∞ 1

t

∫ t
0 〈G(·)〉μs ds, and therefore the time-

average 〈G(·)〉μt does not converge as t → ∞. Because we assume that G(x) ∈
C1([0, 1]), G(x) is a valid test-function v(x) for our measure-valued formulation of
the multilevel dynamics as described by Eq. (1.5), and thusμt (dx) cannot converge to
a density steady state when there is disagreement between the supremum and infimum
Hölder exponents θ and θ near x = 1 for the initial measure μ0(dx).

Even though solutionsμt (dx) do not necessarily converge to any steady state in the
long-time limit, we can use the threshold λ∗(θ) to characterize whether cooperation
will survive in the long-run population given any initial measure μ0(dx). In Theo-
rem 3, we show that cooperation vanishes from the population when λ < λ∗(θ), while
cooperation survives when λ > λ∗(θ). Mathematically, this consists of showing that
the population converges to a delta-measure δ(x) concentrated upon the all-defector
group when λ < λ∗(θ), while the fraction of cooperators in the positive exceeds a
positive threshold infinitely often when λ > λ∗(θ). This sense in which cooperation
survives is called weak persistence (Freedman and Moson 1990), and has often been
used to characterize the survival and coexistence of strategies in evolutionary games
and related ecological models under individual-level dynamics (Hofbauer 1981; Hof-
bauer and Sigmund 1998; Hofbauer and Schreiber 2004; Bratus et al. 2017; Freedman
and Moson 1990). For the edge case in which λ = λ∗(θ), we know from Theorem 2
that the time-averaged collective outcome 〈G(·)〉μt converges to that of the all-defector
group G(0), and show in Sect. 5.2 that the population will converge to δ(x) for a more
restricted class of group-reproduction functions G(x) and initial measures.

Theorem 3 Suppose that G(x), π(x) satisfy the assumptions of Theorem 2, and that
the initial distribution μ0(dx) has positive supremum and infimum Hölder exponents
θ and θ near x = 1. If λ [G(1) − G(0)] < θπ(1), then μt (dx)⇀δ(x) as t → ∞. If
λ [G(1) − G(0)] > θπ(1), then the average fraction of cooperators satisfies

lim sup
t→∞

∫ 1

0
xμt (dx) > 0. (1.37)

Our result from Theorem 3 on extinction and weak persistence of cooperation
holds for any initial measure μ0(dx). Consequently, we can view weak persistence
as serving as a more general criterion for identifying the survival of cooperation than
convergence to a steady state density in the sense of Theorem 1. In this light, we
can see Theorem 3 as providing a natural classification for the long-term behavior of
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solutions to Eq. (1.2) for replication rates satisfying the assumptions of the multilevel
PD dynamics.

To fully characterize the dynamics of our multilevel replicator equations for within-
group replication rates that feature no internal equilibria, we now consider the long-
time behavior for the case of the generalizedPrisoners’Delight game (inwhichG(1) >

G(0) and π(x) < 0.) Because both within-groups and between-group competition
push to increase cooperation under the PDel dynamics, we show in Proposition 1
that the population concentrates upon the full-cooperator group when there is any
between-group competition and any cooperators in the initial population.

Proposition 1 Suppose that G(x), π(x) ∈ C1 ([0, 1]), G(1) > G(0), and π(x) < 0
for x ∈ [0, 1]. If μ0 ((0, 1]) > 0 and λ > 0, then μt (dx)⇀δ(x − 1) as t → ∞.

1.2.4 Results for multiple population dynamics

As we saw for the dynamics of a single interval, the growth of the non-normalized
solution can be associated with a principal exponential growth rate that can be associ-
ated with the average payoff at steady state. For a given interval j with well-defined
Hölder exponent θ j near x = 1,

r j =
⎧
⎨

⎩

λG j (1) : π j (x) < 0
λG j (1) − θ jπ j (1) : π j (x) > 0 , λ

[
G j (1) − G j (0)

] − θ jπ j (1) > 0
λG j (0) : π j (x) > 0 , λ

[
G j (1) − G j (0)

] − θ jπ j (1) < 0
.

(1.38)

However, in the case in which μ
j
0(dx) does not have a well-defined Hölder exponent

near x = 1, we can possibly only bound the principal growth rate in terms of the

infimum and supremum Hölder exponents θ
j
and θ j near x = 1. Recalling that

θ j ≤ θ j , we can see that the principal growth rate r j ∈ [rm
j , r M

j ], where we can our

lower bound in terms of θ j as

rm
j =

⎧
⎪⎨

⎪⎩

λG j (1) : π j (x) < 0

λG j (1) − θ
j
π j (1) : π j (x) > 0 , λ

[
G j (1) − G j (0)

] − θ
j
π j (1) > 0

λG j (0) : π j (x) > 0 , λ
[
G j (1) − G j (0)

] − θ
j
π j (1) < 0

(1.39a)

and our upper bound in terms of θ j as

r M
j =

⎧
⎨

⎩

λG j (1) : π j (x) < 0
λG j (1) − θ jπ j (1) : π j (x) > 0 , λ

[
G j (1) − G j (0)

] − θ jπ j (1) > 0
λG j (0) : π j (x) > 0 , λ

[
G j (1) − G j (0)

] − θ jπ j (1) < 0
.

(1.39b)

In particular, this means that the possible growth rates for two intervals can potentially
overlap. In the remainder of the paper, we will focus on the case in which there is an
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interval j such that rm
j > r M

k for all other intervals k. When such a condition holds,
we show in Theorem 4 that the whole population will eventually concentrate upon the
subpopulation with the dominant principal growth rate.

Theorem 4 Suppose that each supopulation j ∈ N has reproduction functions
G j (x), π j (x) ∈ C1 ([0, 1]) satisfying G j (1) > G j (0) and either π j (0) > 0 for

x ∈ [0, 1] or π j (0) < 0 for x ∈ [0, 1] and that its initial measure μ
j
0(dx) have

infimum and supremum Hölder exponents θ
j

> 0 and θ j > 0 near x = 1. Suppose
there is a subpopulation k such that rm

k > r M
j for j ∈ N −{k}. Then, for all such j , we

see that μ
j
t ([0, 1]) → 0 as t → ∞. Furthermore, if μk

0(dx) has well-defined Hölder
exponent θk and Hölder constant Cθk near x = 1 that are positive and finite, then
μk

t (dx)⇀pλ,k
θ (x)dx as t → ∞ if λ [Gk(1) − Gk(0)] > θkπk(1), where pλ

θ,k(x) is
the steady state density given by Eq. (1.22) with G(x) := Gk(x) and π(x) := πk(x).

1.3 Outline of paper

The remainder of the main paper is structured as follows. In Sect. 2, we calculate the
steady state densities for Eq. (1.2) in the PDcase and characterize the average collective
payoff at steady state. In Sect. 3, we demonstrate useful properties of time-dependent
solutions to Eq. (1.2) and present the main estimates for the principal growth rates
for solutions along characteristics. In Sect. 4, we use the estimates from Sect. 3 to
prove Theorem 1, showing convergence of the population to steady states supporting
cooperation when the initial measure has a well-defined Hölder exponent near full-
cooperation and between-group competition is sufficiently strong. In Sect. 5, we derive
long-time bounds on the time-average of the population’s collective reproduction rate
(Theorem 2), and we characterize how cooperation can either collapse or persist in the
population (Theorem 3), depending on the supremum Hölder exponent of the initial
population and the relative intensity of within-group and between-group competition.
In Sect. 6, we characterize the long-time behavior of the multipopulation dynamics
described by Eq. (1.10), showing that multilevel selection can promote concentration
upon the group type favoring the highest long-time collective payoff (Theorem 2). In
Sect. 7, we discuss our results and directions for future research.

We also present additional results in the appendix. In Sect. A, we demonstrate well-
posedness for solutions to Eq. (1.2) in themeasure-valued sense required for our results
on long-time behavior. In Sect. 2, we discuss additional properties of the density steady
state solutions for the PD multilevel dynamics, characterizing the regularity of the
densities and showing the concentration of the steady states upon group compositions
achieving the same payoff as an all-cooperator group in the limit of infinite between-
group competition. Finally, in Sect. C, we formulate a generalized version of the
multilevel HD and SH dynamics in terms of the multipopulation framework discussed
in Sect. 6 and then show how we can apply Theorem 4 to understand the long-time
behavior of solutions to Eq. (1.2) for the case of HD or SH games.
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2 Steady state solutions of multilevel dynamics

In this section,we derive the steady state densities presented inEq. (1.22) and (1.24) for
the PD case of themultilevel dynamics.We show that this family of steady states can be
parameterized by their Hölder exponent θ near the full-cooperator equilibrium at x =
1, and we use this parametrization to calculate the average group-level reproduction
rate of the steady state population. We also characterize additional properties for these
steady state densities in Sect. B.

From the results of Lemma 5 and Lemma 12 (provided in Sect. B), we know that
the only possible long-time steady states of Eq. (1.2) in the PD case are delta-measures
δ(x) and δ(x − 1), concentrated at the all-defector and all-cooperator equilibria, and
a family densities f (x) which satisfy the ordinary differential equation

0 = ∂

∂x
[x(1 − x)π(x) f (x)] + λ f (x)

[
G(x) −

∫ 1

0
G(y) f (y)dy

]
, (2.1)

where f (x) is continuously differentiable and f (x) > 0 for x ∈ (0, 1). For such
strong solutions to the steady state problem, we can use separation of variables to see
that f (x) must satisfy

f ′(x)

f (x)
= − [x(1 − x)π(x)]′

x(1 − x)π(x)
+ λ

〈G(·)〉 f − G(x)

x(1 − x)π(x)
. (2.2)

We can rewrite the last term of Eq. 2.2 as

λ
〈G(·)〉 f − G(x)

x(1 − x)π(x)
= λ

π(0)

( 〈G(·)〉 f − G(0)

x

)

+ λ

π(1)

( 〈G(·)〉 f − G(1)

1 − x

)
+ λC(x)

π(x)
(2.3)

where, using the shorthand notation G̃(x) := G(x) − 〈G(·)〉 f , we can write C(x) as

C(x) =
(

1

x(1 − x)

)[

−G̃(x) + G̃(0)

π(0)
(1 − x)π(x) + G̃(1)

π(1)
xπ(x)

]

= G̃(0) − G̃(x)

x
+

(
G̃(0)

π(0)

)(
π(x) − π(0)

x

)

+ G̃(1) − G̃(x)

1 − x
+

(
G̃(1)

π(1)

)(
π(x) − π(1)

1 − x

)
. (2.4)
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Using Eqs. (2.3) and (2.3), we can see that steady state densities must satisfy the
implicit expression

f (x) = 1

Z f
x

λ
π(0) [〈G(·)〉 f −G(0)]−1

(1 − x)
λ

π(1) [G(1)−〈G(·)〉 f ]−1
π(x)−1 exp

(
−λ

∫ 1

x

C(s)

π(s)
ds

)
,

(2.5)

where Z f is a normalizing constant
∫ 1
0 f (x)dx = 1, provided that such a constant

exists. Because G(x) and π(x) are C1 functions, we see from Eq. (2.4) that C(x)

remains bounded near 0 and 1. This means that the density f (x) from Eq. (2.5) will
be integrable on (0, 1) if the average payoff 〈G(·)〉 f satisfies the following bounds

G(0) < 〈G(·)〉 f < G(1). (2.6)

In particular, this tells us that valid steady state densities cannot have a higher group-
reproduction rate than the rate of a full-cooperator group G(1), providing a signature
of the shadow of lower-level selection. Furthermore, the implicit form of the density
provided in Eq. (2.5) highlights the principal contributions of the group-level repli-
cation rates of all-cooperator and all-defector groups G(1) and G(0) in determining
whether a given distribution of group compositions can be maintained at steady state.

From the implicit relation of Eq. (2.5), we see that there are infinitely many possible
steady state densities f (x) for a given relative selection strength λ, one for each value
of 〈G(·)〉 f satisfying the bounds from Eq. (2.6). Because the Hölder exponent near
x = 1 is preserved under the dynamics of Eq. (1.2), we will parametrize the measures
corresponding to the densities from Eq. (2.5) by their Hölder exponents θ near x = 1
to obtain an explicit representation for our family of density steady states.

Noting that C(x) is bounded on [0, 1], we can compute that

lim
x→0

∫ 1
1−x f (y)dy

x�
= lim

x→0

f (1 − x)

�x�−1

= 1

�Z f
lim
x→0

[
x

λ
π(1) [G(1)−〈G(·)〉 f ]−�

(1 − x)
λ

π(0) [〈G(·)〉 f −G(0)]−1
π(1 − x)−1e−λ

∫ 1
1−x

C(s)
π(s) ds

]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 : � <
(

λ
π(1)

) [
G(1) − 〈G(·)〉 f

]

(�π(1)Z f )
−1 : � =

(
λ

π(1)

) [
G(1) − 〈G(·)〉 f

]

∞ : � >
(

λ
π(1)

) [
G(1) − 〈G(·)〉 f

]
.

Therefore we can deduce from Definition 1 that the Hölder exponent that the Hölder
exponent near x = 1 for our steady state densities f (x) is given by

θ = λ

π(1)

[
G(1) − 〈G(·)〉 f

]
. (2.7)

We can then use this expression to obtain the explicit family of steady states f λ
θ (x)

of Eq. (1.22). Furthermore, the average of the group-reproduction function G(x) on
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such steady states is given by

〈G(·)〉 f = G(1) − π(1)θ

λ
. (2.8)

Using the expression from Eq. (1.25) for the threshold λ∗ required for integrability of
the density f λ

θ (x), we can deduce that

〈G(·)〉 f =
(

λ∗

λ

)
G(0) +

(
1 − λ∗

λ

)
G(1). (2.9)

This provides an improvement upon the bounds from Eq. (2.6), showing that 〈G(·)〉 f

interpolates between G(0) when λ = λ∗ and G(1) as λ → ∞.

3 Useful properties of multilevel dynamics

In this section, we provide some useful properties for the measure-valued solutions
to Eq. 1.2 and the behavior of the dynamical properties of our model of multilevel
selection. In Sect. 3.1, we use the method of characteristics to obtain a representation
formula for the time-dependent solutions of the multilevel dynamics. In Sect. 3.2, we
use this representation formula and assumptions about the supremum and infimum
Hölder exponents of the initial distribution near the full-cooperator equilibrium to
derive upper and lower bounds for the principal growth rates of solutions to the linear
form of the multilevel dynamics given by Eq. (1.6).

3.1 Representing time-dependent solutions of multilevel dynamics

First, we characterize the impacts of within-group and between-group competition
on solutions μt (dx) through properties of the characteristic curves and the solutions
along characteristics. To do this, we first consider solutions to the linear problem of
Eq. (1.6). We consider the following ordinary differential equation

dx

dt
= −x(1 − x)π(x),

dq

dt
= λG(x)q,

x(0) = y, q(0) = 1.
(3.1)

whose solution we denote by

x(t) = φt (y), q(t) = ψt (y). (3.2)

We can then represent the solution μt (dx) to the linear multilevel dynamics of Eq.
(1.6) by pushing forward the initial measure along characteristic curves, allowing us
to obtain

∫ 1

0
v(x)μt (dx) =

∫ 1

0
v(φt (y))ψt (y)μ0(dy), wt (x) = ψt (φ

−1
t (x)) (3.3)
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for all continuous test functions v(x). To further understand how the measure μt (dx)

changes in time, we now study in Lemmas 1, 2, and 3 the behavior of the backwards
characteristic curves φ−1

t (describing within-group competition) and the solutions
along characteristics wt (x) (describing between-group competition).

First we obtain an expression for the backward characteristic curves φ−1
t (x).

Lemma 1 Suppose that G(x), π(x) satisfy the assumptions of Theorem 1 and let φt

be as in Eq. (3.2). For 0 < x ≤ 1, we have that

exp(π(1)t)(1 − φ−1
t (x)) = (1 − x) exp

(∫ φ−1
t (x)

x

Q(s)ds

sπ(s)

)

,

Q(s) = π(1) − π(s)

1 − s
+ π(s). (3.4)

In particular,

lim
t→∞ exp(π(1)t)(1 − φ−1

t (x)) = (1 − x) exp

(∫ 1

x

Q(s)ds

sπ(s)

)
. (3.5)

Proof Let z(t) = 1 − φ−1
t (x). Given q(t) = φt (x0) satisfies Eq. (3.1), z(t) satisfies

the following differential equation:

dz

dt
= −z(1 − z)π(1 − z), z(0) = z0 = 1 − x . (3.6)

Separating variables, we find that

∫ z

z0

ds

s(1 − s)π(1 − s)
= −t . (3.7)

Using a partial fraction expansion allows us to rewrite the left-hand side as

∫ z

z0

ds

s(1 − s)π(1 − s)
=

∫ z

z0

ds

π(1)s
+

∫ z

z0

((π(1) − π(1 − s))/s + π(1 − s))ds

π(1)(1 − s)π(1 − s)
,

(3.8)

which isolates the key contribution of the individual-level advantageπ(1) for defectors
in an all-cooperator group. We can then deduce that

ln

(
z

z0

)
−

∫ 1−z

1−z0

Q(s)ds

sπ(s)
= −π(1)t . (3.9)

Exponentiating both sides, we obtain Eq. (3.4). We obtain Eq. (3.5) by noting that
φ−1

t (x) → 1 as t → ∞ and that Q(s) is a bounded function for 0 < x ≤ s ≤ 1 since
π(s) is a C1 function by assumption.
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We next studywt (x) to describe the effect of between-group competition. Lemma 2
allows us to extract a principal contribution λG(1) to the exponential growth rate for
solutions along characteristics to themultilevel dynamics, showing the key importance
of the all-cooperator group in promoting long-time cooperation.

Lemma 2 Suppose that G(x), π(x) satisfy the assumptions of Theorem 1 and consider
wt (x) given in Eq. (3.3). For 0 < x ≤ 1, we have that

exp(−λG(1)t)wt (x) = exp

(

−λ

∫ φ−1
t (x)

x

R(s)

sπ(s)
ds

)

R(s) = G(1) − G(s)

1 − s
. (3.10)

In particular, we have

lim
t→∞ exp(−λG(1)t)wt (x) = exp

(
−λ

∫ 1

x

R(s)

sπ(s)
ds

)
. (3.11)

Proof Let q(t) = wt (x). It is readily seen from (3.1) and (3.2) that q(t) satisfies the
differential equation:

dp

dt
= p(1 − p)π(p),

dq

dt
= λG(p)q,

p(0) = p0 = x, q(0) = 1. (3.12)

Note here that p(t) = φ−1
t (x). Let r(t) = q(t) exp(−λG(1)t). The function r(t)

satisfies the equation

dr

dt
= λ(G(p) − G(1))r . (3.13)

Thus, using Eq. (3.12), we have

dr

dp
= λ(G(p) − G(1))

p(1 − p)π(p)
r . (3.14)

Using r(0) = q(0) = 1, we have

r(t) = exp

(

−λ

∫ p(t)

p0

R(s)

sπ(s)
ds

)

. (3.15)

We obtain Eq. (3.11) by noting that φ−1
t (x) → 1 as t → ∞ and that G(s) is C1 and

thus the integral in Eq. (3.11) is bounded as the upper bound of the integral tends to
1.

Next, we obtain an expression for ∂φ−1
t (x)/∂x .
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Lemma 3 Suppose that G(x), π(x) satisfy the assumptions of Theorem 1 and consider
φ−1

t (x) as defined in Eq. (3.2). We have that

∂

∂x
φ−1

t (x) = (φ−1
t (x)(1 − φ−1

t (x))π(φ−1
t (x))

x(1 − x)π(x)
(3.16)

Proof Let J (t) = ∂φ−1
t (x)/∂x . Then, using (3.1), we see that J must satisfy the

following differential equation:

dp

dt
= p(1 − p)π(p),

d J

dt
= (

(1 − p)π(p) − pπ(p) + p(1 − p)π ′(p)
)

J ,

p(0) = p0 = x, J (0) = 1,

(3.17)

where π ′ is the derivative of π , which exists given our assumption that π is C1. From
the above, we see that:

d J

dp
=

(
1

p
− 1

1 − p
+ π ′(p)

π(p)

)
J . (3.18)

Integrating the above differential equation, we obtain the desired formula:

J (t) = p(t)(1 − p(t))π(p(t))

p0(1 − p0)π(p0)
. (3.19)

Having characterized solutionsμt (dx) to the associated linear problem of Eq. (1.6),
in Sect. 3.1.1 we show another way to interpret measure-valued solutions μt (dx) to
Eq. (1.2) in terms of the linear dynamics.

3.1.1 Expressing solutions to multilevel dynamics via exponential normalization
relation

In this section, we will show solutions μt (dx) to (1.2) can be expressed in terms
of the mass of the solutions μt ([0, 1]) to Eq. (1.6) and on the average group-level
reproduction rate across the groups in the population. This average collective outcome
across a measure μ(dx) is defined as

〈G(·)〉μ :=
∫ 1
0 G(x)μ(dx)
∫ 1
0 μ(dx)

. (3.20)

Using the normalization relation of Eq. (1.7) and the fact thatμt (dx) is a probability
measure, we can compute that

〈G(·)〉μt =
∫ 1
0 G(x)μ(dx)
∫ 1
0 μ(dx)

=
∫ 1

0
G(x)

(
μt (dx)

∫ 1
0 μt (dy)

)

=
∫ 1

0
G(x)μt (dx) = 〈G(·)〉μt

,

(3.21)
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so the unnormalized and normalized solutions μt (dx) and μt (dx) feature the same
average group-level reproduction rates.

By considering the test-function v(x) = 1 and using the assumption that μ0(dx) is
a probability measure, we can calculate the mass of μt (dx) solving Eq. (1.6) satisfies
the following ordinary differential equation

d

dt
μt ([0, 1]) = d

dt

∫ 1

0
μt (dx) = λ

∫ 1

0
G(x)μt (dx) (3.22)

Dividing both sides by μt ([0, 1]), we can see from Eq. (3.20) that

1

μt ([0, 1])
d

dt
μt ([0, 1]) = 1

∫ 1
0 μt (dx)

d

dt

∫ 1

0
μt (dx) = λ

∫ 1
0 G(x)μt (dx)
∫ 1
0 μt (dx)

= λ〈G(·)〉μt .

(3.23)

Integrating this differential equation, we see that the mass of the solution μt (dx) to
the linear multilevel dynamics is given by

μt ([0, 1]) =
∫ 1

0
μt (dx) = exp

(
λ

∫ t

0
〈G(·)〉μs ds

)
. (3.24)

Then, applying this to the normalization relation from Eq. (1.7), we can express solu-
tions μt to the full multilevel dynamics in terms of μt (dx) by

∫ 1

0
v(x)μt (dx) =

∫ 1
0 v(x)μt (dx)

μt ([0, 1]) = exp

(
−λ

∫ t

0
〈G(·)〉μs ds

)∫ 1

0
v(x)μt (dx).

(3.25)

This representation of the solutionμt (dx) for the full nonlinearmultilevel dynamics of
Eq. (1.2) in terms of the solutions μt (dx) of the linear dynamics is particularly useful
for understanding the long-time dynamics of the collective outcome

∫ t
0 〈G(·)〉μs ds. In

particular, we will use this and the fact that solutions μt (dx) are normalized to obtain
the long-time bounds on time-averaged collective fitness presented in Theorem 2.
Noting that μt ([0, 1]) = 1 and that 〈G(·)〉μs = 〈G(·)〉μs from Eq. (3.21), we can
apply the test-function v(x) = 1 in Eq. (3.25) to see that

1 = μt ([0, 1]) = exp

(
−λ

∫ t

0
〈G(·)〉μs ds

)∫ 1

0
μt (dx). (3.26)

Rearranging this equation allows us to deduce Eq. (1.35), which highlights the
connection between principal growth rates for μt (dx) and the average group-level
reproduction rate 〈G(·)〉μt .
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3.2 Upper and lower bounds for principal growth rates of solutions

Now we can use our push-forward representation to estimate the growth rate for the
tails of solutions μt (dx) to the linear multilevel dynamics of Eq. (1.6). In Lemma 4,
we use the formula from wt (x) from Lemma 2 to find upper and lower bounds for
the growth rates of solutions along characteristics described by ψt (x) = wt (φt (x)).
Next, in Lemma 5, we apply Lemma 4 to obtain bounds on the growth rate of the
mass μt ([a, 1]) for any a > 0. These bounds are expressed in terms of the group-
reproduction rate of the full-cooperator group G(1), the individual-level advantage of
defectors in an otherwise full-cooperator group π(1), and the infimum and supremum
Hölder exponents θ and θ of the initial measureμ0(dx) near x = 1. The form of these
rates highlights the conflict between the individual-level incentive to defect and the
collective incentive to achieve full-cooperation.

Lemma 4 Suppose that G(x) and π(x) satisfy the assumptions of Theorem 1. Then
there exist positive constants M, M < ∞ such that, for all x ∈ (0, 1),

MeλG(1)tφt (x)λπ(0)−1[G(1)−G(0)] ≤ ψt (x) ≤ MeλG(1)t . (3.27)

Proof For our upper bound, we can use Eq. (3.10) to estimate that

ψt (x) = wt (φt (x)) = eλG(1)t exp

(
λ

∫ x

φt (x)

[
G(q) − G(1)

q(1 − q)π(q)

]
dq

)

≤ eλG(1)t exp

(
λ

∫ 1

0

[G(q) − G(1)]+
q(1 − q)π(q)

dq

)

︸ ︷︷ ︸
:=M

, (3.28)

where we have ignored non-positive contributions to the integral using the notation

[G(q) − Ga(1)]+ =
{

G(q) − G(1) : G(q) > G(1)
0 : G(q) ≤ G(1)

. (3.29)

Noting that the integrand in the last term of Eq. (3.28) is bounded as q → 1 because
G(q) isC1 and bounded as q → 0 becauseG(0) < G(1), we can deduce that M < ∞.

To find a corresponding lower bound onψt (x), we can first use Eq. (3.10) to rewrite
the quantity −R(q)/[qπ(q)] from as

− R(q)

qπ(q)
= G(0) − G(1)

π(0)q
+ 1

(1 − q)π(q)

×
[

G(q) − G(0)

q
+ G(0) − G(1)

π(0)

(
π(q) − π(q) − π(0)

q

)]
, (3.30)

where we can check that the second term on the righthand side is bounded below on
[0, 1] because G(x) and π(x) are inC1 ([0, 1]). This means that there exists N > −∞
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such that

−
∫ x

φt (x)

R(q)

qπ(q)
dq ≥ N +

[
G(1) − G(0)

π(0)

]
log (φt (x)) , (3.31)

and then, letting M := eλN , we can use Eq. (3.10) to estimate that

ψt (x) = eλG(1)t exp

(
λ

∫ x

−φt (x)

R(q)

qπ(q)
dq

)
≥ MeλG(1)tφt (x)λπ(0)−1[G(1)−G(0)].

(3.32)

Lemma 5 Suppose that G(x) and π(x) satisfy the assumptions of Theorem 1. Consider
a ∈ (0, 1) and μ0(dx) with supremum and infimum Hölder exponents near x = 1
satisfying 0 < θ ≤ θ . For any � < θ , there exists B(�) < ∞ such that

μt ([a, 1]) ≤ B(�)e[λG(1)−�π(1)]t , (3.33a)

while for any � > θ , there exists b(�) > 0 and a sequence of times {tn}n∈N tending
to infinity such that

μtn ([a, 1]) ≥ b(�)e[λG(1)−�π(1)]tn . (3.33b)

Similarly, for � > θ , there exists d(�) > 0 such that

μt ([a, 1]) ≥ d(�)e[λG(1)−�π(1)]t , (3.33c)

and for � < θ , there exists D(�) < ∞ and a sequence of times {sn}n∈N tending to
infinity such that

μsn ([a, 1]) ≤ D(�)e[λG(1)−�π(1)]sn . (3.33d)

Furthermore, when the Hölder constants Cθ or Cθ of μ0(dx) near x = 1 are positive
and finite, we can obtain versions of each of the bounds from Eq. (3.33) with � = θ

or � = �, respectively.

Proof Using the upper bound on ψt (x) from Lemma 4, we know that there exists an
M < ∞ such that

∫ 1

a
μt (dx) =

∫ 1

φ−1
t (a)

ψt (x)μ0(dx) ≤ MeλG(1)t
∫ 1

φ−1
t (a)

μ0(dx) = MeλG(1)tμ0

([
φ−1

t (a), 1
])

.

(3.34)

Using the lower bound from Lemma 4, we know that there is an M > 0 such that

∫ 1

a
μt (dx) =

∫ 1

φ−1
t (a)

ψt (x)μ0(dx) ≥ MeλG(1)t
∫ 1

φ−1
t (a)

φt (x)λπ(0)−1[G(1)−G(0)]μ0(dx).

(3.35)
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Using our assumptions that G(0) < G(1) and π(0) > 0, as well as the fact that
φt (x) ∈ [a, 1] for x ∈ [φ−1

t (a), 1], we can further estimate that

∫ 1

a
μt (dx) ≥ Maλπ(0)−1[G(1)−G(0)]eλG(1)tμ0

([
φ−1

t (a), 1
])

. (3.36)

Our next step is to obtain bounds on μ0

([
φ−1

t (a), 1
])

. We can use the formula from

Lemma 1 for 1 − φ−1
t (x) to see that

μ0

([
φ−1

t (a), 1
])

= μ0

([
1 −

(
1 − φ−1

t (a)
)

, 1
])

= μ0

([

1 − e−π(1)t (1 − a) exp

(∫ φ−1
t (a)

a

Q(q)

qπ(q)
dq

)

, 1

])

(3.37)

From our assumption that μ0(dx) has supremum Hölder exponent θ > 0, we know
that lim supx→0 x−�μ0([1 − x, 1]) = 0 for � < θ . For such �, there is therefore a
constant C such that

μ0

([
φ−1

t (a), 1
])

≤ Ce−�π(1)t (1 − a)� exp

(

�

∫ φ−1
t (a)

a

Q(q)

qπ(q)
dq

)

. (3.38)

Combining this with our estimate from Eq. (3.34) and the expression for Q(q) from
Eq. (3.4), we can see that

μt ([a, 1]) ≤ C M (1 − a)� exp

(
�

∫ 1

a

[π(1) − qπ(q)]+
qπ(q)

dq

)

︸ ︷︷ ︸
:=B(�)

e[λG(1)−�π(1)]t .

(3.39)

Similarly, we note that lim supx→0 x−�μ0 ([1 − x, 1]) > 0 for � > θ . Combining
this with the expression from Eqs. (3.36) and (3.37), we see that there is C > 0 and a
sequence of times {tn} tending to infinity such that

μtn ([a, 1]) ≥ C M (1 − a)� exp

(
�

∫ 1

a

[π(1) − qπ(q)]−
qπ(q)

dq

)

︸ ︷︷ ︸
:=b(�)

e[λG(1)−�π(1)]t .

(3.40)

Further, we know that b(�) > 0 and B(�) < ∞ because π(x) is C1. We can obtain
the desired bounds depending on the infimumHölder exponent θ ofμ0(dx) near x = 1
with an analogous approach.
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We can also derive approximate lower bounds for the growth rate of μt (dx) in
terms of the growth rate near the equilibrium of the within-group dynamics.

Lemma 6 Suppose that G(x), π(x) satisfy the assumptions of Theorem 1 and that
μ0(dx) has positive Hölder exponent θ near x = 1 and consider the quantity Ǧw :=
minx∈[0,a] G(x). For w sufficiently close to 0, there exists a constant Aw > 0 such
that

μt ([0, 1]) ≥ AweλǦw t . (3.41)

Proof Due to our assumption that μ0(dx) has supremum Hölder exponent θ > 0,
there is w′ < 1 such that μ0

([0, w′]) > 0. Because φt (x) decreases in time and
satisfies φt (x) → 0 for x ∈ (0, 1) as t → ∞, we have that, for any w < w′, there is
a Tw such that φTw(w′) = w and φt (w

′) ≤ w for t > Tw. Now we can estimate the
integral of the group-reproduction function along characteristic curves by

∫ t

0
G(φs(x))ds =

∫ t

Tw

G(φs(x))ds +
∫ Tw

0
G(φs(x))ds ≥ Ǧwt +

(
Ǧw′ − Ǧw

)
Tw.

(3.42)

We can then apply this estimate and the fact that μ0(dx) is a probability measure to
deduce that

∫ 1

0
μt (dx) =

∫ 1

0
exp

(
λ

∫ t

0
G(φs(x))ds

)
μ0(dx)

≥
∫ w′

0
exp

(
λ

∫ t

0
G(φs(x))ds

)
μ0(dx)

≥ e
λ
(

Ǧw′−Ǧw

)
Tw eλǦw t

∫ w′

0
μ0(dx) ≥ e

λ
(

Ǧw′−Ǧw

)
Tw eλǦw t . (3.43)

4 Convergence to steady state population for initial measures with
well-defined Hölder exponents

In this section, we consider the long-time behavior of solutions μt (dx) to Eq. (1.2)
for initial conditions with well-defined Hölder exponents and Hölder constants. In
Sect. 4.1, we prove Theorem 1, demonstration weak convergence of the population
to steady state densities for sufficiently strong between-group competition and ini-
tial measures with well-defined nonzero, finite Hölder exponents and constants. In
Sect. 4.2, we state and prove Proposition 2, which tells us that a population with
an initial partial delta-peak at full-cooperation will fix full-cooperation in the group-
structure population in the long-time limit.
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4.1 Weak convergence for measure-valued initial population

Before presenting the proof of Theorem 1, we will first rewrite our expression for the
steady state densities from Eq. (1.22) into a form that is most compatible with the
expressions related to the method of characteristics derived in Lemmas 1, 2, and 3 .
We start by considering the following expression for steady state density solutions to
Eq. (1.2)

f λ
θ (x) = (1 − x)θ−1 π(1)

xπ(x)
exp

(∫ 1

x

Mθ (s)ds

sπ(s)

)
, Mθ (s) = −λR(s) + θ Q(s).

(4.1)

Combining the steady state expressions fromEqs. (1.22) and (4.1), we canwrite Mθ (s)
using the following decomposition

Mθ (s) = νθ

s
+ C(s)

π(s)
(4.2)

where ν and C(s) are given by Eqs. (1.23) and (1.24), respectively.
Now we will study the convergence of μt (dx) to these density steady states. We

will start by the integrating the righthand side of Eq. (3.3) by parts to see that

∫ 1

0
v(φt (y))ψt (y)μ0(dy) = v(1)ψt (1)F(1−) − v(0)ψt (0)F(0+)

−
∫ 1

0

∂

∂ y
(v(φt (y))ψt (y)) F(y)dy, F(y) = μ0([0, y]).

(4.3)

In the above, we used the fact that φt (0) = 0 and φt (1) = 1. For initial measures
μ0(dx) with positive supremum Hölder exponent θ , F(1−) = 1 and therefore

∫ 1

0
v(φt (y))ψt (y)μ0(dy) = v(0)ψt (0)(1 − F(0+))

+
∫ 1

0

∂

∂ y
(v(φt (y))ψt (y)) (1 − F(y))dy. (4.4)

In Lemma 7, we estimate the growth rate of both terms in Eq. (4.4), and show
that the time-dependent family of integrands in the second term is bounded by an
integrable function that is independent of time. Using Lemma 7, we can then apply the
Dominated Convergence Theorem to help prove convergence to steady state densities
in Theorem 1.

Lemma 7 Suppose that G(x), π(x) satisfy the assumptions of Theorem 1 and that
μ0(dx) has supremum Hölder exponent θ near x = 1 that is nonzero and finite. If
νθ = λ [G(1) − G(0)] − θπ(1) > 0, then, for any � < θ , there exists a constant
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Cv(�) < ∞ such that

∣∣∣
∣

∂

∂ y
(v(φt (y))ψt (y)) (1 − F(y))

∣∣∣
∣ ≤ Cv(�)e[λG(1)−�π(1)]t d(x)

d(x) :=
{

(1 − x)�−1xν−1 if ν < 1,

(1 − x)�−1 if ν ≥ 1.

(4.5)

Furthermore, we can use Eq. (4.4) to see that there are positive constants Cv
1 and

Cv
2 (�) such that

∫ 1

0
v(φt (y))ψt (y)μ0(dx) ≤ Cv

1eλG(0)t + Cv
2 (�)e[λG(1)−�π(1)]t . (4.6)

If, in addition, the supremum Hölder constant of μ0(dx) is finite and nonzero, then
we can obtains bounds analogous to those of Eqs. (4.5) and (4.6) for � = θ .

Proof We start with the integral in Eq. (4.4). Changing variables to x = φt (y), we
have:

∫ 1

0

∂

∂ y
(v(φt (y))ψt (y)) (1 − F(y))dy =

∫ 1

0

∂

∂x
((v(x)wt (x)) (1 − F(φ−1

t (x)))dx

(4.7)

Our goal is to estimate the following quantity

∫ 1

0
I1 I2dx := e−(λG(1)−θπ(1))t

∫ 1

0

∂

∂x
((v(x)wt (x)) (1 − F(φ−1

t (x)))dx,

I1 = e−λG(1)t ∂

∂x
((v(x)wt (x)) , I2 = eθπ(1)t (1 − F(φ−1

t (x))). (4.8)

Let us first consider I1. Using Eq. (3.10), we have that

I1 =
(

∂v

∂x
− λK (x)v(x)

)
exp

(

−λ

∫ φ−1
t (x)

x

R(s)

sπ(s)
ds

)

,

K (x) = R(φ−1
t (x))

φ−1
t (x)π(φ−1

t (x))

∂

∂x
φ−1

t (x) − R(x)

xπ(x)
.

(4.9)

Using Eq. (3.16) and the definition of R in Eq. (3.10), we have:

K (x) = G(x) − G(φ−1
t (x))

x(1 − x)π(x)
. (4.10)
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Using the fact that G is C1 and that φ−1
t (x) ≥ x , we have that

∣∣∣G(x) − G(φ−1
t (x))

∣∣∣ =
∣∣∣∣∣

∫ φ−1
t (x)

x
G ′(z)dz

∣∣∣∣∣
≤ ∥∥G ′∥∥∞ (φ−1

t (x) − x) (4.11)

Denoting πmin := min0≤s≤1 π(s) > 0, we may thus estimate K (x) by

|K (x)| ≤
∥∥G ′∥∥∞ (φ−1

t (x) − x)

x(1 − x)π(x)
≤

∥∥G ′∥∥∞ φ−1
t (x)

πminx(1 − x)
, (4.12)

and therefore deduce that

∣∣∣∣
∂v

∂x
− λK (x)v(x)

∣∣∣∣ ≤
∥∥∥∥

∂v

∂x

∥∥∥∥∞
+ λ

∥
∥G ′∥∥∞ ‖v‖∞ φ−1

t (x)

πminx(1 − x)

≤
(∥
∥∥∥

∂v

∂x

∥
∥∥∥∞

+ λ
∥∥G ′∥∥∞ ‖v‖∞

πmin

)

︸ ︷︷ ︸
:=C1

φ−1
t (x)

x(1 − x)
. (4.13)

Returning to Eq. (4.9), we see that I1 can be estimated as

|I1| ≤ C1
φ−1

t (x)

x(1 − x)
exp

(

−λ

∫ φ−1
t (x)

x

R(s)

sπ(s)
ds

)

. (4.14)

We now estimate I2 in Eq. (4.8). Because μ0(dx) has supremum Hölder exponent θ

near x = 1 and 1 − F(φ−1
t (x)) = μ0

((
φ−1

t (x), 1
])

, we can use Eq. (3.37) to see

that, for any � < θ , there is a constant C2(�) < ∞ such that

|I2| ≤ exp(�π(1)t)(1 − φ−1
t (x))� ≤ C2(�)(1 − x)� exp

(

�

∫ φ−1
t (x)

x

Q(s)

sπ(s)
ds

)

.

(4.15)

Combining Eqs. (4.14) and (4.15), we have that

|I1 I2| ≤ C1C2(�)(1 − x)�−1φ−1
t (x)

x
I3, I3 = exp

(∫ φ−1
t (x)

x

M�(s)

sπ(s)
ds

)

, (4.16)

where M�(s) is defined as in Eq. (4.1). To estimate I3, we see from Eq. (4.2) that

∫ φ−1
t (x)

x

M�(s)

sπ(s)
ds = −ν� ln

(
φ−1

t (x)

x

)

+
∫ φ−1

t (x)

x

C(s)

π(s)
ds, (4.17)
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and we can use the fact that C(s) is bounded on [0, 1] to see that

|I3| ≤ C3

(
x

φ−1
t (x)

)ν

, C3 = exp

(∫ 1

0

C(s)

π(s)
ds

)
< ∞. (4.18)

Combining this with Eq. (4.16), we see that

|I1 I2| ≤ Cv(�)(1 − x)�−1

(
x

φ−1
t (x)

)ν�−1

, Cv(�) = C1C2(�)C3. (4.19)

Since φ−1
t (x) ≥ x , we can use the definitions of d(x), I1, and I2 from Eqs. (4.5) and

(4.8) to see that |I1 I2| ≤ d(x)e[λG(1)−�π(1)]t , where we note that d(x) is integrable
because � > 0 and ν� > νθ > 0 for any � < θ . We can further use this estimate
of |I1 I2|,, the fact that ψt (0) = eλG(0)t , and the choice of constants Cv

1 = |v(0)|(1 −
F(0+)) and Cv

2 (�) = Cv(�)
∫ 1
0 d(x)dx to obtain the estimate of Eq. (4.6).

Proof of Theorem 1 We first prove Eq. (1.27) when v(x) is a C1 function. We will
evaluate the following quantity as t → ∞

e−(λG(1)−θπ(1))t
∫ 1

0
v(x)μt (dx) = e−(λG(1)−θπ(1))t

∫ 1

0
v(φt (y))ψt (y)μ0(dx),

(4.20)

which we can express through Eq. (4.4). From the boundary term of Eq. (4.4), we can
use the fact that ψt (0) = eλG(0)t and our assumption that λ [G(1) − G(0)] > θπ(1)
to see that

lim
t→∞ e−(λG(1)−θπ(1))tv(0)ψt (0)(1 − F(0+))

= lim
t→∞ e−(λ(G(1)−G(0))−θπ(1))tv(0)(1 − F(0+)) = 0, (4.21)

where the last equality follows from the fact that μ0(dx) has Hölder exponent θ near
x = 1. Recalling that θ > 0 and νθ > 0 by assumption, we can apply Lemma 7 to
see that the integrand on the righthand side of Eq. (4.4) is bounded by an integrable
function independent of t . We may thus use the Dominated Convergence Theorem to
pass to the limit as t → ∞ in the integral in Eq. (4.8).

Using Eqs. (3.11) and (4.10), we find that

lim
t→∞ K (x) = lim

t→∞
G(x) − G(φ−1

t (x))

x(1 − x)π(x)
= − 1

xπ(x)

(
G(1) − G(x)

1 − x

)
= − R(x)

xπ(x)
.

Combining this with Eq. (4.9), we can compute that

lim
t→∞ I1 =

(
∂v

∂x
+ λR(x)v(x)

xπ(x)

)
exp

(
−λ

∫ 1

x

R(s)

sπ(s)
ds

)
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= ∂

∂x

(
v(x) exp

(
−λ

∫ 1

x

R(s)

sπ(s)
ds

))
. (4.22)

Furthermore, can use Eq. (3.5) and the fact that μ0(dx) has Hölder exponent θ with
constant Cθ near x = 1 to see that

lim
t→∞ I2 = lim

t→∞
1 − F(φ−1

t (x))

(1 − φ−1
t (x))θ

(
exp(π(1)t)(1 − φ−1

t (x))
)θ

= Cθ (1 − x)θ exp

(
θ

∫ 1

x

Q(s)ds

sπ(s)

)
. (4.23)

Therefore we deduce that

lim
t→∞

∫ 1

0
I1 I2dx =

∫ 1

0

[
∂

∂x

(
v(x) exp

(
−λ

∫ 1

x

R(s)

sπ(s)
ds

))

Cθ (1 − x)θ exp

(
θ

∫ 1

x

Q(s)ds

sπ(s)

)]
dx

=
(

v(x)Cθ (1 − x)θ exp

(∫ 1

x

Mθ (s)ds

sπ(s)

))∣∣∣∣

1

0

−
∫ 1

0

[(
v(x) exp

(
−λ

∫ 1

x

R(s)

sπ(s)
ds

))

∂

∂x

(
Cθ (1 − x)θ exp

(
θ

∫ 1

x

Q(s)ds

sπ(s)

))]
dx, (4.24)

where we integrated by parts in the second equality. Using Eq. (4.2) and the fact that
νθ > 0, we see that the boundary term vanishes. After some simplifications, we see
that

lim
t→∞

∫ 1

0
I1 I2dx = Cθ θ

∫ 1

0
v(x) f λ

θ (x)dx . (4.25)

Combining this with Eq. (4.21), we see that:

lim
t→∞ e−[λG(1)−θπ(1)]t

∫ 1

0
v(x)μt (dx) = Cθ θ

∫ 1

0
v(x) f λ

θ (x)dx . (4.26)

Using the test-function v(x) = 1, we further have that

lim
t→∞ e−[λG(1)−θπ(1)]t

∫ 1

0
μt (dx) = Cθ θ

∫ 1

0
f λ
θ (x)dx . (4.27)
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Using the normalization relation from Eq. (1.7), we may now compute the limit in Eq.
(1.27).

lim
t→∞

∫ 1

0
v(x)μt (dx) = lim

t→∞
e−[λG(1)−θπ(1)]t

∫ 1
0 v(x)μt (dx)

e−[λG(1)−θπ(1)]t
∫ 1
0 μt (dx)

=
∫ 1
0 v(x) f λ

θ (x)dx
∫ 1
0 f λ

θ (x)dx

=
∫ 1

0
v(x)pλ

θ (x)dx, (4.28)

where we used Eqs. (4.26) and (4.27) in the second equality. We have thus established
(1.27) when v(x) is C1. To see that Eq. (1.27) is valid for merely continuous v(x),
we may use a standard approximation argument. Note that we may approximate v(x)

arbitrarily closely by a C1 function w(x) in the sup norm:

for any ε > 0, there exists w(x) ∈ C1 such that ‖v − w‖∞ ≤ ε. (4.29)

Using this and the fact that μt (dx) and pλ
θ (x)dx are probability measures, we see that

∣∣∣
∣

∫ 1

0
vμ̄t (dx) −

∫ 1

0
vpλ

θ (x)dx

∣∣∣
∣ ≤

∫ 1

0
|v − w| μ̄t (dx) +

∣∣∣
∣

∫ 1

0
wμ̄t (dx) −

∫ 1

0
wpλ

θ (x)dx

∣∣∣
∣

+
∫ 1

0
|v − w| pλ

θ (x)dx ≤ 2ε +
∣
∣∣∣

∫ 1

0
wμ̄t (dx) −

∫ 1

0
wpλ

θ (x)dx

∣
∣∣∣ ,

(4.30)

As t → ∞, the last expression tends to 0 since w(x) is C1. Since ε is arbitrary, we
obtain the desired conclusion.

4.2 Convergence to delta-function at full-cooperation

Next,we consider the case inwhich apositive fractionof groups in the initial population
are concentrated at the all-cooperator composition. We show in Proposition 2 that if
the initial population contains a positive probability of full-cooperator groups, then
the whole population will concentrate upon full-cooperation in the long-time limit.

Proposition 2 Suppose that G(x), π(x) satisfy the assumptions of Theorem 1 and that
the initial population can be written as

μ0(dx) = a1δ(1 − x) + (1 − a1) ρ0(dx) (4.31)

for a1 > 0 and ρ0(dx) a probability measure with a supremum Hölder exponent of
θ > 0 near x = 1. Then the solution to Eq. (1.2) μt (dx) converges weakly to the
delta-function δ(1 − x) concentrated at full-cooperation as t → ∞.

Proof Using the push-forward representation of μt (dx), we find that

∫ 1

0
v(x)μt (dx) = e−λG(1)t

∫ 1
0 v(x)μt (dx)

e−λG(1)t
∫ 1
0 μt (dx)
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= a1v(1) + (1 − a1) e−λG(1)t
∫ 1
0 v(ψt (x))ψt (x)ρ0(dx)

a1 + (1 − a1) e−λG(1)t
∫ 1
0 ψt (x)ρ0(dx)

. (4.32)

Using Lemma 7, we know that there exist positive constants Cv
1 , Cv

2 < ∞ such that
for any θ̃ ∈ (0, θ)

(1 − a1) e−λG(1)t
∣∣∣∣

∫ 1

0
v(ψt (x))ψt (x)ρ0(dx)

∣∣∣∣

≤ (1 − a1)
[
Cv
1eλ[G(0)−G(1)]t + Cv

2e−θ̃π(1)t
]

Because G(0) < G(1) and θ̃ > 0, we can further see that

(1 − a1) e−λG(1)t
∣∣∣
∣

∫ 1

0
v(ψt (x))ψt (x)ρ0(dx)

∣∣∣
∣ → 0 as t → ∞.

Applying this limit to the numerator and denominator inEq. 4.32,we can then conclude
that

lim
t→∞

∫ 1

0
v(x)μt (dx) = v(1), (4.33)

and we have shown that μt (dx)⇀δ(1 − x).

Remark 3 Proposition 2 generalizes results for the Luo-Mattingly model and mod-
els from evolutionary games in which full-cooperation maximizes collective payoff
(Luo and Mattingly 2017; Cooney 2020b). The proofs in those cases had relied on
the fact that G(1) ≥ 〈G(x)〉μt (dx) at all times t , but did not require the additional
assumption that the portion of the initial measure not concentrated at full-cooperation
have a positive supremum Hölder exponent near x = 1. In the present case, the pop-
ulation concentrates upon full-cooperation even when group reproduction function is
maximized by an interior level of cooperation.

5 Long-time behavior of multilevel PD dynamics for general initial
measures

In this section, we consider the long-time behavior of solutions of Eq. (1.2) for initial
measures μ0(dx) with a given supremum Hölder exponent θ near x = 1. For the
Prisoner’s Dilemma case, we present the proof of Theorem 2 characterizing long-time
bounds on the time-averaged collective group-level reproduction rate in Sect. 5.1 and
the proof of Theorem 3 for extinction or weak persistence of cooperation in Sect. 5.2.
In Sect. 5.3, we prove Proposition 1, showing that μt (dx) concentrates upon full-
cooperation in the Prisoners’ Delight case.

123



Long-time behavior of a PDE replicator equation… Page 39 of 67 12

5.1 Bounds on average group reproduction function

Before presenting the proof of Theorem 2, we first provide a result analogous to
Lemma 7 showing the existence of a sequence tending on which solutions to Eq. (1.6)
can be bounded in terms of the infimum Hölder exponent near x = 1.

Lemma 8 Suppose that G(x), π(x) satisfy the assumptions of Theorem 1 and that
μ0(dx) has infimum Hölder exponent θ near x = 1 that is nonzero and finite. Then,
for � < θ , there are positive constants Ev

1 and Ev
2 (�) and a sequence {tn}n∈N

satisfying tn → ∞ such that

∫ 1

0
v(φtn (y))ψtn (y)μ0(dy) ≤ Ev

1eλG(0)tn + Ev
2 (�)e[λG(1)−�π(1)]tn . (5.1)

Proof of Theorem 2 We will first consider the case in which θ ≥ θ > 0, and then
mention how to generalize our argument to the case in which θ = 0. Using the
exponential normalization of Eq. (3.26) and the assumption thatμ0(dx) has supremum
Hölder exponent θ near x = 1, we can apply Lemma 7 for the test-function v(x) = 1
to see that, for � < θ , there are constants C1

1 , C1
2(�), and C̃ such that

μt ([0, 1]) ≤
(

C1
1eλG(0)t + C1

2(�)e[λG(1)−�π(1)]t
)
exp

(
−λ

∫ t

0
〈G(·)〉μs ds

)

≤ C̃ exp

(
[max{λG(1) − �π(1), λG(0)}] t − λ

∫ t

0
〈G(·)〉μs ds

)
.

(5.2)

Noting that μt ([0, 1]) = 1, we must eventually have that λ
t

∫ t
0 〈G(·)〉μs ds ≤

max{λG(1) − �π(1), λG(0)}, as otherwise the righthand side of Eq. (5.2) will take
on a value less than 1 for sufficiently large t . Because this is true for all � < θ , we
can deduce that lim supt→∞ λ

t

∫ t
0 〈G(·)〉μs ds ≤ max{λG(1) − θπ(1), λG(0)}.

Next, we look to confirm the reverse inequality. First, we may use Lemma 5 and
Eq. (3.26) to see that, for any � > θ , there is a sequence of times {tn}n∈N satisfying
tn → ∞ and a constant b(�) such that

μtn ([0, 1]) ≥ b(�) exp

(
[λG(1) − �π(1)] tn − λ

∫ tn

0
〈G(·)〉μs ds

)
. (5.3)

Using this estimate, we may deduce that lim supt→∞ λ
t

∫ t
0 〈G(·)〉μs ds ≥ λG(1) −

�π(1) for � > θ . Second, we denote Ǧw := minx∈[0,w] G(x) and apply Lemma 6 to
see that, for w sufficiently close to 0, there exists Aw > 0 such that

μt ([0, 1]) ≥ Aw exp

(
λ

[
Ǧwt −

∫ t

0
〈G(·)〉μs ds

])
. (5.4)

This allows us to deduce that lim supt→∞ λ
t

∫ t
0 〈G(·)〉μs ds ≥ λǦw for

w sufficiently close to 0. Combining our two lower bounds, we see that
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lim supt→∞ λ
t

∫ t
0 〈G(·)〉μs ds ≥ max{λG(1) − �π(1), λǦw} for any � > θ and

w close enough to 0. Because this bound holds for all such � and w, we can
use the fact that Ǧw → G(0) to deduce that lim supt→∞ λ

t

∫ t
0 〈G(·)〉μs ds ≥

max λG(1) − θπ(1), λG(0). Combining this with the reverse inequality, we can con-
clude that lim supt→∞ λ

t

∫ t
0 〈G(·)〉μs ds = max{λG(1) − θπ(1), λG(0)}.

To study the corresponding limit infimum, we apply Lemma 8 for the test-function
v(x) = 1 and the exponential normalization of Eq. (3.26) to see that there are constants
E1
1 , E1

2 , and Ẽ and a sequence {τn}n∈N satisfying τn → ∞ such that, for any � < θ ,

μτn
([0, 1]) ≤

(
E1
1eλG(0)τn + E1

2(�)e[λG(1)−�π(1)]τn
)
exp

(
−λ

∫ τn

0
〈G(·)〉μs ds

)

≤ Ẽ exp

(
max {λG(1) − �π(1), λG(0)} τn − λ

∫ τn

0
〈G(·)〉μs ds

)
.

(5.5)

Because μτn
([0, 1]) remains normalized for all time, Eq. (5.5) tells us

that lim inf t→∞ λ
t

∫ t
0 〈G(·)〉μs ds ≤ max {λG(1) − �π(1), λG(0)} for any

� < θ , and therefore we can deduce that lim inf t→∞ λ
t

∫ t
0 〈G(·)〉μs ds ≤

max
{
λG(1) − θπ(1), λG(0)

}
.

To study the analogous lower bound on the time-average collective group-
reproduction rate, we first we apply Lemma 5 and Eq. (3.26) to see that, for � ≥ θ ,
there exists d(�) > 0 such that

μt ([0, 1]) ≥ d(�) exp

(
[λG(1) − �π(1)] t − λ

∫ t

0
〈G(·)〉μs ds

)
. (5.6)

Combining the bounds of Eqs. (5.4) and (5.6) allows us to see that

lim inf t→∞ λ
t

∫ t
0 〈G(·)〉μs ds ≥ max

{
λG(1) − �π(1), λǦw

}
for any � > θ

and w sufficiently close to 0. Because this holds for all such � and w, we
can conclude that lim inf t→∞ λ

t

∫ t
0 〈G(·)〉μs ds ≥ max

{
λG(1) − θπ(1), λG(0)

}
.

Because we have also confirmed the reverse inequality, we can then conclude that
lim inf t→∞ λ

t

∫ t
0 〈G(·)〉μs ds = max

{
λG(1) − θπ(1), λG(0)

}
.

Finally, dividing both sides by λ in our expressions for lim inf t→∞ λ
t

∫ t
0 〈G(·)〉μs ds

and lim supt→∞ λ
t

∫ t
0 〈G(·)〉μs ds then provides uswith the long-time bounds presented

in Eq. (1.34) on the time-averaged collective outcome 1
t

∫ t
0 〈G(·)〉μs ds for the popu-

lation.
For the cases in which θ = 0 or θ = 0 , we can still obtain the upper bounds from

Eqs. (5.3) and (5.6) using our existing proof. To obtain corresponding lower bounds
on μt ([0, 1]), we can use the bound of solutions along characteristics from Lemma 4
and the fact that μ0(dx) is a probability measure. Then applying these bounds allows
us to deduce the limiting time-averaged behavior of Eq. (1.34) in these cases as well.
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5.2 Long-time extinction or persistence of cooperation

Proof of Theorem 3 For the case in which λ [G(1) − G(0)] > θπ(1), the long-
time persistence of cooperation follows from the bounds from Eq. (1.34) for the
time-averaged collective outcome. Because lim supt→∞ 1

t

∫ t
0 〈G()̇〉μs ds = G(1) −

λ−1θπ(1) > G(0), the time-average of 〈G(·)〉μt = ∫ 1
0 G(x)μt (dx) will achieve a

value bounded away from G(0) at an infinite sequence of times, and therefore we can
show that the fraction of cooperators

∫ 1
0 xμt (dx) must be bounded away from 0 on

an infinite sequence as well.
Next we turn to proving the extinction of cooperation when λ [G(1) − G(0)] <

θπ(1). To show weak convergence ofμt (dx) to δ(x), we consider any continuous test
function v(x) and look to show that

∫ 1
0 v(x)μt (dx) → v(0) as t → ∞. We can use

the continuity of v(x) and the fact that μt (dx) is a probability distribution to show
that for any ε > 0, there is a δ > 0 such that

∣∣∣∣

∫ 1

0
v(x)μt (dx) − v(0)

∣∣∣∣ ≤ ε + 2||v||∞
∫ 1

δ

μt (dx) (5.7)

We note that μ0(dx) must have a supremum Hölder exponent θ > 0 near x = 1
in order to satisfy our assumption on λ. Therefore we can apply Lemma 6 and the
normalization relation from Eq. (1.7) to say that, for w sufficiently close to 0, there
exists Aw > 0 such that

∫ 1

δ

μt (dx) =
∫ 1
δ

μt (dx)
∫ 1
0 μt (dx)

≤ A−1
w e−λǦw t

∫ 1

δ

μt (dx), (5.8)

where Ǧw = minx∈[0,w] G(x). We can apply Lemma 5 to the integral on the righthand
side of Eq. (5.8) to say that, for � < �, there exists B(�) < ∞ such that

∫ 1

δ

μt (dx) ≤ B(�)A−1
w exp

({
λ
[
G(1) − Ǧw

]
− �π(1)

}
t
)

(5.9)

Because G(·) ∈ C1([0, 1]), we know that we canmake Ǧw arbitrarily close to G(0) by
choosingw sufficiently close to 0. Because our assumption on λ is the strict inequality
λ [G(1) − G(0)] < θπ(1), we know, for any givenλ, thatwe can choose� sufficiently
close to θ and w sufficiently close to 0 such that

λ
[
G(1) − Ǧw

]
< �π(1) (5.10)

as well. This condition then guarantees that

2||v||∞
∫ 1

δ

μt (dx) ≤ 2B(�)A−1
w ||v||∞
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× exp
({

λ
[
G(1) − Ǧw

]
− �π(1)

}
t
)

→ 0 as t → ∞,

which, in combination with Eq. (5.7), allows us to conclude that μt (dx)⇀δ(x) as
t → ∞ when λ [G(1) − G(0)] < θπ(1).

Because we show in Theorem 3 that cooperation dies out for λ < λ∗ and weakly
persists when λ > λ∗, it is natural to ask what happens in the edge case when λ = λ∗.
For the special case inwhich the group reproduction achieves a uniqueminimumat x =
0, we can show that the population still concentrates at δ(x) when λ [G(1) − G(0)] =
θπ(1). We rely on the following lemma, which was previously used to study special
cases of the model under consideration (Luo and Mattingly 2017; Cooney 2020b).

Lemma 9 Consider π(x), G(x) ∈ C1([0, 1]) and suppose that G(x) > G(0) for x ∈
(0, 1]. If

∫ ∞
0

[〈G(·)〉μs − G(0)
]

ds < ∞, then 〈G(·)〉μt → G(0) and μ̄t (dx)⇀δ(x)

as t → ∞.

Proposition 3 Suppose the initial distribution μ0(dx) has supremum Hölder exponent
θ near 1 with corresponding Hölder constant Cθ < ∞. If G(x) > G(0) for x ∈ (0, 1]
and λ [G(1) − G(0)] = θπ(1), the μt (dx)⇀δ(x) as t → ∞.

Proof of Proposition 3 We can use the continuity of the test function v(x) and the fact
that μ̄t (dx) is a probability distribution to see that, for any ε > 0, there is a δ > 0
such that

∣∣
∣∣

∫ 1

0
v(x)μt (dx) − v(0)

∣∣
∣∣ ≤ ε + 2||v||∞

∫ 1

δ

μt (dx) (5.11)

From our assumptions that λ [G(1) − G(0)] = θπ(1) and μ0(dx) has Hölder expo-
nent θ > 0 with positive, finite Hölder constant, can use Lemma 5 and the exponential
normalization from Eq. (3.25) to see that there is a constant B(θ) < ∞ such that

∫ 1

δ

μt (dx) ≤ B(θ)e[λG(1)−θπ(1)]t exp

(
−λ

∫ t

0
〈G(·)〉μs ds

)

= B(θ) exp

(
−λ

∫ t

0

[〈G(·)〉μs − G(0)
]

ds

)
. (5.12)

Because G(x) ≥ G(0) for x ∈ [0, 1], either ∫ ∞
0

[〈G(·)〉μs − G(0)
]

ds < ∞ or∫ ∞
0

[〈G(·)〉μs − G(0)
]

ds → ∞ as t → ∞. In the former case, Lemma 9 tells us
that μt (dx)⇀δ(x) as t → ∞. In the alternate case,

∫ ∞
0

[〈G(·)〉μs − G(0)
]

ds → ∞
corresponds to e− ∫ t

0 [〈G(·)〉μs −G(0)]ds → 0, and we can use Eq. (5.11) allows us to
conclude that

∣∣∣∣

∫ 1

0
v(x)μt (dx) − v(0)

∣∣∣∣ ≤ ε as t → ∞,

and therefore we see that μt (dx)⇀δ(x) when λ [G(1) − G(0)] = θπ(1).
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Remark 4 A key aspect of the proof of convergence to δ(x) in Theorem 3 was that the
strict inequality condition that λ < λ∗ provided us the freedom to consider a slightly
smaller exponent θ̃ < θ and still obtain exponential decay to δ(x). In the equality case
with λ = λ∗ considered in Proposition 3, we had to assume a finite supremum Hölder
constant Cθ to get a bound involving the exact supremum Hölder exponent θ .

5.3 Convergence to full-cooperation in the prisoners’delight

Before proceeding to the proof of Proposition 1, we introduce several lemmas that
allow us to estimate the measureμt (dx) solving Eq. (1.2) under the Prisoners’ Delight
scenario. These lemmas serve as analogues to Lemma 5 and 6, and can be proved with
a similar approach.

Lemma 10 Suppose that G(x), π(x) satisfy the assumptions of Proposition 1. For any
a ∈ (0, 1), there exists Ma < ∞ such that

ρt ([0, a]) := μt ((0, a]) ≤ MaeλG(0)t . (5.13)

Lemma 11 Suppose that G(x), π(x) satisfy the assumptions of Proposition 1. Con-
sidering the quantity Ĝa := minx∈[a,1] G(x), we see that for z sufficiently close to 1,
there exists Az > 0 such that

μt ([0, 1]) ≥ AzeλĜz t . (5.14)

Proof of Proposition 1 To show that μt (dx) converges to a delta-function at x = 1, we
consider a continuous test function v(x) and use the fact that μt (dx) is a probability
measure to see that, for any ε > 0, there is a δ > 0 such that

∣
∣∣
∣

∫ 1

0
v(x)μt (dx) − v(1)

∣
∣∣
∣ ≤

∫ 1−δ

0
| (v(x) − v(1)) |μt (dx)

+
∫ 1

1−δ
| (v(x) − v(1)) |μt (dx) ≤ ε + 2||v||∞

∫ 1−δ

0
μt (dx)

(5.15)

We can use the assumption that a0 := μ0 ({0}) < 1 to write our initial measure by a
decomposition of the form

μ0 (dx) = a0δ(x) + (1 − a0) ρ0(dx) (5.16)

where ρ0(dx) is a probability measure satisfying ρ0 ((0, 1]) = 1. Because we have
assumed that μ0(dx) �= δ(x), we can apply Lemma 11 to see that, for z sufficiently

close 1, there is Az > 0 such that μt ([0, 1]) ≥ AzeλĜz t . Combining this with the
normalization relation of Eq. (1.7) and the decomposition of our initial measure from
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Eq. (5.16), we can estimate that

∫ 1−δ

0
μt (dx) =

∫ 1−δ

0 μt (dx)
∫ 1
0 μt (dx)

≤ A−1
z e−λĜz t

[
a0eλG(0)t + (1 − a0)ρt ([0, 1 − δ])

]

(5.17)

From Lemma 10, we know that there is M1−δ < ∞ such that ρt ([0, 1 − δ]) ≤
M1−δeλG(0)t . Combining this with our estimates from Eqs. (5.15) and (5.17) allows
us to see that there exists M̃ < ∞ such that

∣∣∣
∣

∫ 1

0
v(x)μt (dx) − v(1)

∣∣∣
∣ ≤ ε + 2M̃||v||∞ exp

(
λ
[
G(0) − Ĝz

]
t
)

. (5.18)

Because G(1) > G(0) for the PDel game, we know that we can pick z sufficiently
close to 1 such that Ĝz > G(0). For such choices of z, we can deduce that

2M̃||v||∞ exp
(
λ
[
G(0) − Ĝz

]
t
)

→ 0 as t → ∞

as long as λ > 0, and we can conclude that μt (dx)⇀δ(1 − x) as t → ∞ for λ > 0
and μ0(dx) �= δ(x).

6 Generalization tomultilevel competition with N populations

In this section, we discuss results for the N -population multilevel selection model
whose dynamics are described by Eq. (1.10). We provide the proof of Theorem 4,
demonstrating a sufficient condition for the long-time behavior of the population to
feature concentration upon the subpopulation with the maximal principal growth rate.
In Sect. C, we apply these results to study the multilevel dynamics for the generaliza-
tions of the Hawk-Dove and Stag-Hunt games in a single population by reformulating
these results as a two-population problem and characterize the long-time behavior for
Eq. (1.2) for these games.

Proof of Theorem 4 Using the normalization from Eq. (1.13), we can estimate the
μ

j
t ([0, 1]) of having groups in subpopulation j ∈ N − {k} by

μ
j
t ([0, 1]) = μ

j
t ([0, 1])

∑N
i=1 μi

t ([0, 1]) ≤ μ
j
t ([0, 1])

μ
j
t ([0, 1]) + μk

t ([0, 1])
. (6.1)

If faced with the relevant case for the principal growth rm
k , we can use the quantities

Ǧw = minx∈[0,w] G(x) for w sufficiently close to 0, Ĝz = minx∈[z,1] G(x) for z
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sufficiently close to 1, or �
k
sufficiently close to but greater than θ

k
to introduce a

modified principal growth rate r̃m
k that satisfies

r̃m
k =

⎧
⎪⎨

⎪⎩

λĜz
k : πk(x) < 0

λGk(1) − �
k
πk(1) : πk(x) > 0 , λ

[
Gk(1) − Gk(0)

] − θ
k
πk(1) > 0

λG̃w
k : πk(x) > 0 , λ

[
Gk(1) − Gk(0)

] − θ
k
πk(1) < 0

⎫
⎪⎬

⎪⎭
> r M

j .

(6.2)

Across the three cases, we can apply Lemmas 5, 6, and 11 to see that there exists
L > 0 such that μk

t ([0, 1]) ≥ Ler̃m
k t . We can then combine this with Eq. (6.1) to

estimate that

μ
j
t ([0, 1]) = e−r̃m

k μ
j
t ([0, 1])

e−r̃m
k μ

j
t ([0, 1]) + e−r̃m

k μk
t ([0, 1])

≤ e−r̃m
k tμ

j
t ([0, 1])

e−r̃m
k tμ

j
t ([0, 1]) + L

≤ L−1e−r̃m
k tμ

j
t ([0, 1]) . (6.3)

Our next step is to estimate μ
j
t ([0, 1]). If π j (x) < 0 for x ∈ [0, 1], we may estimate

that

∫ t

0
(G(φs(x)) − G(1)) ds =

∫ φt (x)

x

G(q) − G(1)

q(1 − q)|π(q)|dq ≤
∫ 1

0

[G(q) − G(1)]+
q(1 − q)|π(q)| dq < ∞,

(6.4)

and therefore there exists an A1 < ∞ such that

μ
j
t ([0, 1]) = eλG(1)t

∫ 1

0
eλ

∫ t
0 [G(φs (x))−G(1)]dsμ0(dx) ≤ A1eλG(1)t = A1er M

j t
.

(6.5)

If instead π j (x) > 0 for x ∈ [0, 1], we can use the fact that μ
j
0(dx) has supremum

Hölder exponent θ > 0 to apply Lemma 7. Therefore we can introduce a modified
supremum Hölder exponent � < θ sufficiently close to θ and a modified princi-
pal growth rate r̃ M

j ∈ (r M
j , r̃m

k ), which allows us to see that there exist constants

C1
1 , C1

2 , A2 < ∞ such that

μ
j
t ([0, 1]) ≤ C1

1eλG j (0)t + C1
2e

[
λG j (1)−� j π j (1)

]
t ≤ A2emax

{
λG j (0),λG j (1)−� j π j (1)

}
t ≤ A2er̃ M

j t
.

(6.6)

Between the two cases for the sign of π j (x), we can see that there exists A < ∞ and

r̃ M
j < r̃ k

m such that μ
j
t ([0, 1]) ≤ Aer̃ M

j t . Combining this estimate with Eq. (6.3), we

can use the fact that r̃m
k > r̃ M

j to deduce that

μ
j
t ([0, 1]) ≤ AL−1 exp

([
r̃ M

j − r̃m
k

]
t
)

→ 0 as t → ∞, (6.7)
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and we can conclude that the population will concentrate upon subpopulation k in the
long-time limit.

Now we turn to describing the long-time behavior of μk
t (dx) in the case for which

μk
0(dx) has a well-defined Hölder exponent and constant near x = 1. We can write

describe the distribution of group compositions in subpopulation k as

∫ 1

0
vk(x)μk

t (dx) =
∫ 1
0 vk(x)μk

t (dx)

N∑

j=1

μ
j
t ([0, 1])

= e
[
θkπk (1)−λGk(1)

]
t
∫ 1
0 vk(x)μk

t (dx)

e[θkπk (1)−λGk(1)]tμk
t ([0, 1]) +

N∑

j = 1
j �= k

{
e
[
θkπk (1)−λGk (1)

]
tμ

j
t ([0, 1])

}
.
(6.8)

Using the same approach as in the proof of Theorem 1, we can see that

{
e
[
θkπk (1)−λGk (1)

]
t
∫ 1
0 vk(x)μk

t (dx) → ∫ 1
0 vk(x) f λ

θk (x)dx

e
[
θkπk (1)−λGk(1)

]
tμk

t ([0, 1]) → ∫ 1
0 f λ

θk (x)dx

}

as t → ∞. (6.9)

Because rm
k = λGk(1) − θkπ(1) > r M

j in this case we know from above that

e
[
θkπk (1)−λGk (1)

]
tμ

j
t ([0, 1]) → 0 for j �= k. Applying this to Eq. (6.8) allows us

to conclude that

∫ 1

0
vk(x)μk

t (dx) →
∫ 1
0 vk(x) f λ

θk (dx)
∫ 1
0 f λ

θk (dx)
=

∫ 1

0
vk(x)pλ

θk
(dx) as t → ∞. (6.10)

7 Discussion

In this paper, we have analyzed the long-time behavior in a PDE model of multilevel
selection, in which a tension exists between the individual-level incentive to defect and
group-level competition favoring groups that cooperate. We show that defectors take
over the group-structured population when within-group competition is stronger than
between-group competition, and that cooperation can weakly persist in the population
for all time when the relative strength of between-group competition exceeds a thresh-
old value. We also provide sufficient conditions for the population to converge to a
long-time steady state density featuring coexistence of cooperators and defectors, and
further characterize the average level of cooperation and group-reproduction rate at
steady state in the limit of strong between-group competition. These results generalize
and extend previous work on PDE models of multilevel selection with within-group
and between-group dynamics arising from frequency-independent competition (Luo
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2014; van Veelen et al. 2014; Luo and Mattingly 2017) or from the payoffs of evolu-
tionary games (Cooney 2019b, 2020a, 2019a).

By considering arbitrary C1 functions π(x) and G(x) to describe the within-group
and between-group competition, we have a general analysis to study how long-term
cooperation depends on the tug-of-war of between individual-level and group-level
incentives. In this more general setting, we are able to understand the key role the full-
cooperator group plays in determining the level of cooperation and collective average
payoff supported by the long-time behavior of multilevel dynamics. In particular, we
see that increasing the relative advantage of the full-cooperator group or increasing
the initial cohort of many-cooperator groups (corresponding to lower Hölder exponent
θ ) helps to promote the evolution of cooperative behavior via multilevel selection,
consistent with analytical and simulation results from finite population models of
multilevel selection (Markvoort et al. 2014; Traulsen and Nowak 2006; Traulsen et al.
2008).

Considering a broader class of initial conditions for which the infimum and supre-
mum Hölder exponents or constants disagree also reveals important properties of our
multilevel dynamics. In particular, convergence to a steady state solution of Eq. (1.2)
in not guaranteed for generic initial probability measures of group compositions, and
instead a more natural notion for quantifying the ability for cooperation to survive
via multilevel selection is the weak persistence of cooperation for sufficiently strong
between-group competition. This distinction between weak persistence and conver-
gence to steady state may also be relevant for exploring multilevel selection for more
complex strategy spaces, as it may be more difficult to identify or quantify the possible
steady state behaviors beyond a one-dimensional state space for group compositions.
As a question for future work, one could look for analogous weak persistence thresh-
olds for PDE models of multilevel selection including additional evolutionary forces
like genetic drift or migration (Ogura and Shimakura 1987a, b; Fontanari and Serva
2013, 2014a, b), or models in which the assumption of fixed group size is relaxed
and group-level events such as fission and fusion can help to drive the evolution of
cooperation (Simon 2010; Simon and Nielsen 2012; Simon et al. 2013; Simon and
Pilosov 2016).

As in the special cases previously studied for evolutionary games (Cooney 2019b,
2020a), we establish that the collective payoff of the steady state population is lim-
ited by the payoff of a full-cooperator group. This means that the so-called “shadow
of lower-level selection” is present for all group reproduction functions which are
maximized by an intermediate level of cooperation: no level of between-group com-
petition produces a steady-state population that achieves the maximum possible
group-reproduction rate. Even in the limit of infinitely strong between-group com-
petition, the population still concentrates as a delta-function at a level of cooperation
that produces the same collective-reproduction rate as that of a (sub-optimal) full-
cooperator group. In addition, we have now established a dynamical analogue to the
shadow of lower-level selection in terms of the bounds on the time-average of the
group-reproduction rate in the population, highlighting that this limitation of the col-
lective outcome to that of a full-cooperator group can be seen through the dynamics
of our model of multilevel selection. Given the bounds on the time-averaged col-
lective outcome, a natural question for future research is whether there is a sense

123



12 Page 48 of 67 D. B. Cooney, Y. Mori

in which the potentially oscillatory long-time solutions of the multilevel dynamics
concentrate upon group compositions with the group-reproduction rate G(1) for suffi-
ciently strong between-group competition, extending the concentration behavior seen
for steady-state densities.

Our analysis of the threshold selection strength and average payoff at steady state
also provides a window to understanding how mechanisms that alter within-group
and between-group competition may facilitate cooperation. In particular, we see that
decreasing the incentive to defect in a many-cooperator group, π(1), can help decrease
the between-group competition strength needed to allow long-time survival of coop-
eration, but it cannot increase the maximum possible achievable group-average payoff
in the limit of strong between-group competition. Because altering within-group inter-
actions – through the mechanisms of assortment, other-regarding preference, indirect
reciprocity, and network reciprocity – can increase π(0) to a positive value and pro-
vide cooperators an individual-level advantage in amany-defector group (Grafen 1979;
Maynard Smith 1982; Taylor and Nowak 2007; Cooney 2019a), we can also see that
such within-group mechanisms can change the dynamics of multilevel selection from
following the generalized Prisoners’ Dilemma assumptions to following the gener-
alized Hawk-Dove or Stag-Hunt assumptions. Through our results on the long-time
behavior of the multilevel dynamics under each of each of these generalized games,
we can further explore the synergistic effects of within-group population structure and
between-group competition on the evolution of cooperation (Cooney 2019a).

This paper constitutes an in-depth analysis of a class of hyperbolic PDEs that gen-
eralize the equation studied by Luo and Mattingly (Luo 2014) to include variety of
replication functions corresponding to differentwithin-group and between-group com-
petition scenarios. In turn, Eq. (1.2) corresponds to the two-level replicator equation
that arises from a generalization of the two-level Moran process introduced by Luo
(2014) under one possible scaling in the limit of infinite group size and of an infi-
nite number of groups. Because our PDE is derived from an individual-based model
with finite populations, an important consideration is the extent to which the behavior
of solutions to the PDE correspond to properties of the underlying finite population
dynamics. In particular, an interesting question for future research is the extent to
which behaviors like persistence of cooperation or convergence to steady state densi-
ties in the PDE corresponds to any analogous support for cooperation in the original
stochastic two-level selection model with finite populations or in alternate determin-
istic scaling limits that retain the diffusive effects of finite group size (Luo 2014; Luo
and Mattingly 2017; Cooney 2019b).

Our results in Sect. 6 on multiple population dynamics also provide motivation
for future work on the coevolution of cooperative strategies and the games played
by members of groups. Because the principle growth rate of a subpopulation often
corresponds to the average collective outcome at steady state, we can see the long-time
behavior of the multipopulation competition as picking out the pair of gain and group-
reproduction functions π j (x) and G j (x) most capable of producing a beneficial level
of cooperation under the two-level dynamics for a given set of initial distributions.
Futuremodelingwork can examine howcompetition betweendifferent group types can
impact the evolution of group properties such as within-group population structures
or social norms (Cooney 2019a; Santos et al. 2007). In addition, the approach of
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reformulating multilevel selection models multipopulation models can be extended
to evolutionary games with more complicated within-group dynamics, allowing for
the analysis of long-time behavior for nonlinear public goods games (Archetti and
Scheuring 2011; Pacheco et al. 2009) or for models of efficient extraction of common-
pool resources (Tavoni et al. 2012; Tilman et al. 2017). Going forward, the study of
multilevel selection models with multiple group types can serve as a potential next
step for mathematically understanding the role which multilevel selection can play on
the cusp of major evolutionary transitions.
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A Well-posedness of multilevel dynamics

In this section, we address the well-posedness of measure-valued solutions to Eq.
(1.2). Our approach will be to first establish well-posedness of solutions μt (dx) to the
linear multilevel dynamics of Eq. (1.6), and then to use the exponential normalization
from Eq. (3.25) to demonstrate that Eq. (1.2) is well-posed as well.

For the auxiliary linear problem of Eq. (1.6), we can use Eqs. (3.1) and (3.3) to
obtain the following representation formula for its solution μt (dx) starting from an
initial measure μ0(dx):

∫ 1

0
v(x)μt (dx) =

∫ 1

0
v(φt (x)) exp

(∫ t

0
G(φs(x))ds

)
μ0(dx). (A.1)

The righthand Eq. (A.1) is a positive linear functional, so we can deduce thatμt (dx) is
a Borel measure due to the Riesz-Markov-Kakutani theorem. We can also check from
this representation formula to see that μt (dx) solves Eq. (1.6) for any test-function
v(x) ∈ C1([0, 1]). Existence for any C([0, 1]) test-function can then be established
by density of C1([0, 1]) functions in C([0, 1]).

To further explore the well-posedness of solutions of the full multilevel dynamics
of Eq. (1.2), it is helpful to establish a bijective correspondence between the measures
μt (dx) and μt (dx) solving Eqs. (1.6) and (1.2). Taking inspiration from the exponen-
tial normalization relation from Eq. (3.25), we use the following expressions to show
that, for any continuous test-function v(x), μt (dx) and μt (dx) can be expressed a as
functions of the other: expressions

∫ 1

0
v(x)μt (dx) = exp

(
−λ

∫ t

0
〈G(·)〉μs ds

)∫ 1

0
v(x)μt (dx). (A.2a)

∫ 1

0
v(x)μt (dx) = exp

(
λ

∫ t

0
〈G(·)〉μs ds

)∫ 1

0
v(x)μt (dx). (A.2b)
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This correspondence can be established for C1([0, 1]) test-functions by applying the
push-forward representation of Eq. (3.3) to the righthand side, and then differentiating
both sides with respect to time. Eq. (A.2) can then be confirmed for C([0, 1]) test-
functions by the density of continuously differentiable functions within the space of
continuous functions.

From the normalization relation provided by Eq. (1.7), we can use the existence of
the solution μt (dx) to Eq. (1.6) to deduce the existence of a Borel measure μt (dx)

solving Eq. (1.2) in the weak sense. For uniqueness, we will make use of the mapping
from Eq. (A.2b) to help deduce uniqueness for Eq. (1.2) from uniqueness of the linear
problem.

It is also important to consider the space in which our solutions μt (dx) live. From
the weak form of the multilevel dynamics presented in Eq. (1.5), it natural to consider
C1([0, 1]) test-functions due to the advection term and to consider a family measures
μt (dx) with a differentiable dependence in time due to the time-derivative in the
PDE. From the push-forward representation formula of Eq. (3.3) and the fact that
our results on long-time behavior only require test-functions v(x) ∈ C1([0, 1]), it also
makes sense to consider uniformly continuous test functions andmeasuresμt (dx) that
vary continuously in time. As a result, in Proposition 4, we establish well-posedness
of solutions μt (dx) of Eq. (1.2) both taking values in the space of Borel measures
with uniformly continuous time-dependence and taking values in the dual space of
C1([0, 1]) functions with continuously differentiable time-dependence.

Proposition 4 Denote byM([0, 1]) and C1([0, 1])∗ the set of Borel measures on [0, 1]
and the dual space of C1([0, 1]), respectively. Given the initial measure μ0(dx) ∈
M([0, 1]) and any T ≥ 0, there exists a unique μt (dx) ∈ C ([0, T ] ;M([0, 1])) ∩
C1

(
[0, T ] ; C1([0, 1])∗) such that μt (dx) is a weak solution to Eq. (1.2).

Proof We start by establishing the well-posedness of solutions μt (dx) to the lin-
ear model from Eq. (1.6). Knowing from the representation formula of Eq. (3.3)
that μt (dx) exists in the appropriate space, we now suppose that Eq. (1.6) has two
solutions μ1

t (dx) and μ2
t (dx) for given initial measure μ0(dx). Considering the dif-

ference μ̃t (dx) := μ1
t (dx)−μ1

2(dx)with μ̃0(dx) = 0dx . Considering a test-function
v(t, x) ∈ C1,1 ([0, T ] × [0, 1]) we can use the linearity of Eq. (1.6) to see that

∂

∂t

∫ 1

0
v(t, x)μ̃t (dx)

=
∫ 1

0

[
∂v(t, x)

∂t
− x(1 − x)π(x)

∂v(t, x)

∂x
+ λG(x)v(t, x)

]
μ̃t (dx). (A.3)

We can simplify Eq. (A.3) by choosing v(t, x) solve the dual problem to the linear
dynamics of Eq. (1.6), given by

∂v(t, x)

∂t
− x(1 − x)π(x)

∂v(t, x)

∂x
= −λG(x)v(t, x) , v(T , x) = ω(x) ∈ C1([0, 1]).

(A.4)
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Noting that such a solution v(t, x) exists by the method of characteristics, we can see
with this choice that the righthand side of Eq. (A.3) will vanish. This allows us to
integrate Eq. (A.3) in time to see that

∫ 1

0
v(T , x)μ̃T (dx) =

∫ 1

0
v(0, x)μ̃0(dx) �⇒

∫ 1

0
ω(x)μ̃T (dx) = 0. (A.5)

Because this identity holds for eachω(x) ∈ C1 ([0, 1]), we can deduce that the solution
μt (dx) to Eq. (1.6) is unique in C1([0, 1])∗, and further that it is unique inM([0, 1])
by the density of continuous test-functions in C1([0, 1]).

Existence of a weak solution μt (dx) to Eq. (1.2) in C ([0, T ] ;M([0, 1])) ∩
C1

(
[0, T ] ; C1([0, 1])∗) follows from the existence of a solution μt (dx) to Eq. (1.6)

and the mapping of Eq. (3.25). To establish uniqueness, we consider solutionsμ1
t (dx)

and μ2
t (dx) to Eq. (1.2) for initial measure μ0(dx), and apply the mapping of Eq.

(A.2b) and the uniqueness of the solution μt (dx) to Eq. (1.6) to see that, for any C1

test-function v(x),

∫ 1

0
v(x)μt (dx) =

∫ 1

0
v(x) exp

(
λ

∫ t

0
〈G(·)〉μ1

s
ds

)
μ1

t (dx)

=
∫ 1

0
v(x) exp

(
λ

∫ t

0
〈G(·)〉μ2

s
ds

)
μ2

t (dx). (A.6)

We can then use this to deduce that there is a function of time c(t) such that

∫ 1

0
v(x)μ1

t (dx) = c(t)
∫ 1

0
v(x)μ2

t (dx). (A.7)

Because μ1
t (dx) and μ2

t (dx) are probability measures for all t ≥ 0, we can further
deduce that c(t) ≡ 1 and conclude that μ1

t (dx) = μ2
t (dx) in C1 ([0, 1])∗ and in

M ([0, 1]) by density of continuous test-functions in C1([0, 1]).

B Properties of density steady state solutions

In this section, we discuss additional properties of steady state solutions to Eq. (1.2)
for the PD case. In Sect. B.1, we characterize the properties of weak steady-state
solutions and show that such distributions can only consist of combinations of delta-
concentrations at equilibria of the within-group dynamics and densities supported
on non-equilibrium levels of cooperation that are strong solutions to the steady-state
ODE. In Sect. B.2, we strengthen this observation by showing that the only steady
states that can be achieved as the long-time behavior for solutions of the generalized
PD case of Eq. (1.2) are the delta functions δ(x) and δ(x − 1) concentrated at the all-
defector and all-cooperator equilibria, as well as the family of steady state densities
pλ
θ (x) described in Sect. 2.
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In Sect. B.3, we prove Propositions 6 and 7, showing that, in the limit of strong
between-group competition, the steady state densities pλ

θ (x) concentrate upon points
at which the group-level replication rate is equal to G(1), the collective replication rate
of the all-cooperator group. For the special case of within-group and between-group
replication rates arising from the payoff matrix of a PD game in which group payoff is
maximized by an intermediate level of cooperation, this means that the population will
always feature less cooperation than in collectively optimal. This concentration upon
a delta-measure at a suboptimal level of cooperation strengthens observations on the
shadow of lower-level selection derived in prior work, in which it was shown that the
modal level of cooperation at steady state featured a suboptimal level of cooperation in
the limit of infinite between-group selection strength (Cooney 2019b, 2020a; Cooney
et al. 2021).

B.1 Possible steady state solutions of multilevel dynamics

One aspect of the long-term behavior we would like to characterize is the conditions
under which solutions to the measure-valued dynamics μt converge to weak solutions
μ(dx) of the steady-state ODE given by

∫ 1

0

dv(x)

dx
x(1 − x)π(x)μ(dx) =

∫ 1

0
v(x)

[
G(x) −

∫ 1

0
G(y)μ(dy)

]
μ(dx),

(B.1)

and, furthermore, when such time-independent solutions to Eq. B.1 have correspond-
ing densities f (x) that are strong solutions to the steady-state ODE given by

− ∂

∂x
[x(1 − x)π(x) f (x)] = λ f (x)

[
G(x) −

∫ 1

0
G(y) f (y)dy

]
. (B.2)

In Lemma 12, we show that if solutions μt (dx) converges to a limit μ∞(dx) as
t → ∞, then the limit must be a strong solution to the steady state ODE at all non-
equilibrium points of the within-group dynamics. Under the PD dynamics, this means
that probability mass can accumulate at the within-group equilibrium at the endpoints
0 or 1, and that either the steady state μ∞(dx) vanishes identically on (0, 1) or is
everywhere nonzero on (0, 1).

Lemma 12 If a weak solution μt (dx) to Eq. (1.2) converges weakly to a limit function
μ∞(dx) as t → ∞, then the limit μ∞(dx) is a weak solution to the steady state ODE
in Eq. (B.1). Furthermore, denoting the set of points E = {x ∈ (0, 1) : π(x) �= 0},
we see that there μ∞(dx) has corresponding density f∞(x) for x ∈ E, which solves
the strong form of the steady state ODE given in Eq. (B.2). For any interval I ⊂ E,
either f∞(x) > 0 for all x ∈ I or f∞ ≡ 0 for all x ∈ I.

123



Long-time behavior of a PDE replicator equation… Page 53 of 67 12

Proof of Lemma 12 Using the measure-valued formulation of the multilevel dynamics,
we integrate Eq. (1.5) in time from T to T + 1 and obtain

∫ 1

0
v(x)μT +1(dx) −

∫ 1

0
v(x)μT (dx) = −

∫ T +1

T

∫ 1

0

∂v(x)

∂x
x(1 − x)π(x)μt (dx)dt

+ λ

∫ T +1

T

∫ 1

0
v(x)

[
G(x) −

∫ 1

0
G(y)μt (dy)

]
μt (dx)dt .

(B.3)

Becauseμt (dx) convergesweakly toμ∞(dx) by assumption, we know that, for any
C1 test function V (x),

∫ 1
0 V (x)μt dx → ∫ 1

0 V (x)μ∞(dx) as t → ∞. In particular,
this tells us that the lefthand side of Eq. (B.3) vanishes in the limit as T → ∞.
Furthermore, because G(·), π(·), and v(·) are C1 functions, we see that the following
limits hold as t → ∞

∫ 1

0

∂v(x)

∂x
x(1 − x)π(x)μt (dx) →

∫ 1

0

∂v(x)

∂x
x(1 − x)π(x)μ∞(dx)

∫ 1

0
v(x)

[
G(x) −

∫ 1

0
G(y)μt (dx)

]
μt (dx) →

∫ 1

0
v(x)

[
G(x) −

∫ 1

0
G(y)μ∞(dy)

]
μ∞(dx).

Therefore we can take the limit as T → ∞ on both sides of Eq. (B.3), which allows
us to see that the limiting measure μ∞(dx) is a weak solution to the steady state ODE
from Eq. (B.1).

Using the shorthand Q(dx) = x(1 − x)π(x)μ∞(dx), we can rewrite Eq. (B.1) to
see that

∫ 1

0

∂v(x)

∂x
Q(dx) = λ

∫ 1

0
v(x)

[
G(x) −

∫ 1

0
G(y)μ∞(dy)

]
μ∞(dx). (B.4)

Because Eq. (B.4) tells us that the distributional derivative of Q(dx) is a finite (signed)
measure, we can deduce that there is a function q(x) such that Q(dx) = q(x)dx that
has bounded variation, and furthermore that q(x) ∈ L1 ([0, 1]) (Evans and Gariepy
2015). Then, for any closed interval J ⊂ E such that minx∈J |π(x)| > 0, we can
deduce that there is a density f∞(dx) such that

f∞(x) = q(x)

x(1 − x)π(x)
∈ L1 (J ) .

Then, restricting ourselves to test-functions with support contained in J , we can
rewrite Eq. (B.4) as

∫

J
∂v(x)

∂x
q(x)dx =

∫

J
v(x)

[
G(x) −

∫ 1

0
G(y) f∞(y)dy

]
f∞(x)dx . (B.5)
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Because f∞(x) is integrable on J , we see from the righthand side of Eq. (B.5) that
q(x) has an integrable weak derivative, and therefore q(x) and f∞(x) are absolutely
continuous. Applying this again to Eq. (B.5) tells us that q(x) has a continuous weak
derivative, and therefore q(x), f∞(x) ∈ C1 (J ). Furthermore, this means that f∞(x)

is actually a strong solution to the steady state ODE of Eq. (B.2) for x ∈ J . We can
then extend our definition of the interval J as needed to show that this also holds for
any x ∈ E .

To discuss positivity, we can rewrite the steady-state relation Eq. (B.2) for f∞(x)

as

∂ f∞(x)

∂x
= −

(
1

x(1 − x)π(x)

)

×
(

∂

∂x
[x(1 − x)π(x)] + λ

[
G(x) −

∫ 1

0
G(y) f∞(y)dy

])
f∞(x). (B.6)

This ODE has a unique solution on any intervalJ onwhichminx∈J |π(x)| > 0, as the
righthand side is Lipschitz in f∞(x) and is continuous in x away from the equilibria
of the within-group dynamics. Consequently, if f∞(x) = 0 for an x ∈ J , then we
can see from Eq. (B.6) that ∂ f∞(x)

∂x = 0, and therefore f∞(x) is identically 0 on J .
This allows us to conclude that f∞(x) is either strictly positive or identically 0 on
any connected component of the set E of points in (0, 1) that are not equilibria of the
within-group dynamics.

B.2 Achievable long-time steady states for PD dynamics

Lemma 12 tells us that the only possible steady states of Eq. (1.2) are convex com-
binations delta-functions supported at equilibria of the within-group equilibria and
densities that are strong solutions to the steady state ODE on intervals between within-
group equilbria.As a first step to exploringwhich steady states can actually be achieved
through the long-time behavior of Eq. (1.2) for the PD case, we can consider initial
measures of the form

μ0(dx) = a0δ(x) + a1δ(1 − x) + (1 − a0 − a1) pλ
θ (x)dx (B.7)

for a0, a1 ≥ 0 satisfying a0 + a1 ≤ 1 and pλ
θ (x) given by Eq. (1.22). In Proposition 5,

we characterize the long-time behavior of solutionsμt (dx) to Eq. (1.2) for such initial
measures, and we see that the only possible long-time steady states are δ(x), δ(1− x),
and pλ

θ (x) if there is any between-group competition (i.e. when λ > 0).

Proposition 5 Suppose that λ [G(1) − G(0)] > π(1)θ and that the population has
initial measure μ0(dx) given by Eq. (B.7). If a1 > 0, then the solution μt (dx) to Eq.
(1.2) satisfies μt (dx)⇀δ(1 − x) as t → ∞. If a1 = 0 and a0 < 1, then we have
instead that μt (dx)⇀pλ

θ (x).
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Proof Noting from Proposition 4 that solutionsμt (dx) to Eq. (1.6) are unique, we can
check the solution μt (dx) corresponding to the initial measure of Eq. (B.7) is given
by

μt (dx) = a0eλG(0)t δ(x) + a1eλG(1)t δ(1 − x) + (1 − a0 − a1) e[λG(1)−θπ(1)]t pλ
θ (x)dx .

(B.8)

We can use Eq. (B.8) and the normalization relation from Eq. (1.7) to further see that
solutions μt (dx) to the full multilevel dynamics satisfy

μt (dx) = e−λG(1)tμt (dx)

e−λG(1)t
∫ 1
0 μt (dy)

= a0eλ[G(0)−G(1)]tδ(x) + a1δ(1 − x) + (1 − a0 − a1) e−θπ(1)t pλ
θ (x)dx

a0eλ[G(0)−G(1)]t + a1 + (1 − a0 − a1) e−θπ(1)t
.

(B.9)

Then, using the fact that that G(1) > G(0) and θπ(1) > 0, we can further see that
μt (dx)⇀δ(1 − x) as long as a1 > 0. If, instead, a1 = 0, we can see that

μt (dx) = e[θπ(1)−λG(1)]tμt (dx)

e[θπ(1)−λG(1)]t
∫ 1
0 μt (dy)

= a0e(θπ(1)−λ[G(1)−G(0)])tδ(x) + (1 − a0) pλ
θ (x)dx

a0e(θπ(1)−λ[G(1)−G(0)])t + (1 − a0)
. (B.10)

Because λ [G(1) − G(0)] > θπ(1) by assumption, we can use the expression in Eq.
(B.10) to conclude that μt (dx)⇀pλ

θ (x)dx as t → ∞.

B.3 Concentration of steady-state densities in the limit of infinite between-group
competition

In this section, we study the behavior of the steady state densities pλ
θ (x) in the limit of

infinite strength of between-group competition. We characterize the concentration of
the steady state densities to measures supported upon values x at which G(x) = G(1),
and therefore concentration at levels of cooperation that are not necessarily optimal
for group-level replication.

To highlight the dependence of our steady-state density on λ, we can rewrite the
expression of our steady state pλ

θ (x) from Eq. (1.22) in the form

pλ
θ (x) = b(x) exp (λh(x))

∫ 1
0 b(y) exp (λh(y)) dy

, (B.11)
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where b(x) and h(x) are given by the formulas

b(x) := (1 − x)θ−1 π(1)

xπ(x)
exp

(∫ 1

x

θ [π(1) − sπ(s)]

sπ(s)
ds

)
(B.12a)

h(x) :=
∫ 1

x

[
G(s) − G(1)

s(1 − s)π(s)

]
ds. (B.12b)

From the form of Eq. (B.11), we expect pλ
θ (x) to concentrate around the global max-

imizer of h(x) as λ → ∞. The critical points xc of h(x) satisfy G(xc) = G(1), and
we further compute that

h′′(x)

∣
∣∣∣
x=xc

= −x(1 − x)π(x)G ′(x) − (x(1 − x)π(x))′ [G(1) − G(x)]

x2(1 − x)2π(x)2

∣
∣∣∣
x=xc

= −G ′(xc)

xc(1 − xc)π(xc)
.

Because π(x) > 0 for x ∈ [0, 1] under the PD assumptions, we see that the local max-
ima of h(x) are upcrossings of G(1), and the local minima of h(x) are downcrossings
of G(1).

Example 1 As an example of the possible collective optima and upcrossings of G(1)
that can occur in our multilevel dynamics, we can turn to the example of the game-
theoretic model of Sect. (1.1.1). We recall from Eq. (1.17) that, for dynamics arising
from games with the payoff matrix of Eq. (1.14), that the group-level replication rate
G(x) is given by the quadratic function

G(x) = P + (S + T − 2P)x + (R − S − T + P)x2.

In this case, G(x) is maximized by the following level of cooperation

x∗ =
⎧
⎨

⎩

S + T − 2P

−2(R − S − T + P)
: 2R < S + T , R − S − T + P < 0

1 : otherwise
, (B.13)

so an intermediate level of cooperation can optimize group-level reproduction when
the total payoff S+T generated by the interaction of a cooperator and defector exceeds
the total payoff 2R generated by two cooperators. In addition, we see from the fact
that G(x) is a quadratic function of x in the game-theoretic setting that G ′(x) changes
sign at most once in [0, 1], and that G(x) experiences a single upcrossing of G(1) in
[0, 1]. This upcrossing occurs at the level of cooperation x given by

x =
⎧
⎨

⎩

R − P

−(R − S − T + P)
: 2R < S + T , R − S − T + P < 0

1 : otherwise
, (B.14)
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so the upcrossing occurs in the interior for the same conditions in which the collective
optimum x∗ is achieved by an intermediate level of cooperation. By comparing Eqs,
(B.13) and (B.14), we see that x < x∗ whenever the collective optimum features a
mix of cooperators and defectors.

For the generalization of the PD and HD dynamics studied in this paper with con-
tinuously differentiable replication rates, G(x) can either be maximized by interior
levels of cooperation or by full-cooperation and can feature arbitrarily many upcross-
ings of G(1). As a result, in the broader class of models, it is possible for h(x) to be
maximized at x = 1 even when G(x) is maximized at an interior level of cooperation.

In Proposition 6, we consider the case in which h(x) is maximized by an interior
level of cooperation x ∈ (0, 1), and use the Laplace integration method (Bender and
Orszag 1999) to show that pλ

θ (x) concentrates upon x as λ → ∞.

Proposition 6 Consider the steady state densities given by Eq. (B.12) under the
assumptions that G(x), π(x) ∈ C1 ([0, 1]), G(1) > G(0) and π(x) > 0 for
x ∈ [0, 1]. Suppose that G(x) has an interior maximizer x∗ satisfying G(x∗) > G(1),
and that h(x) has a unique maximizer x < 1. Then the family of steady states
pλ
θ (x)⇀δ(x − x) as λ → ∞.

Furthermore, if x is the only upcrossing of G(1) in [0, 1], then x < x∗ and the level
of cooperation achieved as λ → ∞ is less than the level that achieves the maximal
group reproduction rate G(x∗). In particular, we note from Example 1 that this is true
for all PD and HD games with corresponding quadratic G(x) given by Eq. (1.17).

When h(x) is maximized by x = 1, the Laplace method breaks down because of
the behavior of b(x) at x = 1, so we employ a different approach to show that pλ

θ (x)

concentrates upon full-cooperation as λ → ∞ under the additional assumption that
θ > 1.

Proposition 7 Consider the steady state densities given by Eq. (B.12) under the
assumptions on G(x) and π(x) from Proposition 6. Suppose h(x) achieves a unique
maximum at x = 1 and consider θ > 1. Then, for our family of steady-state solutions
pλ
θ (x)⇀δ(x − 1) as λ → ∞.

In particular, h(x) has a global maximum at x = 1 when G(x) is non-decreasing on
[0, 1], and therefore the population concentrates upon the optimal level of cooperation
as λ → ∞ when full-cooperation is the best possible group composition. However,
there exist group reproduction functionsG(x) forwhich h(x) is stillmaximized by full-
cooperation even though intermediate levels of cooperation are collectively-optimal.
In such cases, Proposition 7 tells us the population can concentrate at a level of cooper-
ation greater than is optimal for group-level reproduction, so the shadow of lower-level
selection can also manifest itself by promoting too much cooperation.

Proof of Proposition 6 We start by integrating both sides of Eq. B.11 against a test-
function v(x), obtaining

∫ 1

0
v(x)pλ

θ (x)dx =
∫ 1

0
v(x)

b(x) exp (λh(x))
∫ 1
0 b(y) exp (λh(y)) dy

dx =
∫ 1
0 v(x)b(x) exp (λh(x)) dx
∫ 1
0 b(x) exp (λh(x)) dx

.
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We can further rearrange this expression to obtain

∫ 1

0
v(x)pλ

θ (x)dx = v(x)

⎛

⎝

√
2π

λ|h′′(x)| b(x) exp (λh(x))

∫ 1
0 b(y) exp (λh(y)) dy

⎞

⎠

⎛

⎝
∫ 1
0 v(y)b(y) exp (λh(y)) dy

v(x)
√

2π
λ|h′′(x)| b(x) exp (λh(x))

⎞

⎠

(B.15)

Because b(x) is continuous and nonzero at x < 1, we can use the interior critical-
point case of the Laplace method (Bender and Orszag 1999) to obtain the following
asymptotic formulas for the two terms in parenthesis

lim
λ→∞

⎡

⎣

√
2π

λ|h′′(x)|b(x) exp (λh(x))

∫ 1
0 b(y) exp (λh(y)) dy

⎤

⎦ = 1 and

lim
λ→∞

⎡

⎣

√
2π

λ|h′′(x)|v(x)b(x) exp (λh(x))

∫ 1
0 v(y)b(y) exp (λh(y)) dy

⎤

⎦ = 1. (B.16)

Taking the limit as λ → ∞ in Eq. (B.15), we can apply the asymptotic formulas from
Eq. (B.16) to see that

lim
λ→∞

∫ 1

0
v(x)pλ

θ (x)dx = v(x),

and we conclude that pλ
θ (x)⇀δ(x − x) as λ → ∞.

Proof of Proposition 7 Weassume, for contradiction, that there is a test-function v(x) ∈
C1 such that

∫ 1
0 v(x)pλ

θ (x)dx �→ v(1). In that case, there exists an ε > 0 such that
for any � > 0, there is a λ > � for which

ε <

∣∣∣∣

∫ 1

0
ψ(x)pλ

θ (x)dx − v(1)

∣∣∣∣ ≤
∫ 1

0
|v(x) − v(1)|pλ

θ (x)dx, (B.17)

where the second inequality follows because pλ
θ (x) is a probability density. Because

v(·) is continuous, there is δ > 0 such that |v(x) − v(1)| < ε
2 for x ∈ [1 − δ, 1], so

we can further estimate that

∣∣∣∣

∫ 1

0
v(x)pλ

θ (x)dx − v(1)

∣∣∣∣ ≤ ε

2
+

∫ 1−δ

0
|v(x) − v(1)|pλ

θ (x)dx

<
ε

2
+ 2||v||∞

∫ 1−δ

0
pλ
θ (x)dx . (B.18)
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Combining the results of Eqs. B.17 and B.18 , we see that there are ε, δ > 0 such that
for any � > 0, there exists λ > � for which

∫ 1−δ

0
pλ
θ (x)dx >

ε

4||v||∞ > 0. (B.19)

For such λ, we can then consider the steady state probability
∫ 1−δ

0 pλ
θ (x)dx found

on the interval [0, 1− δ]. Using Eq. (B.11) and the fact that b(x) ≥ 0, we can estimate
that, for any � > 0,

∫ 1−δ

0
pλ
θ (x) =

∫ 1−δ

0 b(x)eλh(x)dx
∫ 1
0 b(x)eλh(x)dx

≤
∫ 1−δ

0 b(x)eλh(x)dx
∫ 1
1−�

b(x)eλh(x)dx
. (B.20)

Because we have assumed that h(x) has a global maximum at x = 1 and that G(x)

is a C1 function, we know that h(x) is locally non-decreasing as x → 1−. Therefore,
choosing sufficiently small � > 0, we see that there is an A > 0 such that

∫ 1

1−�

b(x)eλh(x)dx ≥ eλh(1−�)

∫ 1

1−�

b(x)dx ≥ Aeλh(1−�) (B.21)

Turning to the numerator of Eq. B.20, we can use the fact that (1 − x)θ−1 ≤ 1 for
θ > 1 to see that the integrand in the numerator satisfies

b(x)eλh(x) ≤ 1

xπ(x)
exp

(
λh(x) + θ

∫ 1

x

[π(1) − sπ(s)]

sπ(s)
ds

)

= 1

xπ(x)
exp

(∫ 1

x

{
1

sπ(s)

[
λ[G(s) − G(1)] + θ [π(1) − sπ(s)]

1 − s

]}
ds

)
.

(B.22)

In particular, we note that when s = 0, the term in square brackets takes the value
λ [G(0) − G(1)] + θπ(1), which is negative when steady state densities of the form
pλ
θ (x) exist. BecauseG(x), π(x) ∈ C1[0, 1], the integrandon the last line ofEq. (B.22)

is negative for x close enough to 0. In addition, we can deduce that b(x)eλh(x) → 0 as
x → 0 for sufficiently large λ due to Eqs. (4.1), (4.2), (B.11), and (B.12). Combining
these observations, we know there is d sufficiently close to 1 and M1, M2 < ∞ such
that

b(x)eλh(x) ≤ M1 exp

(
λh(max(x, 1 − d)) + θ

∫ 1

max(x,1−d)

[π(1) − sπ(s)]

sπ(s)
ds

)

≤ M2 exp

(
λ max

x∈[1−d,1−δ] h(x)

)
.

(B.23)
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Further denoting ĥd,δ = maxx∈[1−d,1−δ] h(x), we can combine the estimates from
Eqs. (B.20), (B.21), and (B.23) to see that

∫ 1−δ

0
pλ
θ (x)dx ≤ M A−1(1 − δ) exp

(
λ
[
ĥd,δ − h(1 − �)

])
. (B.24)

Because h(x) has a unique global maximum at x = 1, there is a �∗ > 0 such
that, for any � < �∗, h(1 − �) > h(x) for x ∈ [0, 1 − �∗). Namely, choosing
� < min (�∗, δ) allows us to additionally deduce that h(1−�) > ĥd,δ and conclude
that

∫ 1−δ

0
pλ
θ (x)dx → 0 as λ → ∞, (B.25)

contradicting the existence of a subsequence of λ-values tending to infinity on which
the inequality of Eq. (B.19) holds. Therefore we can conclude that pλ

θ (x)⇀δ(x − 1)
as λ → ∞.

C Application of multipopulation framework to analyze
generalization of Hawk-Dove and stag-hunt dynamics

In this section, we consider the long-time behavior of solutions to Eq. (1.2) when the
individual-level and group-level replication rates resemble the dynamics of Hawk-
Dove (HD) or Stag-Hunt (SH) games. We do this by decomposing the distribution
of groups playing these games into two subpopulations featuring levels of coopera-
tion above and below the interior within-group equilibrium xeq , and then study the
evolution of these two conditional distributions using a two-population version of the
multipopulation dynamics studied in Sect. 6. In Sect. C.1, we formulate the individual
and group replication rates for the two subpopulations considered for the HD and
SH games, and, in Sect. C.2, we present the results for the long-time behavior of the
multilevel HD and SH dynamics in light of Theorem 4.

C.1 Assumptions HD and SH dynamics and formulation as a 2-population scenario

To generalize the multilevel Hawk-Dove and Stag-Hunt dynamics, we adapt our
assumptions on our replication rates π(x) and G(x) to reflect the properties of the
payoff rankings for these two games. In particular, we see from Eqs. 1.19 and 1.20
that π(x) > 0 for x ∈ (xeq , 1] and π(x) < 0 for x ∈ [0, xeq) for HD games, while
the opposite signs hold for the SH game.

For the group payoff function, we can use the rankings of payoffs for the HD and
SH games and Eq. 1.20 to see that
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G(1) − G(xeq) = (R − S) (R − T )

R − S − T + P
> 0

G(0) − G(xeq) = (S − P) (T − P)

R − S − T + P
< 0,

(C.1)

and therefore we the group reproduction function satisfies G(0) < G(xeq) < G(1)
for both games.

To reformulate the dynamics of the HD and SH games in terms of the multipopu-
lation dynamics studied in Sect. 6, it is helpful to try to understand ODE of Eq. (1.4)
in comparison to a logistic ODE supported on one of the intervals [0, xeq) or (xeq , 1].
We do this by rewriting Eq. (1.4) in the form

dx(t)

dt
= −x(1 − x)

(
x − xeq

) ( π(x)

x − xeq

)
, x(0) = x0. (C.2)

Next, we can map the intervals [0, xeq) or (xeq , 1] into [0, 1] using the rescaled vari-
ables

X1 = x

xeq
. X2 = x − xeq

1 − xeq
. (C.3)

Then we can describe the respective within-group dynamics below and above the
equilibrium xeq using the modified gain functions

�1(X1) :=
⎧
⎨

⎩

(1 − xeq X1)π(xeq X1)

1 − X1
: X1 ∈ [0, 1)

−xeq(1 − xeq)π ′(xeq) : X1 = 1

�2(X2) :=
⎧
⎨

⎩

(
xeq + (1 − xeq)X2

)
π
(
xeq + (1 − xeq)X2

)

X2
: X2 ∈ (0, 1]

xeq(1 − xeq)π ′(xeq) : X2 = 0
.

(C.4)

Further introducing the measures μ1
t (d X1) = 1X1∈[0,1]μt (d X1) and μ2

t (d X2) =
1X2∈[0,1]μt (d X2) as well as the modified group-reproduction functions

G1(X1) = G(xeq X1) (C.5a)

G2(X2) = G
(
xeq + (1 − xeq)X2

)
, (C.5b)

we can see that these measures μ1
t (d X1) and μ2

t (d X2) change according to Eq. (1.10)
for our choices of modified gain and group-reproduction functions. To guarantee that
modified gain functions �1(X1),�2(X2) ∈ C1([0, 1]) in line with the assumption
of Theorem 4, we see from Eq. (C.4) that it suffices to assume that the original gain
function satisfies π(x) ∈ C2([0, 1]).
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C.2 Summary of long-time behavior for HD and SH dynamics

We start with the case of the Stag-Hunt game. Because π(x) > 0 for x ∈ (0, xeq) and
π(x) < 0 for x ∈ (xeq , 1) for the SH game, we see that rm

2 = λG2(1) = λG(1), while
r M
1 ≤ λG1(1) = G(xeq). Therefore the two-population representation of the SH game
will always satisfy the hypothesis of Theorem 4 regarding a dominant subpopulation,
and so the support groups below xeq vanishes in the long-time limit. Because the
dynamics above xeq resemble a PDel game, we can use an approach inspired by the
proof of Proposition 1 to show fixation upon full-cooperation.

Proposition 8 Suppose that G(x) ∈ C1([0, 1]), π(x) ∈ C2([0, 1]), G(0) < G(xeq) <

G(1), π(x) has a single root xeq ∈ (0, 1), and that π ′(xeq) > 0. We further assume that
the initial distribution contains groups with levels of cooperation exceeding the within-
group equilibrium, i.e. μ0

((
xeq , 1

])
> 0. If λ > 0, μt (dx)⇀δ(1 − x) as t → ∞.

This generalizes a previous result for SH games with the payoff matrices of Eq.
(1.14) (Cooney 2020a), whose proof relied on the fact that the quadratic G(x) of
Eq. (1.17b) is increasing for x > xeq under the SH payoff rankings. By contrast,
Proposition 8 only requires the ranking of the values group-reproduction function at
the equilibria of the within-group dynamics.

We now turn to the Hawk-Dove game and consider initial measures with infimum
and supremum Hölder exponents near x = 1 satisfying ∞ > θ ≥ θ > 0. Because
π(x) < 0 for x ∈ (0, xeq) and π(x) > 0 for x ∈ (xeq , 1), we can find that the
principal growth rates on our two intervals are given by r M

1 = λG(xeq)t and rm
2 =

max{λG(xeq), λG(1) − θπ(1)}. We can show for either possible value of rm
2 that the

probability μt
([0, xeq)

)
vanishes as t → ∞, with the case of rm

2 = λG(1) − θπ(1)
following from Theorem 4 and the case of rm

2 = λG(xeq) requiring an argument
analogous to the proof of Proposition 1. We can further characterize the long-time
behavior of the multilevel HD dynamics by analyzing the distribution of groups above
xeq in the same way we studied the PD dynamics in previous sections.

We show in Theorem 5 that the population concentrates upon a delta-function
δ(x − xeq) at the within-group equilibrium when λ

[
G(1) − G(xeq)

]
< θπ(1), while

we show in Theorem 6 that the fraction of cooperators in the population exceeds the
equilibrium level xeq infinitely often when λ

[
G(1) − G(xeq)

]
> θπ(1) > θπ(1).

Under the stronger assumption that the initial measure has a well-defined positive,
finite Hölder exponent and constant near x = 1, we show in Theorem 7 that the
population converges to a steady state density whose support consists of groups with
fractions of cooperation between xeq and 1.

Theorem 5 Suppose that G(x) ∈ C1([0, 1]), π(x) ∈ C2([0, 1]), G(0) < G(xeq) <

G(1). We further assume that the initial distribution μ0(dx) has supremum Hölder
exponent θ near x = 1, that π(x) has a single root xeq ∈ (0, 1), and that π ′(xeq) > 0.
If λ

(
G(1) − G(xeq)

)
< θπ(1), then μt (dx)⇀δ(x − xeq).

Theorem 6 Suppose that G(x) and π(x) satisfy the assumptions of Theorem 5 and that
the initial distribution μ0(dx) has nonzero infimum and supremum Hölder exponents
θ and θ near x = 1 with corresponding Hölder constants Cθ and Cθ that are finite
and nonzero. If λ

[
G(1) − G(xeq)

]
> θπ(1) > θπ(1), then
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lim sup
t→∞

∫ 1

xeq

xμt (dx) > xeq . (C.6)

Now we consider the case of convergence to steady state for the multilevel HD
dynamics. When the initial measure has Hölder exponent θ > 0 near x = 1 and
the strength of between-group satisfies λ

[
G(1) − G(xeq)

]
> θπ(1), the principal

growth rates r M
1 and rm

2 associatedwith themeasuresμ1
t (d X1) andμ2

t (d X2) satisfying
rm
2 = λG(1) − θπ(1) > λG(xeq) = r M

1 . As a consequence, we can apply Theorem 4
to conclude that the probably of groups below xeq satisfiesμ1

t ([0, 1]) → 0 as t → ∞.
For the distribution of groups above xeq , Theorem 4 tells us thatμ2

t (d X2)⇀pλ,2
θ (X2),

where pλ,2
θ (X2) is a steady state density given by

pλ,2
θ (X2) = f λ,2

θ (X2)
∫ 1
0 f λ,2

θ (y)dy
(C.7a)

f λ,2
θ (X2) = Xν2−1

2 (1 − X2)
θ−1

(
�2(1)

�2(X2)

)
exp

(∫ 1

X2

−λC̃2(s)

�2(s)
ds

)

(C.7b)

ν2 = 1

�2(0)
(λ [G2(1) − G2(0)] − θ�2(1)) (C.7c)

−λC̃2(s) = λ

(
G2(s) − G2(0)

s

)
+ ν2

(
�2(s) − �2(0)

s

)

+ λ

(
G2(s) − G2(1)

1 − s

)
− θ

(
�2(s) − �2(1)

1 − s

)
. (C.7d)

We can use this representation of the steady-state conditional measure μt (d X2) for
group compositions featuring more than xeq cooperators, paired with fact that the
probability of groups below xeq vanishes in the long-time limit, to find the long-time
steady-state achieved by the multilevel dynamics in the Hawk-Dove case. Applying
to Eq. (C.7) the change of variables X2 = x−xeq

1−xeq
and the definitions of the modified

replication rates�2(X2) andG2(X2) fromEqs. (C.4) and (C.5), we find that the steady
states of the multilevel HD dynamics take the following form:

qλ
θ (x) =

⎧
⎪⎨

⎪⎩

0 : x < xeq

gλ
θ (x)

∫ 1
xeq

gλ
θ (y)dy

: x ≥ xeq , (C.8)

with gλ
θ (x) given by

gλ
θ (x) = (

x − xeq
)νH −1

(1 − x)θ−1
(

π(1)

xπ(x)

)

exp

(∫ 1

x−xeq
1−xeq

(−λ/(1 − xeq)
)

sC̃H (s)

(xeq + (1 − xeq)s)π(xeq + (1 − xeq)s)
ds

)

(C.9)
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and where νH and −λCH (s) are given by

νH = λ
[
G(1) − G(xeq )

] − θπ(1)

xeq (1 − xeq )π ′(xeq )
(C.10a)

−λC̃H (s) = λ

(
G

(
xeq + (1 − xeq )s

) − G(xeq )

s
+ G

(
xeq + (1 − xeq )s

) − G(1)

1 − s

)

+ θ

(
s−1

(
xeq + (1 − xeq )s

)
π
(
xeq + (1 − xeq )s

) − π(1)

1 − s

)

+ νH

([
xeq + (1 − xeq)s

]
π
(
xeq + (1 − xeq )s

) − sxeq (1 − xeq )π ′(xeq )

s2

)

(C.10b)

In Theorem 7, we characterize the long-time weak convergence of solutions of the
multilevel HD dynamics to steady states in the form described by Eqs. (C.8), (C.9),
(C.10) for the case in which initial conditions have well-define Hölder data near x = 1
and in which between-group selection is sufficiently strong. This result confirms and
generalizes (Cooney 2020a, Conjecture 2), which addresses convergence to steady-
state in the case for which the replication rates arise from Hawk-Dove games with the
payoff matrix of Eq. (1.14).

Theorem 7 Suppose that G(x) and π(x) satisfy the assumptions of Theorem 5 and that
the initial distribution μ0(dx) has Hölder exponent θ near x = 1 with corresponding
positive, finite Hölder constant Cθ . If λ

[
G(1) − G(xeq)

]
> θπ(1), then, for any

continuous test-function v(x), the solution μt (dx) to Eq. (1.2) satisfies

lim
t→∞

∫ 1

0
v(x)μt (dx) =

∫ 1

0
v(x)qλ

θ (x)dx . (C.11)

Using the same approach as in Sect. 2, we can characterize the threshold level of
between-group competition required for an integrable steady state

λ∗
H (θ) := θπ(1)

G(1) − G(xeq)
. (C.12)

Then we can use this expression to see that the average payoff at steady state is given
by

〈G(·)〉 f =
(

λ∗
H (θ)

λ

)
G(xeq) +

(
1 − λ∗

H (θ)

λ

)
G(1), (C.13)

so average payoff interpolates between G(xeq) at λ = λ∗
H and G(1) as λ → ∞.

Because G(1) > G(xeq), we see that the average group payoff increases with λ and
that group payoff is limited by the average payoff of a full-cooperator group, even if
group payoff G(x) is maximized by an interior fraction of cooperators.
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