P4Tune: Enabling Programmability in
Non-Programmable Networks

Elie Kfoury*, Jorge Crichigno*, Elias Bou-Harb'
*University of South Carolina, Columbia, South Carolina - USA
fUniversity of Texas at San Antonio, San Antonio, Texas - USA

Abstract—Data plane programmability has attracted signifi-
cant attention, permitting network operators to run customized
packet processing functions. Unfortunately, networks today are
still largely dominated by proprietary fixed-function devices. It is
challenging for operators to completely migrate to programmable
data planes (PDPs) due to the economical costs of replacing
equipment and limited expertise in maintaining and operating
programmable networks. This paper introduces P4Tune, a cost-
efficient architecture that uses passive PDPs coupled with optical
taps. P4Tune runs customized packet processing functions operat-
ing at line rate and collects network information with nanosecond
resolution. This visibility enables intelligent algorithms residing
in the control plane to construct configuration rules and apply
them on the legacy devices, thus creating a closed control loop.
P4Tune brings the benefits of processing traffic at line rate
to legacy networks. Additionally, by using PDPs passively, the
architecture can be safely deployed without disrupting current
network operations, fostering incremental use of PDPs (i.e., no
need to deploy complex code at once). The paper demonstrates
three applications of the proposed architecture related to Quality
of Service (QoS) and cybersecurity.

Index Terms—Programmable data planes, closed control loop,
incremental deployment, self-driving networks, P4.

I. INTRODUCTION

OR decades, the networking industry has been operating

in a bottom-up approach. The vendors provide devices
with fixed-function Application-specific Integrated Circuits
(ASICs), which limits the protocols and features available
to network operators. Recently, programmable switches have
emerged to customize the behavior of the data plane [1].
As a result, a wide range of in-network applications have
been developed, including caching, load balancing, congestion
control, network telemetry, and others [2]. The literature has
shown that offloading applications to the data plane provides
significant performance gains and greater visibility into the
behavior of the network. However, although Programmable
Data Planes (PDPs) have been adopted by top cloud providers
such as Google [3] and Facebook [4] -which have large
teams of software developers and engineers- most campus
and enterprise networks, and smaller service providers are still
using legacy (non-programmable data plane) devices.

There are many reasons why programmable switches are
not used in most production networks: i) network operators
are accustomed to the bottom-up approach where vendors
provide non-programmable but configurable devices, allowing
the operators to only perform device configuration (e.g., inter-
faces, routing engine); ii) programmable switches have limited

support from vendors, as these devices are white-boxes; iii)
replacing the devices in a production network incurs significant
costs and may interrupt the services provided by the network;
iv) substantial expertise is needed to fully replace a legacy
network.

The fixed-function devices available in networks today (e.g.,
core routers/switches) contain a set of primitives that can
influence the traffic crossing the network. Examples of such
primitives include packet dropping, rate limiting, bandwidth
allocation, and buffer sizing. Such primitives are often config-
ured only statically, limiting their potential in networks with
dynamic workloads. Thus, they are often underutilized. Since
fixed-function devices are not programmable, they cannot run
customized algorithms that leverage these primitives.

This article proposes P4Tune, a framework that brings the
benefits of processing traffic at line rate in the PDPs to non-
programmable networks. Optical taps are installed on the links
of the legacy network devices. The traffic is forwarded to PDPs
where in-network applications are running. The measurements
and statistics computed by the PDPs are used by intelligent
algorithms running on CPUs. These algorithms then construct
configuration rules and apply them to legacy devices, creating
a closed control loop.

The main contributions of this paper are framed as follows.

1) Designing a cost-efficient framework that leverages the
visibility and performance of PDPs in a legacy (non-
programmable) network.

2) Enabling network operators to incrementally use passive
PDPs, without requiring them to deploy complex code
at once. This would avoid disrupting current network
operations.

3) Demonstrating the benefits brought by PDPs with three
use cases. Two use cases improve the Quality-of-Service
(QoS) of the legacy network, and one use case mitigates
a common cyberattack.

The rest of the paper is organized as follows. Section
I provides a background on PDPs and the related work,
and describes the challenges faced in deploying PDPs in
contemporary networks. Section III describes the proposed
framework and discusses how the layers interact to provide
a closed control loop. Sections IV and V demonstrate the
use cases of QoS and cybersecurity, respectively. Section VI
presents further discussions on P4Tune, its limitations, and the
lessons learned. Finally, Section VII summarizes the paper.

Control Plane

Pa
E—)
Controller N
Compiler |

P4Runtime l Data Plane
Program-defined local table
Key Action Action data
. Forward | DstIP =IP1, Dst port =p2
Header fields, | o ™ | st 1p = 1p2, Dst port =p4
tuples, etc.
Drop
O State - Memory D ALU
Packets Of)\b - D - D Packets
T oo D | - | D | LD
Programmable Stage 1 Stage n Programmable
parser deparser
Programmable match-action pipeline

= (Switch) =
L Asic jz

Fig. 1. Programmable data plane and its interaction with the control plane.

II. BACKGROUND AND RELATED WORK

This section provides a general overview of PDPs and dis-
cusses the related work and the PDPs’ deployment challenges.

A. Brief Background on Programmable Data Planes

Consider Fig. 1 which shows a PDP and its interaction with
the control plane. The PDP includes the following elements:

o Programmable parser: allows the programmer to define
the headers according to custom or standard protocols,
and to parse them. The parser is represented as a state
machine.

« Programmable match-action pipeline: executes operations
over the packet headers and intermediate results. A sin-
gle match-action stage has multiple memory blocks and
Arithmetic Logic Units (ALUs). The memory blocks are
used to implement tables containing keys to match against
header fields or tuples, and the ALUs are used to execute
actions. Since some action results may be needed for
further processing, stages are arranged sequentially.

o Programmable deparser: assembles the packet headers
back and serializes them for transmission.

The ALUs execute simple operations and use a Reduced
Instruction Set Computer (RISC)-type instruction set, therefore
they can be implemented at a minimal cost and size.

The performance gain of a PDP relies on the multiple
dimensions of parallelism. With tens of stages per PDP,
hundreds of match-action units per stage, and thousands of
ALUSs per chip, the packet processing speed of a PDP can be
in the order of tens of terabits per second (Tbps), a few orders
of magnitude faster than that of a general-purpose CPU.

The de facto language for describing the PDP behavior is
P4 [1]. P4 is a domain-specific language for networking that
stands for Programming Protocol-independent Packet Proces-
sors. The P4 compiler accepts as input a P4 program and

generates a binary code that is loaded into the PDP. It also
generates the APIs used by the control plane to populate
table entries with keys and action data. P4Runtime is the
specification that describes the protocols used to manipulate
table entries at run time.

In the past few years, a wide range of P4-based in-network
applications have been developed, including caching, load bal-
ancing, congestion control, telemetry, cyberattacks defenses,
and others [2].

B. Related Work

P4Campus [5], a recent project managed by researchers
from Princeton, provides a guideline for P4 researchers to
test their ideas on campus networks. It encourages engineers
to use optical taps to copy packets and forward them to
programmable switches. P4Campus focuses on the challenges
of convincing operators to deploy P4 switches. PACampus is
limited to entirely passive applications (e.g., monitoring the
queue latency, measuring the round-trip time (RTT), finger-
printing the operating systems) which do not impact real-time
network traffic.

Deep programmability [6] refers to an ambitious vision
where elements in the network, vertically (control and data
planes) and horizontally (end-to-end), are fully programmable.
Telemetry data (i.e., “dials™), which are collected from PDPs,
are used to observe the packets and the network state. Knobs,
on the other hand, are used to control the network, creating
a verifiable closed loop. This framework gives control to net-
work owners rather than to equipment vendors and technology
providers. While promising, this vision is yet to be realized
due to various reasons discussed in Section II-C.

C. PDPs Deployment Challenges

1) Data Plane Programmability Knowledge by Operators:
Network operators are accustomed to the bottom-up approach
where fixed-function devices are provided by vendors. These
devices include standard packet processing features (e.g.,
switching, routing, access control lists (ACLs)) that operate on
standardized protocols. Operators can only configure legacy
devices (e.g., modify routing configuration, update ACLs)
rather than implementing their own data plane functions.
Adopting PDPs would require a deep understanding of each
component of the forwarding pipeline (parser, match-action
tables, etc.). Moreover, as the number of features increases,
the complexity of the P4 program greatly increases. Thus,
deploying a fully programmable network may require a team
of software developers and network engineers with substantial
expertise.

2) Cost of Replacing the Existing Infrastructure : A signif-
icant amount of time and money has been spent to build exist-
ing network infrastructures. They consist of routers, switches,
security appliances, and other middlebox devices. Replac-
ing the current network infrastructure would require topol-
ogy modifications, new configurations, the implementation of
legacy and customized data plane functions, along with new
expertise to carry on the above tasks. Thus, from the logistic
and cost perspectives, migrating entirely to a programmable
infrastructure may not be a viable option.

X86-based Control
server plane

W= <

e

X86-based CPU-based devices

server

J

7
ad

7

I [Analyzing and constructing rules iFlo1d 2

- 1 [g 2

() ‘ cf &
g |E ! ! PDP devices &7 <
29 (2 PDP switch PDP switch ' PDP NIC \(\% % §
58 & &> | e % i
3 ») ? } : } juun) Qp‘(\ = o
g D] inna} 0\\5
(73 % 5, H
v i In-network appllcatlons Line rate packet processing «‘\Q'
z YANG models
o ‘ @ Non-PDP devices
29 ‘o
= Q /
g @ /‘ EJ gé’ Switch d @
[}
= Taps Firewall ~ Router @ <
@ Forwarding, QoS, security &>

Fig. 2. Generic framework.

3) Vendor Support, Maintenance, and Network Availability:
In contrast to legacy devices where support from vendors is
readily available, PDPs are mostly maintained and supported
by an in-house team of developers and engineers. Without
appropriate development and support, sources of packet pro-
cessing errors may increase and be difficult to troubleshoot,
leading to network disruptions and service unavailability. Such
risk is typically not tolerated in production networks [6].

III. PROPOSED FRAMEWORK

P4Tune builds on ideas from both P4Campus and deep
programmability to provide a cost-efficient solution that can
be easily deployed in today’s networks. Unlike P4Campus
which is deployed entirely passively, PATune is able to con-
trol the network and close the feedback loop. Unlike deep
programmability which assumes that the entire network is
programmable, P4Tune is able to reconfigure legacy devices
deployed in today’s networks.

A. Overview

Consider Fig. 2 which shows an overview of P4Tune. The
goal of this framework is to leverage the power of PDPs to
enhance performance in a non-programmable network. This
is achieved by applying custom algorithms at line rate in
the data plane over traffic copied from the legacy devices.
These in-network algorithms produce statistics that can be
used by intelligent algorithms in the control plane to construct
configuration rules and policies. Finally, policies are applied
to the legacy devices.

B. Layers

1) Non-programmable Layer: This layer consists of legacy
(i.e., non-programmable) devices that provide traditional func-
tionalities such as forwarding, QoS, and access control. Such
devices include routers, switches, and middleboxes (e.g., fire-
walls, load balancers). They are configurable (e.g., configuring
basic security policies through an ACL) but not programmable.

Modern legacy devices may also implement a wide range of
features beyond basic forwarding, including traffic classifi-
cation, policing, queuing, and scheduling. The configuration
is typically static and performed by an operator through a
command-line interface. Thus, such hard-coded static solution
is far from the optimal, as traffic patterns vary over time.

2) In-network Computing Layer: Traffic crossing network
devices can add up to hundreds of gigabits per second. Real-
time packet processing at such rates is not possible on general-
purpose CPUs. This layer consists of PDPs with processing
speeds in the order of terabits per second. They run in-network
applications with customized packet processing algorithms.
PDPs not only provide high-precision timers (nanosecond
granularity [2]) but also stateful memories (e.g., registers,
counters, meters) that can be accessed at line rate. Such
capabilities enable a wide range of in-network applications
such as identifying heavy hitters, detecting Denial of Service
(DoS) attacks, measuring microbursts, etc.

Devices in this layer operate over a copy of the traffic
provided through the passive optical taps. They are capable of
processing packets in real-time, thus providing high visibility
and accurate measurements to the upper layer.

3) Analytics Layer: This layer consists of general-purpose
CPUs residing on x86-based servers or on the switch’s control
plane, and potentially hardware accelerators such as graphic
processing units (GPUs) and tensor processing units (TPUs).
Devices can analyze the information received from the In-
network Computing layer and execute advanced algorithms,
such as Machine Learning (ML) and Reinforcement Learning
(RL) algorithms, to make control decisions. Other algorithms
may include passive monitoring and visualization via dash-
boards, to assist administrators with the management of the
network.

C. Interaction between Layers

Traffic is duplicated through optical taps from the Non-
programmable layer to the In-network Computing layer. Taps
preserve timing information and create an exact copy of all

Out-of-band
management
J Control plane Analytics layer
| 1 ’%
I In-network Computing layer
P4 switch
Use oQY
cases \'Q Edgecore
(Intel Tofino)
A
Non-programmable layer
Server 1 Bouter R1 Bouter R2 Server 2
Juniper MX-204 Juniper MX-204
I >
~ Tap
Sender Receiver

Control, knobs

Fig. 3. Topology used for the experiments.

packets, in contrast to port mirroring which can incur packet
reordering, drops, and incorrect arrival times. Furthermore,
taps do not consume an additional port on the device and
are cheap and easy to deploy. Not all links require taps,
as the network operator can specify the vantage points, de-
pending on the application of interest. Once the traffic is
received by the PDPs in the In-network Computing layer,
customized algorithms are executed. They compute statistics
and measurements that can be leveraged by the Analytics layer.
The connection between these two layers can be via physical
links (e.g., via a fiber optic or other medium) or via virtual
links (e.g., connecting the data plane to the control plane
via a virtual Ethernet link). The Analytics layer receives the
statistics and measurements produced by the devices in the
In-network Computing layer and runs algorithms to generate
configuration rules that are then applied to the legacy devices
in the Non-programmable layer. The Analytics layer uses
model-driven APIs and YANG models. Essentially, YANG
models (OpenConfig, IETF, native) residing on the non-PDP
devices will define the device’s OS configuration hierarchy and
operational commands. Applications running on the Analytics
layer will use APIs to interact with the models to configure
the legacy devices. To make the solution hardware-agnostic,
OpenConfig models are used. OpenConfig is a collaborative
effort by network operators to develop programmatic interfaces
for managing networks in a vendor-neutral way. OpenConfig
is supported on devices from major providers including Cisco,
Juniper, and Arista.

The Analytics layer can also reconfigure devices in the In-
network Computing layer (e.g., modify a threshold) through
P4Runtime. The PARuntime API is a control plane specifica-
tion for controlling the PDP elements of a device. P4ARuntime
is open-source and silicon-independent. Note that the In-
network Computing layer does not configure legacy devices
in the Non-programmable layer.

The continuous interaction between the layers creates a
closed control loop, enabling an autonomous, self-driving
network, even in the presence of legacy devices.

D. Experimental Setup

The use cases in this paper are implemented over the topol-
ogy shown in Fig. 3. The topology consists of the following
devices:

« Non-programmable layer: Juniper MX-204 is the legacy
router used. This router supports traffic classification and
allows buffer size reconfiguration. Traffic is generated
and received on general-purpose servers with enough
computing and memory resources.

o In-network Computing layer: Edgecore WedgelOOBF-
32X is the PDP used. It is equipped with a programmable
ASIC chip (Intel Tofino [7]) that operates at 3.2 Tbps.

« Analytics layer: the control plane of the Edgecore switch
is used.

The control plane in the Analytics layer reconfigures the
Juniper router R1 in the Non-programmable layer through an
out-of-band management connection.

IV. USE CASE 1: QUALITY OF SERVICE

Packet-switched devices (e.g., routers, switches) are
equipped with buffers that accommodate transient bursts and
reduce packet drops. Buffer management (configuring its size,
separating its crossing flows) significantly impacts the perfor-
mance of network applications.

A. Dynamic Buffer Sizing

The rule-of-thumb buffer size that ensures high link uti-
lization is B = C - RTT,, where C' is the link capacity
and RT'T,,;, is the average minimum RTT. [8] showed that
much smaller buffers can be used without having a significant
decrease in the link utilization (98%). This rule suggests that
B = C'L\/%’“'”, where N is the number of large flows that
are persistent over time.

According to [9], most routers in production networks use
very large -bloated- buffers, increasing RTT to a point where
the latency of small flows is heavily affected during congested
periods. Specifying a static buffer size does not yield to
optimal performance since the optimal buffer size is a function
of the average RTT and the number of large flows, which
change over time. The idea of dynamic buffer sizing was
never implemented because of the lack of visibility and high-
resolution measurements to i) discriminate between large and
small flows, ii) compute the number of flows passing through
the device in real-time, and iii) calculate the RTT of thousands
of concurrent flows at any given time. This information would
require computation at line rate.

In this use case, a control plane’s CPU in the Analytics
layer dynamically modifies a legacy router’s buffer size by
using measurements obtained from a PDP in the In-network
Computing layer. The goal is to achieve small Flow Comple-
tion Times (FCT) for small flows traversing the router during
congested periods.

TABLE 1
FLOW COMPLETION TIMES AND ROUND-TRIP TIMES OF SMALL FLOWS

wo/ buffer modification w/ buffer modification
CCA FCT [s] RTT [ms] FCT [s] RTT [ms]
m o m o m o m o
Cubic | 1.84 | 0.84 | 207.8 | 185 | 045 | 051 | 269 | 2.3
Vegas | 0.82 | 0.61 829 | 347 | 047 | 046 | 27.7 | 2.5
Reno | 1.58 | 0.58 | 193.6 | 245 | 046 | 047 | 27.0 | 2.3
BBRv2 | 0.80 | 0.68 757 | 327 | 0.57 | 0.16 | 29.5 | 2.7
HTCP | 1.62 | 0.75 | 186.2 | 21.2 | 044 | 044 | 27.8 | 2.3
DCTCP | 1.62 | 0.70 | 1956 | 243 | 045 | 045 | 279 | 2.6

1) Metrics Estimation: Setting the value of the buffer size
to CL\/%”" requires determining the current RT7T,,;, and

The PDP can identify large flows by using the Count-Min
Sketch (CMS) data structure. The CMS tracks the number of
packets for a given flow. If this number exceeds a threshold,
the flow is considered large, and N is incremented by one.
As for the RTT calculation, the PDP relates the sequence
and acknowledgment numbers of TCP to identify the two
directions of the stream and then computes the time difference
to produce an RTT sample [10].

Having both, N and the average RTT, the CPU computes
the buffer size and modifies the existing buffer size on the
legacy device.

2) Evaluation and Results: To evaluate this use case, 100
large flows are generated over a bottleneck link of 1Gbps
with 25ms of propagation delay. In addition, the experiment
initiated 10,000 small flows whose inter-connection times are
generated from an exponential distribution with a mean of one
second. The goal of this test is to measure the FCTs and the
RTTs of small flows. The results of this use case are compared
against those obtained with the bloated buffer since the latter is
the most commonly configured buffer size on the Internet [9].
The experiment also considers flows belonging to different
Congestion Control Algorithms (CCAs) such as Cubic and
BBRv2.

Table 1 shows the mean (x) and the standard deviation
(o) of flows’ FCTs and RTTs. Independently of the CCA,
dynamically modifying the buffer size (denoted as w/ buffer
modification in the table) always yields an improvement in
the FCT and the RTT of small flows. As for the large flows,
the average FCT only increases by ~ 0.5% with the dynamic
buffer approach. Such an increase is tolerable as large flows
are generally non-interactive.

Additionally, Jain’s fairness index, which quantifies how
fairly the link is shared by flows, increases from =~ 59.5%
with the static buffer approach to ~ 82.3%.

B. Size-aware Flow Separation

The FCT of small flows sharing a router queue with large
flows is significantly impacted when the network is busy. Web
traffic can be considered a workload that contains small flows.
A possible solution to prevent the increase of FCTs is to
separate small flows from large flows. This can be achieved by
classifying traffic in core routers and separating them into dif-
ferent queues. There are two main typical classifiers available

1.oF —
0.8}
= 0.6 :
(=) w/ separation
O — =002
D o =0.08
L wo/ separation]
0.2 — u=148
o =0.59
0.0} i ; ; . 1
0 1 2 3 4 5

Flow Completion Time [s]

Fig. 4. Cumulative Distribution Function of the FCT of small flows.

in commercial routers: 1) Behavior Aggregate Classifiers: a
classifier that leverages the fixed-length fields in the packet
header (e.g., IP precedence, Differentiated Services Code
Point (DSCP)); 2) Multifield Classifier (MF): a classifier that
examines multiple fields in the packet (e.g., source/destination
addresses/port, TCP flags, protocol, packet length) based on
firewall filter rules.

The idea of this use case is to separate large and small
flows passing through a legacy router into different queues.
A PDP in the In-network Computing layer identifies large
flows. After receiving a notification from the PDP, a control
plane’s CPU in the Analytics layer allocates dedicated queues
for large and small flows in the legacy router to store their
packets accordingly. This use case uses the MF classifier for
the classification on the legacy router.

1) Evaluation and Results: To evaluate this use case,
10,000 small flows are generated (same as in Section IV-A2).
In addition, 10 large flows were started, each with a random
starting time over the test duration. The test is executed with
the default settings of the router (wo/ separation), and with
the proposed approach (w/ separation).

Fig. 4 shows the FCT of small flows. It can be seen that
there is a significant improvement in the FCT of the small
flows; more than 90% of the flows finished in less than 0.2
seconds. On the other hand, ~ 75% of the non-separated flows
terminated in more than one second.

V. USE CASE 2: CYBERSECURITY

The diversity and the scale of attacks have dramatically
increased in the past few years. In January 2022, a record-
breaking attack reached a throughput of 3.47 terabits per sec-
ond [11]; such rates cannot be promptly detected and mitigated
with contemporary defense solutions, neither software-based
nor expensive and proprietary devices.

Recent efforts have shown that a wide range of defenses
can be devised in programmable switches.

A. DNS Amplification

DNS amplification is an attack where a massive amount
of DNS response packets is sent to a victim’s server. The
attacker sends a DNS name lookup request to a public DNS
resolver using the victim’s IP as the source address, causing
the DNS response to be sent to the spoofed address. Typically,

10000 Attack started Attack stopped Attack started Attack stopped
CAIDA 1 “
Reflector 1
8000 Reflector 2|
Reflector 3
— BN Reflector 4
a
e 6000 ‘ P
=} \
] | |
5 4000 [-y
’, 1
2000+ g @
ol i i | i i
0 20 40 60 80 100 120
wo/ mitigation w/ mitigation

Time [s]

Fig. 5. Amplification attack results. The attack is augmented to the CAIDA
traffic at intervals [30-60] and [90-120]. Note how the attack was promptly
stopped at second 90.

an attacker gathers as much zone information as possible to
maximize the amplification effect.

The implementation of this use case consists of program-
ming a PDP to parse DNS packets. The data plane has
visibility of all DNS requests and responses that pass through
a legacy router, which will be protected. The PDP tracks the
number of DNS responses that do not match the DNS requests
sent from the network to the public resolvers. The counts are
tracked per resolver, allowing the system to fingerprint the
IP address of any resolver being attacked. The PDP device
notifies a control plane’s CPU in the Analytics layer of the
volume of DNS requests and responses. Once an attack is
detected, the CPU constructs a rule to be applied to the
legacy router. The MF classifier matches on the IP address
of the attacked resolver and on the lengths of the packets sent
from that resolver. Upon matching, the legacy router discards
the packets. Using the packet length as an additional match
criterion allows legitimate small-sized DNS responses received
from the resolver to be forwarded by the router.

1) Evaluation and Results: The goal of this test is to
determine whether the system can detect the amplification,
and the time it takes for the attack to be mitigated. While
replaying a CAIDA dataset, which was captured from high-
speed monitors on a commercial backbone link [12], a DNS
amplification attack is launched. Fig. 5 shows the receiving
rate on the victim, with and without mitigation. During the
first 30 seconds, only legitimate CAIDA traffic was being sent;
a second later, an amplification attack was launched. It can be
seen that without mitigation, the reflectors flooded the 10G
link rapidly. With the mitigation activated, the amplification
attack was promptly detected and stopped (less than a second),
as seen in second 90 in the figure. It is worth noting that the
configuration commit time is constant, regardless of the traffic
rate (i.e., even if this attack was in the Tbps scale).

VI. DISCUSSIONS

This section presents some discussions on the proposed
framework.

A. Cost-efficiency

P4Tune requires installing PDP switches and optical pas-
sive taps on the links to be monitored. PDP switches are
cheaper than most legacy switches used on campus/enterprise
networks. Taps are also cheap and can be installed without
causing any changes to the existing topology (e.g., IP ad-
dressing, routing). However, note that installing taps would
necessitate disconnecting cables, leading to a short disruption
of the network during their installation.

B. Promptness

While P4Tune does not apply the configuration rule at line
rate (the Analytics layer, e.g., a control plane’s CPU, applies
the rules to a legacy device), the PDP switches still perform
packet processing at line rate. This capability enables the
system to detect events (e.g., flood attacks, amplification cases)
and to measure parameters (e.g., RTT, number of active flows)
with high precision. The control loop is closed by committing
the configuration rule on the legacy device. According to
the experimental results, the commit latency is less than one
second, regardless of the number of rules installed with the
single commit.

C. Supported Primitives

The applications that control the network are limited to the
primitives provided by the fixed-function devices. Common
primitives found in commercial devices include dropping
packets, modifying the bandwidth allocated to a queue, chang-
ing queue size and loss priorities, metering and policing traffic,
modifying routing tables, etc. These primitives, if used in
conjunction with PDPs, can enable a plethora of applications
with dynamic workloads, including traffic rerouting, load
balancing, traffic steering, botnet prevention, etc.

D. Unsupported Applications

The current framework does not support active applications
running on PDPs that send feedback to the end devices (e.g.,
HPCC [13], a congestion control scheme that sends congestion
feedback to the senders). Instead, P4Tune relies on devices in
the Analytics layer (e.g., the control plane’s CPUs) to close
the control loop. However, P4Tune can be extended to provide
feedback from the In-network Computing layer by generating
control signals directly from the PDPs.

E. Privacy

There is always concern about protecting user privacy in
network traffic. Fortunately, there is a way to use PDPs without
violating privacy. PACampus presents an online network traffic
anonymization application [14] that is written in P4 and is
compatible with P4Tune.

FE. Lessons Learned

1) Lesson 1 - Visibility and Incremental Adoption of PDPs:
While PDPs were initially created to permit programmers to
develop new protocols, they also provide real-time visibility
and processing speed previously unavailable. These features
allowed the authors to accurately measure RTTs and identify
long flows and unsolicited DNS responses. Additionally, by
using passive PDPs and operating over a copy of the traffic,
the system becomes less disruptive and fosters incremental use
of PDPs (i.e., no need to deploy complex code at once).

2) Lesson 2 - PDPs Constraints: PDPs have limited com-
puting and memory resources. It is essential to identify an
optimized way to implement the application on a PDP. For
instance, counting packets pertaining to a flow can be im-
plemented by maintaining counts in a single register array,
indexed by the flow identifier. However, this design is not
scalable. Instead, by using a memory-efficient data structure
such as the CMS, many more flows can be tracked.

3) Lesson 3 - Open APIs for Managing Legacy Devices:
Networks nowadays encompass legacy devices from different
vendors (e.g., Cisco, Juniper, Arista). Recent efforts in the
networking community have been devoted on developing
common vendor-independent software layers for managing
network devices. The proposed P4Tune scheme indeed ex-
ploited such vendor-independent APIs, which enable seamless
portability of applications.

4) Lesson 4 - Primitives Underutilization in Legacy De-
vices: Legacy devices support a wide range of primitives
that can be leveraged to control the network. Most of these
primitives require traffic to be classified. Classification can
be achieved by inspecting header fields or by matching on
pre-configured flow entries. Recent studies have shown that
the fields in the IP header related to traffic differentiation are
rarely used in traffic crossing a well-known backbone network
[15]. On the other hand, pre-configuring the flows require
manual intervention from the operator, and thus is typically
limited to well-known subnets. By leveraging passive PDPs (as
proposed in this paper), traffic can be classified using custom
algorithms running at line rate. Subsequently, the Analytics
layer can install flow entries in the legacy devices for traffic
classification. Such architecture enables the primitives on the
legacy devices to be further utilized.

VII. CONCLUSION

This paper presented P4Tune, a cost-efficient architecture
that uses passive PDPs to run custom packet processing on
the traffic traversing the legacy network. Intelligent algorithms
residing on the general-purpose CPUs construct and push
configuration rules to the legacy devices, creating a closed
control loop. The article demonstrated three different appli-
cations leveraging the proposed framework, namely, dynamic
router buffer sizing, traffic separation, and DNS amplification
mitigation. In this article, P4Tune was used with the imple-
mentation of just several interesting use cases as examples.
However, due to the flexibility and speed of PDPs, many more
applications that ameliorate the network can be developed.

ACKNOWLEDGMENTS

This work was supported by the U.S National Science
Foundation (NSF), Office of Advanced Cyberinfrastructure,
Awards #1925484 and #2118311.

REFERENCES

[1]1 P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87-95, 2014.

[2] E. F. Kfoury et al,, “An exhaustive survey on P4 programmable data
plane switches: taxonomy, applications, challenges, and future trends,”
1IEEE Access, vol. 9, pp. 87094-87155, 2021.

[3] S. Heule, “Using P4 and P4Runtime for optimal L3 routing.” [Online].
Available: https://tinyurl.com/y365gnqy, Accessed on October 14, 2022.

[4] Facebook engineering, “Disaggregate: networking recap.” [Online].
Available: https://tinyurl.com/yxoaj7kw, Accessed on October 14, 2022.

[5] H. Kim et al., “Experience-driven research on programmable networks,”
ACM SIGCOMM Computer Communication Review, vol. 51, no. 1,
pp. 10-17, 2021.

[6] N. Foster ef al., “Using deep programmability to put network owners in
control,” ACM SIGCOMM Computer Communication Review, vol. 50,
no. 4, pp. 82-88, 2020.

[7] Intel, “Intel Tofino, P4-programmable Ethernet switch ASIC that delivers
better performance at lower power.” [Online]. Available: https://tinyurl.
com/2vzssub3, Accessed on December 15, 2022.

[8] G. Appenzeller et al., “Sizing router buffers,” ACM SIGCOMM Com-
puter Communication Review, vol. 34, no. 4, pp. 281-292, 2004.

[9] N. McKeown et al., “Sizing router buffers (redux),” ACM SIGCOMM

Computer Communication Review, vol. 49, no. 5, pp. 69-74, 2019.

X. Chen et al., “Measuring TCP round-trip time in the data plane,”

in Proceedings of the Workshop on Secure Programmable Network

Infrastructure, pp. 35—41, 2020.

Microsoft, “Azure DDoS Protection—2021 Q3 and Q4 DDoS attack

trends.” [Online]. Available: https://tinyurl.com/3zxt3mun, Accessed on

October 14, 2022.

CAIDA, “The CAIDA anonymized Internet traces 2019 dataset.”” [On-

line]. Available: https://data.caida.org/datasets/passive-2019/, Accessed

on October 14, 2022.

Y. Li et al., “Hpcc: High precision congestion control,” in Proceedings

of the ACM Special Interest Group on Data Communication, pp. 44-58,

2019.

H. Kim and A. Gupta, “Ontas: Flexible and scalable online network

traffic anonymization system,” in Proceedings of the 2019 Workshop on

Network Meets Al & ML, pp. 15-21, 2019.

N. Roddav et al,, “On the usage of DSCP and ECN codepoints in

Internet backbone traffic traces for IPv4 and IPv6,” in 2019 International

Symposium on Networks, Computers and Communications (ISNCC),

pp. 1-6, IEEE, 2019.

[10]

[11]

[12]

[13]

[14]

[15]

Elie Kfoury is pursuing a Ph.D. degree at the College of Engineering and
Computing, University of South Carolina (USC), USA.

Jorge Crichigno is a Professor in the College of Engineering and Computing
at the University of South Carolina (USC) and the director of the Cyberinfras-
tructure Lab at USC. He has over 20 years of experience in the academic and
industry sectors. Dr. Crichigno’s research focuses on offloading functionality
to P4 PDP switches, network security, and IoT devices. His work has been
funded by private industry and U.S. agencies such as the National Science
Foundation (NSF), the Department of Energy (DOE), and the Office of Naval
Research (ONR). He received his Ph.D. in Computer Engineering from the
University of New Mexico, USA, in 2009.

Elias Bou-Harb is the Director of the Cyber Center For Security and
Analytics at UTSA. He is also a tenured Associate Professor at the depart-
ment of Information Systems and Cyber Security specializing in operational
cybersecurity and data science as applicable to national security challenges.

