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Soft robots promise improved safety and capability over rigid robots when

deployed near humans or in complex, delicate, and dynamic environments.

However, infinite degrees of freedom and the potential for highly nonlinear

dynamics severely complicate their modeling and control. Analytical and ma-

chine learning methodologies have been applied to model soft robots, but with

constraints on the inertia of motions (that is, quasi-static), nonlinearity of de-

flections (that is, quasi-linear), or both. Here, we advance the modeling and

control of soft robots into the inertial, nonlinear regime. We control motions

of a soft, continuum arm with velocities ten times larger and accelerations

fourty times larger than those of previous work, and do so for high-deflection

shapes with over 110 degrees of curvature. We leverage a data-driven learning

approach for modeling, based on Koopman Operator Theory, and we intro-
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duce the concept of the static Koopman operator as a pregain term in optimal

control. Our approach is rapid, requiring less than five minutes of training, is

computationally low-cost, requiring as little as 0.5s to build the model, and is

design agnostic, learning and accurately controlling two morphologically dif-

ferent soft robots. This work advances rapid modeling and control for soft

robots from the realm of quasi-static to inertial, laying the groundwork for the

next generation of compliant and highly dynamic robots.

Introduction

The automation and robotics revolution has transformed manufacturing and heavy industry,

leading to higher throughput, repeatability, and quality across numerous sectors [1, 2]. Un-

fortunately, robots are most often relegated to cages and isolated sections of manufacturing

sites due to the inherent danger they present to human operators through their fast-moving,

heavy, and rigid structures. Efforts towards allowing these robots to perform safely with hu-

man collaborators have focused on software control, but absolute guarantees of safety are not

possible [3, 4, 5, 6].

In contrast, soft robots are safe by construction due to their low stiffness and mass, but

modeling and control of these systems is challenging [7, 8, 9, 10, 11, 12]. This is due to their

inherent nonlinearity, high dimensionality, and the imprecise measurement of their position in

space. Past work has sought to overcome these obstacles through a variety of modeling methods,

each of which constrains the design of control implementations. The majority of these modeling

approaches fall into two categories: analytical Reduced Order Modeling (ROM), and machine

learning (ML).

In soft robot ROM for control, the aim is to develop an analytical model based on simplify-

ing assumptions such as (piecewise) constant curvature ((P)CC) deformations [13, 14, 15, 16].
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For an approximately constant-curvature system, this approach allows for the accurate predic-

tion of dynamics given appropriate estimation of parameters. However, developing these ana-

lytical models is nontrivial and labor intensive, and each model applies only to the single system

that was modeled. These models tend to be valid only in a neighborhood around the equilibrium

point where the system has been linearized [14]. Controllers based on ROM models have been

applied to soft robots in the past, but these have yet to achieve the real-time control of fast,

inertial motions [17, 18, 19].

In the ML modeling of soft robot dynamical behaviors, many neural net-based approaches

exist. Most of this work focuses on the development of predictors using neural nets such as Long

Short Term Memory (LSTM) [20, 21] or recurrent neural networks [17, 19]. These methodolo-

gies generate highly accurate predictors of the dynamics. However, training these systems has a

high computational cost. Moreover, their structure is nonlinear, requiring specialized control al-

gorithms [10]. One example is a feedforward neural net controller which has been successfully

coupled to a model-free closed-loop controller and applied to a high-deflection, yet quasi-static

soft arm [22, 23]. Additionally, there are approaches which leverage a neural-net-based dy-

namical model in closed-loop control [17, 18]. However, neural net approaches to soft robot

modeling have not yet resulted in the closed-loop control of high-speed, inertial and nonlinear

dynamics.

Koopman Operator Theory (KOT) [24] is an alternative modeling paradigm, introduced to

the field of ML and data-driven modeling in the early 2000s [25, 26]. KOT-based ML has two

qualities that make it attractive strategy for soft robot control: it is data-driven, eliminating the

need for complicated analytical models, and it identifies a globally linear model, allowing for

fast and efficient control design. The Koopman operator is a representation of a dynamical sys-

tem in terms of the evolution of observables on a function space. Although the evolution of a

dynamical system on state space may be nonlinear, its evolution in function space - described
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by the potentially infinite dimensional Koopman operator - is always linear. This is in contrast

to a state-space linearization, which builds a linear approximation of the nonlinear dynamics

only valid in a small region of the workspace. The Koopman methodology has been applied

to control systems, with the majority of work combining a Koopman operator approximation

method, Dynamic Mode Decomposition, with control (DMDc) [27,28,29,30,31,32]. In particu-

lar, model predictive control (MPC) is commonly used [33]. When DMDc and MPC are applied

to soft robots, [34,35,36,37] the control is accurate, but only shown so in quasi-static control in

a low-deflection regime (approx. 18� of curvature). It is important to note that simple linearized

models are likely to work at these low deflections because the full nonlinearity of the dynam-

ics may only be explored at high deflections. In fact, references [34, 35, 36] show imperfect

yet functional controllers using purely state-space linear MPC, suggesting the quasi-linearity of

these systems.

The combination of the Koopman operator and the Linear Quadratic Regulator (K-LQR)

optimal control scheme has shown promise in rigid robot applications [38, 39] and the control

of fluid dynamics problems [40]. Notably, Mamakoukas et al. [41] show promise in a 1-DoF

soft robotic fish application employing a similar Koopman structure.

Even with these many advances in the field, existing soft arm control implementations [42,

34,35,36,41] have yet to be demonstrated in the inertial, non-linear regime. In order to compare

with other works, we introduce the following definitions of the “inertial regime” and “nonlinear

dynamics.” We define the inertial regime for soft arms to be when the inertial force experienced

by the tip Ftip is of the order of its weight Ftip = matip ⇡ mg, meaning atip ⇡ g. Here m is

the mass of the tip of the arm and atip is the acceleration of the tip during closed-loop control.

We define nonlinear dynamics to be motions that fail to be adequately captured by a state-space

linearization. Thus, an open challenge remains: modeling and control of inertial dynamics in

highly nonlinear soft robots.

4



In this work, we advance modeling and control of soft, continuum arms into the inertial

regime. Previous work has considered quasi-static motions, with accelerations below 0.03g

where g = 9.81m
s2 . Our work demonstrates movements in closed-loop control with accelerations

greater than 1g (see Table 1). We control these inertial movements in a highly nonlinear, high-

deflection regime across two variations of our soft arm, each with different dimensions, numbers

of actuators, and workspaces. The first demonstrates curvatures up to 110 degrees (Robot #1)

and the second up to 180 degrees (Robot #2) (Fig. 1).

This capability is enabled by the introduction of the static Koopman pregain, which maps

held inputs to converged robot configurations. After being learned from data, we use it as a

pregain term in the LQR implementation. The static Koopman pregain greatly increases the

accuracy of static pointing tasks and improves the stability of dynamic tasks.

We show our approach requires minimal training and low computational cost, both for de-

termining the model and controlling the robot. Collecting our training data takes less than 5

minutes and the computation of the model takes less than a second, as opposed to the long

training times required by many neural net-based approaches. Our approach estimates both the

static and dynamic control Koopman operators, enabling the use of low latency, efficient opti-

mal control methods; this enables real-time tracking of fast-moving reference positions, even if

field-deployed on a low-power microcontroller.

Results

In this section, we first outline our approach that enables modeling and control in the inertial,

nonlinear regime, yet requires relatively little training data and low computational power. Next,

we systematically test the speed and accuracy of the resulting closed-loop controller in a series

of circular reference tracking tests. The soft arm is further tested in a tip tracking test with a

rapidly changing, user-defined reference position designed to test the soft arm’s responsiveness
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Table 1: Comparison with existing soft, coninuum arms shows advances in speed, acceler-
ation, and deflection during closed-loop control. This work demonstrates a 10x increase in
reference tracking tip speed [Speed] and a 4x improvement in tip deflection angle [Deflection]
and advances closed-loop control of soft robot arms into the inertial regime atip > g = 9.81m

s2 .
The acceleration [Accel] of the soft arm’s tip atip is computed using the centripetal acceleration
of soft arms for which circular reference tracking data is available. The distance from the base
to the tip of each arm is also given [Length]. Note that closed-loop deflection data does not
include the large-deflection open-loop tests present in some works. Acronyms: LQR - Linear
Quadratic Regulator, RNN - Recurrent Neural Network, ROM - (analytical) Reduced Order
Model, PCC - Piecewise Constant Curvature, MPC - Model Predictive Control, LSTM - Long
Short-Term Memory, TRPO - Trust Region Policy Optimization, GPR - Gaussian Process Re-
gression, TO - Trajectory Optimization, FFC - feedforward compensator, SM - sliding mode,
AF - analytical feedback, R1: Robot #1, R2: Robot #2.

Robot Length
[m]

Speed
[ms ]

Accel
[ms2 ]

Deflection
[deg]

Model Control
Method

This Work 0.37 1.52 11.6 R1: 110
R2: 180

Koopman LQR

[17] 0.4 0.15 21 RNN TO
[23] 0.3 0.12 0.065 45 None NN FFC
[43] 0.3 0.1 0.1 20 ROM SM
[37] 0.15 0.094 0.29 18 Koopman MPC
[15] 0.38 0.09 0.032 27 PCC ROM AF
[18] 0.44 0.05 19 LSTM TRPO
[42] 0.25 0.035 0.012 7 Koopman MPC
[36] 0.7 0.03 0.032 8 Koopman MPC
[19] 0.22 0.002 0.0016 11 RNN GPR

to changes in commands in real time. Lastly, we test our methodology on the dynamic catching

and throwing of a ball. This leverages the inertial dynamics of our soft arm to demonstrate its

effectiveness in real-world tasks.

Static and Dynamic Koopman Operator Optimal Control The successful real-time control

of a soft arm in the inertial and nonlinear regime requires both a model that captures these

dynamics and a control methodology that adapts to the motion of the robot in real time. We

achieved this by building a controller which leverages both the static and dynamic Koopman
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operators of the soft arm system. The Koopman operators describe the evolution in time of

functions defined on the robot configurations and inputs. These functions are called observables,

and the approximation of the Koopman operators involves training on data which is augmented

by a chosen basis of observables. The data is collected through a series of training experiments,

performed by commanding step inputs with randomly distributed magnitudes. This training

data is partitioned into dynamic and static components which are used to train the two separate

Koopman operators (see Materials and Methods). Both the training and model computation

processes are fast, requiring only 5 minutes (approximately 18, 000 samples at 60Hz collection

rate) for training data collection, and the matrix pseudo-inverses used in the model construction

take less than a second on an ordinary laptop computer.

The observables used to train the dynamic Koopman model are time delayed measurements

of the position of motion tracking points placed on the soft arm. This turned out to be sufficient

to build a linear model of its nonlinear dynamics. Previous work considered adding a single

time delay to hundreds of monomials [42]. However, inspired by the fact that for ergodic

systems, the limit of infinitely many time-delay observables results in DMD’s convergence to

the true Koopman operator [32, 31, 44], we included only time-delay observables. Our results

show that time-delay-only observables are sufficient to capture the dynamics of this nonlinear

system (see Supplementary Fig. S2), without the added computational cost of many monomial

observables. This also eliminates the large tails associated with monomials which magnify

noisy measurements far from the origin. Indeed, without time delays, the eigenvalues in the high

frequency and dissipative regions of the unit circle and their corresponding Koopman modes are

missing (Fig. 2). We express this dynamic Koopman operator as a pair of matrices A and B

giving the uncontrolled and controlled dynamics, respectively. These can be used to build the

Koopman-LQR controller described in Materials and Methods.

The resulting feedback controller is able to command the soft arm to follow a fast-changing
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reference position, but suffers from steady state error. Introducing integral control (for exam-

ple, Linear Quadratic Integral Control) is one of the commonly used approaches to minimizing

steady-state error [45]. This method, however, is sensitive to measurement noise and requires

a trade-off between speed of response and tracking accuracy. As a consequence, the imple-

mentation in this work – accurate control of highly dynamic tasks – resulted in poor tracking

performance outside of the quasi-linear and quasi-static regimes. Instead, we address the steady

state error by introducing a static Koopman pregain, a control concept we developed for the

current work. The static Koopman operator was first formally described in our recent model-

ing work [46], but no connection to control design was made. Unlike the dynamic Koopman

operator, this operator is a map between functions defined on two different spaces. In our ap-

plication, the static Koopman operator is used to map functions defined on the space of inputs

to functions defined on the space of robot configurations. We learn this operator from the static

partition of the training data so that static positions in the workspace of the soft arm correspond

to the values of the inputs required to reach those positions after all transient motions dissipate.

This operator is then used as a pregain term that augments the LQR controller. Sensor noise

is known to cause tracking issues in soft robots attempting to perform real-time tracking of

aggressive control inputs [11]. Our control structure mitigates this problem by balancing the

noise-sensitive dynamic Koopman LQR term with the sensor-agnostic static Koopman pregain.

The construction of the controller and the computation of the optimal input are also fast pro-

cesses which have low computational overhead. The solution of the Riccati equation involved

in computing the LQR control gain takes less than a second, and computing the optimal input

at a given time step only requires two small matrix multiplications. This is easily achievable in

real-time on a low-cost microcontroller.
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Closed-loop circle-tracking in inertial, nonlinear regime With our control architecture in

place, we first sought to characterize the performance across a range of deflections and soft

arm speeds in a planar circular reference tracking (smooth changes in reference position). We

commanded the soft arm’s tip to trace out circular paths in the X-Y plane with three radii

(100mm, 180mm, and 220mm) and six frequencies (0.1, 0.3, 0.5, 0.7, 0.9, and 1.1Hz), as shown

in Fig. 3. The same controller was used for all references, as described in Materials and

Methods.

These results show that the soft arm tracks the reference with consistent performance through-

out the full range of deflections and speeds tested (Fig. 3, left, Movie S2). The fastest and high-

est deflection circle-tracking result demonstrates a tip speed of 1.5m/s, a speed to length ratio of

3.23s�1, and a tip acceleration of 11.6m/s2 in closed-loop control. This is approximately an or-

der of magnitude faster than any soft arm of which we are aware (see Table 1). Importantly, the

system was trained exclusively on step inputs, and as such the model had no a priori knowledge

of the control objective nor had it been trained on circular behaviors.

Additionally, we show that the relative contribution of the dynamic Koopman LQR input

versus the static Koopman pregain increases with increasing speed and deflection (Fig. 3, right).

For relatively low speeds and deflections, the dynamic Koopman LQR input is quite small, and

the static Koopman pregain dominates. As accelerations increase and inertia becomes non-

negligible, the dynamic component increases in magnitude to compensate for the static term’s

inability to account for inertial effects. This suggests that for any soft robot performing a non-

inertial task, the incredibly simple static Koopman pregain could be sufficient for control.

Closed-loop, real-time reference-tracking in inertial, nonlinear regime We next sought

to characterize the controller performance for a less structured and more challenging control

objective: tracking a real-time, user-defined reference. To do so, we commanded the controller
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to decrease the euclidean distance between the tip of the soft arm and a motion tracker point

located on the tip of a pole. A human operator moved the pole across random trajectories within

the reachable workspace of the soft arm, including both slow and rapid motions. Throughout

the test, the robot remains in contact almost continuously while achieving speeds exceeding

0.7m/s (as shown in Fig. 4 and Movies S1 and S4).

To demonstrate the generalizability of our approach for different soft arms, we also tested

our approach on a morphologically different second arm. The second arm is longer, more

slender, and has three instead of four side muscle. This results in larger curvatures and a helical

actuation pattern, as discussed in Robot Design. Despite these differences, no changes were

needed in the learning and control algorithm, aside from updating the number of inputs. This

second system was exposed to 5 minutes of step input training data, the model and controller

were calculated and deployed, and the system was commanded to again track the tip of the

user-operated pole. Results of this test are shown in supplementary materials (Movie S5), and

stills from the testing are shown in Fig. 1.

Dynamic Throwing and Catching With the viability of our method shown in the above

characterization tests, we finally demonstrated how its capabilities translate to sample robotic

tasks. We challenged our soft continuum arm in two ways: first, to catch a ball swinging through

the air as we demonstrate in Fig. 5, and second, to receive an object from an operator, and to

throw it into a reference bin as shown in Fig. 6. Both tests are shown in Movie S3. This

demonstration is similar to the ball catching performed in [47] by a two-link arm with a soft

joint, but completed with a fully soft continuum robot arm that also incorporates throwing.
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Discussion

We presented a data-driven framework for the modeling and control of inertial and nonlinear

soft robots. We used Koopman Operator Theory to enable the application of linear control

methods to this highly nonlinear, inertial system. We introduce a Koopman-LQR with static

Koopman pregain capable of accurately controlling two different inertial soft robots exhibiting

high deflections and high velocities during arbitrary trajectories. Advancing the state of the

art, the proposed method allows the construction and deployment of both a model and optimal

controller from less than 5 minutes of training data - to the best of the authors knowledge,

the shortest in soft robotics (Fig. 7). Compared to existing MPC-based controllers, K-LQR

is computationally less expensive and can be deployed on a simple microprocessor, enabling

cheap and scalable use in a variety of environments outside the research laboratory. Despite its

simplicity, our controller allows our soft arm to undergo controlled accelerations greater than

gravity, demonstrating inertial behavior substantially greater than previous examples (Table 1).

Although the presented demonstration of our modeling and control paradigm focused on soft

robots, its implications could be much broader. The paradigm’s ability to explore the dynamical

features of a complex, nonlinear, inertial system could offer advantages in modeling and control

of myriad robotic systems. Further, its speed, versatility, low computational cost, and ease of

use potentially expand the accessibility of robotics to new user groups. As such, we believe our

paradigm has the potential to make field-deployable, dynamical, soft robotic systems notably

closer to realization.

Materials and Methods

Here, we first introduce Koopman Operator Theory, the mathematical underpinning of our

modeling effort. In Approximation of Koopman Operators for Control Systems: DMDc, we
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describe a practical method to build the model for our control system from data. In Koopman-

LQR (K-LQR) we describe how this model is embedded into a real-time feedback controller.

Our modeling and control insight is the addition of a static Koopman operator pregain described

in Static Koopman Pregain. The design and fabrication of our soft arms, and a description of

the pneumatic circuitry that drive them is then presented. A block diagram detailing the full

training process, modeling, and control architecture is given in Supplementary Fig. S4.

Koopman Operator Theory The state space representation of a dynamical system involves

defining an n-dimensional state space manifold M with states x 2 M and discrete-time evolu-

tion given by

x+ = S(x). (1)

Here S is the possibly nonlinear state transition function S : M ! M and x+ is the time-shifted

state. In our application, M = Rn.

This nonlinearity is often critical to modeling a system in state space, but it complicates the

design of control algorithms. We instead turn to an operator-theoretic perspective of dynamics

of observables [24]. Observables are complex-valued functions defined on the state space f :

M ! C. We will restrict ourselves to real-valued observables f : M ! R. The set of all

possible observables forms a vector space that is usually infinite dimensional. The Koopman

operator K is defined by

Kf := f � S.

This operator describes the evolution of observables under the action of the dynamics (1). Even

though the underlying state space system is nonlinear, the Koopman operator K is always linear

[24, 25, 26, 46]. This is true without restriction on the dynamics or observables.

We want to exploit this linearity to enable the design of an efficient optimal control scheme.

This requires extending the Koopman framework to systems of the form x+ = S(x, u) where
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u 2 Rp is a p dimensional vector of user-specified inputs. In full generality, the Koopman

operator for systems with input acts on observables of the form f : M ⇥U ! C where U is the

space of all control sequences indexed by time ū(·) : N ! Rp. We redefine the state transition

function to include inputs S : M ⇥ Rp ! M and introduce the left shift operator T : U ! U

which simply chooses the next input in a sequence (T ū)(k) = ū(k + 1). When the observables

are defined on both the states and inputs, their Koopman evolution is given by

(Kf)(x, ū(·)) := f(S(x, ū(0)), T ū(·)). (2)

Elements of U are infinite dimensional, which puts the observables f : M ⇥ U ! R on an

infinite dimensional domain, so they cannot be manipulated on a computer. We introduce the

simplifying assumption that knowing only the input at the current time step is enough to predict

the future dynamics. We can now define observables of the form f : M ⇥Rp ! R. This results

in a Koopman operator K defined by

(Kf)(x, u) := f(S(x, u), u) (3)

We seek a finite dimensional linear input/output system which approximates the action of K

on a finite set of chosen observables. This process is described in Section Approximation of

Koopman Operators for Control Systems: DMDc.

Approximation of Koopman Operators for Control Systems: DMDc We follow the pro-

cess outlined in [33]. The Koopman operator in its fully infinite dimensional form is not practi-

cally realizable, so we seek a finite dimensional approximation. The first step is to choose some

finite dictionary of observables {gj(x, u)}m+p
j=1 . We choose m observables which are functions

of purely the states, p which are functions of the inputs, and none which are coupled functions

of both the states and inputs

{gj(x, u)}m+p
j=1 = {fj(x)}mj=1 [ {hj(u)}m+p

j=m+1. (4)
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It is simple to allow arbitrary input observables, but we only deal with the case where hj(u) =

uj . This decoupling restricts our choices of observables, but it allows us to define a vector of

observables z(x) = [f1(x) · · · fm(x)]T called the lifted state which allows us to represent our

dynamics as a linear input-output system

z+ = Az +Bu. (5)

Here A and B are the state transition and input matrices, respectively. This simplification has

the benefit of enabling the later use of the fast and efficient linear optimal control methods

described in Section Koopman-LQR (K-LQR), while still capturing the dynamics of the system

as demonstrated in Fig. S2.

The states are retrieved from the observables using the output equation

x = Cz (6)

where C is the output matrix.

Here, we outline the approximation of the matrices A, B, and C using a process called

extended dynamic mode decomposition with control (EDMDc) [33]. When restricted to time

delay observables, we call this Hankel-DMDc or HDMDc. We want to approximate these

matrices using K measurements of the states {x1, ..., xK}, time-shifted states {x+
1 , ..., x

+
K},

and inputs {u1, ..., uK} collected from experimental data. First, we build data matrices whose

columns are the data vectors

X := [x1 ... xK ], (7)

X+ := [x+
1 ... x+

K ], (8)

U := [u1 ... uK ]. (9)
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Next, we build the lifted data matrices using our chosen vector of observables z(x)

Xlift := [z(x1) ... z(xK)], (10)

X+
lift := [z(x+

1 ) ... z(x
+
K)]. (11)

The desired matrices A and B satisfy the equation

X+
lift = AXlift +BU. (12)

In order to approximate A and B, we recast this equation as a minimization problem

min
A,B

kX+
lift � AXlift � BUkF (13)

which has the solution

[A B] = X+
lift

✓
Xlift

U

�◆†

(14)

where † is the Moore-Penrose pseudoinverse. Since we prescribe our first n observables to be

the states x 2 M , we can compute the output matrix using a partial identity matrix

C =


In⇥n 0n⇥m�n

0m�n⇥n 0m�n⇥m�n

�
. (15)

The action of the matrices A and B on the lifted state via equation 5 approximates the

action of the Koopman operator K in equation 3. Under certain assumptions, this representation

of the Koopman operator converges to the true Koopman operator [30]. True convergence

requires infinite data samples which are uniformly distributed in state space and a collection of

observables which span an invariant subspace of the Koopman operator’s underlying function

space. We discuss our method of generating training data in Section Training and Observables.

Koopman-LQR (K-LQR) To date, similar investigations have used model predictive control

(MPC) to control their soft robotic systems [34, 35, 36]. Using predictions of the dynamics
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and a tunable prediction horizon, this architecture calculates input sequences which move the

system toward a desired reference position. This enables the use of explicit input and state

constraints, but the real-time constrained optimizations involved in this method demand a high

computational overhead.

In our inertial soft arm controller, explicit constraints are less important than keeping com-

putational cost and latency low. For unconstrained linear optimal control problems with quadratic

cost, the linear quadratic regulator (LQR) provides an analytical solution which does not require

predictions of the dynamics in real time [45]. For our controller, we begin with the application

of LQR to the dynamic Koopman representation of a dynamical system (previously demon-

strated for a robotic fish [41]), and augment it via the introduction of the static Koopman term,

described in Section Static Koopman Pregain.

Here we describe the dynamic Koopman LQR control law. Although originally introduced

for linear dynamical systems in state space, LQR can also be applied to a vector of observables

z of a nonlinear control system as long as a linear, finite dimensional representation of the

Koopman operator (A,B) exists. Given the system

z+ = Az +Bu (16)

x = Cz, (17)

we define the global cost function

J =
KX

i=1

⇥
(zi � zref)

TQ(zi � zref) + uT
i Rui

⇤
(18)

where xref = Czref is the desired position and Q and R are diagonal lifted state and input penalty

matrices, respectively.

The computation of the minimizing control input is a classical method in optimal control

[45] and is given by ui = �K(zi � zref) where the matrix K is the LQR gain. This control law
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results in steady state errors in much of the soft arm’s workspace. This is remedied in the next

section by the addition of a pregain term based on the static Koopman operator.

Static Koopman Pregain Unfortunately, Dynamic Koopman LQR alone resulted in substan-

tial disagreement between reference positions and the resulting states. This is because the

nonzero inputs required to hold these positions result in a nonzero input penalty term. Any

attempt to decrease the input penalty resulted in system instability. The addition of a pregain

term is a classical method in control theory that addresses this problem. In this section, we

introduce a data-driven method to compute the pregain using a static Koopman operator, which

we term the static Koopman pregain.

A core assumption of this component of our model is that when held for enough time,

all transient dynamics dissipate, and the robot achieves a static pose. Therefore, the set of

admissible step inputs ustatic corresponds to a set of input-mediated fixed points xstatic. We seek a

mapping from the data matrix of step inputs, Ustatic, to the data matrix of stationary states, Xstatic.

Ideally, this mapping would be linear to enable us to use fast, optimal control. The Koopman

framework usually requires the domain and range to be the same, but this requirement can be

relaxed if we consider the static Koopman operator [46]. The static Koopman operator contrasts

with the dynamic Koopman operator, which describes the evolution of observables f : M ! R

under the action of the mapping T : M ! M . If we define observables on the inputs as

g : Rp ! R, the static Koopman operator Kstat is defined as

Kstatf(xstat) = g(ustat).

We desire to approximate the action of the static Koopman operator with a finite dimensional

matrix G. To do so, we first construct the data matrix Ustatic with unique step inputs as the

columns of the matrix. By feeding these inputs to the system and allowing transient dynamics

to dissipate, we are left with a unique stationary state, xstatic; these states represent the columns
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of Xstatic. The matrix G is then computed using

G = UstaticX
†
static. (19)

The matrix G serves as a linear mapping from stationary states to inputs.

Finally, we are ready to bias our control law with the addition of a feedforward pregain term

Gzref, resulting in
ui = �K(zi � zref) +Gzref.

zi+1 = Azi +Bui

xi = Czi+1.

(20)

This signal is the optimal stabilizing solution taking the present initial state to the desired state,

xref.

As shown in Fig. 3, the pregain term ustat = Gzref outweighs the dynamic term udyn =

�K(zi � zref) in most tests. This allows the input penalty weights in the dynamic term to be

optimized without fear of sacrificing steady-state error. Also, the static Koopman term provides

enough of a steady input to counter the fluctuations caused by measurement noise introduced by

the state measurements in the dynamic term. This is the reason our system does not experience

the destabilizing effects of noise in fast-moving reference tests described in [11].

Training and Observables With the mathematical underpinning of our modeling and control

methodology described (see Supplementary Fig. S4), we now turn to the particular choices

made to suit our particular robotic applications. Given the soft arms described in Section Robot

Design we collect training data through a series of experiments, performed by commanding

step inputs with randomly distributed magnitudes. The only prior knowledge of the soft arm’s

dynamics required is an upper bound for the length of time required for the dissipative dynamics

to die down while inputs are held. Each step input is held for this amount of time so that the soft

arm converges to a steady state, efficiently probing both the dynamic and static response. The
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data is separated into training and validation sets, and the training data is further partitioned into

dynamic and static components which are used to train dynamic and static Koopman operators

(see Sec. Static and Dynamic Koopman Operator Optimal Control).

Choosing observables is difficult in practice. We choose to implement DMDc with time

delay observables (also known as Hankel DMDc) because of their provable convergence as the

number of time delays goes to infinity under certain assumptions on the dynamics [32, 31, 44].

In reality, adding more time delays gives a diminishing return in prediction accuracy (see Fig.

7A). A single time delay with hundreds of monomials is used in [36,35,34,42], but we find that

time-delay-only observables offer better results, with improvements in reconstruction with up to

ten observables (See Fig. 7A). To create our observables, we use the current measurement of the

X-Y-Z positions of the motion trackers xk and append two time-delayed versions of the same

states zk = [xk xk�1 xk�2]T . Each time delay looks 1/60 seconds into the past. This proves to

be sufficient for closed-loop control. For reconstruction, more time delays give further increases

to the model’s accuracy, as shown in Fig. 7A.

The synergy of step inputs and time delays allows the discovery of system eigenvalues in

the important 1 to 5Hz range (the span of natural frequencies of the arm), as shown in Fig. 2.

Without time delays, these eigenvalues and their corresponding Koopman modes are missed

(Fig. 2). For comparison to the Koopman model used in [42], we tested the addition of mono-

mial observables was tested up to order 4 with no new dynamic modes of any meaningful mode

power learned. Monomial observables also failed to give any improvement to the reconstruction

or closed-loop pointing accuracy of the model and controller (Fig. 7).

With the goal of minimizing training time and model complexity, we found that up to five

time delays and one minute of step input training is best for modeling our system before con-

sidering control, but only two time delays and five minutes of step input training is ideal when

control is considered. We first compared the prediction ability of different dynamic Koopman
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models as we varied the number of time delays and total training time (Fig. 7A). The addition

of a single time delay substantially reduced error, however additional time delays continued to

offer marginal improvements up to five delays. We also found that after only approximately

one minute of training, the model reached its minimum error. Second, we built Koopman-LQR

controllers as described in Section Koopman-LQR (K-LQR), augmented with a static Koopman

operator as a pregain term, with varied time delays and training time. We then quantified the

error with closed-loop control (Fig. 7B). In this case, two time delays outperformed one delay,

but was comparable to three or more, resulting in our decision to use two delays for control. We

also found that after approximately five minutes of training (fifty unique step inputs), the error

converged; we used this amount of training time for the remaining experiments. Note: a direct

linearization of the system was unstable during controlled motions, suggesting the nonlinearity

of the system.

Robot Design For this investigation, we constructed two distinct soft arms to evaluate the

viability of the proposed methodology across nonlinear dynamical systems. For each, we aimed

to meet the following objectives: a) high-deflection, nonlinear dynamics for which linearization

fails; b) inertial dynamics, for which quasi-static approximations fail; c) enough morphological

diversity such that their analytical models would be not readily transferrable.

To this end, the first arm was designed to have four actuators (two antagonistic pairs) lon-

gitudinally aligned with the main body to produce planar actuation. This design is behaviorally

similar to others present in the literature ( [48, 15, 16]). When fabricated with appropriate pre-

tension, this construction allows for approximately 110� of curvature when fully actuated. With

a length of 45 cm and a maximum diameter (main body diameter plus the diameter of the fully

inflated muscles) of 6.25 cm, the slenderness ratio of this device was 7.2 (the ratio of length to

max diameter).
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The second arm was designed with three actuators, all of which were affixed to the body such

that a torsional deflection would be induced when inflated. This produces a helical actuation

that is markedly different from that of the first embodiment. With a length of 53 cm and a

maximum diameter of 3.8 cm, this device exhibited a slenderness ratio of 13.9. The muscles

were affixed with pretensions such that, when fully actuated, this device is capable of achieving

approximately 180� of curvature.

For objective a), with an angle of curvature of at least 110� for both arms, the nonlinearity

metric is well achieved (See Fig. 2). For objective b), both systems were fabricated out of

airtight fabric, utilizing fabric pneumatic artificial muscles (fPAMs) as described in [49], which

exhibit a fast response time and low hystersis (on the order of 1%), achieving accelerations in

excess of g. For c), the factor of approximately two difference in slenderness ratios, the change

in actuator numbers, and the inclusion of helical actuation all combine to produce two systems

with meaningfully different behavior (see, for example, the model presented in [50] compared

to [13]).

Robot Fabrication Both arms were constructed out of 30 Denier silicone-polyurethane im-

pregnated ripstop nylon (Sil-nylon, Rockywoods Fabrics), actuated by fabric pneumatic artifi-

cial muscles (fPAMs) [49] built out of the same material. The main body was fabricated such

that one side of the fabric weave cell was parallel to the longitudinal axis, the other perpendicu-

lar. This orientation makes the soft arm axially and transversely stiff, but torsionally compliant.

The muscles were fabricated such that each side of the cell was offset by approximately 45� with

respect to the longitudinal axis, which instead makes the actuator torsionally stiff but compliant

axially and transversely. Moreover, when these muscles are inflated, they shorten in the lon-

gitudinal direction as a McKibben does, up to 35% based on the pretensioning induced during

adhesion to the main body.
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Each of these components was cut from a sheet of fabric, rolled into a tube, and sealed

with a lap joint using RTV silicone adhesive (Smooth-on Silpoxy). Once each component was

fashioned, a jig was produced to hold the main body and pretensioned muscles in place while

the RTV cured. Finally, in between each muscle a fabric sleeve, exhibiting the same fabric bias

as the muscles, was attached to the main body to allow for motion capture tracker wires to be

routed without occluding the view of the LEDs.

Pneumatic Circuit Design Each soft arm body was held at a constant pressure of approxi-

mately 1 bar for the entirety of testing, supplied by a discrete source. For each muscle of both

soft arms, Festo VEAB-L-26-D2-Q4-V1-1R1 proportional pressure valves were used to com-

mand individual pressures continuously. These three-port valves were chosen for three reasons:

their fast response times (<10ms); accurate response (0.75% full-scale absolute accuracy, 0.4%

full-scale repeatability error); and the ability to accept forced exhaust through their third port.

However, this accuracy requires a lower flow rate, which precluded the use in the much larger

main body (due primarily to persistent leaks). Additional information on the general control

circuitry configuration can be found in the Supplemental Information.
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Figure 1: Inertial, nonlinear soft arm control. Using a combined static and dynamic Koop-
man framework, we achieve the closed-loop control of soft robotic arms exceeding 10x the
tip speed, 40x the tip acceleration, and 6x the angular displacement of existing soft arms.
This achievement brings soft robotics into the inertial, nonlinear regime. Only five minutes of
training is required to achieve an optimal controller capable of high-deflection, high-accuracy
closed-loop tracking of a reference (the tip of a pole moved rapidly by a human). The same
methodology is applied to both a low-slenderness-ratio, four-muscle arm (Robot #1) and a high-
slenderness-ratio, three-muscle arm (Robot #2). Both arms achieve their highest deflection in
under half a second.

Figure 2: Nonlinear and Inertial Dynamics of the Soft Arm. The eigenvalue plots for Koop-
man models with state only (A) and state plus time delay observables (B) are shown. The dashed
radial lines signify sections of the unit circle corresponding to modes with 1 � 5Hz dynamics.
The eigenvalues are shaded corresponding to the logarithm of their maximum achieved mode
power evaluated over the training data (see Materials and Methods). Using state-only observ-
ables results in a simple linearized model which does not capture any transient dynamics. The
addition of two time delay observables allows the modeling of dynamics up to 5Hz. This is the
model we choose for our experiments. (C) Presentation of the input-output nonlinearty of the
system, which exhibits a sigmoidal deflection response. Modeling this nonlinearity is essential
for acceptable reference tracking performance in the high-deflection regime.
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Figure 3: Closed-loop, real-time reference tracking experiments. The soft arm tracked circu-
lar reference trajectories in the X-Y plane with frequencies ranging from 0.1 to 1.1 Hz (0.2 Hz
step) at: (A-B) high, (C-D) medium, and (E-F) low deflections. Plots A, C, and E show the X
positions (red) over time compared to their respective references (blue). The Y and Z positions
are shown in Supplementary Fig. S3. Plots B, D, and F show the relative contributions of the
static Koopman pregain (yellow) and dynamic Koopman LQR (red) to the total input (blue). At
quasi-static speeds, only the static Koopman pregain is required for effective performance (that
is, the quantity x�xref is approximately zero); as inertial effects increase, the LQR component
increases its contribution to maintain performance. Only the commanded inputs to one of the
four side muscles is shown, but the results are similar for all muscles.

Figure 4: Arbitrary reference tracking throughout the high-deflection workspace. (A) The
X position of the soft arm tip is shown as it tracks a moving reference commanded randomly by
an operator. Contact between the green lines and blue band indicates points where the soft arm
is touching the reference marker. (1-3) show images of the soft arm performing this behavior.
Of note, the robot rarely loses contact with the moving reference.

Figure 5: Dynamic tracking of arbitrary trajectory (catching a swinging ball). (A) The soft
arm stays in the neutral position while the ball is outside the workspace. (B) Once visible, the
soft arm rapidly responds to reach the ball (outlined swinging into the workspace). (C) The
soft arm tip intercepts the ball and catches it (with small magnets on both the soft arm tip and
swinging ball.)

Figure 6: Implications of the methodology: completing example tasks (A) The soft arm iden-
tifies the objective and approaches it (operator’s hand). (B) After the operator’s hand is removed
and the ball is supported by the soft arm, the objective changes to the bin (LED-designated bin
in bottom left and right, respectively). The soft arm now flings the ball at the objective. (C) The
ball successfully enters the bin in two different, arbitrary locations, achievable only by working
in the inertial regime.
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Figure 7: Convergence of the Koopman model and control system. (A) The dynamic Koop-
man model requires the addition of five time delay observables and only one minute of training
data to reach minimum prediction error. To determine this error, the single-step prediction error
of the dynamic Koopman model is collected for all points as the soft arm moves on a circular
path in the X-Y plane (inset), and the root-mean-square (RMS) average is taken. For compari-
son, a Koopman model using monomials of the state up to order four gives no improvement over
the state only model. This reconstruction is performed on a model trained on zero sinusoidal
trajectories. (B) In closed-loop control, the combination static/dynamic Koopman controller
requires only five minutes of training data and two time delays to reach minimum prediction
error; accordingly, we use this controller design for every experiment. Each controller was
commanded to move the soft arm’s tip to a sequence of points in the workspace of the soft arm,
and the average RMS error for all these points was calculated. Using zero time delays resulted
in the soft arm being unable to stabilize at any reference position, so that line is not shown.
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Supplementary Discussion

Testing Apparatus The experiments conducted in the framework of the study are performed

on an experimental system shown in Fig. S1.

A 1.8x1.8x1.5 m 80/20 frame was assembled to support the testing apparatus. To this frame

the motion capture cameras, soft arm, and control hardware were affixed. Information about the

position and shape of the manipulator is gathered via motion capture (PhaseSpace Inc. Impulse

X2E). This investigation utilized the motion capture system with 8 detectors (cameras) and 4

sets of trackers evenly spaced along the backbone of the soft arm; four LEDs are attached along

the axis of each muscle. The same motion capture system was used for both data collection used

in offline model construction and for closed-loop position feedback in control experiments. In

closed-loop experiments that are performed without predefined trajectory, additional four LED

trackers are mounted on an external object (a pole), their coordinates are averaged in real-time

in order to determine the central point, which then served as an arbitrary reference generator.

Festo VEAB-L-26-D2-Q4-V1-1R1 proportional pressure regulators with 0.01 to 2 bar out-

put range and approximately 15 liters/min of flow at 1 bar pressure, are used to control the

pressure in the arm’s muscles. The body is held to a constant pressure of approximately 1.5 bar

The software used for running the system was LabVIEW 2019 with myRIO toolkit and real-

time module, whereas LabVIEW Python node is used to acquire the real-time data from motion

capture system. These information is then fed trough the fast network protocol to a myRIO

1900 control hardware. The same control hardware is also used to drive the pressure valves

whereas an additional circuitry based on operational amplifiers is used to adjust 0-5V voltage

levels generated by MyRIO hardware to be compatible with used proportional valves whose

input range is 0-10V. Exhaust air ports of the valves are connected to vacuum so as to improve

the dynamical response of the system.
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Model Performance Metrics We perform a convergence study on the reconstruction power

of our Koopman models as a function of the number of snapshots for a range of observables.

This process allowed us to develop a dictionary of observables suitable for our system. Given

a particular choice of observables and number of training samples, we build the corresponding

linear input-output system with A, B, and C matrices. This linear model is applied to N = 8000

samples of sinusoidal verification data over a range of deflection amplitudes and speeds. These

particular samples are not included in the training data in order to give us a fair evaluation of

the predictive power of our models. The linear system produced via (14) and (5) evaluate the

evolution of these initial conditions over a single time step. The single-step reconstruction error

is given by

ei =
kx+, predict

i � x+, actual
i k2

L
.

where x+, actual
i is the evolution of xi measured by the motion capture system, x+, predict

i is the

evolution predicted by the DMD model, and L is the length of the soft arm. We use the root

mean square (RMS) of the individual ei errors to score our model:

eRMS = 100

vuut 1

N

NX

i=1

e2i .

Koopman Spectral Quantities We are often interested in the spectral properties of the Koop-

man operator because they give us physical information about the multiple coupled time-dependent

processes inherent to our system. DMD can be used to approximate the discrete part of this

spectrum [30]. We seek the triplet (�i,�i(z(x)),vi) of Koopman eigenvalues, eigenfunctions,

and modes, respectively. The eigenvalues and Koopman modes are simply the eigenvalues and

eigenvectors of the DMD matrix A. The Koopman modes in Fig. 2 are added to the time av-

erage mode associated with � = 1 to give an impression of the effect of the mode on the soft

arm. Computation of the eigenfunctions requires wi which are the eigenvectors of the conjugate
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transpose of A. After these are normalized so that hvi,wji = �ij , the eigenfunctions are given

by the complex inner product �i(z(x)) = hz(x),wii. The eigenfunctions are shown here as

functions of the lifted state z(x). Their magnitude |�i(z(x))| is called the “mode power” and

gives the relative importance of the ith Koopman mode to the dynamics when the state is x. In

order to compare the influences of the Koopman modes to the dynamics, their colorings in Fig.

2 are shown scaled to the maximum value of the mode power attained over the entire training

data set.

Reconstruction of sinusoidally forced motion After choosing time delay observables, we at-

tempted to reconstruct the movement of the soft arm under a sinusoidal inputs with six different

frequencies (0.1, 0.2, 0.4, 0.8, 1, and 1.1Hz). We begin this process by providing a step input to

the muscles that corresponds to a static position on the sinusoid with an arbitrary phase, and then

complete two revolutions at a given frequency before incrementing up in speed. The position

of the physical system was recorded via motion capture system, and these inputs were pro-

vided to our above-developed model. This process was repeated for low (similar to [42,34,35],

approximately 15�), medium (similar to [13, 14], approximately 25�), and high deflection (the

single-actuator maximum of our system (robot 1), approximately 110�), with results reported in

Fig. S2.

Disturbance Rejection Finally, to evaluate the disturbance rejection capabilities of our sys-

tem and to further distinguish the contribution of the static Koopman pregain, G, and the dy-

namic Koopman LQR gain, K, we commanded both stationary and circular references for the

soft arm tip and subjected the system to disturbances. The control effort was recorded and com-

pared to the control effort expected from the pregain term alone. Given a static reference, the

control effort from the pregain alone is constant in time. The results of the tests are shown in

Fig. S5, capturing the contribution of K, proportional to the disturbance.
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Supplementary Figures
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Motion capture
cameras

Robot backbone

LED trackers

Test superstructure

Pneumatic muscles

Control circuitry

Figure S1: Schematic representation of the experimental setup and its components. The
soft arm is mounted from above to the test superstructure. The soft arm backbone provides stiff-
ness and the pneumatic muscles generate movement. Four layers of LED trackers are tracked
by motion capture cameras positions around the arm.
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Figure S2: Koopman reconstruction of circular motion. The dynamic Koopman model is
given a collection of sinusoidal inputs with a range of amplitudes and speeds and is tasked with
reconstructing the motion of the soft arm. The true trajectories are shown in dashed blue, and
the high (A), medium (B), and low (C) deflection reconstructions are given in red, yellow, and
purple, respectively. The reconstruction is restarted every time the frequency changes. The
reconstruction agrees with the true frequency, but is missing some of the amplitude in the fast
regime. The static Koopman operator and feedback control account for the improvement in
performance between this plot and Fig. 3
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Figure S3: Y and Z components of the real-time closed-loop reference tracking experi-
ments. The soft arm tracked circular reference trajectories in the X-Y plane with frequencies
ranging from 0.1 to 1.1 Hz (0.2Hz step) at: (A,D) high, (B,E) medium, and (C,F) low de-
flection magnitudes. Plots show the Y (left column) and Z (right column) positions over time
compared to their respective references. The commanded references are dashed lines and the
control results are solid lines.
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Figure S4: Block diagram of the system, training method and K-LQR control approach.
Training inputs representing voltage signals are fed into pressure valves and 3D positions of the
soft arm are measured by using a motion capture system. The lifting procedure of the position
data provides the inputs needed to determine the Koopman model of the system and to calculate
optimal lifted controller parameters. The position of the soft arm is finally controlled in 3D
space by using obtained K-LQR.
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Figure S5: Demonstration of our controller’s ability to reject impulse disturbances in real-
time. A) The position over time of the end effector is shown relative to a predefined reference.
The soft arm returns to the reference position after three large disturbances are applied. B)
The magnitude of the commanded control effort is shown. Note that the static Koopman input
component comes from the pregain term and is constant because the static reference doesn’t
change. The dynamic Koopman input adapts in real time to the disturbances.
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Supplementary Movies

Movie S1: Movie S1 shows the performance of Robot 1 commanded to follow an arbitrary

trajectory throughout the workspace, ranging from low to high deflection. This Movie can be

found at https://drive.google.com/file/d/1njIB3zbG3J6U8v65Bim2_pXq-AcICDYn/

view?usp=share_link.

Movie S2: Movie S2 shows the performance of Robot 1 commanded to follow a series of

sinusoidal trajectories at increasing speeds (0.1� 1.1Hz frequency) and increasing deflections,

as shown in Figures 3 and S3. This Movie can be found at https://drive.google.com/

file/d/1Nw1leGrLz1pqR6DUGd2UgYViBSGH6Srk/view?usp=share_link.

Movie S3: Movie S3 shows our system completing two real-world tasks: first, catching a

swinging ball that enters the workspace from two different directions; second, throwing a ball

into a bin positioned at two different locations in the workspace. This Movie can be found at

https://drive.google.com/file/d/1gj-WHwkOQRqoyR2_Rnnj38b4NF95zFo1/

view?usp=share_link.

Movie S4: Movie S4 shows our training, modeling, and control sequence for Robot 1.

This sequence uses 5 minutes of step inputs, approximately 3 seconds of model and controller

computation, followed by arbitrary reference tracking. This Movie can be found at https://

drive.google.com/file/d/1LwPXZfLh3xPuvP1YxFhmmarpRg44cq5P/view?usp=

share_link.

Movie S5: Movie S5 shows our training, modeling, and control sequence for Robot 2. The

same sequence is provided as in Movie S4, but with a robot capable of nearly 180� of deflection.
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Arbitrary reference tracking is successful across the entire range of deflections. This Movie can

be found at https://drive.google.com/file/d/1dZw4ZKY7_9YPN2Y7mY4Mpwawpe9DZA_

U/view?usp=share_link.
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