IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL 11, NO. 2, APRIL-JUNE 223

2057

Towards Software Defined Measurement in Data
Centers: A Comparative Study of Designs,
Implementation, and Evaluation

Zili Zha"', An Wang~, Yang Guo~, and Songging Chen

Abstract—Cloud data centers are increasingly adopting the Software-Defined Networking (SDN) technologies for their underdying
connection and communications. Howewer, as a crfical part of daily operations and management of such data centars, the network
measurement is essential but has often been constrained by the avalable resources in the traditional network devices. Thus, how to
properly balance the resource consumplion while maintain imely and accurate measurement emains a challenge to data center
systems. Hecent advances in Softwane-Defined Networking (SDN) have enabled fladble and programmable network mea surement,
which is referred to as Software Defined Measurement (SDM). A promising trend for SDM is to conduct network traffic measumement on
widely deployed Open vSwitches (OV'3) in data centers. However, lile attention has been paid to the design options for conducting
traffic measurement on the OVS. In this study, we sat to explore different designs and investigate the comesponding trade-offs among
resoume consumption, measunsment accuracy, implementation complexity, and impact on switching speed. Through extenshwe
experiments and compansons, we guaniitatively show the various trade-offs that the diffierent schemes strike to balance, and
demonstrate the feasibility of instrumenting O'VS with moniioring capabiifies. Thesa results provide valuable insights into which

design will best serve different measumement and monioning nesds.

Index Terms—S5DN, OpenvSwitch, eBPF, network measurement and monitoring

1 INTRODUCTION

THE recent years have wiinessed the increasing adoption
of Software Defined Networking (SDN) technologies in
cloud data centers. For example, Google uses SDN for both
intra data center and inter data center connection manage-
ment.! Critical to the various operations and management of
such data centers, the network measurement has been play-
ing an essential role in a wide variety of network manage-
ment tasks, ranging from traffic engineering, anomaly
detection, to QoS provisioning, etc Traditional monitoring
tools, eg., Netflow, sFlow, IPAX, are usually deployed
acoss inrnetwork hardware devices to collect real-time

1. Certain ial equipment, instruments, or materals are
identified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommenda-
tion or endorsement by the MNational Institute of Standards and Tech-
nology, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.

o Fili Zha and Songging Chen are with George Mason University, Fairfax,
VA2M30 USA. E-mail: {z=ha, sqchen)@ gnuedu.

» An Waryg is with Case Western Reserve University, (eveland, OH 44106
USA. E-mail: axued7 4@ case odu.

o Yamg Guo is with NIST, Gaithershurg, MD 20899 LISA.
E-muail: yang. guo@nist goo.

Manuseript recetved 2 Sept. M2 ; revised 28 Feb. 2022; accepted 3 May 2022,

Duate of publication 10 June 2022; date of current tersion 7 June 2003.

This work wns supported in part by NSF under Grants CNS-2007153 and

CN5-2008468, in part by Commomoenlth Cyber Inifiafioe and in part by

Google Faculty Research Aard.

{Correspomding author: Zili Zha)

Recommended for acceptance by F. Ye.
Drigital Object Hentifier no. 101109/ TCC 2022 31581830

traffic statistics. Nonetheless, due to the underlying hard-
ware resource constraints, they only provide coarse-grained
statistics that could not meet the monitoring demands of the
diversified network applications. How to properly imple-
ment monitoring to achieve timely and acourate results
while minimizing the corresponding resource consumption
has remained as a challenging issue.

The rapid development of SDN and network function vir-
tualization (NFV) [1] techniques has motivated a series of
research [2], [3], [4], [5] to enhance the existing measurement
schemes. However, they are either not generic by requiring
to implement multiple sketches for each measurement task
2L [3L [4], or too expensive to deploy in hardware devices
[5]. In recent years, the emerging programmable dataplanes
have spawned great opportunities for innovation in integrat-
ing monitoring solutions into the switching hardware. This
trend enables Software Defined Measurement (SDM) where
users can flexibly manage the monitoring rules via program-
ming APIs.

Such flexibility can be achieved via both hardware-based
approaches and software-based approaches. For hardware-
based approaches, programmable switch ASICs and
SmartNICs are often leveraged. However, programmable
switch ASICs are constrained by hardware resources, such
as fixed hardware stages, limited perstage actions and
resiricted stateful memory (e.g., Registers, Counters), mak-
ing perflow traffic statistics collection a non-trivial task.
SmartNICs could also be leveraged to perform generic
packet and flow-filtering. But they often have limited com-
pute and memory capabilities, making it even more difficult
to completely offload network measurement tasks. For that
reason, some prior work focused on monitoring only heavy

HEE-TIE] € 2002 EEE Persons Lee i parmifiad, bul epublieaion' sde rbuon requires IEEE permis sion.
P e b

Ses s wwwitee

for more i

B |
Authorized licensed use imited #o: Kelvin Smith Library {f CASE. Downloaded on Ociober 02 2023 at 01:40:21 UTC from IEEE Xplore. Restrictions apply.

2058

hitter flows [6], [7], [8]. Additionally, the hardware-based
monitoring frameworks all utilize sketch-based streaming
algorithms aiming to minimize the memory consumption,
since memory is the primary concern.

On the other hand, software-based approaches have
become more and more important in building network mon-
itoring functionalities as inspired by the following observa-
tions [9], [10], [11]. There are two reasons for this trend. First,
commodity servers are in possession of plentiful CPU and
memory resources. Compared to the hardware routers that
often have limited computing and memory resources, data
centers and clouds often have redundant resources in terms
of computing power and memory capacity that are not fully
utilized or idle. Second, software-based approaches are
much more scalable since each end host only needs to pro-
cess much smaller amount of traffic as opposed to that of in-
network hardware devices. This sheds light on SDM by
using software switches, such as Open vSwitches (OVS),
since they have become the building blocks of virtualization
software and widely deployed in data center systems.

One such example s UMON [9], where a set of traffic
monitoring interfaces are developed to enable user-defined
monitoring rules in OVS. Despite of the abundant hard ware
resources in commodity servers, building efficent monitor-
ing frameworks into data center end hosts remains unex-
plored. Existing software-based monitoring solutions [11],
[12], [13], [14], mostly focus on the designs of sophisticated
sketching algorithms to achieve both high monitoring accu-
racy and network performance. In certain circumstances,
accuracy of small flows is sacrificed in order to keep up
with the high packet rate, which is undesirable for security
related network applications. Furthermore, their monitoring
frameworks are not readily applicable to virtualization
environment since they are completely independent of the
existing software stack in the end hosts. On the contrary,
building monitoring solutions into the software switches
and re-using the same high level APls makes it much easier
to manage and program from upper layer applications.

Incorporating traffic monitoring apability into a software
switch offers the opportunity to share the key functionalities
required by monitoring that have been implemented in a soft-
ware switch. However, the design of such an integration is
challenging in order to achieve minimal forwarnd ing-momnitor-
ing function interference, optimal code sharing, and efficient
CPU/memory resource usage. So far, there is no comprehen-
sive investigation regarding how to properly and efficdently
conduct measurements leveraging these potentials.

To this end, in this study, we aim to explore different
approaches for gaining a comprehensive understanding of
various trade-offs in SDM using software-based approaches.
For this purpose, we set to empirically investigate the differ-
ent design trade-offs using OVS [15] as a representative soft-
ware switch. We start with an intuitive design, called FCAP
(Flow CAPture scheme), where the forwarding and monitor-
ing forms a pipeline in the OVS kernel In FCAP, a packet tra-
verses through the forwarding module before going through
the monitoring module. The flow stats of interested traffic
flows are first collected in the OVS kemnel and then trans-
ferred to the user space for further processing. To reduce the
memory consumption, we further design SMON, a Sketch

16] based MONitoring scheme that thefl tais
; jwlmémfmm S Dowr

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL 11, NO. 2, APRIL-JUNE 2023

using sketches. Sketches are probabilistic data strudtures
that trade off query accuracy for space efficiency and widely
employed in a multitude of various applications. Since flow
identifiers and per-flow traffic stats both need to be collected,
we use an advanced sketch design, namely, invertible bloom
lookup tables [16], in SMON, which allows us to easily
recover the complete flow details in upper layer appliations.

However, both FCAF and SMON place monitoring in the
same pipeline with forwarding. Such a design may cause
the switch to operate below line rate. To minimize such
impact, we propose to design off-path counterparts by
decupling the monitoring from the forwarding. This is
achieved via a ring buffer in the kernel The ring buffer tem-
porally caches the packet headers of the interested traffic
flows, which @an then be processed independently by the
monitoring module. In this way, the ring buffer effectively
decuples the monitoring from the packet forwarding at the
kemnel data path.

FCAP /SMON designs all require extensive instrumenta-
tion into the OVS code base, which is not backward compati-
ble. For practical deployment, we either need extra patches
or re-install a modified version of OVS with the customized
monitoring functionalities. Moreover, the SMON/FCAP
monitoring modules are implemented within the kernel data
path in order to achieve full visibility and minimize the
impact on the forwarding nce. However, a single
software flaw could crash theentire system. To address these
challenges, we further propose an eBPF (extended Berkeley
Packet Flter (eBPF) enhanced [17] monitoring design that is
completely independent of OVS. While its ancestor BPF is
mostly used for in-kernel packet filtering, eBPF extends its
architecture by integrating more features to support more
types of events and adhons other than filtering. eBFF offers
the possibility to dynamically generate, load and execute
code into the kernel using the bpf () system call, thus obvi-
ating the need to install customized kernel modules. Many
eBPF-based took are developed for performance debugging
and troubleshooting, e.g., tracing the TCP sessions lifespan
and the block device 1/0 latency, etc. Furthermore, BPF
maps provide an asynchronous communication charmel for
sharing data between the userspace /kemnel and across mul-
tiple runs of the kernel program. In our work, to gain full vis-
ibility of both inbound/outbound traffic, our monitoring
programs are attached onto the Linux Traffic Control layer,
while the monitoring filter and flow stats table are both
implemented using eBFF maps.

We conduct extensive experiments to explore the various
trade-offs under the metrics of throughput, latency, CPU
overhead, memory overhead etc The results show that (1)
From the performance aspect, the off-path designs achieve
the minimom measurement delay compared to on-path
counterparts, including eBPF. (2) On the aspect of accuracy,
all the designs can achieve almost full measurement accu-
racy, but at different costs. FCAP and eBPF need to leverage
linked lists to resolve collisions in hash tables; SMON con-
sumes more CPU cycles for sketch decoding; While the off-
path designs have higher memory consumption. (3) For
implementations, UMON is most flexible since it does not
require modifications of OVS kernel code base. eBFF requires
minimal maintenance efforts as itis independent of the devel-
opment of OVS. (4) Overall, it is feasible to nstrument OVS

i@ CASE. Downloaded on Oclober 02 2073 at 01:40:21 UTC from IEEE Xplore. Restrictions apply.

ZHA ET AL : TOWARDS SOFTWARE DEFINED MEASUREMENT N DATA CENTERS: A COMPARATIVE STUDY OF DESIGNS

with monitoring capabilities without affecting the switching
performance significantly.

The remainder of the paper is organized as follows. Sec-
tion 2 describes some related work. We present our new
designs and implementations in Section 3. We evaluate the
proposed designs in Section 4 with more discussions in Sec-
tion 5. Finally, we make conduding remarks in Section 6.

2 RELATED WORK

Traditional Momitoring. Different network measurement
frameworks have been investigated both in software and
hardware switches. Traditional hardware-based solutions
utilize toolks such as Netflow [18], sFlow [19] and IPFIX [20],
to collect IP Nework traffic. Other similar solutions indude
Jflow [21], Clowd [22] and NetStream [23] etc. The draw-
backs of these solutions are twofold: they are more expensive
to deploy and they do not provide enough programmability
for network management tasks.

SDN-enabled Momitoring. One of the earliest efforts is pro-
posed by Yu et al. [2] called OpenSketch. In OpenSketch, dif-
ferent types of sketches are utilized to achieve different
measurement goals. Furthermore, the controller optimizes
the sketch allocation to balance the accuracy and the memory
consumption. A followup prototype called DREAM [3] is
proposed to dynamically assign TCAM counters to different
measurement tasks across multiple hardware switches in the
network. But the users could not customize measurement
tasks other than the counter-based ones. In these earlier
works, sketches are designed and implemented for specific
monitoring tasks, which means that the monitoring devices
must instantiate multiple sketches in order to support a vari-
ety of concurrent monitoring tasks. This places enormous
burden on resource-constrained hardware devices and dras-
tically degrades the network performance. To address this
limitation, UnivMon [24] proposes a single universal skeich
to support multiple measurement tasks simultaneously.
MNonetheless, it requires to update multiple components for
each packet, which also introduces noticeable overhead. Yu
et al. also proposed FlowRadar [5] to improve the NetFlow
based network measurement by encoding and decoding
counters with the invertible bloom filter lookup table (IBLT).
In this way, the communication overhead could be reduced.
However, exira components are necessary to imp]a:mml: on
hardware devices. Akso, the decoding may introduce redun-
dant overhead to the controller.

Monitoring Within Progranmmable Dataplanes. Space Saving
[25] is a widely known top-k algorithm to identify the first
top-k frequent items in data streams. Compared to other
counter-based sireaming algorithms, Space Saving & much
more resource effident since it only needs to maintain Ok}
counters. Despite of its memory effidency, Space Saving is
not readily applicable for heavy flow detection within the
emerging programmable hardware due to the underlying
complexities in its data structure and algorithm design
Upon each new flow, the algorithm requires to find and
replace the hash table entry with the minimum count,
which cannot be easily implemented considering the hard-
ware constraints of the hardware programming model To
adapt the classical algorithm into a hardwarefriendly

dESlﬂ HashParallel and HashPipe [6] refactor the alﬂ'tﬁm hi
on

licensed use imited to: Kehan Smith Library @ CASE

2058

intoa pipeline of hash tables that can fit in the programmable
switches. This pipelined design helps to ensure that each
stage only incurs a limited amount of processing in order to
keep up with the line-rate switching throughput. Nonethe-
less, Precision [7] re-examines the problem and concludes
that HashPipe is challenging to realize in the Reconfigurable
Match Tables (RMT) [26] switch programming model sinceit
does not satisfy the limited branching rule and single stage
memory access rule imposed by the EMT model To over-
come the hardware limitations, Predsion further improves
the design by recirculating a small fraction of the packets at
the cost of packet forwarding performance. Orthogonal to
this direction, Memento [8] examines the problem from a dif-
ferent perspective by proposing a sliding window based
heavy hitter detection model. It argues that sliding window
models are more accurate and more effident in terms of
detection delay compared to the traditional interval based
detection solutions. Further, it extends the algorithm to
detect hierarchical heavy hitter (HHH) and network-wide
scenarios. Shiding window based models have also been
extensively studied in many earlier works [27], [28]. Marple
[29] and Sonata [30] tackle the problem from a different per-
spective. Instead of designing new sketches to minimize the
memory consumption in the hardware devices, Marple pro-
poses a performance query lnguage and designs new
switch hardware primitives to support the language, which
allows network operators to program their performance
querties that colledts customized fine-grained traffic statistics
at a low processing overhead. Different from Sonata, it per-
forms aggregations directly in the switch hardware, further
redudng the data volume streamed to collection servers.

Edge-Based Softuare Monitoring. Over the past few years,
with the data center networks evolving to larger scales and
the ever increasing line speeds, the resource constraints of
hardware devices have become considerably more strin-
gent. Comparatively, the edge servers are typically
equipped with much more powerful hardware resources,
e.g, CPU and memory. Motivated by this, there has been
continuous efforts aiming to migrate monitoring functional-
ities from hardware devices to edge servers. Generally,
existing software-based solutions an be broadly classified
into two categories: passive monitoring system [11], [12],
[13] and active monitoring system [9], [10]. The former cate-
gory sirives to collect traffic stats for all flows with minimal
memory consumption and provable accuracy guarantees,
by designing sophistiated sketches and algorithms. How-
ever, in order to keep up with high line-rates, they focus
more on the accuracy of heavy flows while sacrificing that
of the small flows, considering that heavy flows are usually
more important than small flows in typical monitoring
tasks. In contrast, active monitoring systems provide
programmability that allows users to define their own mon-
itoring tasks and only monitoring the traffic the network
operators are interested in. This efficiently lessens the moni-
toring workload, further minimizing resource usage and
impacts on the forwarding performance.

SketchVisor [11] focuses on accurate and timely network
measurement under high traffic load. It proposes to com-
bine a sketch based normal path and a top-k based fast path
to achieve both high throughput and high accuracy. Under

traffic load, the fast ﬁiﬁh is activated to absorb the

02 2023 at 014021 UTC IEEE Xplore. Restrictions apply.

2060

excessive traffic overflowed from the fast path with slight
accuracy degradation. Further, it employs compressive sens-
ing [31] to recover the flow stats information that serves as
input for higher level monitoring applications. Following
this work, Elastic Sketch [12] emhances SkeichVisor by
designing an elastic sketch with two components, a heavy
part and a light part where the former maintains elephant
flows and the latter records the mouse flows. Under heavy
traffic load, only the heavy part is updated and the mouse
flow information is lost. Compared to SketchVisor, Elastic
Sketch achieves much higher performance since only one
memory access is needed at high packet rate. In NitroSketch
[13], it is pointed out that Elastic Sketch falls short in perfor-
mance and accuracy when the number of flows increasestoa
certain point. In comparison, NitroSketch proposes a generic
sketching framework that addresses the bottlenecks of exist-
ing sketched designs and minimizes per-packet CPU and
memory overhead. HeavyKeeper [14] further improves
heavy hitter detection accuracy of Elastic Sketch via a new
strategy, count-with-exponential-decay, to actively evid small
flows through decaying. It reduces the error by 3 orders of
magnitude compared to the state-of-theart detection
schemes. However, in certain applications, such as anomaly
detection, small flows play an equally important role as
heavy flows but cannot be captured by existing passive mon-
itoring systems that focus on heavy flows.

Following this trend, Trumpet [10] is proposed to collect

data from end-host machines to detect network-wide
events. Though Trumpet is optimized to run on hard ware
network devices, it is independent of the existing network
management framework.

Although existing software based measurement designs
all functon well under particular circumstances, an in-
depth investigation about the resource-accuracy trade-offs
is still lacking in the hterature. Qur work aims to fill this
void by looking into the various sofiware-based monitoring
designs from a systematic view.

eBPF-Based Monitoring. eBPF has enabled the high perfor-
mance datapath in Linux since it was first merged into the
Linux kernel. The development of eBPF has fully unlocked
network programmability and allowed for a diverse com-
munity to form around it, spanning networking, tradng,
security, profiling, and observability. Recently, Abranches
et al. designed and implemented a network monitoring
architecture based on eBPF [32]. Their proposed framework
differs from ours in two aspects. First, their framework
attaches itself to a different hook point than ours. Second,
their framework is designed to perform analytics owver
application traffic, while our framework is mainly used for
capturing abnormal network behaviors. eBPF has ako been
leveraged to mitigate DDoS attacks. For example, Cassagnes
et al. proposed a framework to monitor containerized user-
space applications and prevent DDo5 attacks [33]. Similar
efforts have also been conducted by Miano et al. in [34].

3 DESIGN AND IMPLEMENTATION

To empirically explore the various design trade-offs among
multiple fadors, including server resource consumption,
monitoring overhead, and implementation complexities, in

this ection, fi ovel itori d
Authorized loansed use Jemied o: Keiin Smith Library @ CAE Dox

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL 11, NO. 2, APRIL-JUNE 2023

namely, on/off-path FCAP/SMON [35] and eBFF. Among
them, four are incorporated into OVS and an eBPF-based
monitoring framework in parallel with OVS. Following a brief
discussion about the design challenges arising from building
monitoring logic into OVS, we walk through the design and
implementation details of each monitoring framework.

3.1 0OVS and Design Challenges

OVS consists of two major components: a userspace daemon
(ovs—wswitchd), and a kemnel datapath [36]. They work
together to forward packets, with the userspace daemon as a
full but slow path while the kernel datapath serving as a for-
warding cache. Such a design aims to optimize the forward-
ing performance of the switch. More specifically, incoming
packets are firstly matched against the flow table in the ker-
nel datapath. If the packet encounter a flow miss in the ker-
nel, it will be forwarded to the userspaceby injecting a upcall.
In the userspace, upaalls are handled by the handler threads,
and a flow rule 5 generated and installed into the kernel
flow cache. As a result, subsequent packets belonging to the
same flow do not need to make detours through the user-
space. Finer-grained kemel flow rules undoubtedly resultin
a larger number of flow misses and wpcalls. This not only
undermines the switch performance, but ako introduces
heavier workloads, thus higher CPU overhead for handlers.
Fortunately, due to the locality of the network traffic most
packets are processed in thefast path.

Each flow entry provides built-in monitoring capabilities
via fields, such as packet and byte counters. These counters
record the total number and bytes of packets processed by
the corresponding flow entry. As aforementioned, the user-
space does not have full visibility into all packets. Thereby,
the packet/byte counts in the userspace table entries need
to be updated by polling the kernel cache entries. These are
managed by the revalidator threads, which periodically poll
the kemnel cache for each flow's packet and byte counts and
aggregates them into the userspace flow table. In addition,
revalidators are also responsible for maintaining the kernel
cache entries. Similarly as handlers, a larger kemnel cache
introduces heavier workloads for revalidators.

MNevertheless, this built-in feature in OVS flow tables is
neither flexible nor suffident for the dynamic monitoring
needs, since flows that are relevant for monitoring and for-
warding might not be overlapped. For example, forwarding
rules might spedfy actions over destination IP addresses,
while monitoring applications need fine grained flow statis-
tics for each 5-tuple subflow. Relying only on packet and
byte counts of the flow rule could not achieve the desired
monitoring granularity. To cope with this limitation, some
works propose to dynamically install flow forwarding rules
for each subflow into OVS. As a comsequence, the first
packet of each subflow has to be sent to the centralized con-
troller for further handling. This drastically degrades the
forwarding performance of the data plane and causes
potential control path congestion. A more efficient program-
mable monitoring solution is imperative. UMON is one of
the earliest efforts in this direction.

However, UMON has some limitations on the switch
performance. The fundamental idea of UMON is to decou-
ple monitoring from forwarding logic in the userspace,
while the kernel datapath remains intact. To achieve this,

ZHA ET AL : TOWARDS SOFTWARE DEFINED MEASUREMENT N DATA CENTERS: A COMPARATIVE STUDY OF DESIGNS

Menitering
r APls =

Fig. 1. The OVS architectuns.

the cached entries in the kemel need o be much more fine-
grained than the native OVS, which i elaborated in Sec-
tion 3.2. As explained earlier, this inevitably incurs heavier
consumption of systemn resources. Motivated by this, our
investigations of different monitoring designs mainly con-
sider the following aspects monitoring accuracy, resource
consumption, switching performance, and portability.

Overall, to build monitoring capabilities into OVS, there
area number of challenges weneed to address: (1) The added
monitoring logic should introduce minimal interference to
the forwarding path in OVS to guarantee the forwarding and
monitoring efficiency; (2) Due to the resource constraints, it is
necessary to strike a balance among efficiency, resource con-
sumption, and monitoring accuracy; (3) To maximize feasibil-
ity and compatibility, the monitoring function should be as
portable as possible so that minimal effort would be required
to accommodate the monitoring fundion.

Taking these into consideration, the monitoring function
is decoupled from the forwarding function by maintaining
an additional monitoring table, as illustrated in Fig. 1. The
default forwarding process i performed by OVS, while the
additional monitoring table supports the added monitoring
functionalities. Contrarily, in the kernel datapath, five moni-
toring designs are proposed, which differ in multiple
aspects, including interaction between the monitoring and
forwarding functions, the placement of the monitoring
module (Challenge 1), the stats collection data structures
and algorithms (Challenge 2). Beyond these, we also
develop an eBPF-based monitoring framework that runs in
parallel and independently with OVS (Challenge 3).

Unlike other existing work that utilize streaming algo-
rithms and compad data structures, we mainly leverage sim-
ple yet efficient algorithms in our designs for two reasons.
First, streaming algorithms typically require encoding and
decoding processes, where encoding is generally much sim-
pler than decoding. In most existing work, such as Trumpet
[10], the workload of complex decoding is often offloaded to
the control plane, making the software-based measurement
less scalable. Second, streaming algorithms can only provide
estimate values, making it difficult for network operators to
troubleshoot when something goes wrong. In the following
sections, we delve into the details of each specific design fol-
lowing a brief overview of UMON.

3.2 Recap of UMON

As introduced in Section 3.1, the monitoring programmabil-
ity of UMON is facilitated through the introduction of an
independent monitoring table in the userspace daemon
The overall architecture of UMON is depided in Fg. 2

2061

=]

i
w |userspace ' _______ -
1 kernel '-
I Pachet
1 Ot
oS, ——
Fig. 2. UMON architectura.

Comparing this figure with Fig. 1, we can observe that
UMOMN preserves the original architecture of OVS. It simpli-
fies the monitoring design by only instrumenting the OVS
userspace module, leaving the kemel datapath untoudched.
Specifically, the monitoring table maintains rules that moni-
tor specific TCP traffic, such as TCP SYN packets, or/and col-
lects subflows in the subflow tables. Besides, the monitoring
table provides APIs for the controller to install and update
monitoring rules via an extended OpenFlow protocol.

To support the user-defined monitoring granularities,
UMOM compiles the forwarding and monitoring flow rules
together to generate cache entries in the kemel. For exam-
ple, a flow rule forwards packets destined to host B to port 1
while the monitoring rule needs to collect the packet/byte
counts originated from host A. UMON combines the two
rules to generate a more finegrained rule that forwards
packets with source IF of A and destination IP of B to port 1
instead. Following this design, an incoming packet with
{srelP=C, dstIP=B) cannot find a match in the kernel cache
and will raise a flow miss that needs to be sent to the user-
space for further processing. As aforementioned, due to the
lack of visibility in the userspace, flow statistics need to be
properly populated from the kernel space to the userspace
flow table. In the meanwhile, the flow stats in the monitor-
ing table should also be updated. In UMON, this credit logic
is piggybacked in the repalidator thread of OVS because it
maintains the flow statistics periodically. As in the above
example, the revalidator threads polls the kemel space for
packet/byte counts in the cached flow entries and aggre-
gates the micro-flows by different fields, e.g., dstlP for the
flow table and srcIP for the monitoring table.

The downside of UMON is that the kemel flow table
might get inflated with a vast amount of finegrained flows
during peak traffic. Furthermore, a significantly larger
amount of flow misses are generated, thereby, both handler
and remalidator threads will potentially experience much
heavier workloads. On the other hand, statistics collechon
of monitored flows is integrated into the native OVS5 opera-
tions without any changes of its current workflow. There-
fore, the latency caused by monitoring interruptions will be
reduced. Moreover, UMON does not require any modifica-
tions in the kemnel, thus it could be easily ported to other
edge devices and platforms, such as DPDK and NetFPGA.
More details are discussed in [9].

In this study, we only use UMON as a comparison
against the other designs. These designs, including UMON,
embody different trade-offs between resource (e.g., CPU,

Authorized licensed use imited fo: Kelvin Smith Library f CASE. Downloaded on October 02,2073 at 0140221 UTC from IEEE Xplore. Restriciions apply.

2062

1
1 Bbrfiow
0 D T T |
p | e I
!
userspace - -— - - —-—+
o o ——
kernel e 3
recy Foie Tatie | g
i 4 . e
FEAPEHON
Bebupes tahis

Fig. 3. FCAP/SMON architectura

memory) consumption, monitoring efficdency, forwarding
effidency (throughput and latency). One has to strike a bal-
ance among these considerations. In the following, we dis-
cuss the specific design considerations in greater detail

3.3 Design of Flow Capture (FCAP)

The performance impact of the monitoring functions is pri-
marily dependent on where the functions are placed. Intui-
tively, a separate monitoring function in the userspace
provides better isolation and allows better interaction with
the users. However, we have lkeamed two lessons from the
development of UMON. (1) the complexity of userspace
rules would introduce extra overhead to the kemnel; (2) the
collection of monitoring stats should be prompt to preserve
accuracy. Based on these considerations, we propose to
build a separate monitoring phase in the kemnel datapath in
Ovs.

To guarantee the accuracy of monitoring tasks, we need
to maintain statistics of all the related packets efficently.
The micro-flow information is more preferable than the
mega-flow information because monitoring tasks often have
dynamic granularity requirements and micro-flows sim-
plify the aggregation operations. Thus, we first design two
different schemes, FCAP (Flow CAPture) and SMON
(Sketch based MONitoring), to collect micro-flows. In
our current designs, we use é-tuples (source/destination IP
addresses, source/destination ports, protocol and TCP
flags) to represent each micro-flow.

Fig. 3 shows the architecture of FCAP and SMON. In this
figure, since userspace pipeline is similar as UMON, the for-
warding pipeline in the userspace is omitted here for clarity.
To facilitate user-defined monitoring tasks, an additional
kernel filter table is utilized to dassify packets in both FCAP
and SMON. The workflow of FCAP is described in Algo-
rithm 1. Once the packet is determined to be relevant to a
monitoring task (line 1), the 64tuple information will be
stripped off and kept in the custom 6-tuple flow stats tables
(line 5-8).

However, the way for FCAP and SMON to store such
information is different. FCAP employs a straightforward
mechanism by storing the 6-tuple flow stats in a hash table.
In order to maintain full accuracy, linked lists are used to
resolve hash collisions. With the hash ind ex, the monitoring
thread scans through the linked list to find the flow entry
with the same é-tuple identifier as the incoming packet{line
4). Due to its ability to preserve the complete 6-tuple infor-
mation, the aggregation operations required by monitoring
tasks are simplified. Furthermore, the collected statistics are
accurate without any loss.

Mlmmd&mum&mmmgmsammm

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL 11, NO. 2, APRIL-JUNE 2023

As illustrated in Fig. 3, the monitoring pipeline consists
of two stages, induding a kernel filter table and a 6-tuple
table. Only packets finding a match in the filter table are
counted towards the latter. The entries in the kernel filter
table are ted from the userspace monitoring table.
MNote that the kemnel table differs from the userspace table
from two aspects. First, the kemmel table employs longest
prefix matching to find any rule that matches against the
header. Instead, the monitoring rules in the userspace table
are matched against one by one since the monitoring rules
may overlap. Second, it is not necessary to maintain stats of
the headers in this table.

To aggregate the collected 6-tuple flows, we implement a
thread that employs similar mechanism with that of the
revalidator thread in OVS [36]. The thread retrieves the flow
stats from the 6-tuple stats table at fixed time intervals and
updates the counters associated with the rules in the user-
space monitoring table. The credit function is implemented
in a similar way as UMON, which credits both flow stats
and subflows to the monitoring table. To enhance the effi-
ciency, we further cache the matching results of the 6-tuple
information with an extra hash table, where entries expire
with the default timeout ofproto_max_idle value. The extra
hash table is a simple data structure that maps the hash val-
ues of 6-tuple information to its corresponding bucket.

Algorithm 1. FCAP Algorithm
Input: FlowStatsTable, flowTuple

1: isMonitored +— LooxurMonmorFiLTer | flowTuple)
2: if is Monitored = True then

3: hash «— Hasne(flowTkple)
4: bucket — FoipBucker|{ FlowStatsTable, hash, flowTuple)
5: ifbucket £ null then
(3 UrpareFLowStaTs{FlowStat sTable, bucket, flowTuple)
7: else
8
9
0

InserTFLow TurLe (FlowStatsTable, bucket, flowTuple)
end if

10: end if

3.4 Design of Sketch Based Monitoring (SMON)

Although FCAP provides highly accurate statistics, it is not
always affordable and also sometimes may not be neces-
sary. Inspired by previous work, sketches have great poten-
tial n reducing memory consumption on end hosts.
Sketches are spaceefficient probabilistic data structures
that are extensively used in streaming applications to pro-
cess and store summary information. Examples include bit-
maps, bloom filters, and count-min sketch, which serve
diverse purposes. They provide provable guarantees on the
storage usage and error bounds. In previous work, sketches
have been used for traffic monitoring in hardware network
devices, where memory is a primary concern. Nonetheless,
the performance of sketch monitoring built into software
entities remains umexplored. Intuitively, to achieve higher
memaory efficiency, sketches involve more complex compu-
tation logic, e.g., more hash computations, to compress the
memory. To investigate the trade-offs between memory/
CPU consumption and monitoring accuracy, we propose
SMON, a sketch-based mechanism to maintain the com-

&-tuple flow information. As just mentioned, man!,r
at 014021 UTC from IEEE . Restricions apply.

ZHA ET AL : TOWARDS SOFTWARE DEFINED MEASUREMENT N DATA CENTERS: A COMPARATIVE STUDY OF DESIGNS

research works have focused on utilizing various sketch
mechanisms to perform monitoring [37], [38], [39], [40]
Among all existing solutions, the bloom filter has a strong
space advantage over other data structures. However, the
primary drawback of bloom filter i that it does not store
the data elements themselves. Therefore, we cannot refrieve
the item based on its key, which limits the capability to col-
lect subflows.

Goodrich et al. proposed invertible bloom lookup tables
(IBLT), which consists of three components in each bucket
to store a key /value pair and the corresponding count [16].
In this way, the é-tuple flow IDs that are hashed into the
same bucket are XORed and stored in a single bucket, as
depicted in Algorithm 2 Instead of using linked lsts as in
FCAP, flows that fall into the same bucket are compressed
in order to save memory space (line 4-6). In this algorithm,
H represents the number of different hash functions that
are pairwise independent. To reduce hash collisions, an
intuitive solution is to use a lot of space to make collisions
unlikely enough to get accurate results. However, space is
typically limited in network switches. To make the algo-
rithm more effident, we instead use different hash functions
so that flows have chance to be mapped to buckets that have
fewer hash collisions. Similar approaches have been widely
adopted by existing streaming algorithms, such as the
Count-Min sketch [41], FM sketch [42] and the Tug-of-War
sketch [43]. In the user space, a customized thread periodi-
cally retrieves the bloom filter from the kernel datapath via
Metlink socket interface and recovers all flows from the
sketch. The size of the sketch structure i adjusted according
to the estimated number of flows in each time interval to
guarantee successful decoding of flows at a high rate while
ensuring a minimum amount of memory usage. The
detailed decoding process is explained as follows. It itera-
tively finds the elements in the bloom filter that contain a
single flow and remove its stats from all the other encoded
cells that the flow is hashed to, until all the buckets are
decoded. Ideally, if the size of the bloom filter is suffidently
large, and exported to the user space ata high frequency, all
flows could be successfully recovered. In a cloud system,
OVSes are often deployed at the edge, thus can only observe
a moderate amount of flows. This suggests that we can
achieve a high decoding rate with a moderate amount of
memory. Apparently, the flow decoding time grows with
the size of the sketch and the number of flows in each mea-
surement epoch. Similarly with FCAP, the decoded flows
are aggregated into in the user space monitoring table.
Besides, the filter table in SMON has the same designs as
BCAP. Later we will show in Section 4 that with a small
amount of mMemory mnsu.mpﬁnn, we manage to preserve
highly accurate statistics.

3.5 Off-Path Designs of FCAP/SMON

The intuitive designs of RCAP and SMON place monitoring
logic on the normal packet forwarding path in OVS kemnel,
thereby are called on-path designs. Such on-path designs
introduce extra processing dehy to the OVS forwarding,
since monitoring usually requires more complicated proc-
essing logic than forwarding, which may further reduce the
forwarding throughput. To reduce the negative impact, we
further embrace a buffering mechanism in order to take the

2063
N I
1 Bubfiow
I mu_'m 1
I Tabia 1
userspace 1 I
—— e = ===
1-- --i;::anlnn
g Fiter Tabla
kernel : i
I FCAPSMON
rcy | Sl i
packet | Packet
_L*- m Dul

Fig. 4. Off-path FCAPSMON architectuns.

monitoring function off the forwarding path. By using a
ring buffer, we aim to decouple the monitoring functions
from the forwarding path. We consider this mechanism for
both FCAP and SMON, and thus design off-path FCAP and
off-path SMON.

Algorithm 2 SMON Algorithm
Inpuk: IBLT, flowTuple
1: isMonitored «— LooxuvrMonmorFiLTer | flowTuple)
2: if is Monitored = True then
forall k € [1..H| do
hg +— Hamig (flowTuple)
if IsNewFrow(flowTupe) then
ComrressFLowID(IBLT, he, flowTuple)
end if
UrpareFLowStaTs{IBLT, h;, flouTuple)
end for
10: end if

weENUORD

The overall architecture of off-path designs is demon-
strated in Fig. 4. The ring buffer is conceptually a circular
FIFD queue with pre-defined size. The main difference
between a circular queue and a linear one is that a circular
queue has the maximum size or capacity that allows it to
continue to loop back over itself in a circular motion. With a
linear queue, it i more difficult to adjust its size during
operation. This can be replaced with a dynamic buffer that
grows and shrinks automatically based on packet rates. But
circular buffer is seledted for simplicity and efficiency. The
size of this circular queue is set to be X bytes by default.
This value is subject to change and @an be determined by
system operators based on their experience. The ring buffer
has two pointers, head pointer for the consumer thread and
tail pointer for the producer thread, as depicted in Fig. 5. As
long as the distance between the two pointers does not
shrink to zero nor expand to the full buffer size, both the
producer and the consumer could operate on the data in the
queue. In our case, the forwarding process is the producer
by making a copy of the incoming packet header and
appending it to the tail of the buffer, while the monitoring
thread, as the consumer, fetches the headers for further
processing from the head of the buffer. Therefore, the ring
buffer provides a communication channel for the asynchro-
nous interactions between the two functons.

In our implementation, we employ a lock-free mechanism
when writing to the ring buffer to minimize the MAnce
overhead. Compared to the exclusive lock mechanism, it

Authorized licensed use imited o Kelvin Smith Library f CASE. Downloaded on Oclober 02,2073 at 0140221 UTC from IEEE Xplore. Restriciions apply.

2064

Head(Monitoring)

Tail{Forwarding)
Fig. 5. Lock-free single-prducer single-consumer drcular buffec

brings a negligible probability of overwriting un

data. In this way, forwarding will not be delayed if the moni-
toring thread cannot keep up with the forwarding process.
While reading will be blocked if the buffer is empty, this
aims to guarantee the high performance of the forwarding
function by making constant-time operations. The lock-free
nature helps to ensure that no waiting is involved in adding
or deleting data in the buffer. Since we employ overwriting
to handle full queues, the collected statistics might not be
highly accurate. In order to achieve precise measurement
results, the ring buffer has to be sufficiently large in order to
keep up with the ever-increasing packet rates and flow
bursts. These will be evaluated in our experiments.

In practice, with the builtin support for cpuset in Linux
kernel, one can confine processes to certain processors and
memory node subsets so that the monitoring thread and the
forwarding thread do not compete for CPU resources. Such
optimizations are feasible and practical for data center edge
devices where abundant computing resources are available.

3.6 eBPF-Based Monitoring

eBPF was originated from BPF, the Berkeley Packet Flter.
BPF allows to capture and filter network packets that match
specific rules, where filters can be implemented as pro-
grams and run on a register-based virtual machine. eBPF
extends the support to 64-bit registers, among others, and
represents an effort to make programmable Linux kernel.
That is, one can run sandboxed programs in the Linux ker-
nel without changing kernel source code or loading kernel
modules, and thus can be leveraged for monitoring and
security, etc.

The eBPF code & executed in an in-kernel wiriual
machine using a custom 64-bit RISC instruction set, with 11
64-bit registers, a program counter and a 512-byte stack
space. eBPF supports running the code as Just-in-Time com-
piled bytecode, which is verified by an in-kernel verifier to
guarantee security (e.g., forbidding loops to ensure program
termination and type checks) before loading the code into
the kernel Internally, various mechanisms enable commu-
nication between in-kemnel eBPF code and user space pro-
cesses asynchronously, such as eBPF maps and perf events
(FIFD queues). eBPF maps are efficient key-value stores that
allow data to be shared within the kernel (ie., among multi-
ple eBPF programs) or between the kernel and user space.

Fig. 6 illustrates how eBPF can be used for network traffic
monitoring. Specifically, eBPF programs can be attached to
different hook points in the networking data path, such as
Traffic Control (TC) or eXpress DataPath (XDF) [44], thereby
enabling flexible processing on the intercepted packets. As
shown in the figure, ingress traffic can be intercepted in XDP

or TC ingress hooks, while the e traffic can only be
Authorized licensed use imited foc Kehdn i

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL 11, NO. 2, APRIL-JUNE 2023

o
e Sockst Layer
— 1
ERY TC
1____ —)l N
T

Fig. 6. Locations of eBPF hooks where monitoring programs can be
attached.

intercepted at the TC egress hook, as XDP is not available in
egress. Furthermare, eBPF programs can also be attached in
the socket layer. Unfortunately, this does not meet the need of
monitoring both locl and non-local tmaffic. Therefore, the TC
layer can serve our purpose the best because it allows us to
investigate both ingress and egress traffic In the following,
we discuss the spedfic design details of our eBPF-based moni-
toring framework.

eBPF-Based Monitoring Framework. As illustrated in Fig. 7,
the framework consists of multiple components, including a
monitoring pipeline in the kemel space and a monitoring
application in the userspace. The communication between
the kemnel and user appliations is fadlitated through a
shared eBPF map that maintains the real time traffic statis-
tics. The userspace application retrieves the flow stats from
the map and dears the entries at fixed time intervals. Similar
o the FCAP/SMON designs, the interval is determined
based on the users monitoring demands.

As discussed above, our eBPF program is attached to
both the TC ingress and the egress to gain full visibility of
all inbound/outbound traffic. The eBPF program is exe-
cuted and the flow stats are updated for each incoming
packet. The monitoring workload varies along with the
number of hosts to be monitored. For each monitored host,
we need to track the number of packets for each 6-tuple
flow associated with it. To filter out the hosts, each incoming
packet has to go through a monitoring filter before it is
counted towards the flow staius hash table. More spedfi-
cally, the monitoring filter examines the destination IP
address of the packet and filters out packets that are not
monitored (line 12). Only packets that find a match in the fil-
ter will be counted towards the following flow stats hash
table (line 13-14). The workflow of eBFF monitoring is out-
lined in Algorithm 3. Intuitively, such processing may intro-
duce extra performance penalty, which comes in the form of
map lookups and updates.

However, programmability is mainly achieved through
this table. Snce eBPF maps allow sharing data between ker-
nel and userspace programs, the monitoring application can
dynamically update the entries in this table on demand. For
example, monitoring @an progress along flow of different
granularity — from coursegrained flows to fine-grained
flows — to improve monitoring effidency. The eBPF maps
provide similar but more efficient programmable APIs than
(WV5's match+action tables. In this work, we will condudt in-

Library (@ CASE. Downloaded on Oclober 02,2023 at 01:4(:21 UTC from |EEE Xplore. Restriciions apply.

ZHA ET AL : TOWARDS SOFTWARE DEFINED MEASUREMENT N DATA CENTERS: A COMPARATIVE STUDY OF DESIGNS

Usarspace

2065

Fig. 7. Design of 8 BPF-based monitoring framework.

depth investigation about the performance of the eBPF-
based monitoring module and compare it to the aforemen-
tioned monitoring alternatives.

Algorithm 3. eBPF Workflow

1: procedure EBPF Usersrace ComponenT
2 LoapBPFProcrAM()
PoruLaTEMoMTORT ABLE()
while true do
SLeep(T)
JlowStats «— BPPMarREAD()
BPFMarCLEAR()
end while
end procedure
10: procedure EBPF Kmnan. Movmormc
11: flowTuple +— ParseHeaDers(packet))
120 isMonitored — BPPMarLookur(menitorTable, flowThple)
13: ifisMonitored = True then
14: BPFMarUrpaTe(flowStatsTable, flowTple)
15: end if
16: end procedure

@ N Wew

To understand the root cause of the processing overhead,
we first examine the underlying implementation of the
eBPF maps. Currently, eBPF is featured with fifteen types of
maps to maintain the states across the invocations of the
eBPF program and share data among multiple programs or
between the kernel and the user space. Two of the most
commonly used types are hash maps and arrays, while the
other variants serve more complex purposes. As aforemen-
tioned, our eBPF-based monitoring design involves multi-
ple data structures, including a monitoring filter and a
key-value store for recording flow stats. Note that eBPF pro-
grams cannot process packets in an off-path fashion. The
design of the data structures for each functional component
is critical since the incurred overhead direcily affeds the
network throughput/latency. In the following, we discuss
the designs in more details.

Similar to FCAP/SMON, the monitoring workload is
specified in terms of the set of the destination IP addresses
of the monitored hosts. BPF_ARRAY and BFF HASH can
both be used for this purpose, while BPFF_HASH achieves
better performance due to its hash-based design. Therefore,
our monitoring filter is implemented based on BFF_HASH,
which can be populated with the host IP addresses from the
user space. Furthermore, it can be updated at runtime in

Authorized licensed use imited toc Kelvin Smith Library { CASE. Downloaded on Oclober 02,2023 at 01:40:21 UTC from IEEE

acoordance with changes in the monitoring tasks. Spedfi-
cally, in our userspace program, the hash map is initialized
with the IP addresses as keys whereas the value is setto 1,
before it is lpaded into kernel. For each incoming packet, if
the destination IP address has a value 1 in the hash table,
the comresponding flow stats will be updated; otherwise,
control flow will follow the original packet processing path.
In this way, the host filtering stage can be performed in O(1)
tfime.

On the other hand, to maintain the &tuplke flow stats
information, a hash map (BPF_HASH) is used to maintain
the flow identifiers (e.g., 6-tuple) and the corresponding val-
ues that refer to the packet/byte counts per flow. Since eBFF
maps are instantiated inside the kernel, it is critical to keep
the size within a reasonable Emit to avoid the exhaustion of
kemel memory. In the meanwhile, to achieve the desired
monitoring accuracy, the actually requested size should be
determined based on an sensible estimabion of the total
number of flows in the monitored network. By default,
BPF HASH has 10240 enfries. Since in our monitoring
workload, the total number of flows far exceeds this value,
the table size has to be explicitly specified during initializa-
tion. Unfortunately, eBPF map cannot be resized after it is
created. In the latest kemel implementation, eBFF hash
maps use pre-allocation by default. The maximum memory
size is bounded by the max_entries defined by the userspace
program during map initalization. Once the map is full,
insertions of new keys will fail in order to make sure that
the eBPF programs will not exhaust kemel memory. In
other words, an underestimated flow count will result in
inaccurate measurement results. Therefore, max _entries
must be carefully chosen in order to accommodate all 6
tuple flows. The actual parameter setting is workload-
dependant and will be discussed in detail in Section 4.

As a consequence, the performance penalty is mostly
incurred by the hash map related operations, including
hash computation and hash map updates. Also note that
updates to eBFF hash map elements are atomic, which are
more expensive. Eventually, the exact amount of overhead
should be directly correlated with the actual monitoring
workload. A closer scrutinization of the underlying imple-
mentation of the eBPF hashmap APIs further reveals that
the kernel hash table is consistently reused. In the eBPF
hashmap implementation, linked lists are used to resolve
hash collision. Due to this design, the measurement results

of the flow stats are accurate as lon asﬂ'lﬂ'eist?ﬁgacket

2066

TABLE 1
Comparison of Different Monitoring Designs
Om-Path -Path

Kernel Monitoring Design eBFF L

SMON FCAP SMON FCAP
Forwarding Latency 3dns Bdins 515ns 182 1B2ns
Measurement Accurmacy 100% > 9% 100 > 9% 1005
Memaory Usage 3%EKB 9%97KB 14958KB 2116MB 2 158MB

loss. In the meanwhile, the underlying implementation is
optimized for lookup speed. Given the max_entries, the
hashmap size is always set to the next power of 2. The total
memory allocation is n_buckets * bucket_size + max_eniries *
element_size, where n_bucket & actual hashmap size and
ruax_entries is the maximum number of entries estimated by
the user. We will conduct experiments to measure and com-
pare the throughput/latency under various monitoring
workloads. A detailed analysis and comparison with other
monitoring designs will be presented in our evaluations.

4 PERFORMANCE EVALUATION

Our test-bed consists of three Lenovo ThinkServer machines
equipped with Intel Xeon 4-Core 320GHz CPU and 4GB
memory that run Ubuntu 14.04. One machine is dedicated to
run the instrumented Open vSwitch (OVS). The second
machine serves both as the packet generator and the data sink
that receives the data from the OVS. These two machines are
cormected with two 10Gbps Ethermet cables. As shown in
[45], the native OVS can achieve ~3Gbps switching speed.
Thus 106G NIC is sufficient to make it not the battleneck. We
host the packet generator and the data sink on the same
machine to facilitate the delay and throughput measurement.
The third machine serves as the SDN controller running Ryu
[46]. We perform the trace driven evaluation using a CAIDA
trace [47] that contains about 30 million packets. The packet
trace is replayed using TCPReplay [48] and & fed into the
instrumented OVS. The packets are routed and measured by
the OVS, and received by the data sink.

4.1 FCAP Versus SMON Versus eBPF

In this section we compare the performance of all the moni-
toring designs. For FCAF and SMON, both on-path and off-
path versions are considered. This measurement is con-
ducted under a packet rate of 160 Kpps with 1400 hosts
being monitored. We examine the performance in terms of
forwarding latency incurred in the kernel data forwarding
path, kernel memory usage, and measurement accuracy.
The results are averaged over 10 runs and reported in
Table 1.

The kernel data-path forwarding latency measures the
extra delay introduced by the monitoring modules in the
kernel datapath. For off-path FCAP and SMON, we only
measure the delay introduced by the ring buffer. The proc-
essing delay of the actual stats collection by the monitoring
module is ignored since they work off-path. We also mea-
sure the overall performance in Section 4.3 which shall
reflect off-path modules” impact.

As shown in Table 1, in general, on-path FCAP/SMON
incur longer delays than their off-path counterparts. It takes
182ns to put each packet into the ring buffer for off-path

Authorized licensed use imited toc Kelvin Smith

i@ CASE Downloaded on Ociober

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL 11, NO. 2, APRIL-JUNE 2023

monitoring, while on-path SMON and on-path FCAP incur
848ns and 515ns of delay, respectively. In addition, the
eBFF processing takes 344ns for each packet. Apparently,
the off-path design is the most efficient among all since it
only involves a single memory copy operation. Compara-
tively, on-path designs consume a significantly amount of
CPU cycles from hash computation and counter updates,
resulting in much longer processing delays. Among the
three on-path designs, eBPF outperforms the other two due
to its highly performant underlying implementation. As dis-
cussed in Section 3.6, eBPF hashmap size is kept suffidently
large in order to minimize the length of the linked lists.
Thereby, the average per-packet latency is considerably
smaller than FCAP. Compared to eBPF and FCAP, on-path
SMON incurs much long processing delay since sketch
encoding requires multiple hash computations and memory
access to multiple counters for each incoming packet.

In terms of memory consumption, onrpath SMON con-
sumes less memory (96.97K B) than on-path FCAP (149.58 KB)
and eBPF (396 KB). By utilizing sketches, SMON is the most
memory-efficient by compressing multiple flow information
into a single sketch counter at the cost of slight accuracy degra-
dation. Between FCAP and eBPF, the latter requires more mem-
ory usage due to its large hash table size and the memary pre-
allocation mechanism. Compared to the on-path designs, off-
path FCAP and SMON consume the largest amount of memory
since they require a ring buffer to store all incoming packets.

We next examine if the use of ring buffer and sketch
reduces the measurement accuracy. As shown in Table 1,
the results show that the off-path measurements achieve
comparable accuracy as the on-path measurements as long
as the ring buffer is suffidently large to accommodate
incoming padckets. We find that in order to avoid packet
losses, for a packet rate of 160 Kpps, the memory allocated
for the ring buffer must be over 2MB. The size of the ring
buffer can be from the user space through the
Netlink interface according to the estimated packet rate and
the desired accuracy. The measurement accuracy of SMON
is over 99%, which suggests the use of sketches does not
lead to large accuracy loss. Moreover, on-path/off-path
FCAP and eBPF provide fully accurate measurement results
since they both employ linked lists to resolve hash collisions
in their implementation.

4.2 Impact of Monitoring Workloads

Here we examine the impact of monitoring workloads on
the CPU utilization and memory usage of instrumented
OVSes. We vary the number of monitored hosts, ie, IP
addresses, which directly leads to a varying number of
monitored micro-flows, as listed in Tables 2 and 3. We also
experiment with two different packets rates, 80 Kpps and
160 Kpps, replayed by TCPReplay to represent different
OVS switching workloads.

Figs. 8 and 9 depict the CPU utilization overhead caused
by the monitoring activities against the number of monitored
hosts at two packet rates. The results represent the
total CPU utilization of all related threads including han-
dlers, revalidators, and new threads created for monitoring
purposes. In FCAP and SMON, we create a user-space
thread called collector to cllect the flow stats from the data

tructures from the kemnel datapath at fixed time
- at 01:40:21 WMIEEXMMW.

ZHA ET AL : TOWARDS SOFTWARE DEFINED MEASUREMENT N DATA CENTERS: A COMPARATIVE STUDY OF DESIGNS

TABLE 2
Memory Usage (MB){Packet Rate = 160 Kpps)
#hosts A0 40 &00 SN 1000 1200 1400 1600
#flows Me T3 1Wa 1402 169 2082 250 343
off-path SMON 2039 2.049 2063 2079 2,087 2100 2116 2132
off-path FCAP 2075 2.091 2107 2118 2133 2149 2168 2191
eBPF 0106 0.105 016)d 0211 0.262 03M 038 0.49
UMON 4556
TABLE 3
Memory Usage (MB)(Packet Rate = 80 Kpps)
#hosts a0 40 &00 EMN 1000 1200 1400 1600
#flows N7 47 &4 E1 980 1219 1456 1712
off-path SMON 1347 1.358 1360 1366 1.371 1379 138 1.35
off-path FCAP 1386 1.393 1402 1410 1418 1426 1438 1469
eBPF 0.043 0.063 01211 0152 0.184 0215 0246 0281
UMON 1.589

intervals. Moreover, for off-path FCAP/SMON, there is a
kernel thread that retrieves packets from the ring buffer. Dif-
ferently, eBPF monitoring threads are not incorporated into
OVS, so we measured their CPU usage separately. In all
experiments, thestats collection interval is set to (.5 second.

In UMON, the flow aggregation functionality is integrated
into the existing revalidator threads. CPU utilization of the
two on-path designs is not shown in the figure since the
implementation of the monitaring modules is similar to their
off-path counterparts, resulting in similar CPU utilization.

As illustrated in Figs. 8 and 9, the CPU utilization over-
head increases as the number of monitored hosts and the
packet rate increase. In addition, off-path FCAP incurs the
least amount of CPU utilization overhead, while eBPF incurs
comparable but slightly larger CPU utilization overhead in
the average case. The difference between the two is atirib-
uted to the different underlying implementation schemes for
the communication between kernel and userspace. As dis-
cussed in Section 3, in FCAP and SMON, the kernel /user-
space communication is fadlitated via the Netlink socket
interface, following the same communication mechanism as
OVS. Comparatively, with eBPF, at fixed time intervals, the
entries are accessed and cleared from the userspace via sys-
tem calls. Compared to FCAP and eBPF, SMON requires
complex sketch decoding operations performed by the collec-
tor thread, resulting higher CPU utilization. The overhead
introduced by UMON is significantly larger than those of
off-path FCAP /SMON, which is mainly due to two reasons.
First, since UMON installs fine-grained forwarding rules in
the kernel flow table, there are more frequent packet misses
such that its userspace handler threads are busy with han-
dling upcalls. Second, with a large kemel flow table, the
revalidator threads in UMON are also heavily loaded with
updating the flow stats into the userspace monitoring table.
On the contrary, in off-path FCAP/SMON, the kernel flow
table only contains two flow rules in our experimental setup,
thus imposing negligible CPU overhead to the userspace
handler and revalid ator threads. The CPU utilization in these
two cases is mainly attributed to the flow stats aggregation
performed by our custom collector thread.

Authorized

2067

B ¥ ¥

UMDH CPU (W

LI

"
e

FCAPSHORIBRPT COFU (%)

i

209 L) i =) 1000 1200 1400

Fig. 8. CPU overhead under various monitoring workloads with packet
rate 160 Kpps.

00 #00 doa L= ioo0a pFi-] 1400

s

3

PCAREMOMaDPP CPU (%1

L= o000 13oo 1400

Fig. 9. CPU overhead under various monitoring workloads with packet
rate BD Kpps.

We next evaluate the memory overhead for monitoring.
Since on-path FCAP /SMON use less memory than their off-
path counterparts, we focus on the two off-path schemes and
the eBPF-based approach and compare them to UMON. The
results are shown in Tables 2 and 3 for two different packet
rates. The memory size in the table is the amount of memory
used in the kernel for the monitoring purpose. As the memory
usage dynamially changes with incoming flows for all
schemes, we take the peak usage in comparison. The memory
consumption in the off-path FCAP/SMON is caused by two
data structures: a kernel ring buffer that caches incoming
packets, and the actual data structures (ie., hash table in
FCAF and sketch in SMON) to maintain the flow stats. As pre-
viously mentioned, sufficient amount of memory needs to be
allocated to the ring buffer in order to avoid packet losses.
The experimental results show that off-path FCAP consumes
about 3% more memory than off-path SMON.

For eBPF, the memory consumption is mostly incurred by
the BPF map to record flow statistics. For the sake of memaory
pre-allocation, the userspace program needs to specify the
approximate maximum number of flows in each time interval
at map initialization. Since this number varies across work-
loads and packet rates, the memory consumption of eBPF also
varies accordingly. In Table 1, it indicates that eBPF requires
mare memory than on-path FCAP, largely due to the undedy-
amount of memory than all other monitoring designs. This is
because in order to support comparable measurement accu-
racy, the kemel flow table in UMON has to maintain an

icensed use imited fo: Kelvin Smith Library & CASE. Downloaded on Oclober 02, 2023 at 0140221 UTC from IEEE Xplore. Restrictions apply.

N on-paith S0k
1.4 W o pan o
BN on-path FOAP

Throughpat [Mpps)

100

300 0] 500
Wumbser of manitored hosts

Fig. 10. Throughput{(Mpps) of different schemes under various monior-
ingworkloads.

individual forwarding entry for each 6tuple flow. Conse-
quently, the memory usage greatly exceeds the other solutions.

4.3 Switching Throughput and Latency

To study the throughput and latency of our designs under
high packet rates, we use DPDK based packet generator
MoonGen [49] for traffic generation and measure the maxi-
mum achievable throughput for each measurement frame-
work when there is no packet loss and the monitoring stats
are highly accurate. Since only those packets with a match
in the monitoring table will be counted towards the hash
table/sketch, the ratio of monitored packets to the total
number of packets directly affects the throughput of the
entire system. To study this impact, we conduct experiment
by varying the number of hosts in the kernel space monitor-
ing table. The throughput and latency results imder differ-
ent workloads are shown in Figs. 10 and 11, respectively.

First and foremost, the swﬂchmg throughput of UMON is
the lowest among all designs, as can be seen in
Fig. 10. This could be explained by the fact that UMON follows
the traditional design of OVS kemnel datapath, which requires
the first packet of each new flow to traverse the slow path
through the userspace. The userspace of UMON introduces
an extra monitoring table in the forwarding pipeline. The for-
warding rule and monitoring rule are combined to generate a
mare finegrained flow that would be installed into the kernel
cache table. Due to this design, an enormous amount of flow
cache misses are introduced when we need to mllect the flow
statistics for each 6-tuple flow. On-path FCAP/SMON both
outperform UMON but lag behind compared with eBPF and
their off-path counterparts. As explained previously, this is
because the monitoring modules (filtering, stats collection) are
placed in the switch forwarding path. But on-path FCAFP
achieves higher throughput than on-path SMON, since the lat-
ter requires complex sketch encoding operations, while the
former implements more light-weight hash tables.

On the other hand, off-path FCAP/SMON achieves
higher throughput because monitoring logic is decoupled
from forwarding and the overhead omly involves memory
copies from the ring buffer. This also explains why FCAFP
and SMON achieve the same throughput in the off-path
paradigm. Finally yet importantly, despite the fact that
eBPF and on-path FCAP both are on-path and implemented
based on hash tables, eBPF achieves slightly bEIlEI' perfor-

mance than on-path FCAP as a result of its o hash
Authorized licensed use limited fo: Kelvin Smith Library

{HSEWMOME

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL 11, NO. 2, APRIL-JUNE 2023

1400

mm
HH
411

Latendy {na)

-] 600 900
Number of monitored hosts

1200

Fig. 11. Average latency(ns) of different schemes under various monitor-
ing workloads.

table implementation within the Linux kemel. Due to the
large size of the hash table, it has a shorter linked list for
each bucket in the hash table in the average case, resulting
in higher efficiency for hash lookups/updates. Overall,
from the network performance perspective, off-path FCAP/
SMON is a preferable solution among all the designs.

With the same experiment setup, wealso measure the aver-
age switching latency and investigate the impact from various
monitoring workloads. Fig. 11 reveals that off-path designs
incur minimum delay, while UMON significantly degrades
worsens along the increase of the workloads. Likewise, eBPF
yields smaller latency than on-path FCAP/SMON for the
same reason as throughput. Off-path options outperform all
other alternatives with mare memory consumption. More spe-
cifically, the memory required (15MB ring buffer) scaled line-
arly (7.5x) with the increase in throughput to 1.2 Mpps from
our earlier experiments at 160 Kpps. We conclude roughly
one MBis needed for each 80 Kpps of throughput.

5 DiscussioN

Based on the evaluation results, itis clear that building moni-
toring capabilities into software entities on the edge servers,
either software routers or independent monitoring modules,
is feasible without significantly sacrificing performance
overhead . Nevertheless, each design bears its own pros and
cons. Although it is a seemingly daunting task to determine
which design achieves the overall best performance, we
have attained several insights, as sketched in Table 4, into
the design of software-based measurement framework.

First, UMON requires the least implementation efforts
with no modifications to the OVS kernel datapath. How-
ever, it derives fine-grained forwarding rules by combining
the forwarding and monitoring functionality, which leads
to the heaviest CPU load in the user space. In addition, it
necessitates significantly more memory consumption.

Second, FCAP outperforms both SMON and eBPF in all
aspects except that it needs to instrument OVS kernel code.
The off-path RCAP is a particularly better option than its on-
path version on servers with abundant memory resources.
Among all other alternatives, it introduces the minimal
impact on OVS throughput and latency.

'l‘hin:t,ShENis the most memory-effident option, owing to

of bloom filter sketches. Although

at 014021 from IEEE Xplore. Restrictions apply.

ZHA ET AL : TOWARDS SOFTWARE DEFINED MEASUREMENT N DATA CENTERS: A COMPARATIVE STUDY OF DESIGNS

TABLE 4
Comparison of Different Frameworks
Designs eBFF __ OnPalh Of-Fath UMM
SMON FCAP SMON FCAP
CPUOwerhead low moderate bw moderate low
Memory CorsurmpHon low low bw moderatemoderate high
Measurement Accuracy precise high precise high precise precke
Forwanding Latency high high high low low high
Implementation Compledty low high high high high low

sketches have proved to be effident in memary-constrained
hardware devices, it turns out concerns have shifted away for
building monitoring logic into the end hosis. SMON has a
higher demand on CPU, thus making it less ideal for servers
with insufficient CPU resource or fierce CPU competition
Fourth, eBPF-based monitoring design achieves compara-
ble performance with on-path FCAP from the perspective of
CPU utilization, measurement accuracy and switching per-
formance. In the meantime, it re minimal maintenance
efforts sinceit executes independently of OVS and can be con-
figured and updated without interrupting the system opera-
tions. However, it requires mare memory than on-path FCAP
due to the underlying hash table implementation. Neverthe-
less, its overall performance falls behind the off-path designs
since the eBPF program lies in the packet processing path.
Since all these schemes are designed for software defined
measurement, we @an see that: In terms of the switching
throughput and latency, off-path designs offer the best perfor-
mance, regardless of the monitoring algorithms, since through-
put and latency are only affeded by the ring buffer write
operations. Without ring buffers, on-path FCAP and eBFF
achieve throughput/latency, which demonstrate
that hash tables could suffice in a software monitoring system;
In terms of implementation complexity and portability,
eBPF is the best since monitoring programs could be loaded
and updated at runtime, while OV5-embedded designs
require to recompile and reinstall the OVS binary whenever
there is an update.
By comparing the results across all the experiments, we
observe that

* by removing the monitoring functionality from the
kernel forwarding path, off-path schemes can achieve
better switching performance than on-path schemes
in terms of network throughput and latency, while
achieving the same measurement accuracy at the cost

in the design of flow stats colledion module, our
results demonstrate that hash table & a more efficent
solution compared to sketch due to its lower compu-
tational cost, which i a major factor in the evaluation
of CPU utlization

While there is no scheme that outperforms in all aspeds,

to carefully examine the interplay of multiple key fadors,
induding memory and CPU consumption, measurement acou-
racy, impact on switching throughputand lstency, maintenance
complexity, and so on so forth. Our empirical study demon-
strates that hash tables are a better fit than sketches in a software
monitoring framework despite of the strong memory-effidency
and wide utilisation of the sketches in hardware environment.

2068

The difference bies in the fact that hardware devices have much
tighter memaory constraints than commodity servers. In terms
of the placement of monitoring fundhionalities, off-path outper-
forms on-path since the latter introduces noticeable latency to
the traditional packet forwarding pipdine. Such impact

6 CONCLUSION

In recent years, cloud data centers have undergone through a
underlying network diagram change from the traditional
network o software defmed ing. Software defined
networking has provided more flexibility for network measure-
ment and monitoring, and enabled software defined meas-
urement. However, properly achieving timely and accurate
measurement results while minimizing the resource consump-
tion in data centers remains a aitical challenge. But little is
known in the current literature. In this paper, we have investi-
Enabling monitoring capability on the widely deployed OVSes
in data centers requires us to take into a number of fadtors inio
consideration during design and implementation, including
respurce consumption, impact on the forwarding, measure-
ment accuracy, implementation complexity, portability etc. In
this study, mhmempn:al.l}racphred H'Emri:rmt'ade—uffa
mgﬁvetﬁ.ffﬁﬂltnmntnnngﬂmﬁardqmmmrhvel}rshjwn
their advantages and disadvantages. These results provide
insightful guidelines for conducting network traffic measure-
ment an the OVS as well as software defined measurement in
data centers in general. A preliminary version of this paper
appears as “Instrumenting Open vSwitch with monitoring
capabilities: designs and challenges” in SOSR2018 [35].

ACKNOWLEDGMENTS
The authors appredate the constructive comments from the

TEVIEWETS.

REFERENCES

[1] B Han, V. Gopalakrishnan, L. Ji, and 5. LEE “MNetwork function
virtualization: Challenges and for innovations,”
IEEE Comgnun. Mag., vol. 53, no. 2, pp. 90-97, Feb. 2015.

[2] M Yu e al, “Software defined traffic measurement with open-
sketch,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation,
M3 pp. 2942

[31 M Moshref ¢f al, “Diream: Dynamic resource allocation for soft-
ware-defmed measurement” in Proc. ACM Conf. SIGCOMM,
A4, pp. 419430

[4 M Moshref # al, “Scream: Sketch resource allocation for soft-
ware-defmed measirement,” in Proc. ACM Conf. Emerg. Netw.
Experiments Technol, A5, pp. 1-13.

[5] Y. Liefal, “FlowRadar: A better netflow for data centers,” in Proc.
LSENIX Symp. Netw. Syst. Des. Implemen fation, 2016, pp. 311-324.

[6] V. Svaraman ¢t al., “Heavy-hitter detedtion entirely in the data
plane,” in Proc. ACM Symp. SDN Res., 2017, pp. 164-176.

[71 E BenBasat X Chen, G. Einriger, and O. Rottenstreich, “Efficient

recirculation,” in Proc. [EEE Int. Conf Netw. Protac, 2018, pp. 313-323.

[8] E B Basatef al, “Memento: ing sliding windows efficient for
heavy hitters,” in Proc. ACM Conf. Emerg. Netw. Experiments Tech-
nol, A8, pp. 254266

[91 A.Wang ¢ al., “Umon: Flexible and fine grained traffic monitor-
ing in open vswitch,” in Proc. ACM Conf. Emerg. Netw. Experiments
Technol, 2015, pp.1-7.

[10] M. Moshref et al., “Trumpet Timely and precise triggers in data
centers,” in Proc. ACM SIGCOMM Conf., 2016, pp. 129-143.

Authorized licensed use imited to: Kelvin Smith Library {f CASE. Downloaded on Ociober 02 2023 at 01:40:21 UTC from IEEE Xplore. Restrictions apply.

2070

(1]

(2]

[13]

[14]

[15]
[16]

[17]
[18]
[19]

[20]

(2]
[22]

(23]
[24]
[25]

[26]

(2]

(28]

(2]

(30]

[31]

[32]

(3]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL 11, NO. 2, APRIL-JUNE 2023

Q. Huang et al, “Sketchvisor: Robust network measurement for

software packet processing,” in Proc. ACM SIGCOMM Conf., 2017,

pp- 113126

T. Yang et al., “Bastic sketche Adaptive and fast network-wide

measurements,” in Proc. ACM SIGCOMM Conf., 2018, pp. 561-575.

Z. Liu et al., “Nitrosketch: Robust and general sketch-based moni-

toring in software switches,” in Proc. ACM SIGCOMM Conf., 2019,

pp- 334350

T. Yang ef al, *“HeavyKeeper: An accurate algorithm for finding

elephant flows,” IEEEJACM Trns. Nefw., wvol 27, no. 5,

pp- 18451858, Oct. 219k

Open vSwitch, 201 7. [Online]. Available: hitp:/ /fopemmswitdhorg/

M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lodoup

tables,” in Proc. IEEE Allerfon Conf. Commum. Control Comput_, 2011,

Pp- 792799,

M. Fleming, “A thorough introduction o EBPE,” 217.

B. Qaise, “Cisco systems netflow services export version 9,7 2004.

5. Panchen et al., “Inmon corporation’s sflow: A method for moni-

toring traffic in switched and routed networks,” 2001.

B. Claise, “5pecification of the IF flow information export (IPFIX)

protocol for the exchange of ip traffic flow information,” 208,

Juniper, “Juniper flow monitoring,” 2011

AlcateHLucent, “CFLOWD,” 2017. [Onkne]. Available hitps//

tinyurlcom/2p2c24dp

HPF, “Hp netstream monitoring module,” 2012

Z. L et al., “One sketch to rule them all: Rethinking network flow

monitoring with univmon,” in Proc. ACM SIGCOMM Conf., 2016,

pp- 101-114.

A. Metwally o al., “Efficient computation of frequent and top-k

elements in data streams,” in Proc. Int. Conf. Dafahese Theory, 2005,

PP 396412

P. Bosshart #f al, “Forwarding metamorphosis: Fast programma-

ble match-action processing in hardware for SDN,” ACM SIG-

COMM Comput. Commun. Rev., vol. 43, pp. 99-110, 2013.

M. Datar ¢f al., “Maintaining stream statistics over diding win-

dows,” SIAM |. Comput., vdl. 31, pp. 17941813, 2002

R. Ben-Basat, G. Einriger, R Friedman, and Y. Kassner, “Heavy

hitters in streams and shiding windows,” in Proc. 35th Ammu. JEEE

Int. Conf. Comput. Comnmn., 2016, pp. 1-9.

5. Narayana ¢f al., “Language-directed hardware design for net-

work performance monitoring,” in Proc. ACM SIGCOMM Conf.,

207, pp. 85-98.

A. Gupta e al., “Sonata: Query-driven streaming network tele-

" in Proc. ACM SIGCOMM Conf, W18, pp. 357-371.

E.].Candes,]. Romberg, and T. Tao, “Robustuncertainty prindples:

Exact signal reconstrudion from highly incomplete frequency

information,” JEEE Trans. Inf. Theory, vol 52, no. 2, pp. 489-509,

Feb. 2006.

M. Abranches, O. Michel, E. Keller, and 5. Schmid, “Eificient net-

work monitoring applications in the kemel with eBPF and XDF," in

Proc. IEEE Conf. Netw. Function Virfualization Softwn. Defined Netm,

2001, pp. 2834

C. Cassagnes, L. Trestioreanu, C. Joly, and R. Hzl'e,”lhzrﬁznf

eBFF for non-intrusive noe monitoring,” in Proc. IEEE

IFIP Netw. Crperations Manage. Symp., 2000, pp. 1-7.

S.Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, “A framewaork

for eBPF-based network fundions in an era of micservices,” IEEE

Trans. Netw. Sere. Manage, vol. 18, no. 1, pp. 133-151, Mar_ 20071

Z. 7ha ¢f d., “Instromenting open vSwitch with moni toring capabili-

ties: Designs and challenges,” in Proc. ACM Symp. SDN Res, 2018,

Pp-1-7.

B. Pfaff ¢t al., “The design and implementation of open vSwitch,”

in Proc. USENIX Symp. Nefw. Syst. Des. Implementation, 2015,
. 117130,

. Li et al, “Detection and identification of network anomalies
using skeich subspaces,” in Proc. 6th ACM SIGCOMM Conyf. Infer-
net Mens., 2006, pp. 147-152
E. Schweller ¢ al., “Reversible sketches for efficent and accurate
change detection over network data streams,” in Proc. 4th ACM
SIGCOMM Conf. Internet Mens., 2004, pp. 207-212
G. Cormode ¢ al, “Finding hierarchical heavy hitters in data
streams,” in Proc. VLDE Conf., 2003, pp. 464475
Y. Zhang, “An adaptive flow counting method for anomaly detec-
tion in SDN,” in Proc. ACM Conf. Emery. Nefw. Experiments Tech-
nal, 2013, pp. 25-30.

G. Cormode & al, “An improved data stream summary: The
count-min sketch and its applications,” | Algorithms, vol 55,
pp- 5875, 2005.

[42]
[43]

[44]

1451

[46]
141
[48]

491

P. Flajplet ef al., “Probabilistic counting algorithms for data base
applications,” J. Comput. Syst. 5a., vol. 31, pp. 182-209, 1985.
M. Alon & al, “The space complexity of imating the fre-
quency moments,” | Comput. System 5ci ., vol. 58, pp. 137147, 1999,
T. Heiland-Jergensen ¢ al., “The express data path: Fast program-
mable ing in the operating system kemel,” in Proc.
ACM Conf. Emerg. Netw. Experiments Technol, 2018, pp. 54-66.

P. Emmerich, D RBaumer, F. Wohlfart, and G. Carle, “Performance
characteristics of virtnal switching,” in Proc. IEEE 3rd Int. Conf.
Cloud Netw, 2014, pp. 120125,

Ryu SDN controller, 2007. [Online]. Available: hitps:/ /ostg.
githubio/ryu/

Caida internet traces 2012, 2012 [Omline]. Available: hitps://
tinyurl com /Sfowerv?

Tepreplay, 2017. [Online]l Available: hitp:/ /tcpreplay appneta.
m

P. Emmerich & al, “MoonGen: A scriptable high-speed pachet
generator,” in Proc. ACM Infermet Mewsu . Comf., 2015, pp. 275-287.

of Scence and of China and the M3
degres from the College of Wiliam and Mary. She is
currently working toward the PhD degree with the
mmmewmm

An Wang received the PhD in sCience
from George Mason University in 2018. She is
currently an assistant professor with the Com-
puter and Data Science Department of Case
Western Reserve University Her research inter-
ests indude in the areas of security for networked
systems and network virtualization, focusing on
software-defined networking and doud systems,
and large-scale network attacks. She is also
interested in the security and privacy issues in
tha Intarnet-of- Things anvironment.

Yang Guo is acomputer scientist with the
Security Division, Mational Insiiute of Standards and
Technology (MIST). His research inierests span
broadly ower the distibuted systems and network-
ing, with a focus on sofware defined networking,
ity, and Al and machine learning. Before
joining the NEST, he was a member of \echnical staff
with Bell Labs (Crawford Hill, N.J) from 2010 to 2015,
and was a principal scientist with Technicolor (for-
merty Thomson) Comporate Research from 2005 to
2010. He recaived muiiple NIST informafion Tech-

niokogy Lab's Buiding the Future awards, Bell Labs’ team work Award, and

was on Technicokor s Fellowship Network as a techinical leadear.

Mﬁmsmﬂyamﬁwmm
science with George Mason University. His reseanch
interests mainly focus on design, analysis, and imple-
mentaiion of algorthms and expeaimenta systemsin
the dstribuied and networking environment, particu-
lartyin the areas of Intemet content dalivery sy stems,
Internet measurement and modaling, mobile and
cloud computing, network and sysem , and
distributed systam. He is a rmq]mtufﬂ'laUEMEF
CAREER Award and the AFOSR YIP Award Cur-
rentdy, he sarves as the chair for IEEE Technical

Commites on the Inemet (TCI), and on the editoral boards for IEEE Trans-
actions an Fﬂmmm IEEE India Councl, IEEE [ntar-

mest ecantly as the ganeral chair for IEEE ICDCS 2021.

= For more information on this or any other computing topic,
please visit our Digital Library at www.computerorg/csdl.
MIMEWHMM%QWWMMWHNM1 UTC from IEEE Xplore. Restrictions apply.

