
9

Elastically Augmenting the Control-path Throughput in
SDN to Deal with Internet DDoS Attacks

YUANJUN DAI and AN WANG, Case Western Reserve University, USA

YANG GUO, National Institute of Standards and Technology, USA

SONGQING CHEN, George Mason University, USA

Distributed denial of service (DDoS) attacks have been prevalent on the Internet for decades. Albeit various
defenses, they keep growing in size, frequency, and duration. The new network paradigm, Software-defined
networking (SDN), is also vulnerable to DDoS attacks. SDN uses logically centralized control, bringing the
advantages in maintaining a global network view and simplifying programmability. When attacks happen,
the control path between the switches and their associated controllers may become congested due to their
limited capacity. However, the data plane visibility of SDN provides new opportunities to defend against
DDoS attacks in the cloud computing environment. To this end, we conduct measurements to evaluate the
throughput of the software control agents on some of the hardware switches when they are under attacks.
Then, we design a new mechanism, called Scotch, to enable the network to scale up its capability and handle the
DDoS attack trafic. In our design, the congestion works as an indicator to trigger the mitigation mechanism.
Scotch elastically scales up the control plane capacity by using an Open vSwitch-based overlay. Scotch takes
advantage of both the high control plane capacity of a large number of vSwitches and the high data plane
capacity of commodity physical switches to increase the SDN network scalability and resiliency under
abnormal (e.g., DDoS attacks) trafic surges. We have implemented a prototype and experimentally
evaluated Scotch. Our experiments in the small-scale lab environment and large-scale GENI testbed
demonstrate that Scotch can elastically scale up the control channel bandwidth upon attacks.

CCS Concepts: • Networks → Network management; Denial-of-service attacks; Programmable net-
works;

Additional Key Words and Phrases: SDN, overlay network, DDoS attacks

ACM Reference format:
Yuanjun Dai, An Wang, Yang Guo, and Songqing Chen. 2023. Elastically Augmenting the Control-path
Throughput in SDN to Deal with Internet DDoS Attacks. ACM Trans. Internet Technol. 23, 1, Article 9 (Febru-
ary 2023), 25 pages.
https://doi.org/10.1145/3559759

1 INTRODUCTION

Distributed denial of service (DDoS) attacks have been prevalent on the Internet for more than
two decades. According to a report by Kaspersky Lab, DDoS attacks doubled in the first quarter of

This work was supported in part by the NSF grants CNS-2007153, CNS-2008468, a Commonwealth Cyber Initiative grant
and a Google Faculty Research Award.
Authors’ addresses: Y. Dai and A. Wang (corresponding author), Case Western Reserve University, 10900 Euclid Ave,
Cleveland, OH, 44106, USA; emails: {yxd429, an.wang}@case.edu; Y. Guo, National Institute of Standards and Technology,
Gaithersburg, MD, 20899, USA; email: yang.guo@nist.gov; S. Chen, George Mason University, 4400 University Dr, Fairfax,
VA, 22030, USA; email: sqchen@gmu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1533-5399/2023/02-ART9 $15.00
https://doi.org/10.1145/3559759

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

https://orcid.org/0000-0001-9040-9237
https://orcid.org/0000-0002-1701-9176
https://orcid.org/0000-0002-3245-3069
https://orcid.org/0000-0003-4650-7125
https://doi.org/10.1145/3559759
mailto:permissions@acm.org
https://doi.org/10.1145/3559759

9:2 Y. Dai et al.

2020 compared with the fourth quarter of 2019, plus an 80% jump compared with the same quarter
previous year [1]. They also find that DDoS attacks keep increasing in their size, frequency and
duration, which highlights the importance of effective defense mechanisms. The new network
paradigm, Software Defined Networking (SDN), has been widely adopted in data centers and
clouds, bringing new opportunities to defend against DDoS attacks in a cloud environment. On
one hand, the capabilities of SDN, including centralized control and data plane visibility, make it
convenient to detect and mitigate DDoS attacks. On the other hand, the architecture itself could be
vulnerable to DDoS attacks.

In the SDN architecture, the control path becomes a critical channel for the controller to obtain
visibility from the data plane. Otherwise, the switches may not function as expected. This is par-
ticularly important if the switch is configured to operate with a large fraction of reactive flows.
Each OpenFlow-capable switch has an OpenFlow Agent (OFA) that is implemented in software
and communicates with the switch’s controller over a secured TCP connection. This connection is
used to inform the controller of the arrival of new flows by the switch and to configure the switch’s
flow table in both reactive (on-demand) and proactive (a priori configured) modes by the controller.
In this article, we call the interconnection between a switch and its controller this switch’s control
path or control channel. Both reactive and proactive modes are used in practice. The reactive mode,
which permits fine-grained control of flows, is invoked when a new flow starts and there is no
entry in the flow table corresponding to this flow.

During attacks, the control path could become congested, or even completely saturated, causing
switches to be disconnected from the controller, thus unable to serve new flows. This, however,
provides a unique opportunity for the controller to detect attacks upon the arrival of abnormal
amount of new flows in the data plane. The congested control path during attacks can be useful as an
indicator to detect DDoS attacks. Through investigations, we identify the control path capacity
as the key to address the above-mentioned security threats. By scaling up the control path capacity,
we could achieve two goals: mitigating the DDoS attacks and accommodating more legitimate
flows in the network.

Intuitively, the control path capacity can be increased by optimizing the OFA implementation.
However, this is not suficient to bridge the large gap between the throughput of the control plane
and that of the data plane, as we shall demonstrate later in our experiments. Generally, a switch’s
data plane forwarding capacity is typically several orders of magnitude larger than that of its
control path. Alternatively, we could limit the number of reactive flows with pre-installed rules
for all expected trafic. But this comes at the expense of fine-grained policy control, visibility, and
flexibility in trafic-management, as evidently required in References [6, 22]. Ideally, one would
like to elastically scale control plane capacity to match the data plane capacity. Mechanisms for
elastically scaling controller capacity have been proposed [12, 24]. However, they only scale the
actual processing capacity of the controller but not the switch-controller control path capacity.

In this article, we set out to explore new mechanisms to mitigate the effect of DDoS attacks
in the network systems. Different from existing approaches, we aim to exploit the available high
data plane capacities to elastically scale up the achievable throughput of control paths upon traf-
fic surges. For this purpose, we propose Scotch, an Open vSwitch1-based overlay that avoids the
limited OFA capacity by using the data plane to scale the controller channel capacity. This scaling
permits the network to handle much higher reactive flow loads, makes the control plane far more

1Certain commercial equipment, instruments, or materials are identified in this article to specify the experimental proce-
dure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best
available for the purpose.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:3

resilient to DDoS attacks by providing a mitigating mechanism, and permits faster failure recov-
ery. Once the trafic surge disappears, Scotch can scale down automatically as well. To achieve this
goal, Scotch essentially bridges the gap between control and data plane capacities by building an
overlay from each physical switch to the Open vSwitches that run on host hypervisors (assuming a
virtualized environment). The idea is to pool the vSwitch-controller capacities of all the vSwitches
and use such capacities to expand the total capacity of control paths. Two significant factors that
we exploit are (i) the number of vSwitches greatly exceeds the number of physical switches, and
(ii) the control paths of vSwitches running on powerful CPUs with suficient memory possess
higher throughput than that of physical switches whose OFA runs on less powerful CPUs with
less memory.

Compared to previous schemes, Scotch offers several unique advantages. First, Scotch enables an
elastic expansion of control channel capacity by tunneling new flows to vSwitches over a control
overlay. When the control path of a physical switch is about to be overloaded,2 the default rule at
the switch is modified so new flows will be tunneled to multiple vSwitches, instead of being sent to
the central controller through Packet-In messages. Note that when the new flows are tunneled to
vSwitches, there is no additional load on the OFA, since the flows are handled by the switch hard-
ware and stay in the data plane. This results in shifting load from the OFA to edge vSwitches. The
vSwitches then send the new flow’s packets to the controller by using Packet-In messages. Since
the vSwitch control agent has much higher throughput than the OFA on a hardware switch, and a
large number of vSwitches can be used, the control plane bottleneck at the OFA can be effectively
eliminated. Note that this ability to scale the control plane throughput almost indefinitely is very
desirable to mitigate any DDoS attack that tries to exploit the limited control channel capacity
at the physical controller. Scotch is not designed to eliminate DDoS attack trafic by dropping the
attacking trafic like many existing approaches do. Neither does it attempt to replace the existing
security tools and solutions. Instead, Scotch attempts to protect the SDN network system itself
during attacks, which is typically missing in the existing endpoint security solutions.

Second, Scotch also uses the overlay to forward the data trafic and separates the handling of
small and large flows. Most flows are likely to be small and may terminate after a few packets are
sent [3]. This is particularly true for flows from attempted DDoS attacks. Scotch can use monitoring
information at the controller to migrate large flows back to paths that use physical switches. Since
the majority of packets belong to a small number of large flows, this approach allows Scotch to
effectively use the high control plane capacity on vSwitches and the high data plane capacity on
hardware switches.

Third, the activation of Scotch overlay can also trigger the network security tools and solutions.
The collected flow information can be fed into the security tools to help pinpoint the root cause
of the overloading system. The security tools will hopefully kick in and tame the attacks. Once
the control paths become uncongested, the Scotch overlay automatically phases out (more details
are discussed in Section 5.5). The SDN network will gradually revert back to the normal working
conditions.

To evaluate the performance of Scotch, we conduct experiments in both a small-scale lab testbed
and a large-scale testbed in GENI [4]. For the GENI testbed, we use 34 emulab-xen nodes, with 22
switch nodes and 12 server nodes. The testbed implements a clos topology, which is typically used
in data centers and clouds to interconnect leaf switches together through spine switches. The
switch nodes run the Open vSwitch version 2.9.5 [28] for the overlay network. We also config-
ure the software switches to emulate the behavior of the hardware switches to preserve fidelity.

2This is determined based on a predefined threshold value, which is obtained from our quantitative analysis of the control
path capacity of the physical switches. More details can be found in Section 3.3.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:4 Y. Dai et al.

Through experiments, we demonstrate that Scotch scales well in a real-world network system while
achieving effective and eficient defense against DDoS attacks.

The rest of the article is organized as follows: Section 2 describes the related work. Section 3
investigates the performance of SDN networks in a DDoS attack scenario. We use DoS attacks
and their mitigation as the extreme stress test for control plane resilience and performance under
overload. Section 4 proposes the Scotch overlay scheme to scale up the SDN network’s control-
plane capacity, and Section 5 describes the design of key components of Scotch. The experimental
results of Scotch performance are reported in Section 6. This chapter is summarized in Section 8.

2 RELATED WORK

Security issues in SDN have been studied and examined from two different aspects: to utilize the
SDN’s centralized control to provide novel security services, e.g., References [27, 34, 35, 42], and
to secure network itself, e.g., References [11, 15, 19, 26, 36]. The SDN security under DDoS attacks
is studied in Reference [36]. A framework, called AvantGuard, is proposed to defend against DDoS
attack trafic. In AvantGuard, two modules are added at the data-plane of the physical switches.
One module functions similarly to a SYN proxy to avoid attacking trafic from reaching the con-
troller. The other module, called acutator module, enables the trafic statistics collection and ac-
tive treatment, e.g., blocking harmful trafic. Although effective, AvantGuard falls short in three
aspects. First, it requires modifications of hardware devices for modules implementation, making
it infeasible to be adopted in practice. Second, the complicated processing of the SYN proxy and
actuator module introduce significant overhead to the data plane. Additionally, the defense mech-
anisms cannot be flexibly disabled when there is no attacking trafic. Third, AvantGuard enforces
all the packet processing in the data plane so the controller loses visibility of the network trafic.
We address the above issues by elastically scaling up the control path capacity as the load on
the control plane increases, due to either the flash crowds or DDoS attacks. No modification at
the physical switches is required. Furthermore, our proposed mechanism can be disabled after
attacks are mitigated.

With the advent of programmable data plane ASICs, network defenses have been supported
in the network architectures as a first-class citizen. FastFlex [41] is proposed as an in-network
solution to mitigate network attacks as needed when packets travel along their end-to-end paths.
For this purpose, network measurement and trafic monitoring needs to be implemented in the data
plane. A similar effort, Mantis [44], is proposed to implement an optimized control plane agent on
the switch CPU to manage and coordinate the measurement statistics collected by the data plane.
Compared to these solutions, our proposed framework does not rely on programmability in the
data plane, making it compatible with the legacy network devices. The state-of-the-art SDN-based
defense solutions are summarized in Table 1.

Centralized network controllers are key SDN components and various controllers have been
developed, e.g., References [5, 14, 18, 24], among others. In our experiment, we use the Ryu [8]
OpenFlow controller. Ryu supports latest OpenFlow at the time of our experiments and is the
default controller used by Pica8 switch [30], the physical switch used in our experiment. Since
Scotch increases the control path capacity, the controller will receive more packets. A single node
multi-threaded controller can handle millions of PacketIn/sec [38]. A distributed controller, such as
Reference [12], can further scale up capacity. The design of a scalable controller is out of the scope
of this work. Trafic detouring techniques have been employed to reduce the routing table size, e.g.,
References [2, 23, 32, 45], where trafic is re-routed inside the physical networks. Scotch employs an
overlay approach for trafic detouring, which offers better flexibility and elasticity than the in-
network trafic detouring approach. In addition, Scotch can help reduce the number of routing
entries in the physical switches by routing short flows over the overlay. Similar to Scotch,

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:5

Table 1. SDN-based Defense Solutions against Network Attacks

Research

Resonance [27]

FloodDefender [34]

FRESCO [35]

DDoS attack
detection [42]

SPHINX [11]

AVANT-GUARD [36]

TopoGuard [19]

Participatory
Networking [15]

POSEIDON [26]

Defense Type

Mitigation

Detection,
Mitigation

Prevention

Detection

Detection

Mitigation

Attacks and
Mitigation

Prevention

Mitigation

Proposed methodology, Technique, or Procedure

Programmable switches are used to manipulate trafic at lower
layers; these switches take actions to enforce high-level security
policies based on input from both higher-level security policies and
distributed monitoring and inference systems.

FloodDefender strands between the controller platform and other
controller apps. It protects the system against SDN-aimed DoS
attacks based on three techniques: table-miss engineering, packet
filter, and flow table management.

FRESCO provides an OpenFlow security application development
framework for fast development of sophisticated control and attack
detection logic. Security functions are realized through a sequence
of event-driven processing functions.

A sequential method and a concurrent method are proposed
to adaptively change the flow monitoring granularities on all
switches to quickly locate the potential victims and suspicious
attackers.

SPHINX gleans topological and forwarding state metadata from
OpenFlow control messages to build incremental flow graphs and
verify all SDN state in realtime.

It leverages SYN proxy and actuating triggers to mitigate SYN
flooding attacks in the data plane.

New attacks against SDN that can poison network topology is
investigated and countermeasures, such as authentication and
verification, are proposed to defend against such attacks.

It provides SDN APIs to enable users to safely decompose control
and visibility of the network and to address conflicts between
untrusted users and conflicts across requests.

It provides a modular DDoS policy abstraction by utilizing pro-
grammable data plane to support a range of policies, shielding the
low-level hardware complexity.

Deployment

Switch

Controller

Controller

Controller

Controller

Switch

Switch and
Controller

Controller

Switch

FloodDefender [34] is proposed to address the communication link congestion issue in the SDN
architecture. The proposed solution adopts a similar ofloading technique to detour table-miss
trafic to neighbor switches for mitigating congestion.

DevoFlow [9] has some similarity with our work in the sense that it identifies limited control-
plane capacity as an important issue impacting SDN performance. The proposed DevoFlow mech-
anism maintains a reasonable amount of flow visibility that does not overload the control path. To
achieve this goal, Devoflow relies on multipath wildcard rules and rule cloning actions to avoid
the involvement of SDN control plane in flow setup. However, such a mechanism may fail when
processing attacking trafic, since the attacks generally come from a wide range of sources, partic-
ularly in DDoS attacks, that can hardly be handled by the pre-installed wildcard rules. The authors
of Reference [21] investigate the SDN emulation accuracy problem. Their experiments also reveal
SDN switches’ slow control-path problem, which is consistent with our findings using a different
type of physical switch. However, the goal of their work is quite different from ours. While they
attempt to improve the emulation accuracy, we develop a new scheme to improve SDN’s control-
path capacity, thus preventing the system from being overloaded when there is network saturation.
These works are also summarized in Table 2.

3 OPENFLOW CONTROL PATH BOTTLENECK

3.1 Background

In a typical SDN architecture, all the switches are connected to a central controller via secure
TCP connections. Each switch consists of both a data plane and a simple control plane proxy—the

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:6 Y. Dai et al.

Table 2. Traffic Detouring Techniques in SDN

Research

SEATTLE [23]

ViAggre [2]

DIFANE [45]

DevoFlow [9]

RoDiC [10]

Cooperative Caching [33]

Detouring Purpose

Enterprise network
management

Shrink routing table

Reduce reliance
on centralized
control plane

Scale limited control
path capacity

Trafic monitoring

Rule placement
and caching

Proposed methodology, Technique, or Procedure

A network-layer DHT is built to function as a directory service to
perform address resolution. It also leverages an explicit and reliable
cache update protocol based on unicast.

A virtual topology is configured that causes the virtual prefixes to
be aggregatable, thus allowing for routing hierarchy that shrinks the
routing table.

An ingress switch encapsulates and redirects the packet to the appro-
priate authority switch, which have larger memory and processing
capability, based on the partition information.

It relies on multipath wildcard rules and rule cloning actions to avoid
the involvement of SDN control plane in flow setup.

It leverages packet grouping and state overlap to support exact robust
distributed monitoring of trafic flows under network noise.

Device connectivity in the data plane is leveraged to allow multi-ple
switches to work together so accessing the control plane can be
avoided.

OpenFlow Agent (OFA). The data plane hardware is responsible for packet processing and
forwarding, while the OFA allows the central controller to interact with the switch to control its
behaviors.

In the reactive operation mode of OpenFlow, when a packet arrives at a switch, the switch
performs a lookup in the flow table first to determine how to process the packet. If the packet
does not match any existing rule, then it is treated as the first packet of a new flow and is passed
to the switch’s OFA. The OFA encapsulates the packet into a Packet-In message and delivers the
message to the central controller. The Packet-In message contains either the packet header or the
entire packet, depending on the configuration, along with other metadata information such as
ingress port ID, and so on. Upon receiving the Packet-In message, the OpenFlow controller de-
termines how the flow should be handled based on policy settings and the global network state.
If the flow is admitted, then the controller computes the flow path and installs new flow entries
at the corresponding switches along the path. This is done by sending a flow modification mes-
sage to the OFA. The OFA then installs the new forwarding rule into the flow table. After that,
packets would follow the determined paths to travel across the network system. A major chal-
lenge of the current OpenFlow switch implementation is that the OFA typically runs on a low-
end CPU that has limited processing power. This seems to be a reasonable design choice, since
the main goal of SDN is to move the control functions out of the switches. Thus, the switches
can be simple and cost-eficient. However, such a design can significantly limit the control path
throughput.

3.2 Attack’s Impact on SDN Switch Performance

Although the limited control path capacity has been demonstrated in DevoFlow [9], it does not
show the impact of such limitation for different types of switches under DDoS attacks. To better
understand this limitation, we perform a case study with DDoS attacks, where an attacker gener-
ates SYN flooding attack packets using spoofed source IP addresses. The switch treats each spoofed
packet as a new flow and forwards the packet to the controller. Due to the insuficient processing
power of the OFA, a DDoS attack can cause Packet-In messages to be generated at a much higher
rate than what the OFA can handle. This may cause the controller to become unreachable from
the switch due to control path congestion. Even worse, legitimate trafic would be blocked due to
such a denial-of-service scenario. Note that this blocking of legitimate trafic can occur whenever
the control path is overloaded, e.g., under DDoS attacks or due to flash crowds.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:7

Fig. 1. DDoS attack experiment setup.

Here, we experimentally evaluate the impact of SDN control path overload on packet forwarding
performance. We build a testbed in our lab. Its setup can be found in Figure 1. We experiment with
two types of hardware switches: Pica8 Pronto 3780 and HP Procurve 6600, with OpenFlow 1.2 and
1.0 support, respectively. For comparison, we also experiment with Open vSwitch, which runs on
a host with an Intel Xeon 5650 2.67 GHz CPU. We use the Ryu OpenFlow controller, since it was
one of the few controllers that supported OpenFlow 1.2 at the time of our experiments, which is a
requirement by Pica8 Pronto switch. The experiments are conducted using one hardware switch at
a time. The attacker, the client, and the server are all attached to the data ports, and the controller is
attached to the management port. We use hping3 [20] to generate attacking trafic. The Pica8 switch
uses 10 Gbps data ports, and the HP switch and vSwitch have 1 Gbps data ports. The management
ports for physical switches are 1 Gbps.

In our experiments, both the attacker and the legitimate client attempt to initiate new flows
to the server. We simulate the new flows by spoofing each packet’s source IP address. Since the
OpenFlow controller installs the flow rules at the switch using both the source and destination IP
addresses, a spoofed packet is treated as a new flow by the controller. Hence, in our experiment,
the flow rate, i.e., the number of new flows per second, is equivalent to the packet rate. We set the
client’s new flow rate at 100 flows/sec, while varying the attacker’s attacking rate from 10 to 3,800
flows/sec. We collect the network trafic using Tcpdump at the client, the attacker, and the server.

We define the client flow failure fraction to be the fraction of client flows that are not able to
pass through the switch and reach the server. The client flow failure fraction is computed using
the collected network traces. Figure 2 plots the client flow failure fraction for different switches
as the attacking flow rate increases. We observe that all three switches suffer from the client flow
failure as the attacking flow rate increases. Note that even at the peak attacking rate of 3,800
flows/sec, and even with the maximum packet size of 1.5 Kbytes, the trafic throughput could only
achieve 45.6 Mbps, a small fraction of the data link bandwidth. This indicates that the bottleneck
is at the control path rather than the data plane. In addition, both Pica8 and HP Procurve physical
switches exhibit much higher flow failure fraction than the software-based Open vSwitch, suggest-
ing software-based vSwitch has higher control path capacity than the two physical switches tested
in this experiment. We are among the first ones to make such an observation, which has also been
verified by Huang et al. [21] in their exploration later.

3.3 Profiling the Control Path Bottleneck

We then try to identify the component along the control path that is the root cause of such bottle-
neck. During this process, we also attempt to quantify the key parameters, such as the maximal

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:8

Fig. 2. Physical switches and Open vSwitch control
path throughput comparison.

Y. Dai et al.

Fig. 3. SDN switch control path profiling.

flow installation rates of different switches without causing legitimate flow failures. These key
parameters provide important insights into the system capacities for network operators to make
provisioning decisions during attacks. For example, the SDN controller can determine when the
default forwarding rule needs to be updated to the tunneling rule based on the control path capac-ity
of physical switches so the attacking or flashcrowd trafic can be forwarded to the vSwitches before
the physical switches become overloaded.

Recall that a new flow arrival at the SDN switch triggers the following control path actions: (1)
a Packet-In message is sent from OFA to the controller; (2) the controller sends back a new rule to
OFA; and (3) OFA inserts the rule into the flow table. The new flow can go through the switch if
all the above three steps are completed successfully. Below, we use the similar experimental setup
as in the previous experiment (see Figure 1), with the client generating a new packet per flow to-
wards the server while the attacker is turned off. The network trafic is traced at the server and the
OpenFlow controller. We measure the Packet-In message rate (observed at the controller), the flow
rule insertion rate (observed at the controller), and the rate at which the new flows successfully
pass through the switch and reach the destination (observed at the server).

Figure 3 plots the Packet-In message rate, flow rule insertion rate (one rule is carried in a single
packet), and the received packet/flow rate at the server. They are represented by different line
styles in the figure. We use the Pica8 switch for this experiment. We observe that all three rates are
identical, thus indistinguishable in Figure 3, which suggests that the OFA’s capability in generating
Packet-In messages is the bottleneck. Experiments in Section 6.2 further show that the rule insertion
rate that the switch can support is indeed higher than the Packet-In message rate for Pica8 switch.
A limited amount of TCAM at a switch can also cause new flows being dropped [25]. A new
flow rule will not be installed at the flow table if it becomes full. In the above experiment, OFA’s
capability in generating Packet-In messages is the bottleneck while the TCAM size is not. However,
our proposed solution provides a more comprehensive protection than existing work in that it is
also applicable to the TCAM bottleneck scenario.

We use Pica8 Pronto switch instead of HP Procurve switch in this experiment and most of the
later experiments. Though the Procurve switch has higher OFA throughput (see Figure 2), we use
the Pica8 Pronto switch due to the more advanced OpenFlow data-plane features that it supports,
e.g., tunneling, multiple flow table support, and so on. Also, the Pronto switch can do wire speed
packet processing with full OpenFlow support, while the older Procurve switch used in our
experiments cannot. We do not intend to compare different hardware switches here, but just to
explain the rationale for our selection of equipments.

In summary, we make the following observations and quantitative analysis from the
experiments:

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:9

• The control path at the physical switches has limited capacity. The maximum rate at
which the new flows can be set up at the switch is low—it is several orders of magnitude
lower than the data plane throughput. Note that FPGA-based or smartNIC-based switches do
not suffer from such limitations. Thus, they are out of the scope of this article.

• The OpenFlow network running in reactive mode is very vulnerable to DDoS attacks or other
volumetric attacks. The operation of SDN switches can be easily disrupted by the increase of
control trafic due to DDoS attacks, unless the switch operates very much in proactive mode
at the cost of data plane visibility.

• The vSwitches have higher control path capacity but lower data plane throughput compared to
the physical switches. The higher control path capacity can be attributed to the more
powerful CPUs on the general purpose computers where the vSwitches typically run on.

4 SCALING UP SDN CONTROL PATH CAPACITY USING SCOTCH OVERLAY

Our goal here is to elastically scale up the SDN control path capacity when needed without sacrific-
ing any of the advantages of SDN regarding the controller having high visibility and fine-grained
control of all flows in the network. A straightforward approach is to use more powerful CPUs
for the OFA combined with other design improvements that allow faster access rates between the
OFA and line cards. One can also improve the design and implementation of OFA software stack
to enable more eficient message processing. With continued research interest in the SDN network
control plane [9], these improvements have been proposed. However, the significant gap between
the control path throughput and data path flow setup requirements will still persist. As a result, it
may not be economically desirable to dimension the OFA capacity to be based on the maximum
possible flow arrival rate given that the peak flow rate may be several orders of magnitude higher
than the average flow rate [3]. Another approach is to leverage in-band control and dedicate one
of the physical switch ports to the overloaded new flows. Whenever the control path is overloaded,
the new flows are forwarded to the controller via this dedicated port at the data-plane. However,
using a dedicated physical port does not fully solve the problem. The maximum flow rule inser-
tion rate is limited as well, as shown in Section 6.2. The controller cannot install the flow rules fast
enough at physical switches when overloaded.

Software-based virtual switches (e.g., Open vSwitch) have been widely adopted [39]. vSwitches
offer excellent switching speed [7, 13] and high control path throughput, as shown in the previous
section. The interesting question is whether we can use vSwitches to improve the control path
capacity of physical switches. Scotch, our proposed solution, addresses this question and achieves
high control path throughput using a vSwitch-based overlay.

4.1 Scotch: vSwitch-based SDN Overlay Network

Figure 4 depicts the architecture of the Scotch overlay network. The main component of Scotch is a
pool of vSwitches that are distributed across the corresponding SDN network, e.g., across multiple
racks in a data center network, or distributed at different locations for a wide-area network. We
select vSwitches that are running at hosts that are lightly loaded and with under-utilized link
capacity.

The Scotch overlay consists of three major components: (i) vSwitch mesh - a fully connected
mesh (using tunnels) of vSwitches; (ii) the tunnels that connect the underlying physical switches
with the vSwitch mesh; and (iii) the tunnels that connect the end hosts with the vSwitch mesh.
The tunnels can be configured using any of the available tunneling protocols, such as GRE, MPLS,
MAC-in-MAC, and so on; the tunnels are built over the underlying SDN network’s data plane.
The tunnels connecting the physical switches with the vSwitch mesh allow a physical switch to

forward the new flows to the vSwitches whenever the physical switch becomes overloaded in

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:10 Y. Dai et al.

Fig. 4. Architecture of Scotch overlay network.

its control path. The vSwitches can then handle the new flow setup and packet forwarding tasks for
these flows. The benefits are two-fold. First, the new flows can continue to be served by the SDN
controller in face of control path congestion. Second, the SDN controller can continue to observe
new flows, which gives us the opportunity to mitigate the possible DDoS attacks (more in Section
5.2). The collected flow information can also be fed into network security applications to diagnose
the root cause of the control path congestion and deploy mitigation if needed. For the purpose of
load-balancing, a physical switch is connected to a set of vSwitches so the new flows can be
distributed among them. Further details of load-balancing are described in Section 5.1.

The tunnels connecting the end hosts with the vSwitch mesh allow the new flows to be deliv-
ered to the end hosts over the Scotch overlay. Once a packet is forwarded from a physical switch
to a Scotch vSwitch, it needs to be forwarded to the destination. This can be done if a path over
the underlying SDN network can be set up on demand. But this may not be desirable, since it may
overload the control paths of physical switches on the path and create other hot spots. An alterna-
tive solution is to configure tunnels between the Scotch vSwitch and the destinations proactively.
This, however, would lead to a larger number of tunnels, since it requires one tunnel from each
Scotch vSwitch to each host.

To avoid these problems, we partition the end hosts based on their locations so all hosts are
covered by one or more nearby Scotch vSwitches. For example, in the case of data center SDN
network, there may be two Scotch vSwitches at each rack. Tunnels are set up to connect the host
vSwitches with their local Scotch vSwitches.

Finally, we choose to form a fully connected vSwitch mesh to facilitate the overlay routing.
The arrows in Figure 4 show how the packets are forwarded through the Scotch overlay when the
Scotch is enabled. Packets are first forwarded from the physical switch to a randomly chosen Scotch
vSwitch. Then they are routed across the mesh to the vSwitch that is closest to its destination. The
receiving Scotch vSwitch further delivers the packets to the destination host via the tunnel. Finally,
the host vSwitch delivers the packet to the destination VM. Since there is a full-mesh tunnel connec-
tivity between Scotch vSwitches, a packet traverses three tunnels before reaching its destination.

4.2 Workflow of Scotch

Next, we use an example to describe how the Scotch overlay network scales up the control path
throughput and also illustrate how packets are forwarded if middleboxes are involved. Figure 5

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

1

2

3

4 5

6 7 8 5

Elastic Defense Against DDoS Attacks 9:11

Fig. 5. An example showing how Scotch works.

illustrates the workflow of the Scotch scheme. The OpenFlow controller monitors the rate of Packet-
In messages sent by the OFA of each physical switch to determine if the control path is congested.
If a control path is deemed to be congested, then the new flow packets arriving at the switch are
forwarded to one or multiple Scotch vSwitches (only one is shown in Figure 5) (Step in Figure 5).
This allows these packets to leave the physical switch via the data plane instead of being handled by
the overloaded OFA and going through the congested control path. Details of overload forwarding
rule insertion at the physical switch and load balancing across multiple vSwitches are discussed
in Section 5.1.

When the packet reaches the vSwitch, the vSwitch treats the packet as a new flow packet. The
vSwitch OFA then constructs a Packet-In message and forwards it to the OpenFlow controller
(Step in Figure 5). We configure the vSwitch to forward the entire packet to the controller so
the controller can have more flexibility in deciding how to forward the packet. The controller can
choose to set up the path either from the vSwitch or from the original physical switch. If the path is
set up from the vSwitch, then the Scotch overlay tunnels are used to forward the packet. The
controller needs to set up the forwarding rules at the corresponding vSwitches, as done in Step
in Figure 5. The packets continue to be forwarded on the Scotch overlay until they reach their
destinations (Steps and in Figure 5). If middleboxes are required along the path, e.g., a firewall needs
to be passed through as shown in Figure 5, then the packets are routed through the firewall (Steps ,
, , and). Details of maintaining policy consistency are described in Section 5.4. Packets from the
same flow follow the same overlay data path.

5 DESIGN DETAILS

In this section, we describe the design details of the Scotch overlay scheme. We start with how to
forward the new flow packets to vSwitches in a load-balancing manner. We then describe the
OpenFlow controller’s management of the Scotch overlay and the policy consistency maintenance
when large flows are migrated from the Scotch overlay to the underlying physical network. Finally,
we discuss how to withdraw non-congested switches from the Scotch overlay and how to handle
vSwitch failure and new vSwitch join.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:12 Y. Dai et al.

5.1 Load Balancing among vSwitches

In general, we want to balance the network trafic among different vSwitches in the overlay to
avoid performance bottlenecks. Hence, when multiple vSwitches are used to receive packets from a
physical switch, we need a mechanism to do load balancing between these vSwitches. In the
following, we describe a method that implements load balancing by using the group table feature
offered in OpenFlow Spec 1.3 [17]. A group table consists of multiple group entries, where each
entry contains group ID, group type, counters, and action buckets. Group type defines the group
semantics. Action buckets contain an ordered list of action buckets, where each action bucket
contains a set of actions to be executed and their associated parameters.

To achieve load balancing, we use select group type, which chooses one bucket from the action
buckets to be executed. The bucket selection algorithm is not defined in the spec and the decision
is left to the switch vendors/users. Given that ECMP load balancing is well accepted for router im-
plementations, it is conceivable that using a hash function based on the flow ID may be a preferred
choice for many vendors. We define one action bucket for each tunnel that connects the physical
switch with a vSwitch (see Figure 4). The action of this bucket is to forward the packet to the cor-
responding vSwitch using the pre-set tunnel. For example, the action could be encapsulating the
packet with MPLS tag and forward it to a port.

5.2 Flow Management at OpenFlow Controller

Identifying the flows at the controller. To manage the flows at the central controller, we first
need to make sure that the Packet-In message arriving at the controller from the Scotch vSwitch
carries the same information as those coming directly from the physical switches. This is mostly
true, since the Packet-In messages contain similar information in both cases. But there are two
exceptions. First, when the packet comes from a vSwitch, it does not contain the original physical
switch ID. This can be easily addressed by maintaining a table to map the tunnel ID to the physical
switch ID, so the controller can infer the physical switch ID based on the tunnel ID contained in the
Packet-In metadata. Second, the packet from vSwitch also does not contain the original ingress port
ID at the physical switch. We propose to use a second label to solve this problem. In the case of
MPLS, an inner MPLS label is pushed into the packet header based on the ingress port. In the case
of GRE, the GRE key is set according to the ingress port.

Note that, since the packets need to be load balanced across different vSwitches, two flow tables
are needed at the physical switch: The first table contains the rule for setting the ingress port; and
the second table contains the rule for load balancing. The vSwitch strips off the inner MPLS label
or the GRE key, attaches the information on the Packet-In message, and sends them to the
controller. The controller maintains the flow’s ingress physical switch ID and the ingress port ID at
the Flow Info Database. Such information will be used for large flow migration, as described in
Section 5.3.
Flow grouping and differentiation. Next, we describe how the OpenFlow controller manages
the Packet-In messages of new flows. When a new flow arrives, the controller has three choices: (1)
forwarding the flow over the physical SDN network, starting from the first-hop physical switch
encountered by the flow; (2) forwarding the flow using the vSwitch overlay network, starting from
the vSwitch that forwards the first packet using the Packet-In message; and (3) dropping the flow
when the load is too high, especially if the flow is identified as a DDoS attack flow. In general, we
can classify the flows into different groups and enforce fair sharing of the controller service
across groups. For example, we can group the flows according to which customer it belongs to, so we
can achieve fair sharing among different customers. In the following, we give an example of
providing fair access to the SDN network for the flows arriving from different ingress ports of the

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:13

Fig. 6. Scotch Flow management at the OpenFlow controller for one SDN switch: ingress-port differentiation
and large flow migration from the Scotch overlay to the SDN network.

same switch. This is motivated by the observation that if the DDoS attack trafic comes from one
or a few ports, then we can limit its impact to those ports only.

For the new flows from the same physical switch, the OpenFlow controller maintains one queue
per ingress port (see Ingress port differentiation at the lower part of Figure 6). The service rate for
the queue is R, which is the maximum rate at which the OpenFlow controller can install rules at the
physical switch without insertion failure or packet loss in the data plane. We will investigate how to
choose the proper R value in Section 6. The controller serves different queues in a round-robin
fashion to share the available service rate evenly among ingress ports. If a queue size grows to be
larger than the overlay threshold, then we assume that the new flows at this queue are beyond the
control path capacity of the physical switch. Hence, the controller will route the flows surpassing
the threshold over the Scotch overlay by installing forwarding rules at corresponding hardware
switch and vSwitches. If a queue size continues to build up, and exceeds the dropping threshold,
then neither the physical network nor the Scotch overlay is able to carry these flows. The Packet-In
messages beyond the dropping threshold will simply be dropped from the queue.

Note that the focus of this chapter is to provide a mechanism to mitigate the impact of SDN
control path congestion, which may be caused by flash crowds or DDoS attacks. Although our
scheme offers high visibility to new flows and the opportunity and mechanism to monitor and
handle flows, we do not attempt to address DDoS attack detection and diagnosis problems. Existing
network security tools or solutions can be readily integrated into our framework, e.g., as a new
application at the SDN controller, to take advantage of the visibility and flexibility offered by Scotch.

5.3 Migrating Large Flows out of the Overlay Network

Although vSwitch overlay can scale up the control path capacity, it is not desirable to forward
flows by using vSwitches alone, since the vSwitch data plane has a much lower throughput than
that of physical switches. In addition, the forwarding path on the overlay network is longer than
the path on the physical network. In this section, we discuss how to take advantage of the high
data plane capacity of the underlying physical network.

Measurement studies have shown that the majority of link capacity is consumed by a small
fraction of large flows [3]. Hence, our idea is to identify the large flows in the network and migrate
the large flows out of the Scotch overlay. Since there are few large flows in the network, such

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:14 Y. Dai et al.

migration should not incur major control path overhead. The middle part of Figure 6 illustrates
the operations that the controller conducts for large flow migration. The controller sends the flow-
stats query messages to the vSwitches and collects the flow stats including packet counts. The large
flow identifier selects the flows with large packet counts and puts the large flow migration requests
into the large flow migration queue. The controller then queries the Flow Info Database to look up
the flow’s first hop physical switch. The controller then computes the path and checks the message
rate of all switches on the path to make sure their control path is not overloaded. It then sets up
the path from the physical switch to the destination. This is done by inserting the flow forwarding
rules into the admitted flow queue of the corresponding switches (top part of Figure 6). The rules
will be installed on the switches when the inserted requests are pulled out of the queue by the
controller. Once the forwarding rules are installed along the path, the flow will be moved to the
new path and remain at the physical SDN network for the rest of time. Note that the forwarding
rule on the first hop switch is added at last so packets are forwarded on the new path only after
all switches on the path are ready.

When managing different queues, the OpenFlow controller gives the highest priority to the
admitted flow queue, followed by the large flow queue. Ingress-port differentiation queues receive
the lowest priority. Such a priority order causes small flows to be forwarded on physical paths
only after all large flows are accommodated.

5.4 Maintaining Policy Consistency

When we migrate a flow from Scotch overlay to the underlying physical network, we need to
make sure that both routing paths satisfy the same policy constraints. The most common policy
constraints are middlebox traversal, where the flow has to be routed through a sequence of mid-
dleboxes in a specific order. A naive approach is to compute the new path of physical switches
without considering the existing vSwitch path. For example, if a flow is routed first through a
fire-wall FW1 and then a load balancer LB1 on the vSwitch paths, then we may compute a new
path that uses a different set of firewall FW2 and load balancer LB2. This approach in general does
not work, since the middleboxes often maintain flow states. When a flow is routed to a new
middlebox device in the middle of the connection, the new middlebox may either reject the flow
or handle the flow differently due to lack of pre-established context. Although it is possible to
transfer flow states between old and new middleboxes, this requires middlebox specific changes
and may lead to significant development cost and performance penalty.

To avoid the middlebox state synchronization problem, our design enforces the flow to go
through the same set of middleboxes in both the vSwitch and physical switch paths. Figure 7
illustrates how this is done. In this example, we assume a typical configuration where a pair of
physical switches, SU and SD , are connected to the input and output of the middlebox (firewall),
respectively. But the solution also works for other configurations, as we will discuss at the end of
this section.

The green line on the top shows the overlay path. The vSwitches in the overlay mesh connect to
the physical switches SU and SD with tunnels. In the case that the physical switches cannot support
tunnels to all vSwitches in the mesh, a few dedicated vSwitches in the mesh that are close to the
middleboxes can serve as dedicated tunnel aggregation points. The upstream physical switch, SU ,
decapsulates the tunneled packet before forwarding the packet to the middlebox to ensure that
the middlebox receives the original packet without the tunnel header. Similarly, the downstream
physical switch, SD , encapsulates the packet again so the packet can be forwarded on the tunnel.
The flow rules at physical switches SU and SD (green entries in the flow tables) enforce the flows
on the overlay path to go through the firewall and stay on the overlay.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:15

Fig. 7. Maintain policy consistency in Scotch.

The red line at the bottom shows the path for flows that are not routed on the overlay. They can be
either elephant flows that are selected to migrate or the flows that are set up while the physical
switches have suficient control plane capacity. The flow rules for forwarding such flows are shown
in red in the flow tables. The red (physical path) rules have higher priority than the green (overlay)
rules. Each individual flow forwarded along the physical path requires a red rule, while all flows on
the overlay path share the same green rule. In other words, flows without individual rule entries are
forwarded on the overlay path by default. This is important for scalability: When the control plane
is overloaded, all flows can be forwarded on the overlay path without incurring per-flow setup
overhead on the physical switches.

Figure 7 shows an example of how flows are forwarded. Initially, flow f1 is routed over the un-
derlying physical network while other flows are routed over the Scotch overlay. When an elephant
flow, such as f2, needs to be migrated to the physical path at the bottom, the controller adds an
additional forwarding rule to make SD forward flow f2 to the physical network.

We next examine the impact of different middlebox connection types. In the data center net-
work, sometimes the middleboxes are “attached” to a physical switch. This happens, for instance,
when the middlebox is integrated with the physical switch or router. This is essentially combining
the SU and SD in Figure 7. Since the rules on both switches are independent of each other, we
can simply combine the rules on SU and SD and install them on the “attaching” switch. Virtual
middleboxes that run on Virtual Machines may also be combined. In this case, a vSwitch can run on
the hypervisor of the middlebox host and execute the functions of SU and SD .

5.5 Withdrawal from Scotch Overlay

As the DDoS attack stops or the flash crowd goes away, the switch control path becomes noncon-
gested and hence the Scotch overlay becomes unnecessary. We then stop forwarding new flows to
the overlay at the noncongested switch while keeping existing flows uninterrupted. The controller
detects such control path condition change by monitoring the new flow arrival rate at physical
switches. If the arrival rate falls below certain threshold, then the OpenFlow controller starts the
withdrawal process. The withdrawal process consists of three steps. First, for the flows that are
currently being routed over the Scotch overlay, the controller inserts rules at the switch to contin-
uously forward these flows to the Scotch overlay. Since the large flows should have been already
migrated to the physical network, most of these flows are likely to be small flows and may ter-
minate shortly. Second, the controller removes the default flow forwarding rule that was inserted
initially when Scotch was activated (Section 5.1). The new flow packets will be forwarded to the
OpenFlow controller directly via OFA. Third, if any remaining small flows routed on the over-
lay become large flows, then they can still be migrated to the physical path following the same

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:16 Y. Dai et al.

migration procedure. Note that the Scotch overlay is for the entire network, so other congested
switches may continue to use Scotch overlay.

5.6 Configuration and Maintenance

To configure the Scotch overlay, we first need to select host vSwitches based on the planned control
path capacity, physical network topology, host and middlebox locations, and so on. Extra backup
vSwitches are added to provide necessary fault tolerance. We then configure the Scotch overlay
by setting up tunnels between various entities: between physical switches and vSwitches for load
distribution, between each pair of mesh vSwitches for forwarding, and between mesh and host
vSwitches for delivery. vSwitch offers reasonably high data throughput [7]. Recent advancements
in packet processing on general purpose computers, such as the systems based on the Intel DPDK
library, can further boost the vSwitch forwarding speed [13] significantly. In addition, vSwitch
has low overhead to support software tunneling. According to Reference [40], it is possible to do
tunneling in software with performance and overhead comparable to non-encapsulated trafic, and
to support hundreds of thousands of tunnel end points. In terms of configuration overhead,
although the Scotch overlay can be large, configuration is done largely ofline, so it should not
affect operation eficiency.

A vSwitch may fail or stop functioning properly. Hence, we need to detect such failures to
avoid service interruption. vSwitch has a built-in heartbeat module that periodically sends the
ECHO REQUEST message to the OpenFlow controller, which responds with the ECHO RESPONSE
message. The heartbeat period can be adjusted by changing configuration parameter. The heart-
beat message enables the OpenFlow controller to detect the failure of a vSwitch. In fact, several
OpenFlow controllers, e.g., Floodlight [16], already include the vSwitch failure detection module.
Once a controller detects the failure, the controller can replace the failed vSwitch with the backup
in the action buckets installed in the physical switch, as described in Section 5.1. The flows that are
originally routed through the failed vSwitch will then be handled by the backup vSwitch, which
treats the affected flows as new flows. When recovered, the failed vSwitch can join back Scotch as a
new or backup vSwitch.

We may also need to add new vSwitches to increase the Scotch overlay capacity or replace the
departed vSwitches. A new vSwitch becomes part of the overlay after it is connected with other
vSwitches or physical switches, depending on its role, and is registered with the Scotch overlay
controller. We do not expect frequent vSwitch additions or failures.

6 EVALUATION

We implement the Scotch overlay management as an application on the Ryu OpenFlow controller.
We also construct a basic Scotch overlay with multiple vSwitches and form an overlay together
with end-hosts and physical switches using MPLS tunnels. Note that attackers, servers, clients,
and vSwitches can be anywhere as long as a tunnel can be set up between the physical switch and
them. We use experiments to demonstrate the benefits of ingress port differentiation and large
flow migration. We also show the growth in the Scotch overlay’s capacity with addition of new
vSwitches into the overlay. We further investigate the extra delay incurred by the Scotch overlay
trafic relay. Finally, we conduct both trace-driven and benchmark-based experiments that demon-
strate the benefits of Scotch to the application performance in a realistic network environment.

6.1 Evaluation Setup

Scotch is evaluated over a small-scale testbed and a large-scale testbed. The small-scale testbed
resides in our lab, while the large-scale testbed runs over GENI. The architecture of the small
testbed is shown in Figure 1 and the architecture of the GENI testbed is shown in Figure 8.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:17

Fig. 8. GENI testbed setup.

Table 3. GENI Experiment Setup

Topology
Nodes

Switches
End-hosts
Node Type

CPU
NIC
OS

Open vSwitch
Openflow version

Controller

Clos
34
22
12

x86_64 emulab-xen
E5-2450(2.10 GHz)

1Gbps
Ubuntu 18.04.1

2.9.5
1.0

Ryu 4.34

For building the GENI testbed, there are 34 x86_64 emulab-xen nodes (22 switch nodes and 12
end-host nodes) with Intel Xeon E5-2450 CPU, Ubuntu 18.04.1 and 1 Gbps NICs. For the software
vSwitches, we use Open vSwitch version 2.9.5 that supports OpenFlow version 1.0. The controller
is running on the Ryu controller platform of version 4.34. The nodes form a clos topology with 3
core switches, each of which connects to a sub-tree of depth 3 with fanout of 2. A summary of the
experiment setup is also shown in Table 3. Due to lack of direct access to the GENI hardware
switches, we use software switches to emulate the behaviors of hardware switches. Specifically, we
limit the control-path bandwidth of the software switches to 35 packets/sec for each interface of
the switch based on the measurement study conducted in Section 3. Among the 12 end-hosts, there
are two attacker nodes that connect to the same top-of-rack (ToR) switches with other normal
end-host nodes. Thus, the generated attacking trafic and normal trafic traverse the same ToR
switches.

6.2 Maximum Flow Rule Insertion Rate

As shown in Figure 6, the maximum rate at which the OpenFlow controller installs the new rules
into the switch, R, is an important design parameter. The larger the R, the better, so more trafic
can be routed over the physical network. However, the value of R needs to be set properly so all the
new flow rule insertion requests can be successfully handled at the switch. We first measure the
maximum flow rule insertion rate allowed by the Pica8 switch. We let the Ryu controller generate
flow rules at a constant rate and send them to the Pica8 switch. The switch OFA installs the rules
into the flow table. The generated rules are all different, and the time-out period of a rule is set to be
10 seconds. Throughout the experiment, there is no data trafic passing through the switch.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

P

9:18

Fig. 9. Maximum flow rule insertion rate at the Pica8
switch.

Y. Dai et al.

Fig. 10. Interaction of the data path and the con-
trol path at the Pica8 switch.

The Ryu controller periodically queries the switch to get the number of rules currently installed in
the flow table. We set the query interval suficiently long (30 seconds) to minimize the impact on
the OFA’s rule insertion performance. Denote by Nk the number of rules in the flow table at the kth
query and K the total number of queries. Denote by T the rule time-out period. The successful
insertion rates can be estimated as Nk /(K · T).

Figure 9 plots the successful flow rule insertion rate with varying attempted insertion rate. The
Pica8 switch is able to handle up to 200 rules/second without loss. After that, some rule requests are
not installed into the flow table, and the successful insertion rate flattens out at about 1,000
rules/second. In Scotch, the OpenFlow controller should only insert the flow rules at a rate that
does not cause installation failure.

6.3 Interaction of Switch Data Plane and Control Path

During the maximum flow rule insertion rate experiment, the Pica8 switch does not route any
data trafic. In reality, while the OFA writes the flow rules into the flow table, the switch also does
flow table lookups to route incoming packets. These two activities interact with each other. We
conduct an experiment where the OpenFlow controller attempts to insert the flow rule at certain
rates while the switch routes the data trafic with rates of 500, 1,000, and 2,000 packets/second. We
measure the data-plane packet loss rate at the receiving host.

Figure 10 depicts the packet loss ratio with varying flow rule insertion rates. The curve exhibits
an interesting turning point at a rule insertion rate of 1,300 rules/second. The data path loss rate
exceeds 90% when the rule insertion rate is greater than 1,300 packets/second. This clearly demon-
strates the interaction between the data and control-paths. We conjecture that the interaction is
caused by the contention for the flow table access, which is confirmed by the vendor [29].

The results from this experiment and the previous experiment help us with setting the right
new flow insertion rate at the OpenFlow controller. For Pica8 switch, the flow rule insertion rate is
lower. Thus, it governs the new flow insertion rate at the controller. Fortunately, we only need to do
one set of such experiments for every type of physical switch.

6.4 Effect of Ingress Port Differentiation

Results from lab testbed. Here, we evaluate the benefits of ingress port differentiation. The
experiment setup is the same as in Figure 11 with the vSwitches added to form the Scotch overlay.
An attacker generates the attacking flows, while the client generates the normal flows. The normal
new flow rate is set at 30 flows/second, while we vary the attacker’s new flow rate. Since we

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:19

Fig. 11. Lab testbed. Fig. 12. GENI testbed. Fig. 13. Effect of offloading.

are only interested in switch’s control-path performance, we generate one packet for each flow
with different IP addresses. For this experiment, we turn off the large flow migration functionality
and focus only on the ingress port differentiation feature. We set the queue service rate to be 70
flows/second to make sure the rule insertion will be successful and that it will not affect the data
path throughput.

Figure 17(a) depicts the flow failure rate for the attacking trafic and the normal trafic. The
Scotch overlay management application maintains two queues, and each queue receives at least 35
flows/second for rule insertion. All normal flows can be installed successfully. Attack trafic only
uses the leftover capacity from the server, with some of the attack trafic being dropped at the
OpenFlow controller. Ingress port differentiation clearly segregates the attack trafic from normal
trafic arriving at a different ingress port.

Results from GENI testbed. We also conduct a similar experiment on the GENI testbed,
where normal flow rate is configured as 30 flows/sec and the attacking flow rate varies. To emulate
the behaviors of physical switches, we set the queue service rate to be 70 flows/sec to guarantee the
successful installation of flow rules. In addition, we set the drop rate to be 200 flows/sec at the
OpenFlow controller, since this is the maximum control path capacity of Pica8. The failure fraction of
normal trafic in this scenario is depicted in Figure 12. The results show similar trends to that in
Figure 11, demonstrating that ingress port differentiation also works effectively in large-scale
systems.

6.5 Effect of Offloading

In addition to the data plane effects, we also examine the effect of Scotch on control plane when it is
triggered to ofload control path workload from physical switches to software switches. For this
purpose, we conduct the experiment on the GENI testbed, where one normal node sends normal
flows at the rate of 30 flows/sec and one attacker node generates attacking trafic at the rate of 300
flows/sec. For the Scotch configurations, we set the threshold that triggers flow ofloading to be 70
flows/sec and the drop rate to be 200 flows/sec at the controller. In this experiment, flow
migration is disabled. We then capture the flow rates of the control path of both physical and
software switches and depict them in Figure 13.

From the figure, we could see that when the trafic rate exceeds 70 flows/sec (at 25th seconds on
the x-axis), the trafic that comes from that particular interface is ofloaded to the software
switches by observing a spike of the control flows in software switches at the same time. After a
very short period of time, the flow rate of the control path of the physical switch stabilizes
around 30 flows/sec. These control flows are generated by the normal trafic that comes to the
physical switch through a different ingress port. For the ofloaded flows, they are processed by the
controller through the control path of the software switch. Since we configure the drop rate to be
200 flows/sec and the attacking trafic rate is 300 flows/sec, the exceeding trafic is dropped by

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:20 Y. Dai et al.

Fig. 14. Large flow migration effects in different scenarios.

the controller. As a result, we could observe that the flow rate of the software switch control path
stabilizes around 200 flows/sec in the figure.

6.6 Benefits of Large Flow Migration and Adding Additional vSwitches

In this experiment, we examine the effect of large flow migration. To focus on the performance
of large flow migration, we turn off the ingress port differentiation in the OpenFlow controller
application. All flows arriving at the OpenFlow controller will be routed over the Scotch overlay.
The large flow will be migrated to the underlying physical network. We set the large flow detection
packet count to be 10 packets.

Results from lab testbed. In this setup, the attacker sends out the attacking trafic (one packet per
flow) at a constant rate of 200 flows/second. The client establishes two large flows to the server at
time 200 and 400 seconds, respectively. Figure 14(a) depicts the data-path trafic rate going through
the vSwitch and the Pica8 switch, respectively. Since the trafic is forwarded to the vSwitch by the
Pica8 switch, the data-path trafic rate going through the Pica8 switch is equal to the total trafic
rate. The data-path trafic rate going through the vSwitch is the trafic rate routed over the Scotch
overlay.

The data-plane trafic rate is 200 packets/second at both the Pica8 switch and the Open vSwitch at
the beginning of the experiment. This is because the Scotch overlay is on and all trafic passes
through both the Pica8 physical switch and the vSwitch. The flow size is small (one packet per
flow) so none of the attacking flow is migrated to the physical switch.

At time 200 seconds, a large flow of 80 packets/second starts. We see a small bump in the data-
path trafic rate of the vSwitch, since the large flow is initially routed through the vSwitch. Once the
packet count reaches 10 packets, the large flow detection threshold set in the Scotch application
at the controller, the large flow is migrated to the Pica8 switch. The trafic rate at the vSwitch
comes back to 200 packets/second. The same happens at time 400 seconds when the second large
flow of 60 packets/second arrives. Except for a short time period during which the vSwitch trafic
rate experiences a bump, the data-path trafic rate at the vSwitch remains at 200 packets/second.
The experiment clearly shows that Scotch overlay carries the small attack flows that require large
control-path handling but relatively a small data-path throughput.

Next, we investigate the benefits of additional vSwitches to the Scotch overlay. The experimental
setup is similar to the large flow migration experiment except that we add one more vSwitch as a
Scotch node. Figure 14(b) depicts the data-path trafic rate at the Pica8 switch and two vSwitches,
respectively. Here, the data-path trafic rate is 100 packets/seconds, since the attack trafic is carried
by two vSwitches. The large flow arriving at time 200 seconds is first routed through vSwitch 1 and
then migrated to Pica8 switch. The second large flow arriving at time 400 seconds is routed
through vSwitch 2 at first and then migrated to Pica8 switch. The two vSwitches, however, split the

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:21

Fig. 15. Original path and flow migration path.

attacking trafic. The Scotch overlay’s data-path and control-path overall capacities are doubled by
adding one more vSwitch. In general, we can scale up the Scotch overlay’s data-path and control-
path capacity by adding more vSwitches.

Results from GENI testbed. We also evaluate the effectiveness of large flow migration on the
GENI testbed. In the following experiments, we use the same configurations for ofloading as in
the previous experiments. The ofloading is trigger when trafic rate exceeds 70 flows/sec and the
drop rate is set to be 200 flows/sec. The paths with and without large flow migration are shown
in Figure 15. In the figure, the red lines denotes the original path and the dotted blue lines denote
the path after flow migration. The migrated path is three-hops shorter than the original path. We
first conduct experiment to evaluate Scotch’s capability to differentiate and serve normal flows
that come from the same ingress port with the attacking trafic. In this experiment, the normal
node is configured to send trafic at the rate of 30 flows/sec and the attacker node is configured
to send trafic between 100 flows/sec to 500 flows/sec. Then, we conduct the same experiment
on the GENI testbed and demonstrate the data plane throughput with the large-flow migration
mechanism. The results are shown in Figure 14(c). In this case, at the 100th seconds, a large flow
of 100 packets/second starts and the second large flow of 100 packets/second begins at 400 seconds.
The results present similar trends to that of the lab testbed, indicating that large-flow migration
could work effectively in large-scale network systems.

We also evaluate the effectiveness of large-flow migration using Apache benchmark to a remote
Apache server (shown as “Target” in Figure 15). In this experiment, the normal node is configured
to download files by sending HTTP GET requests repeatedly. We then calculate and compare a
request’s average completion time with and without large flow migration with various number of
requests, currency levels, and file sizes. Concurrency level represents the number of concur-rent
HTTP requests that are issued simultaneously. By default, we set the concurrency level to be 100
and the file size to be 10 KB. Figure 16(a) shows the results when we vary the number of requests
between 50 and 500 times. The results demonstrate that HTTP requests constantly have smaller
delays with the large-flow migration mechanism. We conduct the same experiments by varying
concurrency level between 100 and 500 (as shown in Figure 16(b)) and file size between 1 KB to 500
KB (as shown in Figure 16(c)). Both figures exhibit similar results. Another observation is that the
performance gain will be less significant as the file size increases. The main reason is that the file
size would only affect the number of response packets, while we only migrate the re-quest packets.
The response packets follow the same path in both cases, because they are normal packets that
enter the switches from a separate interface. Thus, ofloading and large flow migra-tion are not
triggered. As a result, the file size does not affect the effectiveness of our migration scheme.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:22 Y. Dai et al.

Fig. 16. Average request completion time with Apache benchmark.

6.7 Delay of vSwitch Overlay in Scotch

As in any Peer-to-peer network, Scotch overlay incurs both extra bandwidth and delay overhead
to normal service trafic. There have been extensive studies on the bandwidth overhead caused by
the extra trafic of the overlay network, e.g., Reference [43]. Such overhead is in general tolerable.
Also in our case, Scotch is turned on only if the control path is congested. The alternative would
be to drop the new flows, which is clearly less preferable.

We conduct experiments to evaluate the extra delay overhead caused by Scotch overlay. With-
out considering the middleboxes, when Scotch is activated, packets are first sent to a randomly
selected vSwitch for load-balancing purpose. Packets are then forwarded to the vSwitch close to
the destination host. The vSwitch finally forwards the trafic to the destination. The extra delay
comprises of both propagation and processing delays incurred at both the vSwitches and the extra
physical switches along the tunnels. Since the load-balancing vSwitch is randomly selected, the
propagation delay on average is doubled when packets are forwarded on the Scotch overlay.

We conduct two delay measurements with and without Scotch overlay. In the first experiment,
a client periodically sends ping messages to a server via the Pica8 physical switch. In the sec-
ond experiment, the ping message is detoured to two vSwitches in sequence before reaching the
server; each vSwitch represents a vSwitch in the Scotch overlay. There is no direct link between
the vSwitches; instead, they are connected via the Pica8 switch. Hence, the packet has to traverse
through the physical switch multiple times when it is forwarded on the overlay. Note that we
ignore the host vSwitch in both experiments; including it would add a small additional delay for
both cases but not affecting the comparison. For the convenience of measurement, we run both
the client and the server on the same physical host to avoid clock synchronization problem.

Figure 17(a) and (b) shows 5,000 measured delay samples and the CDF from the experiments. The
delay without overlay is very small, around 17 microseconds. The delay with overlay is on average
113 microseconds. The delay with the vSwitch relay is more volatile, with the standard deviation
of 22 microseconds. This indicates that packet processing done by a vSwitch software has larger
variance compared to a hardware switch. However, given that the overall delay is still very small,
well below 1 ms, we believe this satisfies the requirement of most applications in the data-center
scenario. If Scotch is employed for a wide-area network, then the extra switch processing delay
should be negligible compared to the propagation delay.

6.8 Case Study with Data Center Traffic Trace

Finally, we conduct a case study with real data center trafic traces [31]. We select the packet trace
collected from a university data-center (EDU1 in Reference [3]). The packet trace is collected at a
switch inside this data-center. We use Tcpreplay [37] to playback the first 30 minutes of the

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

Elastic Defense Against DDoS Attacks 9:23

Fig. 17. (a)(b) Delay with and without vSwitch relay (c) File downloading delay with and without Scotch.

trace and send the trafic toward a sink node via the Pica8 switch. To study the benefit of Scotch on
applications, we set an Apache server that serves out a small file of one Kbytes. A client periodically
(every 10 seconds) attempts to fetch the file. Both the file download trafic and background trafic
go through the same physical switch. We measure the file downloading time for both with and
without Scotch and report the results in Figure 17(c).

As reported in Reference [3] (Figure 3(a)), the number flow rate is slightly greater than 200
flows/sec, which is right above the loss-free control path capacity of the Pica8 switch. Without the
help of Scotch, 3% of file retrievals fail. For the successful file retrievals, the average downloading
time is 71.4 seconds, with the standard deviation of 133.9 seconds. In contrast, with the Scotch
overlay, the control path capacity is greatly improved and the client always manages to retrieve
the file successfully. The average downloading time is shortened to 0.8 second, with the standard
deviation of 3.3 seconds. This result shows that Scotch improves the file downloading performance
significantly. Note that without Scotch, the worst downloading time is 711 seconds. Looking at the
tcpdump trace, we notice that due to the control path congestion, it takes multiple attempts to
successfully install a flow rule into the switch. Since the expiration time interval for a flow rule is
10 seconds, a flow rule may be timed out before a TCP connection is succesfully set up. This
causes the application to make multiple retransmissions before the download succeeds.

7 DISCUSSION

Scotch is designed to be a scalable solution and can be customized based on the network topology.
It can be applied in various network environments, including both enterprise network systems and
public cloud systems. For example, in a fat-tree data-center SDN network, if a core-switch is under
attack, then only the core-switch need be connected with vSwitches. To simplify the flow and
tunnel management at SDN controller, one or a couple of vSwitches at each rack can be selected
as the overlay switches, depending on the need. When the system is under attack, flows can be
relayed to the vSwitch on the same rack as the destination and delivered to the destination at last. In a
public cloud system, Scotch works in a similar way except that the existing virtualization policies
need to be enforced correctly. Note that such a design would not require extra costs for vSwitch
deployment, since it has become the default switch for many modern virtualization platforms, such
as XenServer and KVM. These vSwitches running on the general purpose servers can be leveraged
to support Scotch.

8 CONCLUSION

To mitigate the bottleneck of control path of SDN under the surge of control trafic (e.g., due to
flash crowds or DDoS attacks), we present Scotch, which can elastically improve the control plane

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

9:24 Y. Dai et al.

capability of SDN by using an Openflow vSwitch overlay network that primarily carries small
flows. Scotch exploits both the high control plane throughput of vSwitches and the high data plane
throughput of hardware switches. It enables the control plane throughput to scale linearly with the
number of vSwitches used. While achieving the high control plane capacity, Scotch still preserves
high visibility of new flows and flexibility of fine-grained flow control at the central controller. We
experimentally evaluate the performance of Scotch and show its effectiveness in elastically scaling
control plane capacity well beyond what is possible with current switches. Specifically, Scotch
can improve the control path capacity of hardware switches by at least 5× with one single Open
vSwitch. It also reduces the file downloading time of Apache server by almost 90× when DDoS
attacks happen.

ACKNOWLEDGEMENT

We appreciate the constructive comments from the reviewers.

REFERENCES
[1] Kupreev Oleg. 2021. DDoS Attacks in Q1 2020 | Securelist. Retrieved from https://securelist.com/ddos-attacks-in-q1-

2020/96837/.
[2] H. Ballani, P. Francis, T. Cao, and J. Wang. 2009. Making routers last longer with ViAggre. In NSDI.
[3] T. Benson, A. Akella, and D. Maltz. 2010. Network trafic characteristics of data centers in the wild. In IMC.
[4] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar Raychaudhuri, Robert Ricci,

and Ivan Seskar. 2014. GENI: A federated testbed for innovative network experiments. Comput. Netw. 61 (2014), 5–23.
[5] Zheng Cai, Alan L. Cox, and T. S. Eugene Ng. 2011. Maestro: Balancing Fairness, Latency and Throughput in the Open-

Flow Control Plane. Technical Report TR11-07. Rice University.
[6] M. Casado, M. J. Freedman, and S. Shenker. 2007. Ethane: Taking control of the enterprise. In ACM SIGCOMM.
[7] Gaetano Catalli. 2011. Open vSwitch: Performance improvement and porting to FreeBSD. In CHANGE & OFELIA

Summer school. https://tinyurl.com/mr47dnmw.
[8] Ryu. 2020. Ryu: Component-based Software Defined Networking Framework. Retrieved from http://osrg.github.io/

ryu/.
[9] Andrew R. Curtis, Jeffrey C. Mogul, Tourrilhes Jean, Yalagandula Praveen, Sharma Puneet, and Banerjee Sujata. 2011.

DevoFlow: Scaling flow management for high-performance networks. In Proc. of SIGCOMM.
[10] Vitalii Demianiuk, Sergey Gorinsky, Sergey I. Nikolenko, and Kirill Kogan. 2020. Robust distributed monitoring of

trafic flows. IEEE/ACM Transactions on Networking 29, 1 (2020), 275–288.
[11] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. 2015. SPHINX: Detecting security attacks in

software-defined networks. In NDSS.
[12] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella. 2013. Towards an elastic distributed SDN controller.

In HotSDN.
[13] Intel. 2016. Packet Processing - Intel DPDK vSwitch - OVS. Retrieved from https://01.org/packet-processing/intel-

ovdk.
[14] David Erickson. 2013. The Beacon OpenFlow controller. In HotSDN. ACM.
[15] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krishnamurthi. 2013. Participatory

networking: An API for application control of SDNs. In SIGCOMM.
[16] Floodlight. 2018. Floodlight. Retrieved from http://floodlight.openflowhub.org.
[17] Open Networking Foundation. 2012. OpenFlow switch specification (version 1.3.0). (June 2012). https://

opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf.
[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker. 2008. NOX: Towards an operating

system for networks. In SIGCOMM CCR.
[19] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. 2015. Poisoning network visibility in software-defined networks:

New attacks and countermeasures. In NDSS.
[20] Kali Linux. 2005. hping3. Retrieved from http://linux.die.net/man/8/hping3.
[21] Danny Yuxing Huang, Kenneth Yocum, and Alex C. Snoeren. 2013. High-fidelity switch models for software-defined

network emulation. In HotSDN.
[22] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. 2013. SoftCell: Scalable and flexible cellular core network

architecture. In ACM CoNEXT.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

https://securelist.com/ddos-attacks-in-q1-2020/96837/
https://securelist.com/ddos-attacks-in-q1-2020/96837/
https://tinyurl.com/mr47dnmw
http://osrg.github.io/ryu/
http://osrg.github.io/ryu/
https://01.org/packet-processing/intel-ovdk
https://01.org/packet-processing/intel-ovdk
http://floodlight.openflowhub.org
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
http://linux.die.net/man/8/hping3

Elastic Defense Against DDoS Attacks 9:25

[23] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. 2008. Floodless in SEATTLE: A scalable Ethernet architecture
for large enterprises. In SIGCOMM.

[24] T. Koponen et al. 2010. Onix: A distributed control platform for large-scale production networks. In OSDI.
[25] Krishna Krishna Puttaswamy Naga, Fang Hao, and T. V. Lakshman. 812383-US-NP. Securing Software Defined

Networks VIA Flow Deflection.
[26] Guanyu Li, Menghao Zhang, Shicheng Wang, Chang Liu, Mingwei Xu, Ang Chen, Hongxin Hu, Guofei Gu, Qi Li, and

Jianping Wu. 2021. Enabling performant, flexible and cost-eficient DDoS defense with programmable switches.
IEEE/ACM Transactions on Networking 29, 4 (2021), 1509–1526.

[27] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. 2009. Resonance: Dynamic access control for
enterprise networks. In Proceedings of the 1st ACM Workshop on Research on Enterprise Networking.

[28] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe
Stringer, Pravin Shelar, et al. 2015. The design and implementation of open vSwitch. In NSDI. 117–130.

[29] pica8. [n. d.]. Personal Communication with Pica8. http://www.pica8.com/.
[30] Pica8: Open Networks for Software-Defined Networking. 2012. Pica8: Open Networks for Software-Defined

Networking. Retrieved from http://www.pica8.com/.
[31] pkttrace. [n. d.]. Packet Trace at a Switch in a Data-center. Retrieved from http://pages.cs.wisc.edu/{~}tbenson/IMC10_

Data.html.
[32] Saikat Ray, Roch Guerin, and Rute Sofia. 2007. A distributed hash table based address resolution scheme for large-scale

Ethernet networks. In ICC.
[33] Ori Rottenstreich, Ariel Kulik, Ananya Joshi, Jennifer Rexford, Gábor Rétvári, and Daniel S. Menasché. 2021. Data

plane cooperative caching with dependencies. IEEE Transactions on Network and Service Management (2021).
[34] Gao Shang, Peng Zhe, Xiao Bin, Hu Aiqun, and Ren Kui. 2017. FloodDefender: Protecting data and control plane

resources under SDN-aimed DoS attacks. In IEEE INFOCOM. IEEE.
[35] Seugwon Shin, Phillip Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu, and Mabry Tyson. 2013. FRESCO: Modular

composable security services for software-defined networks. In NDSS.
[36] Seungwon Shin, Vinod Yegneswaran, Phil Porras, and Guofei Gu. 2013. AVANT-GUARD: Scalable and vigilant switch

flow management in software-defined networks. In CCS.
[37] Tcpreplay. 2022. Tcpreplay. Retrieved from http://tcpreplay.synfin.net/.
[38] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. 2012. On controller performance in software-

defined networks. In HotICE. 1–1.
[39] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. revisiting the open vSwitch dataplane ten years later.

In ACM SIGCOMM.
[40] networkheresy. 2012. The Overhead of Software Tunneling. Retrieved from http://networkheresy.com/2012/06/08/the-

overhead-of-software-tunneling/.
[41] Jiarong Xing, Wenqing Wu, and Ang Chen. 2019. Architecting programmable data plane defenses into the network

with fastflex. In Hot Topics.
[42] Yang Xu and Yong Liu. 2016. DDoS attack detection under SDN context. In IEEE INFOCOM. IEEE.
[43] Yang-hua Chu, Sanjay Rao, Srinivasan Seshan, and Hui Zhang. 2002. A case for end system multicast. In IEEE J. Select.

Areas Commun, Vol. 20, 1456–1471.
[44] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive programmable switches. In SIGCOMM.
[45] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. 2010. Scalable flow-based networking with DIFANE.

In SIGCOMM.

Received 17 February 2021; revised 13 April 2022; accepted 8 August 2022

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 9. Publication date: February 2023.

http://www.pica8.com/
http://www.pica8.com/
http://pages.cs.wisc.edu/{~}tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/{~}tbenson/IMC10_Data.html
http://tcpreplay.synfin.net/
http://networkheresy.com/2012/06/08/the-overhead-of-software-tunneling/
http://networkheresy.com/2012/06/08/the-overhead-of-software-tunneling/

