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Abstract: The pile-founded walls (e.g., T-walls) are important civil infrastructure for flood 7 

protection. The stability analysis of floodwalls in the face of flooding hazards is a critical 8 

problem for the design and maintenance of floodwalls. However, most current studies for the 9 

stability assessment of floodwalls are based on deterministic analyses. The uncertainties of 10 

soil properties, which cannot be avoidable due to complex geological processes and 11 

depositional environment, are not sufficiently studied. To address the uncertainties of soil 12 

properties, a two-dimensional pile-founded T-wall system with several clay layers on the top 13 

and a sand layer on the bottom is taken as an example for the reliability analysis. Both the 14 

random variable method and random field method are adopted for the probabilistic analysis of 15 

floodwalls. The effect of the coefficient of variation (COV) and scales of fluctuation of soil 16 

properties are investigated by parametric studies. The results show that the probability of 17 

failure increases with the COV of soil properties for both methods. For the random field 18 

method, the effect of the vertical scale of fluctuation of soil properties is more profound than 19 

the horizontal scale of fluctuation. The probability of failure derived from the random variable 20 

method is generally larger than that from the random field method at high flood water 21 

elevations when the same COV of soil properties is applied. This study can provide useful 22 

references for risk-informed decision-making in the stability assessment of floodwalls in the 23 

face of flooding hazards.  24 

 25 
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1. Introduction 37 

The pile-founded walls (e.g., I-walls or T-walls) play a vital role in flood protection in 38 

the New Orleans area. Since the pile-founded I-walls in New Orleans were ruined by 39 

Hurricane Katrina while pile-founded T-walls survived in several places, many studies have 40 

been performed to investigate the insufficiency of the traditional floodwall design (i.e., 41 

two-dimensional limit equilibrium analysis). Won et al. (2011) found that the complicated 42 

pile-soil interactions at deep ground layers in the pile-founded T-wall system were not fully 43 

analyzed and the unreasonable assumption of the load distribution on the battered pile in 44 

traditional design can overestimate the stability of floodwalls. The study by Hu et al. (2013) 45 

showed that the deformation of the I-wall system revealed an obvious three-dimensional 46 

effect, and the displacement of I-wall systems could not be accurately predicted by the 47 

two-dimensional analysis. Adhikari et al. (2014) indicated that the gap developed between the 48 

I-wall and the soils, and the reduced strength of the soils were the two main causes leading to 49 

the instability of floodwalls in face of the flooding hazards.   50 

Although the failure mechanism of the pile-founded walls is considerably understood 51 

due to the pioneering work of many previous studies, most current studies are performed with 52 

deterministic analyses. However, natural soils are very complicated and highly variable 53 

geo-materials and can exhibit many uncertainties due to the natural fluctuation of material 54 

constituents and randomness in the depositional history (Huang et al. 2020). Scarce studies 55 

focused on the investigation of the effect of the uncertainties in soil properties on the stability 56 

of floodwalls, especially for pile-founded T-walls (Rajabalinejad et al. 2010; Rajabalinejad 57 

and Demirbilek 2011; Bodda et al. 2019; Davidson et al. 2020; Link 2021; Ravichandran et al. 58 

2022). To address these uncertainties, either the random variable method (RVM) or random 59 
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field method (RFM) can be implemented for the stability analysis of the geotechnical systems 60 

(Cheng et al. 2019; Zhang et al. 2021). The random field method is a very effective approach 61 

to characterizing the spatial variability of soil properties (Jiang et al. 2014; Gong et al. 62 

2017&2020). It has been proven to be theoretically superior to the random variable method in 63 

many scenarios (Juang et al. 2018). However, since the random field model is more 64 

complicated, additional parameters should be calibrated before the application of the random 65 

field method. It can be quite challenging to calibrate these parameters (e.g., the horizontal 66 

scale of fluctuation) in the random field method, especially when limited site investigation 67 

data can be obtained (Hicks et al. 2014), which can highly reduce the robustness of the results 68 

based on the random field method and make the simple random variable method more 69 

preferable in predicting the geotechnical system performance (Juang et al. 2018). Therefore, 70 

both the random variable method and random field method should be used for the reliability 71 

analysis of floodwalls in the face of flooding hazards. 72 

This paper is aimed at investigating the effect of the uncertainties of soil properties, 73 

where both the random variable method and random field method are adopted for the 74 

reliability analysis of floodwalls in the face of flooding hazards. The rest of the paper is 75 

organized as follows. First, the methodologies for deterministic analysis and random field 76 

simulations are briefly introduced. Second, a baseline case for an example pile-founded 77 

T-wall system is introduced, and the reliability of the floodwall using the random variable 78 

method is analyzed. The effect of the coefficient of variation (COV) of soil properties is 79 

studied by parametric studies in this section. Third, the reliability of the example floodwall is 80 

evaluated again by using the random field method, where the influence of the COV and scales 81 

of fluctuation of soil properties is investigated. Finally, the concluding marks are summarized 82 
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based on the results represented.   83 

2. Methodologies adopted for the reliability analysis of pile-founded T-walls 84 

In this section, the shear strength reduction method for deterministic stability analysis 85 

and the random field simulations for probabilistic analysis are briefly introduced, respectively. 86 

Reliability analysis in terms of probability of failure, as an effective approach to quantify the 87 

uncertainties and evaluate the risk of geotechnical infrastructures such as floodwalls (Baecher 88 

and Christian 2005), is the focus of this study.  89 

2.1 Deterministic stability analysis for pile-founded T-walls 90 

The stability of the pile-founded T-walls can be evaluated by the equilibrium method 91 

or numerical method (USACE 2012). In this study, the 3-D explicit finite difference program 92 

FLAC3D version 7.0 (Itasca 2022) is adopted for the stability analysis of the pile-founded 93 

T-walls, where the strength reduction method is built for the evaluation. With the strength 94 

reduction method, the shear strength parameters in terms of cohesion (c) and friction angle () 95 

of each soil layer are progressively reduced (or increased) by a series of values of potential 96 

factor of safety FSi to bring the pile-founded T-wall system to a state of limiting equilibrium, 97 

which can be described as 98 

ri

i

c
c

FS
=             (1a) 99 

tan
tan ri

iFS


 =            (1b) 100 

where cri and i are reduced cohesion and friction angle, respectively. Then the factor of 101 

safety (FS) can be used to evaluate the stability of the pile-founded T-walls. 102 

2.2 Random field simulations of soil properties in the stability analysis for pile-founded 103 

T-walls 104 
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The spatial variability of soil properties is generally characterized as random fields 105 

(Jiang et al. 2014; Chen et al. 2020; Hu et al. 2023). The characterization of key geotechnical 106 

parameters such as unit weight, cohesion, and friction angle of soils for reliability assessment 107 

is carefully selected. Since the COV of the unit weight is generally below 0.1 (Phoon and 108 

Kulhawy 1999; Li et al. 2014), the unit weight is set as a constant value while the cohesion 109 

and friction angle are modeled as random variables or random fields in this study. Since the 110 

soil properties are non-negative, the soil properties are generally assumed as lognormally 111 

distributed (Cho 2010; Jiang et al. 2014; Gong et al. 2020). The mean lns and the standard 112 

deviation lns of the normal random field ln(s) are computed with the given mean s and the 113 

coefficient of variation (COV) s of the original soil property s as follows. 114 

      2

ln ln(1 )s s = +             (2a) 115 

2

ln lnln( ) 0.5s s  = −             (2b) 116 

The anisotropic exponential autocorrelation structure is selected to characterize the 117 

correlation coefficient ij between the soil property s at two different locations of (xi, yi) and 118 

(xj, yj), which is calculated as follows. 119 

2 2
( , ) exp( )

j i j i

i j j i j i

x y

x x y y
x x y y 

− −
= − − = − −

 
    (3) 120 

where |xj – xi| and |yj – yi| represent the absolute distances between the two positions of (xi, yi) 121 

and (xj, yj) along the X and Y directions, namely, the horizontal and vertical directions, 122 

respectively; whereas, x and y are the horizontal and vertical scales of fluctuation of the 123 

equivalent normal random field ln(s) along the X and Y directions, respectively. 124 

Since a fixed value is mapped to the soil element domain rather than at the mesh grids, 125 
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the average effect over the soil element domain should be considered. The mean of soil 126 

property lnsE that is averaged over each soil element domain is equal to that of the local soil 127 

property lns while the standard deviation of the averaged soil property lnsE is decreased. 128 

Based on the autocorrelation structure built in Eq. (3), the locally averaged mean lnsE and 129 

standard deviation lnsE over a rectangular mesh with side length lx and ly can be derived as 130 

(Knabe et al. 1998; Huang and Griffiths 2015): 131 

2 2

ln E ln ( , )s s x yl l  =            (4a) 132 

ln E lns s =             (4b) 133 

2 2 0 0

224
( , ) ( )( )exp( )

·

y xl l yx

x y x x y y x y

x y x y

l l l l d d
l l


    = − − − −

    (4c) 134 

The locally averaged lnsE and lnsE are involved in the following random field simulations 135 

instead of lns and lns. A variety of methods for random field generations can be available 136 

now, such as the local average subdivision method, turning-band method, fast Fourier 137 

transformation method, and covariance matrix decomposition method (Fenton 1994; Wang et 138 

al. 2020; Gong et al. 2021). As a common and easy-to-implement method, the covariance 139 

matrix decomposition method is adopted for the random field generation in this study. With 140 

the prior knowledge of the mean, standard deviation, and autocorrelation structure, the nE × nE 141 

autocorrelation matrix Rlns of the soil property between each two soil elements can be 142 

established. One random field simulation can be generated as follows. 143 

( )ln E ln Eexp l  nij s j s j ijs s = +            (5) 144 

where sij is the jth numerical element of the ith realization of the random field (i = 1, 2, , Np; j 145 

= 1, 2, , nE), in which Np is the number of realizations of the random field and nE is the 146 
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number of discretized numerical elements; lnsEj and lnsEj are the averaged mean and standard 147 

deviation of the soil property ln(s) over the jth numerical element, respectively; lnsij is the jth 148 

element of the ith realization of the random field. The matrix lnsi of the soil property for all the 149 

numerical elements is derived as follows. 150 

lnln i s i=s L                (6a) 151 

ln ln ln

T

s s s= R L L              (6b) 152 

where i is an nE × 1 standard normal sample vector (i = 1, 2, , Np), which is sampled by the 153 

subdomain method described later; Llns is a lower triangular matrix of autocorrelation matrix 154 

Rlns derived by the Cholesky decomposition technique.  155 

2.3 Modified subdomain sampling method for the random field simulations of soil 156 

properties 157 

Monte Carlo simulations (MCS) have been widely used for the random field 158 

simulations of soil properties. However, the MCS could be computationally challenging for 159 

the low probability scenarios (e.g., the flood water elevation for the pile-founded T-wall is low) 160 

(Jiang and Huang 2016; Gao et. 2019). With the advance in computational science and the 161 

pioneering work of previous studies, some strategies have been proposed to improve 162 

computational efficiency, such as the parallel computing method (Spencer 2007), the Latin 163 

hypercube sampling (LHS) (Lo and Leung 2017), subset sampling method (Wang et al. 2010; 164 

Au and Wang 2014), and subdomain sampling method (SSM) (Juang et al. 2017; Gong et al. 165 

2020). The subdomain sampling method exhibits high efficiency and accuracy to derive the 166 

probability of failure in face of small probability events (Juang et al. 2017). Some SSM-based 167 

practical designs have been conducted in previous studies (e.g., Gong et al. 2020; Yun et al. 168 
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2020). The original SSM is modified to further enhance the computational efficiency in the 169 

estimate of the low failure probabilities in this study. 170 

In the original SSM, the possible domain of input uncertain variables is discretized 171 

into a series of continuous subdomains. Then a distance index (d) is used to partition the 172 

domain based on Hasofer–Lind reliability index (Hasofer and Lind 1974), which is 173 

formulated as 174 

[ ] [ ][ ]Td u R u=             (7) 175 

where u = [u1, u2, u3, …, un]
T is a vector of transformed standard normal variables from the 176 

original space of the input parameters and n is the number of input uncertain variables X; R is 177 

the correlation matrix among the standard normal variables u. The relations between the 178 

component ui of u and component xi of the X are described as 179 

1( ( ))i iu F x−=              (8) 180 

where F(xi) is the cumulative distribution function (CDF) of uncertain variable xi; the () is 181 

the CDF of the standard normal variables. As such, the domain of input uncertain variables 182 

can be partitioned into a series of subdomains [0, d1), [d1, d2), [d2, d3), etc. With the sampled 183 

domain [0, dmax), d2 follows the chi-square distribution with n degree of freedom. The 184 

possibility of the samples located in and outside this domain is (1-ε) and ε, which can be 185 

described as 186 

2 2

max( )n d =              (9) 187 

where 2

n (·) is the chi-square CDF with n degrees of freedom. Then the probability of each 188 

subdomain can be calculated as  189 

2 2 2 2 2 2

1 1Pr[ [ ] [ ][ ] ] ( ) ( )=
i

T i

A i i n i n ip d u R u d d d q − −=   = −     (10) 190 
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According to previous studies, the q is generally no large than 1/2 (i.e., q   1/2) (Gong et al. 191 

2016&2020; Juang et al. 2017), and q = 1/3 is adopted in this study following Gong et al. 192 

(2020). The detailed procedures for generating samples in each subdomain can be referred to 193 

Gong et al. (2016). With generated samples, the conditional failure probability pfi in the 194 

subdomain [di-1, di) is calculated as 195 

fi

fi

t
p

t
=              (11) 196 

where t is the total number of samples generated in the subdomain [di-1, di) and tfi is the 197 

number of failure samples in this subdomain. The COV of the conditional failure probability 198 

fiP can be estimated in the subdomain as 199 

1-

fi

fi

P

fi

p

t p
 


            (12) 200 

The total probability of failure Pf can be obtained by the summation of all the conditional 201 

probabilities of failure, which can be calculated as 202 

1

( )
i i

ns

f A f

i

P p p
=

=             (13) 203 

where ns is the total number of subdomains. The COV of Pf can be calculated as  204 

2 2 2

1 1

1 1

[ ( ) ] (1 / ) [ (1 )]

( ) ( )

s s

i fi i

f s s

i i

n n

A fi p A fi fi

i i

P n n

A fi A fi

i i

p p t p p p

p p p p



 = =

= =

     −

 =

 

 

 
  (14) 205 

To implement the SSM, the number of samples t in each subdomain and the total 206 

number of subdomains ns should be determined first. Herein, t = 30 is selected by the 207 

trade-off between the computational efficiency and variation of Pf (Juang et al. 2017; Gong et 208 

al. 2020). In the original subdomain sampling method (SSM), the number (ns) of subdomains 209 
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can be determined by the following equation after the target probability of failure Pf is 210 

estimated: 211 

0.01
ns

f

q

P
          (15) 212 

However, a fixed total number of t × ns simulations will be performed for either a high or low 213 

probability of failure, resulting in unnecessary computation for the high probability of failure, 214 

since smaller domains can be sufficient for the estimate of a high probability of failure. 215 

Therefore, Yun et al. (2020) suggested that the ns can be adaptively adjusted by the 5% error 216 

for the probability of failure from the first k (k   ns) subdomains (see Eq. (16)). As shown in 217 

Eqs. (16-18), the two conditions from the original SSM and Yun et al. (2020) can be reached 218 

by a stricter criterion but with a simpler form that is easy to implement for programming. 219 

Therefore, the first strategy to enhance computational efficiency is achieved to adaptively 220 

determine the number of the subdomains in the modified SSM (see Eq. (18)). 221 

1 1 1

1 1

(1 )

1 1i i

k ns k k kns ns
k

A fi A

i k i k

q q q q
p p p q

q q q

+ − + +

= + = +

−
  =   =

− −
     (16a) 222 

( )

( ) 1 1

1 1 1 1

i i

i i i i

ns ns

k A fi A fi k
f fk i k i k

r k ns k k

f
A fi A fi A fi A fi

i i k i i

p p p p
P P q

P
p p p p p p p p

 = + = +

= = + = =

 
−

= =  

 +   

 

   
   (16b) 223 

1 1 1 1

0.01

i i i i

ns ns ns k

k ns k k

f
A fi A fi A fi A fi

i i k i i

q q q q

P
p p p p p p p p

= = + = =

=   

 +      
   (17) 224 

1

0.01

i

k

k

A fi

i

q

p p
=




         (18) 225 

The second strategy for the modification of the original SSM is without searching for FS by 226 



 12 

following Huang et al. (2017), which means the exact FS is not calculated in this case. Instead, 227 

whether the pile-founded T-wall system is stable or unstable is judged by substituting FS = 1.0 228 

in the strength reduction method with only one trial calculation. With all the strategies applied 229 

in the modified SSM, the modified SSM is approximately 7~9 times more efficient in terms of 230 

computational time than the original SSM for all the cases involved.  231 

 232 

3. Reliability analysis of floodwalls using the random variable method 233 

In this section, the reliability analysis of floodwalls is performed using the random 234 

variable method. The baseline case for a pile-founded T-wall system is first analyzed to 235 

investigate the influence of the flood water elevation on the probability of failure of the 236 

floodwall. The effect of the COV of the soil properties is also investigated for the reliability 237 

analysis of the floodwall. 238 

3.1 Results analysis for the baseline case using the random variable method 239 

To investigate the influence of flood water elevations on the probability of failure, a 240 

two-dimensional pile-founded T-wall system modified from Won et al. (2011) is studied, 241 

where the thin layers with similar strength soil properties are combined into thick layers and 242 

the sheet pile is removed to reduce the computational burden and simplify the procedures to 243 

perform the parametric study. Therefore, the model in this study has similar complexity to the 244 

exquisite model in Won et al. (2011) and is sufficiently realistic and meaningful, which 245 

ensures the derived conclusions from the modified model show engineering significance and 246 

can provide useful guidance for reliability-based floodwall designs. Figure 1 shows the 247 

geometry parameters of the pile-founded T-wall system. The floodwall system consists of an 248 

earth levee, a concrete T-wall, and three rows of H-piles (HP 14×73). The earth levee with a 249 
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height of 1 m and slope of 3H:1V is on the top of the T-wall base. The T-wall with a height of 250 

5.15 m and a base of 4.0 m is supported by the three rows of batter H-piles. The top elevation 251 

of the T-wall is EL. +3.65 m while the bottom elevation of the T-wall is EL. -1.5 m. Three 252 

rows of H-piles are inclined with the same ratio of 1H:3V to the vertical plane. The mesh of 253 

the built numerical model is presented in Figure 2. As shown in Figure 2, five soil layers are 254 

configured in this pile-founded T-wall system. Four clay layers (i.e., the levee fill, the peat, 255 

the soft clay, and the hard clay) are at the top and a sand layer is located at the bottom. The 256 

top elevation and soil properties of each soil layer for deterministic analysis are tabulated in 257 

Table 1. The H-piles are embedded in the sand layer to guarantee enough capacity for the 258 

floodwall.  259 

Flood Side Protected Side

HP 14×73

EL. -0.6

EL. +0.3

HP 14×73

0
.7

5

2.9 0.50.6

4.0
Unit: (m)

EL. -0.75
3

1

EL. -27.7 

Bottom of excavation

EL. +3.65 

0.5 0.51.5 1.5

EL. -1.5 

60

2
9
.4

 260 

Figure 1. Illustration of the geometry of pile-founded T-wall system (after Won et al. 2011) 261 

 262 
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 263 

Figure 2. Mesh of pile-founded T-wall system for the numerical simulations 264 

 265 

Table 1. Soil properties adopted in the deterministic analysis 266 

 267 

In the numerical simulations with FLAC3D version 7.0, the Mohr-Coulomb model is used to 268 

model the behavior of all soil layers. The T-wall is simulated by the brick elements with 269 

elastic behavior, and the interactions between the T-wall and the soil are modeled by the 270 

interface elements in FLAC3D. Interface elements are attached to the T-wall surface through 271 

the interface nodes in the numerical simulations. The elastic-perfectly-plastic model is 272 

adopted for the behavior of the interface to characterize the sliding and gap between the soil 273 

and T-wall. The shear strength parameters cohesion and friction angle of the interface are set 274 

following Won et al. (2011). The shear stiffness ks and normal stiffness kn for deformation are 275 

Layer Soil type Top elevation (m) cu (kPa) φ (°) γ (kN/m3) G (kPa) K (kPa) 

Levee fill Clay soil 0.3 23.9 - 17.3 3585 8.86e4 

Peat Clay soil -0.6 5.7 - 12.6 574.6 1.42e4 

Soft Clay Clay soil -4.3 7.2 - 15.7 933.7 2.30e4 

Hard Clay Clay soil -11.9 9.6 - 15.7 2863.2 7.09e4 

Sand Sand soil -26.2 - 30 18.1 7804.4 1.69e4 
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determined as follows (Itasca 2022):   276 

min

( 4 / 3 )
10 [ ]·

K G
ks kn

z

+
 


      (19) 277 

Where 
minz  is the smallest width with of an adjoining zone in the normal direction. K and G 278 

are the bulk modulus and shear modulus of the soil, respectively. The H-piles are modeled by 279 

the pile elements to consider the support for the floodwall. The detailed structure properties 280 

and the interface properties adopted in the numerical simulations can be referred to Won et al. 281 

(2011). The T-wall and H-piles are connected by the end bearing spring. The connection is 282 

assumed to be a continuously reinforced concrete and the properties for the end bearing spring 283 

are also set following Won et al. (2011). The horizontal displacement of the four side 284 

boundary planes of the model is restricted in the normal direction, and the displacement at the 285 

base of the model is fixed. To investigate the stability of the pile-founded floodwall with 286 

different flood water elevations, initial stress and strain for the numerical model without any 287 

geotechnical structures (i.e., the T-wall, and H-piles) are first computed. Then the T-wall and 288 

H-piles are built to update the stress and strain before the pore water pressure is applied to the 289 

flood protection system. The initial water table elevation is set as EL. -0.3 m in protect side 290 

and the initial flood water elevation is set as EL. +0 m in the flood side. Finally, the flood 291 

water elevation increases in an increment of 0.2 m from EL +0 m to EL +3.6 m on the flood 292 

side (i.e., the left side of the model). The critical mechanism of the floodwall (consisting of 293 

soils, T-wall, and H-piles) with flood water elevations for potential failure modes is validated 294 

based on the study by Won et al. (2011).  295 

The soil properties adopted for the probabilistic analysis using the random variable 296 

method are summarized in Table 2. Since the undrained condition is applied in this example, 297 
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the undrained shear strength cu is modeled as a random variable for the clay layers while the 298 

friction angle φ is taken as a random variable for the sand layer. The remaining soil properties 299 

are set as constant values. Note that the soil strength properties are assumed as lognormally 300 

distributed. The mean of cu and φ of each soil layer is the same as that from deterministic 301 

analysis (see Table 1). According to previous studies, the COV of clay typically ranges from 302 

0.1 to 0.5 while the COV of sand typically varies from 0.05 to 0.15 (Phoon and Kulhawy 303 

1999; Alamanis 2017; Wu et al. 2019; Ma et al. 2022). The midpoints of these ranges are 304 

selected for the baseline to show a “general case” scenario. The maximum and minimum of 305 

these ranges are adopted for “best case” and “worst case” scenarios in the following 306 

parametric study. As such, the effect of uncertainties in soil properties on the reliability of 307 

floodwall can be revealed in this study. Therefore, the COV of cu for clay layers is set as 0.3 308 

and the COV of φ for the sand layer is set as 0.1 in the baseline. The modified SSM is adopted 309 

for the calculation of the probability of failure. The probability of failure with different flood 310 

water elevations is illustrated in Figure 3. As shown in Figure 3, the probability of failure Pf 311 

stably increases first and then rapidly increases with the flood water elevation. The largest Pf 312 

will be obtained when the flood water elevation approaches the T-wall top (i.e., EL. +3.6 m), 313 

which is mainly owing to the increase of the pore water pressure and load effect triggered by 314 

the water weight with the flood water elevation. The pore pressure reduces the effective stress 315 

of the soils and leads to more possibility of failure in the soil layers. The water weight load 316 

normally distributed on the T-wall and the earth levee on the flood side results in the slide and 317 

rotation of the floodwall system as a whole.  318 

 319 

Table 2. Soil properties adopted for the baseline case in the probabilistic analysis 320 
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Soil type Clay soil Sand soil 

Soil properties 
Undrained shear 

strength, cu (kPa) 
Friction angle, φ (°) 

Probability distribution Lognormal Lognormal 

Mean See Table 1 See Table 1 

Coefficient of variation 0.3 0.1 

Horizontal scale of fluctuation for RFM, λx (m) 50 40 

Vertical scale of fluctuation for RFM, λy (m) 4 2 

 321 

 322 

Figure 3. Effect of the flood water elevation on the probability of failure of the floodwall 323 

using random variable method 324 

 325 

3.2 Effect of the COV of soil properties on the reliability of the floodwall 326 

To further investigate the effect of the COV of the soil properties, a parametric study is 327 

performed for the reliability analysis of the floodwall. The probabilistic case from section 3.1 328 

is taken as a baseline case. Figure 4 shows the influence of the COV of cu of the clay layers on 329 

the probability of failure of the floodwall. The probability of failure increases with the COV 330 

of cu,, which implies that more uncertainties in the strength property of clay layers will make 331 

the floodwall system more likely to fail. Similar results for the different COV of φ of the 332 

strength property for sand can also be obtained in Figure 5. Figure 5 also shows that the 333 

probability of failure with flood water elevations for the COV of the strength property for 334 
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sand equal to 5% is similar to that for the COV equal to 10%. It is possible because the two 335 

curves are at a similarly low level of uncertainty and the COV of the strength property for 336 

sand is not changed too much. As the COV of the strength property for sand increases from 337 

10% to 15%, the effect of the COV becomes much more significant due to the nonlinear 338 

relationship between the probability of failure of the floodwall and the COV of the strength 339 

property for sand. The general trend is captured to show that the probability of failure of the 340 

floodwall increases with the COV of soil strength properties. The stability of the floodwall 341 

mainly depends on the soil-bearing capacity and the support of the structures (i.e., the T-wall 342 

and the H-piles). The end-bearing capacity of the H-piles largely depends on the soil 343 

properties around the pile tip. Therefore, the COV of strength properties for both clay and 344 

sand layers will cause a huge effect on the stability of the floodwall system, although it seems 345 

that the slip surface does not go through the sand layer. However, the probability of failure 346 

can be varied with the COV of the strength property for clay at both low and high flood water 347 

elevations. By contrast, the COV of the strength property for sand is more influential at high 348 

flood water elevations and results in a higher probability of failure than that from the COV of 349 

the strength property for clay at high flood water elevations. This can be explained by the fact 350 

that the strength of the soil layers can considerably resist flooding hazards with relatively 351 

small deformation at low flood water elevations and the support of the structures becomes 352 

more crucial with the increase of the flood water elevation. Therefore, the COV of the 353 

strength property for clay can be influential on the probability of failure for all the flood water 354 

elevations while the probability of failure is less sensitive to the COV of the strength property 355 

for sand at low flood water elevations. 356 

 357 
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 358 

 359 

Figure 4. Effect of COV of the strength property of clay layers on the probability of failure of 360 

the floodwall using random variable method 361 

 362 

 363 

 364 

Figure 5. Effect of COV of the strength property of sand layer on the probability of failure of 365 

the floodwall using random variable method 366 

 367 

 368 

4. Reliability analysis of floodwalls using random field method 369 

In this section, the reliability of the pile-founded floodwall with different flood water 370 
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elevations is analyzed again using the random field method. The baseline case is first studied 371 

as a basic model for reliability analysis. Then parametric studies are performed to investigate 372 

the effect of the COV and scales of fluctuation of the soil properties on the probability of 373 

failure of the floodwall.  374 

4.1 Results analysis for the baseline case using the random field method 375 

To consider the effect of the spatial variability of the soil properties, the baseline case 376 

using the random field method is studied first. The statistics of the soil properties are taken the 377 

same as that from the random variable method (see Table 2). Compared to the random 378 

variable method, additional horizontal and vertical scales of fluctuation λx and λy should be 379 

determined. The horizontal scale of fluctuation λx typically ranges from 10 to 92.4 m and the 380 

vertical scale of fluctuation λy typically ranges from 0.1 to 8.0 m for clay soil while the λx and 381 

λy for sand soil fall within the range from 12.7 to 75 m and from 0.14 to 3.0 m, respectively 382 

(Phoon and Kulhawy 1999; Li et al. 2015). Therefore, the λx is set as 50 m and λy is set as 4 m 383 

for clay soil while the λx is set as 40 m and λy is set as 2 m for sand soil (see Table 2) in the 384 

baseline to show a “general case” scenario. The probability of failure with different flood 385 

water elevations is plotted in Figure 6. The probability of failure increases with the flood 386 

water elevation due to the increased pore water pressure and water weight load, which is 387 

similar to the results from the random variable method.  388 

 389 
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 390 

 391 

Figure 6. Effect of the flood water elevation on the probability of failure of the floodwall 392 

using random field method 393 

 394 

4.2 Effect of the COV and scales of fluctuation of soil properties on the reliability of the 395 

floodwall using the random field method 396 

To further investigate the influence of the uncertainties of the soil properties, a 397 

parametric study of COV and scale of fluctuation are performed for the reliability analysis of 398 

the floodwall. The probability of failure with different COV of clay soil and sand soil is 399 

illustrated in Figure 7 and Figure 8, respectively. Compared to the results from the random 400 

variable method, similar conclusions can be obtained from the random field method. For 401 

instance, a similar trend of the probability of failure with the flood water elevation can be 402 

found in Figure 7 and Figure 8. The probability of failure is varied with the flood water 403 

elevation at both low and high flood water elevations for the COV of the strength property of 404 

clay. The COV of the strength property of sand causes more effects on the probability of 405 

failure at high flood water elevations. However, it is interesting to find a lower probability of 406 

failure at high flood water elevations derived from the COV of the strength property of sand, 407 
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which is opposite to the conclusion from the random variable method. This can be explained 408 

that surrounding strong soil elements in the sand layer could resist the deformation triggered 409 

by the weak soil elements exactly around the pile tip, resulting in an “average” effect. In 410 

addition, as shown in Figure 9, the slip surface of the floodwall is formed in the clay layers 411 

rather than in the sand layer. The top layers are thick clay layers while the sand layer on the 412 

bottom of the floodwall system is thin in Figure 2, indicating that the COV of the strength 413 

property of clay layers will affect a larger area of the model domain in this example and is 414 

more likely to cause local weak soil zone. Therefore, the influence of the COV of the strength 415 

property of clay is more significant than that of the strength property of sand in the 416 

application of the random field method.  417 

 418 

 419 

Figure 7. Effect of COV of the strength property of clay layers on the probability of failure of 420 

the floodwall using random field method 421 

 422 
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 423 

 424 

Figure 8. Effect of COV of the strength property of sand layer on the probability of failure of 425 

the floodwall using random field method 426 

 427 

Sand soil
 428 

(a) Flood water elevation is 2.8 m 429 

 430 
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Sand soil
 431 

(b) Flood water elevation is 3.6 m 432 

Figure 9. Contour of displacement of the floodwall with different flood water elevations in the 433 

deterministic analysis 434 

 435 

Figure 10 and Figure 11 show the effect of the scales of fluctuation of the strength 436 

property of clay on the probability of failure. It can be found that the probability of failure 437 

increases with the horizontal and vertical scales of fluctuation λx and λy of the strength 438 

property of clay since large scales of fluctuation represent a higher correlation of soil 439 

properties and tends to cause local weak zones. The horizontal scale of fluctuation λx with a 440 

wider range causes a smaller effect on the probability of failure than λy, which agrees well 441 

with the results of the slope stability analysis in the previous studies (Cho 2010; Ji et al. 2012; 442 

Li et al. 2015). The ratio of the horizontal length to the vertical length of the numerical model 443 

is generally within an order of magnitude, which means the soil properties in the horizontal 444 

direction are highly correlated while that in the vertical direction can considerably fluctuate. 445 

Therefore, the influence of the λx on the probability of failure of the floodwall is more 446 

significant than λy. Similar conclusions can be found in Figure 12 and Figure 13 for the sand 447 

layer.  448 
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 449 

Figure 10. Effect of the horizontal scales of fluctuation of the strength property of clay layers 450 

on the probability of failure of the floodwall using random field method 451 

 452 

 453 

Figure 11. Effect of the vertical scales of fluctuation of the strength property of clay layers on 454 

the probability of failure of the floodwall using random field method 455 

 456 
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 457 

Figure 12. Effect of the horizontal scales of fluctuation of the strength property of sand layer 458 

on the probability of failure of the floodwall using random field method 459 

 460 

 461 

Figure 13. Effect of the vertical scales of fluctuation of the strength property of sand layer on 462 

the probability of failure of the floodwall using random field method 463 

 464 

As is mentioned above, the random variable model is conceptually simple and can 465 

generally yield a more robust prediction of the geotechnical system response than the random 466 

field model. However, the random field model can rationally characterize the soil spatial 467 

variability and result in a more accurate prediction of the geotechnical system response. As 468 

such, it is crucial to know the similarities and differences between the random variable model 469 
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and random field model before a trade-off is made between the model robustness and model 470 

fidelity in the model selection for the reliability analysis of floodwalls. Figure 14 and Figure 471 

15 present the comparison results of the two methods. For both two methods, the probability 472 

of failure increases with the COV of the strength property of clay for all flood water 473 

elevations and is sensitive to the COV of the strength property of sand at high flood water 474 

elevations. At low flood water elevations, the floodwall system is stable for both two methods 475 

and the probability of failure derived from RVM and RFM is at a similarly low level. The 476 

random variable method generally results in a higher probability of failure than the random 477 

field method at high flood water elevations, indicating that the RVM-based design could be 478 

more conservative without considering spatial variability of the soil properties in this case. 479 

The continuous slip surface can be easily formed when a weak soil element is sampled in one 480 

random variable simulation since the strength soil properties of all the soil elements in the 481 

model domain are the same as small in this simulation. By contrast, if a weak soil element is 482 

generated in one random field simulation, there could be strong soil elements in the model 483 

domain to prevent the extension of the slip surface and soil deformation around the pile tip 484 

due to the fluctuation of the soil properties. The “average” effect could be more obvious when 485 

the scale of fluctuation is small and make the results from the random field method close to 486 

the deterministic analysis results (Hicks et al. 2014). Note that the factor of safety FS in the 487 

deterministic analysis for all the flood water elevations in this study is greater than 1.0. It is 488 

reasonable to find that the probability of failure from the RVM is generally larger than that 489 

from RFM. Due to the “average” effect in the RFM, higher COV of the strength property of 490 

sand which determines the end bearing capacity of the H-piles will result in a lower 491 

probability of failure of the pile-founded floodwall than that from the RVM, since the strong 492 
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soil elements surrounding the weak soil elements exactly around pile tip will resist soil 493 

deformation at high flood water elevations. Although the sand layer is far from the slip 494 

surface and is thin at the bottom of the pile-founded T-wall, the uncertainties of the strength 495 

property of sand can also be crucial for the stability of the pile-founded T-wall, which is quite 496 

different from the layered slope stability analysis. The comparison results can provide some 497 

guidance for the model selection for the reliability-based floodwall designs, though many 498 

influencing factors (e.g., the economic benefits, time constraints, budget constraints, and 499 

geotechnical data availability) could be considered in the trade-off between the model 500 

robustness and model fidelity. For example, the random variable model can yield a larger 501 

probability of failure in this study, indicating that the designs based on the random variable 502 

method could be cost-inefficient in this case. When sufficient data can be available to 503 

calibrate the random field model, it is preferable to adopt the random field model to reach 504 

economic designs. If it is time-starved and well-budgeted, the designs based on the random 505 

variable method can be more acceptable since fewer field data are needed for accurate 506 

calibrations. It is also possible to combine the two models according to different design stages. 507 

In the initial stage of the design project, only limited field investigation data can be obtained 508 

and it is suitable to use the random variable method to give preliminary designs of the 509 

floodwall. As more data are available, these preliminary designs can be updated to be more 510 

economic designs using the random field method. 511 
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 512 

Figure 14. Comparison of COV of the strength property of clay layers between the results 513 

from random variable method and random field method 514 

 515 

 516 

Figure 15. Comparison of COV of the strength property of sand layer between the results 517 

from random variable method and random field method 518 

 519 

5. Summary and conclusions 520 

This paper presents a comprehensive study to evaluate the reliability of the 521 

pile-founded T-wall system with several clay layers on the top and a sand layer on the bottom, 522 

where both the random variable method and random field method are used for the reliability 523 

analysis of the floodwall. The strength soil properties are modeled as random variables and 524 
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random fields, respectively. The parametric study is performed to investigate the effect of the 525 

COV, and the horizontal and vertical scales of fluctuation (of the strength properties for clay 526 

and sand) on the probability of failure. Based on the obtained results, the following 527 

conclusions can be summarized. 528 

1) For the random variable method, the probability of failure increases with the COV 529 

of the strength properties for clay and sand. The probability of failure is less sensitive to the 530 

COV of the strength property of sand at low flood water elevations. 531 

2) For the random field method, the probability of failure increases with the COV and 532 

(horizontal and vertical) scales of fluctuation of soil properties. The effect of the horizontal 533 

scale of fluctuation is more profound than the vertical scale of fluctuation for clay and sand 534 

layers.  535 

3) The probability of failure derived from the random variable method is generally 536 

higher than that from the random field method at high flood water elevations. The COV of the 537 

strength property of sand is more likely to cause a large probability of failure than that of the 538 

strength property of clay at high flood water elevations in the random variable method. By 539 

contrast, the COV of the strength property of sand does the opposite in the random field 540 

method, indicating that the COV of the strength property of clay is more influential on the 541 

probability of failure than the COV of the strength property of sand in the random field 542 

method.  543 
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