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Reliability analysis of pile-founded T-walls using the random variable method
and random field method

Liang Zhang', Lei Wang®"

Abstract: The pile-founded walls (e.g., T-walls) are important civil infrastructure for flood
protection. The stability analysis of floodwalls in the face of flooding hazards is a critical
problem for the design and maintenance of floodwalls. However, most current studies for the
stability assessment of floodwalls are based on deterministic analyses. The uncertainties of
soil properties, which cannot be avoidable due to complex geological processes and
depositional environment, are not sufficiently studied. To address the uncertainties of soil
properties, a two-dimensional pile-founded T-wall system with several clay layers on the top
and a sand layer on the bottom is taken as an example for the reliability analysis. Both the
random variable method and random field method are adopted for the probabilistic analysis of
floodwalls. The effect of the coefficient of variation (COV) and scales of fluctuation of soil
properties are investigated by parametric studies. The results show that the probability of
failure increases with the COV of soil properties for both methods. For the random field
method, the effect of the vertical scale of fluctuation of soil properties is more profound than
the horizontal scale of fluctuation. The probability of failure derived from the random variable
method is generally larger than that from the random field method at high flood water
elevations when the same COV of soil properties is applied. This study can provide useful
references for risk-informed decision-making in the stability assessment of floodwalls in the

face of flooding hazards.
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1. Introduction

The pile-founded walls (e.g., I-walls or T-walls) play a vital role in flood protection in
the New Orleans area. Since the pile-founded I-walls in New Orleans were ruined by
Hurricane Katrina while pile-founded T-walls survived in several places, many studies have
been performed to investigate the insufficiency of the traditional floodwall design (i.e.,
two-dimensional limit equilibrium analysis). Won et al. (2011) found that the complicated
pile-soil interactions at deep ground layers in the pile-founded T-wall system were not fully
analyzed and the unreasonable assumption of the load distribution on the battered pile in
traditional design can overestimate the stability of floodwalls. The study by Hu et al. (2013)
showed that the deformation of the I-wall system revealed an obvious three-dimensional
effect, and the displacement of I-wall systems could not be accurately predicted by the
two-dimensional analysis. Adhikari et al. (2014) indicated that the gap developed between the
I-wall and the soils, and the reduced strength of the soils were the two main causes leading to
the instability of floodwalls in face of the flooding hazards.

Although the failure mechanism of the pile-founded walls is considerably understood
due to the pioneering work of many previous studies, most current studies are performed with
deterministic analyses. However, natural soils are very complicated and highly variable
geo-materials and can exhibit many uncertainties due to the natural fluctuation of material
constituents and randomness in the depositional history (Huang et al. 2020). Scarce studies
focused on the investigation of the effect of the uncertainties in soil properties on the stability
of floodwalls, especially for pile-founded T-walls (Rajabalinejad et al. 2010; Rajabalinejad
and Demirbilek 2011; Bodda et al. 2019; Davidson et al. 2020; Link 2021; Ravichandran et al.

2022). To address these uncertainties, either the random variable method (RVM) or random
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field method (RFM) can be implemented for the stability analysis of the geotechnical systems
(Cheng et al. 2019; Zhang et al. 2021). The random field method is a very effective approach
to characterizing the spatial variability of soil properties (Jiang et al. 2014; Gong et al.
2017&2020). It has been proven to be theoretically superior to the random variable method in
many scenarios (Juang et al. 2018). However, since the random field model is more
complicated, additional parameters should be calibrated before the application of the random
field method. It can be quite challenging to calibrate these parameters (e.g., the horizontal
scale of fluctuation) in the random field method, especially when limited site investigation
data can be obtained (Hicks et al. 2014), which can highly reduce the robustness of the results
based on the random field method and make the simple random variable method more
preferable in predicting the geotechnical system performance (Juang et al. 2018). Therefore,
both the random variable method and random field method should be used for the reliability
analysis of floodwalls in the face of flooding hazards.

This paper is aimed at investigating the effect of the uncertainties of soil properties,
where both the random variable method and random field method are adopted for the
reliability analysis of floodwalls in the face of flooding hazards. The rest of the paper is
organized as follows. First, the methodologies for deterministic analysis and random field
simulations are briefly introduced. Second, a baseline case for an example pile-founded
T-wall system is introduced, and the reliability of the floodwall using the random variable
method is analyzed. The effect of the coefficient of variation (COV) of soil properties is
studied by parametric studies in this section. Third, the reliability of the example floodwall is
evaluated again by using the random field method, where the influence of the COV and scales

of fluctuation of soil properties is investigated. Finally, the concluding marks are summarized
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based on the results represented.
2. Methodologies adopted for the reliability analysis of pile-founded T-walls

In this section, the shear strength reduction method for deterministic stability analysis
and the random field simulations for probabilistic analysis are briefly introduced, respectively.
Reliability analysis in terms of probability of failure, as an effective approach to quantify the
uncertainties and evaluate the risk of geotechnical infrastructures such as floodwalls (Baecher
and Christian 2005), is the focus of this study.
2.1 Deterministic stability analysis for pile-founded T-walls

The stability of the pile-founded T-walls can be evaluated by the equilibrium method
or numerical method (USACE 2012). In this study, the 3-D explicit finite difference program
FLAC3D version 7.0 (Itasca 2022) is adopted for the stability analysis of the pile-founded
T-walls, where the strength reduction method is built for the evaluation. With the strength
reduction method, the shear strength parameters in terms of cohesion (c¢) and friction angle (¢)
of each soil layer are progressively reduced (or increased) by a series of values of potential
factor of safety FS; to bring the pile-founded T-wall system to a state of limiting equilibrium,

which can be described as

¢ =— (1a)

tan @
tanp. = lb
i = "o (1b)

i

where ¢ and ¢ are reduced cohesion and friction angle, respectively. Then the factor of
safety (F'S) can be used to evaluate the stability of the pile-founded T-walls.
2.2 Random field simulations of soil properties in the stability analysis for pile-founded

T-walls
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The spatial variability of soil properties is generally characterized as random fields
(Jiang et al. 2014; Chen et al. 2020; Hu et al. 2023). The characterization of key geotechnical
parameters such as unit weight, cohesion, and friction angle of soils for reliability assessment
is carefully selected. Since the COV of the unit weight is generally below 0.1 (Phoon and
Kulhawy 1999; Li et al. 2014), the unit weight is set as a constant value while the cohesion
and friction angle are modeled as random variables or random fields in this study. Since the
soil properties are non-negative, the soil properties are generally assumed as lognormally
distributed (Cho 2010; Jiang et al. 2014; Gong et al. 2020). The mean 4,5 and the standard
deviation ols of the normal random field In(s) are computed with the given mean z and the

coefficient of variation (COV) ¢y of the original soil property s as follows.

O, =A/In(1+6.) (2a)
:Lllns = ln(ﬂ) - O'Salis (2b)

The anisotropic exponential autocorrelation structure is selected to characterize the
correlation coefficient p;; between the soil property s at two different locations of (x;, i) and

(%, v), which is calculated as follows.

2‘xj —xl.‘ _2‘yj —yi‘
A A

X y

pij:p(‘xj_xi yj_yi‘):exp(_ ) (3)

b

where |x; — x;| and [y; — yi| represent the absolute distances between the two positions of (x;, i)
and (x;, y;) along the X and Y directions, namely, the horizontal and vertical directions,
respectively; whereas, A, and A, are the horizontal and vertical scales of fluctuation of the
equivalent normal random field In(s) along the X and Y directions, respectively.

Since a fixed value is mapped to the soil element domain rather than at the mesh grids,
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the average effect over the soil element domain should be considered. The mean of soil
property sansE that is averaged over each soil element domain is equal to that of the local soil
property ruans while the standard deviation of the averaged soil property ok is decreased.
Based on the autocorrelation structure built in Eq. (3), the locally averaged mean zanse and

standard deviation ol over a rectangular mesh with side length /: and /, can be derived as

(Knabe et al. 1998; Huang and Griffiths 2015):

Gli,s‘E = Ulix}/(lx 4 l)) (43)

lulnxL’ = /ulnx (4b)
4 e ol 2z, | 27,

y(,1) = o _[0 L» (I, =t ), =7, )exp(~ N T,)d rdr,  (4¢)

X y

The locally averaged tuanse and omse are involved in the following random field simulations
instead of ans and omns. A variety of methods for random field generations can be available
now, such as the local average subdivision method, turning-band method, fast Fourier
transformation method, and covariance matrix decomposition method (Fenton 1994; Wang et
al. 2020; Gong et al. 2021). As a common and easy-to-implement method, the covariance
matrix decomposition method is adopted for the random field generation in this study. With
the prior knowledge of the mean, standard deviation, and autocorrelation structure, the ng x ng
autocorrelation matrix Rins of the soil property between each two soil elements can be

established. One random field simulation can be generated as follows.
Sy = exp(,ulmEj + Oy - I si/.) 5)
where s;; is the /" numerical element of the /" realization of the random field (i = 1, 2, ..., Np; j

=1, 2, ..., ng), in which N, is the number of realizations of the random field and #g is the
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number of discretized numerical elements; gansg; and omnsg; are the averaged mean and standard
deviation of the soil property In(s) over the j numerical element, respectively; Ins; is the j®
element of the i realization of the random field. The matrix Ins; of the soil property for all the

numerical elements is derived as follows.

ln si = Llnsgi (63.)
R, =L, xL, (6b)
where & is an ng % 1 standard normal sample vector (i =1, 2, ..., N,), which is sampled by the

subdomain method described later; Liys is a lower triangular matrix of autocorrelation matrix
Ry derived by the Cholesky decomposition technique.
2.3 Modified subdomain sampling method for the random field simulations of soil
properties

Monte Carlo simulations (MCS) have been widely used for the random field
simulations of soil properties. However, the MCS could be computationally challenging for
the low probability scenarios (e.g., the flood water elevation for the pile-founded T-wall is low)
(Jiang and Huang 2016; Gao et. 2019). With the advance in computational science and the
pioneering work of previous studies, some strategies have been proposed to improve
computational efficiency, such as the parallel computing method (Spencer 2007), the Latin
hypercube sampling (LHS) (Lo and Leung 2017), subset sampling method (Wang et al. 2010;
Au and Wang 2014), and subdomain sampling method (SSM) (Juang et al. 2017; Gong et al.
2020). The subdomain sampling method exhibits high efficiency and accuracy to derive the
probability of failure in face of small probability events (Juang et al. 2017). Some SSM-based

practical designs have been conducted in previous studies (e.g., Gong et al. 2020; Yun et al.
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2020). The original SSM is modified to further enhance the computational efficiency in the
estimate of the low failure probabilities in this study.

In the original SSM, the possible domain of input uncertain variables is discretized
into a series of continuous subdomains. Then a distance index (d) is used to partition the
domain based on Hasofer-Lind reliability index (Hasofer and Lind 1974), which is

formulated as

d =[u] [R][u] (7)
where u = [u1, u2, u3, ..., us]" is a vector of transformed standard normal variables from the
original space of the input parameters and 7 is the number of input uncertain variables X; R is
the correlation matrix among the standard normal variables u. The relations between the
component u; of u and component x; of the X are described as

U, =07 (F(x,) @®)
where F(x;) is the cumulative distribution function (CDF) of uncertain variable x;; the @(-) is
the CDF of the standard normal variables. As such, the domain of input uncertain variables
can be partitioned into a series of subdomains [0, d), [d1, d2), [d>, d3), etc. With the sampled
domain [0, dma), d* follows the chi-square distribution with n degree of freedom. The
possibility of the samples located in and outside this domain is (1-¢) and &, which can be
described as

2 =¢ ©)
where () is the chi-square CDF with n degrees of freedom. Then the probability of each

subdomain can be calculated as

p,, =Prld’, <[u]'[Rlul<d}1= x,(d}) - x,(d’)=¢' (10)
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According to previous studies, the ¢ is generally no large than 1/2 (i.e., ¢ < 1/2) (Gong et al.
2016&2020; Juang et al. 2017), and ¢ = 1/3 is adopted in this study following Gong et al.
(2020). The detailed procedures for generating samples in each subdomain can be referred to
Gong et al. (2016). With generated samples, the conditional failure probability p; in the

subdomain [d;-1, d;) is calculated as

L (11)

Pp=-
fi ¢

where ¢ is the total number of samples generated in the subdomain [d;.1, d;) and #; is the
number of failure samples in this subdomain. The COV of the conditional failure probability

J,, can be estimated in the subdomain as
~ |2 (12)

The total probability of failure P can be obtained by the summation of all the conditional

probabilities of failure, which can be calculated as
£ Zz(pA,» py) (13)
i=1

where ns 1s the total number of subdomains. The COV of Prcan be calculated as

\/Z[pi, (P8, )] \/(l/t)-Z[pi,. pp-(=py)]
Z(pAl 'p_ﬁ) Z(pA, 'pﬁ)
i=1 i=1

r

(14)

To implement the SSM, the number of samples ¢ in each subdomain and the total
number of subdomains ns should be determined first. Herein, + = 30 is selected by the
trade-off between the computational efficiency and variation of Py (Juang et al. 2017; Gong et

al. 2020). In the original subdomain sampling method (SSM), the number (ns) of subdomains

10
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can be determined by the following equation after the target probability of failure Ps is

estimated:

7_<0.01 (15)

However, a fixed total number of ¢ x ns simulations will be performed for either a high or low
probability of failure, resulting in unnecessary computation for the high probability of failure,
since smaller domains can be sufficient for the estimate of a high probability of failure.
Therefore, Yun et al. (2020) suggested that the ns can be adaptively adjusted by the 5% error
for the probability of failure from the first £ (k < ns) subdomains (see Eq. (16)). As shown in
Egs. (16-18), the two conditions from the original SSM and Yun et al. (2020) can be reached
by a stricter criterion but with a simpler form that is easy to implement for programming.
Therefore, the first strategy to enhance computational efficiency is achieved to adaptively

determine the number of the subdomains in the modified SSM (see Eq. (18)).

k+1 ns—k k+1 k+1
N N g (1-9"7) ¢ q k
Dy Pi<Q, Ps= < <*—=gq (16a)
i:;l A on i:;l . I-q l-gq q
P _p® 2 Py Py 2 Py Py :
gik) __f . S _ k41 _ < i:iﬂ <— q (16b)
s DDy Pyt 2 Py Py 2Py Pr 2Py Py
i=1 i=k+1 i=1 i=1
ns ns ns k
4 _ 7_ q «—9 o001 (17)

<
P k k k

TPy it 2Py Py 2 PaPi 2Py Py
i i=l1 i=l1

i=1 i=k+1

k

—4 <001 (18)
ZPA, Py
i=1

The second strategy for the modification of the original SSM is without searching for F'S by
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following Huang et al. (2017), which means the exact FS is not calculated in this case. Instead,
whether the pile-founded T-wall system is stable or unstable is judged by substituting /S = 1.0
in the strength reduction method with only one trial calculation. With all the strategies applied
in the modified SSM, the modified SSM is approximately 7~9 times more efficient in terms of

computational time than the original SSM for all the cases involved.

3. Reliability analysis of floodwalls using the random variable method

In this section, the reliability analysis of floodwalls is performed using the random
variable method. The baseline case for a pile-founded T-wall system is first analyzed to
investigate the influence of the flood water elevation on the probability of failure of the
floodwall. The effect of the COV of the soil properties is also investigated for the reliability
analysis of the floodwall.
3.1 Results analysis for the baseline case using the random variable method

To investigate the influence of flood water elevations on the probability of failure, a
two-dimensional pile-founded T-wall system modified from Won et al. (2011) is studied,
where the thin layers with similar strength soil properties are combined into thick layers and
the sheet pile is removed to reduce the computational burden and simplify the procedures to
perform the parametric study. Therefore, the model in this study has similar complexity to the
exquisite model in Won et al. (2011) and is sufficiently realistic and meaningful, which
ensures the derived conclusions from the modified model show engineering significance and
can provide useful guidance for reliability-based floodwall designs. Figure 1 shows the
geometry parameters of the pile-founded T-wall system. The floodwall system consists of an

earth levee, a concrete T-wall, and three rows of H-piles (HP 14x73). The earth levee with a

12



250 height of 1 m and slope of 3H:1V is on the top of the T-wall base. The T-wall with a height of
251 5.15 m and a base of 4.0 m is supported by the three rows of batter H-piles. The top elevation

252 of the T-wall is EL. +3.65 m while the bottom elevation of the T-wall is EL. -1.5 m. Three

253 rows of H-piles are inclined with the same ratio of 1H:3V to the vertical plane. The mesh of
254 the built numerical model is presented in Figure 2. As shown in Figure 2, five soil layers are
255 configured in this pile-founded T-wall system. Four clay layers (i.e., the levee fill, the peat,
256 the soft clay, and the hard clay) are at the top and a sand layer is located at the bottom. The
257 top elevation and soil properties of each soil layer for deterministic analysis are tabulated in
258 Table 1. The H-piles are embedded in the sand layer to guarantee enough capacity for the
259 floodwall.
4.0
Unit: (m)
2.9 i 0.6 = 0.5
— EL. +3.65
EL.+0.3
Flood Side EL.-0.6 /431/7 Protected Side

= —EL.-0.75

o

(=)

- EL.-1.5
2 Bottom of excavation
HP 14x73 HP 14x73
—EL. -27.7
2 0 |

260
261 Figure 1. Illustration of the geometry of pile-founded T-wall system (after Won et al. 2011)
262
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Figure 2. Mesh of pile-founded T-wall system for the numerical simulations

Table 1. Soil properties adopted in the deterministic analysis

Layer Soil type | Top elevation (m) | ¢, (kPa) | ¢ (°) | y (kN/m®) | G (kPa) | K (kPa)
Levee fill | Clay soil 0.3 23.9 - 17.3 3585 | 8.86e4
Peat Clay soil -0.6 5.7 - 12.6 574.6 | 1.42¢4
Soft Clay | Clay soil -4.3 7.2 - 15.7 933.7 | 2.30e4
Hard Clay | Clay soil -11.9 9.6 - 15.7 2863.2 | 7.09¢4
Sand Sand soil -26.2 - 30 18.1 7804.4 | 1.69¢4

In the numerical simulations with FLAC3D version 7.0, the Mohr-Coulomb model is used to
model the behavior of all soil layers. The T-wall is simulated by the brick elements with
elastic behavior, and the interactions between the T-wall and the soil are modeled by the
interface elements in FLAC3D. Interface elements are attached to the T-wall surface through
the interface nodes in the numerical simulations. The elastic-perfectly-plastic model is
adopted for the behavior of the interface to characterize the sliding and gap between the soil
and T-wall. The shear strength parameters cohesion and friction angle of the interface are set

following Won et al. (2011). The shear stiffness ks, and normal stiffness &, for deformation are

14
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determined as follows (Itasca 2022):

(K+4/3G)

ks = kn =10 ] (19)

min

Where Az . is the smallest width with of an adjoining zone in the normal direction. K and G

min

are the bulk modulus and shear modulus of the soil, respectively. The H-piles are modeled by
the pile elements to consider the support for the floodwall. The detailed structure properties
and the interface properties adopted in the numerical simulations can be referred to Won et al.
(2011). The T-wall and H-piles are connected by the end bearing spring. The connection is
assumed to be a continuously reinforced concrete and the properties for the end bearing spring
are also set following Won et al. (2011). The horizontal displacement of the four side
boundary planes of the model is restricted in the normal direction, and the displacement at the
base of the model is fixed. To investigate the stability of the pile-founded floodwall with
different flood water elevations, initial stress and strain for the numerical model without any
geotechnical structures (i.e., the T-wall, and H-piles) are first computed. Then the T-wall and
H-piles are built to update the stress and strain before the pore water pressure is applied to the
flood protection system. The initial water table elevation is set as EL. -0.3 m in protect side
and the initial flood water elevation is set as EL. +0 m in the flood side. Finally, the flood
water elevation increases in an increment of 0.2 m from EL +0 m to EL +3.6 m on the flood
side (i.e., the left side of the model). The critical mechanism of the floodwall (consisting of
soils, T-wall, and H-piles) with flood water elevations for potential failure modes is validated
based on the study by Won et al. (2011).

The soil properties adopted for the probabilistic analysis using the random variable

method are summarized in Table 2. Since the undrained condition is applied in this example,
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the undrained shear strength ¢, is modeled as a random variable for the clay layers while the
friction angle ¢ is taken as a random variable for the sand layer. The remaining soil properties
are set as constant values. Note that the soil strength properties are assumed as lognormally
distributed. The mean of ¢, and ¢ of each soil layer is the same as that from deterministic
analysis (see Table 1). According to previous studies, the COV of clay typically ranges from
0.1 to 0.5 while the COV of sand typically varies from 0.05 to 0.15 (Phoon and Kulhawy
1999; Alamanis 2017; Wu et al. 2019; Ma et al. 2022). The midpoints of these ranges are
selected for the baseline to show a “general case” scenario. The maximum and minimum of
these ranges are adopted for “best case” and “worst case” scenarios in the following
parametric study. As such, the effect of uncertainties in soil properties on the reliability of
floodwall can be revealed in this study. Therefore, the COV of ¢, for clay layers is set as 0.3
and the COV of ¢ for the sand layer is set as 0.1 in the baseline. The modified SSM is adopted
for the calculation of the probability of failure. The probability of failure with different flood
water elevations is illustrated in Figure 3. As shown in Figure 3, the probability of failure P
stably increases first and then rapidly increases with the flood water elevation. The largest Py
will be obtained when the flood water elevation approaches the T-wall top (i.e., EL. +3.6 m),
which is mainly owing to the increase of the pore water pressure and load effect triggered by
the water weight with the flood water elevation. The pore pressure reduces the effective stress
of the soils and leads to more possibility of failure in the soil layers. The water weight load
normally distributed on the T-wall and the earth levee on the flood side results in the slide and

rotation of the floodwall system as a whole.

Table 2. Soil properties adopted for the baseline case in the probabilistic analysis
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Soil type Clay soil Sand soil
) ) Undrained shear . o
Soil properties strength, ¢, (kPa) Friction angle, ¢ (°)
Probability distribution Lognormal Lognormal
Mean See Table 1 See Table 1
Coefficient of variation 0.3 0.1
Horizontal scale of fluctuation for RFM, A, (m) 50 40
Vertical scale of fluctuation for RFM, A, (m) 4 2
0.3
]
E
F0.2
Y=
Q
2
l'_cg 0.1
=
a9
0.0 . . .
2.8 3.0 3.2 3.4 3.6

Flood water elevation (m)
Figure 3. Effect of the flood water elevation on the probability of failure of the floodwall
using random variable method
3.2 Effect of the COV of soil properties on the reliability of the floodwall

To further investigate the effect of the COV of the soil properties, a parametric study is
performed for the reliability analysis of the floodwall. The probabilistic case from section 3.1
is taken as a baseline case. Figure 4 shows the influence of the COV of ¢, of the clay layers on
the probability of failure of the floodwall. The probability of failure increases with the COV
of cu,, which implies that more uncertainties in the strength property of clay layers will make
the floodwall system more likely to fail. Similar results for the different COV of ¢ of the
strength property for sand can also be obtained in Figure 5. Figure 5 also shows that the

probability of failure with flood water elevations for the COV of the strength property for
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sand equal to 5% is similar to that for the COV equal to 10%. It is possible because the two
curves are at a similarly low level of uncertainty and the COV of the strength property for
sand is not changed too much. As the COV of the strength property for sand increases from
10% to 15%, the effect of the COV becomes much more significant due to the nonlinear
relationship between the probability of failure of the floodwall and the COV of the strength
property for sand. The general trend is captured to show that the probability of failure of the
floodwall increases with the COV of soil strength properties. The stability of the floodwall
mainly depends on the soil-bearing capacity and the support of the structures (i.e., the T-wall
and the H-piles). The end-bearing capacity of the H-piles largely depends on the soil
properties around the pile tip. Therefore, the COV of strength properties for both clay and
sand layers will cause a huge effect on the stability of the floodwall system, although it seems
that the slip surface does not go through the sand layer. However, the probability of failure
can be varied with the COV of the strength property for clay at both low and high flood water
elevations. By contrast, the COV of the strength property for sand is more influential at high
flood water elevations and results in a higher probability of failure than that from the COV of
the strength property for clay at high flood water elevations. This can be explained by the fact
that the strength of the soil layers can considerably resist flooding hazards with relatively
small deformation at low flood water elevations and the support of the structures becomes
more crucial with the increase of the flood water elevation. Therefore, the COV of the
strength property for clay can be influential on the probability of failure for all the flood water
elevations while the probability of failure is less sensitive to the COV of the strength property

for sand at low flood water elevations.
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Figure 4. Effect of COV of the strength property of clay layers on the probability of failure of
the floodwall using random variable method
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Figure 5. Effect of COV of the strength property of sand layer on the probability of failure of
the floodwall using random variable method

4. Reliability analysis of floodwalls using random field method

In this section, the reliability of the pile-founded floodwall with different flood water
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elevations is analyzed again using the random field method. The baseline case is first studied
as a basic model for reliability analysis. Then parametric studies are performed to investigate
the effect of the COV and scales of fluctuation of the soil properties on the probability of
failure of the floodwall.
4.1 Results analysis for the baseline case using the random field method

To consider the effect of the spatial variability of the soil properties, the baseline case
using the random field method is studied first. The statistics of the soil properties are taken the
same as that from the random variable method (see Table 2). Compared to the random
variable method, additional horizontal and vertical scales of fluctuation 4. and 4, should be
determined. The horizontal scale of fluctuation A, typically ranges from 10 to 92.4 m and the
vertical scale of fluctuation 4, typically ranges from 0.1 to 8.0 m for clay soil while the A, and
Ay for sand soil fall within the range from 12.7 to 75 m and from 0.14 to 3.0 m, respectively
(Phoon and Kulhawy 1999; Li et al. 2015). Therefore, the A is set as 50 m and 4, is set as 4 m
for clay soil while the A, is set as 40 m and 4, is set as 2 m for sand soil (see Table 2) in the
baseline to show a “general case” scenario. The probability of failure with different flood
water elevations is plotted in Figure 6. The probability of failure increases with the flood
water elevation due to the increased pore water pressure and water weight load, which is

similar to the results from the random variable method.
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Figure 6. Effect of the flood water elevation on the probability of failure of the floodwall
using random field method

4.2 Effect of the COV and scales of fluctuation of soil properties on the reliability of the
floodwall using the random field method

To further investigate the influence of the uncertainties of the soil properties, a
parametric study of COV and scale of fluctuation are performed for the reliability analysis of
the floodwall. The probability of failure with different COV of clay soil and sand soil is
illustrated in Figure 7 and Figure 8, respectively. Compared to the results from the random
variable method, similar conclusions can be obtained from the random field method. For
instance, a similar trend of the probability of failure with the flood water elevation can be
found in Figure 7 and Figure 8. The probability of failure is varied with the flood water
elevation at both low and high flood water elevations for the COV of the strength property of
clay. The COV of the strength property of sand causes more effects on the probability of
failure at high flood water elevations. However, it is interesting to find a lower probability of

failure at high flood water elevations derived from the COV of the strength property of sand,
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which is opposite to the conclusion from the random variable method. This can be explained
that surrounding strong soil elements in the sand layer could resist the deformation triggered
by the weak soil elements exactly around the pile tip, resulting in an “average” effect. In
addition, as shown in Figure 9, the slip surface of the floodwall is formed in the clay layers
rather than in the sand layer. The top layers are thick clay layers while the sand layer on the
bottom of the floodwall system is thin in Figure 2, indicating that the COV of the strength
property of clay layers will affect a larger area of the model domain in this example and is
more likely to cause local weak soil zone. Therefore, the influence of the COV of the strength
property of clay is more significant than that of the strength property of sand in the

application of the random field method.
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Figure 7. Effect of COV of the strength property of clay layers on the probability of failure of
the floodwall using random field method
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deterministic analysis

Figure 10 and Figure 11 show the effect of the scales of fluctuation of the strength
property of clay on the probability of failure. It can be found that the probability of failure
increases with the horizontal and vertical scales of fluctuation 4. and A, of the strength
property of clay since large scales of fluctuation represent a higher correlation of soil
properties and tends to cause local weak zones. The horizontal scale of fluctuation 4, with a
wider range causes a smaller effect on the probability of failure than /,, which agrees well
with the results of the slope stability analysis in the previous studies (Cho 2010; Ji et al. 2012;
Li et al. 2015). The ratio of the horizontal length to the vertical length of the numerical model
is generally within an order of magnitude, which means the soil properties in the horizontal
direction are highly correlated while that in the vertical direction can considerably fluctuate.
Therefore, the influence of the A on the probability of failure of the floodwall is more
significant than /,. Similar conclusions can be found in Figure 12 and Figure 13 for the sand

layer.
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Figure 13. Effect of the vertical scales of fluctuation of the strength property of sand layer on
the probability of failure of the floodwall using random field method

As i1s mentioned above, the random variable model is conceptually simple and can

generally yield a more robust prediction of the geotechnical system response than the random

field model. However, the random field model can rationally characterize the soil spatial

variability and result in a more accurate prediction of the geotechnical system response. As

such, it is crucial to know the similarities and differences between the random variable model
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and random field model before a trade-off is made between the model robustness and model
fidelity in the model selection for the reliability analysis of floodwalls. Figure 14 and Figure
15 present the comparison results of the two methods. For both two methods, the probability
of failure increases with the COV of the strength property of clay for all flood water
elevations and is sensitive to the COV of the strength property of sand at high flood water
elevations. At low flood water elevations, the floodwall system is stable for both two methods
and the probability of failure derived from RVM and RFM is at a similarly low level. The
random variable method generally results in a higher probability of failure than the random
field method at high flood water elevations, indicating that the RVM-based design could be
more conservative without considering spatial variability of the soil properties in this case.
The continuous slip surface can be easily formed when a weak soil element is sampled in one
random variable simulation since the strength soil properties of all the soil elements in the
model domain are the same as small in this simulation. By contrast, if a weak soil element is
generated in one random field simulation, there could be strong soil elements in the model
domain to prevent the extension of the slip surface and soil deformation around the pile tip
due to the fluctuation of the soil properties. The “average” effect could be more obvious when
the scale of fluctuation is small and make the results from the random field method close to
the deterministic analysis results (Hicks et al. 2014). Note that the factor of safety FS in the
deterministic analysis for all the flood water elevations in this study is greater than 1.0. It is
reasonable to find that the probability of failure from the RVM is generally larger than that
from RFM. Due to the “average” effect in the RFM, higher COV of the strength property of
sand which determines the end bearing capacity of the H-piles will result in a lower

probability of failure of the pile-founded floodwall than that from the RVM, since the strong
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soil elements surrounding the weak soil elements exactly around pile tip will resist soil
deformation at high flood water elevations. Although the sand layer is far from the slip
surface and is thin at the bottom of the pile-founded T-wall, the uncertainties of the strength
property of sand can also be crucial for the stability of the pile-founded T-wall, which is quite
different from the layered slope stability analysis. The comparison results can provide some
guidance for the model selection for the reliability-based floodwall designs, though many
influencing factors (e.g., the economic benefits, time constraints, budget constraints, and
geotechnical data availability) could be considered in the trade-off between the model
robustness and model fidelity. For example, the random variable model can yield a larger
probability of failure in this study, indicating that the designs based on the random variable
method could be cost-inefficient in this case. When sufficient data can be available to
calibrate the random field model, it is preferable to adopt the random field model to reach
economic designs. If it is time-starved and well-budgeted, the designs based on the random
variable method can be more acceptable since fewer field data are needed for accurate
calibrations. It is also possible to combine the two models according to different design stages.
In the initial stage of the design project, only limited field investigation data can be obtained
and it is suitable to use the random variable method to give preliminary designs of the
floodwall. As more data are available, these preliminary designs can be updated to be more

economic designs using the random field method.
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Figure 14. Comparison of COV of the strength property of clay layers between the results
from random variable method and random field method
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Figure 15. Comparison of COV of the strength property of sand layer between the results
from random variable method and random field method
5. Summary and conclusions
This paper presents a comprehensive study to evaluate the reliability of the
pile-founded T-wall system with several clay layers on the top and a sand layer on the bottom,
where both the random variable method and random field method are used for the reliability

analysis of the floodwall. The strength soil properties are modeled as random variables and
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random fields, respectively. The parametric study is performed to investigate the effect of the
COV, and the horizontal and vertical scales of fluctuation (of the strength properties for clay
and sand) on the probability of failure. Based on the obtained results, the following
conclusions can be summarized.

1) For the random variable method, the probability of failure increases with the COV
of the strength properties for clay and sand. The probability of failure is less sensitive to the
COV of the strength property of sand at low flood water elevations.

2) For the random field method, the probability of failure increases with the COV and
(horizontal and vertical) scales of fluctuation of soil properties. The effect of the horizontal
scale of fluctuation is more profound than the vertical scale of fluctuation for clay and sand
layers.

3) The probability of failure derived from the random variable method is generally
higher than that from the random field method at high flood water elevations. The COV of the
strength property of sand is more likely to cause a large probability of failure than that of the
strength property of clay at high flood water elevations in the random variable method. By
contrast, the COV of the strength property of sand does the opposite in the random field
method, indicating that the COV of the strength property of clay is more influential on the
probability of failure than the COV of the strength property of sand in the random field

method.
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