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Abstract. We show in all dimensions that minimizers of variational problems with a con-
vexity constraint, which arise from the Rochet–Choné model with a quadratic cost in the
monopolist’s problem in economics, can be approximated in the uniform norm by solutions
of singular Abreu equations. The difficulty of our Abreu equations consists of having sin-
gularities that occur only in a proper subdomain and they cannot be completely removed
by any transformations. To solve them, we rely on a new tool which we establish here: a
Harnack inequality for singular linearized Monge–Ampère type equations that satisfy certain
twisted conditions.

1. Introduction and statement of the main results

In this paper, we show that minimizers of variational problems with a convexity constraint,
which arise from the Rochet–Choné model with a quadratic cost in the monopolist’s problem
in economics, can be approximated in the uniform norm by solutions of singular Abreu equa-
tions. We accomplish this in all dimensions by establishing the solvability of singular Abreu
equations in suitable Sobolev spaces, thus resolving an open issue raised in [L3, Remark 1.9].
A key ingredient in our analysis is a Harnack inequality for solutions of singular linearized
Monge–Ampère type equations satisfying certain twisted conditions.

1.1. Approximating minimizers of the Rochet–Choné model by singular Abreu

equations. Let Ω0, Ω be bounded, open, smooth, and convex domains in R
n (n ≥ 2) where

Ω contains Ω0. Let F (x, z,p) : R
n×R×R

n → R be a smooth Lagrangian which is convex in
each of the variables z ∈ R and p ∈ R

n. Let ϕ ∈ C5(Ω) be a convex function.
Consider the following variational problem subject to a convexity constraint:

(1.1) inf
u∈S̄[ϕ,Ω0]

∫

Ω0

F (x, u(x), Du(x)) dx

where

(1.2) S̄[ϕ,Ω0] =
{

u : Ω0 → R | u is convex and admits a convex extension to Ω

such that u = ϕ on Ω\Ω0

}

.

This type of problem arises in the analysis of several variational problems including: wrinkling
patterns in floating elastic shells in Elasticity [T], and the Rochet-Choné model [RC] in
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the monopolist’s problem in Economics. A typical Lagrangian for the case of q-power cost
(1 < q <∞) in the Rochet-Choné model is

(1.3) F (x, z,p) = (|p|q/q − x · p+ z)η0(x)

where η0 is the nonnegative relative frequency of agents in the population; see [RC, p. 790].
Because the functions in S̄[ϕ,Ω0] are Lipschitz continuous with Lipschitz constants bounded

from above by ‖Dϕ‖L∞(Ω), one can show, under quite general convexity and growth assump-

tions on F , that (1.1) has a minimizer in S̄[ϕ,Ω0]. Since it is in general difficult to handle
the convexity constraint, especially in numerical computations [BCMO, Mir], one wonders if
minimizers of (1.1) can be well-approximated in the uniform norm by solutions of some higher
order equations whose global well-posedness can be established. For the case of Lagrangians
F being independent of the gradient variable p, this approximation question has been an-
swered in the affirmative by Carlier–Radice [CR] in all dimensions. When the Lagrangians F
depend on the gradient variable p, this has been done [L2, L3, LZ] in two dimensions for a
large class of Lagrangians F which include the Rochet–Choné model (1.3). The approximat-
ing schemes proposed in [CR, L2, L3, LZ] use the second boundary value problem of fourth
order equations of Abreu type [Ab]. The Abreu equation

n
∑

i,j=1

U ij
∂2[(detD2u)−1]

∂xi∂xj
= f, where (U ij) = (detD2u)(D2u)−1,

arises in complex geometry in the problem of finding Kähler metrics of constant scalar cur-
vature for toric manifolds.

In our approximating scheme (see (1.9) and Jε), Abreu-type equations arise from the vari-
ations of functionals involving the penalizations −ε

∫

Ω log detD2u dx which are convex func-

tionals in the class of C2, strictly convex functions. Heuristically, the logarithm of the Hessian
determinant should act as a good barrier for the convexity constraint in problems like (1.1)–
(1.2). This was confirmed numerically in [BCMO] at a discretized level.

In the present work, we address the question of approximating minimizers of (1.1) in all
dimensions for the gradient-dependent Lagrangians. In particular, our result implies that
minimizers of the Rochet–Choné model with a quadratic cost can be approximated in the
uniform norm by solutions of singular Abreu equations.

Motivated by the Rochet–Choné model (1.3), and as in [L3], we will focus on Lagrangians
of the form

(1.4) F (x, z,p) = F 0(x, z) + F 1(x,p).

Here, the function F 0 satisfies the following convexity and growth assumptions:

(1.5)
(∂F 0

∂z
(x, z)−

∂F 0

∂z
(x, z̃)

)

(z−z̃) ≥ 0; |F 0(x, z)|+
∣

∣

∂F 0

∂z
(x, z)

∣

∣ ≤ η(|z|) for all x ∈ Ω0 and z, z̃ ∈ R

for some continuous and increasing function η : [0,∞) → [0,∞); the function F 1 satisfies the
following convexity and growth assumptions for all p = (p1, · · · , pn) ∈ R

n:

(1.6) 0 ≤ F 1
pipj (x,p) ≤ D∗In; |F

1
pixi(x,p)| ≤ D∗(|p|+ 1) for all x ∈ Ω0, and for each i,

where In is the identity n× n matrix, and D∗ is a given positive constant.
In this case, (1.1) has a minimizer in S̄[ϕ,Ω0]. The minimizer is unique in the case

F 1
pipj (x,p) ≥ C−1In for some constant C > 0. To approximate minimizers of (1.1), we
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will use the following scheme proposed in [L3] that is well suited to handling the general case
of non-uniform convexity (if any) of the Lagrangian F and the constraint barrier ϕ.

Let ψ ∈ C3(Ω) with min∂Ω ψ > 0. Let ρ be a uniformly convex defining function of Ω, that
is,

(1.7) Ω := {x ∈ R
n : ρ(x) < 0}, ρ = 0 on ∂Ω and Dρ 6= 0 on ∂Ω.

Denote by χE the characteristic function of a subset E ⊂ R
n, that is χE(x) = 1 if x ∈ E and

χE(x) = 0 if x 6∈ E.
For ε > 0, let

(1.8) µε(x) = ϕ(x) + ε
1

3n2 (eρ(x) − 1),

and consider the following second boundary value problem for a uniform convex function uε:

(1.9)























































ε

n
∑

i,j=1

U ij
ε Dijwε = fε

:=
(∂F 0

∂z
(x, uε)−

n
∑

i=1

∂

∂xi

(∂F 1

∂pi
(x,Duε)

)

)

χΩ0
+
uε − µε

ε
χΩ\Ω0

in Ω,

wε = (detD2uε)
−1 in Ω,

uε = ϕ on ∂Ω,

wε = ψ on ∂Ω,

where

(U ijε ) = (detD2uε)(D
2uε)

−1

is the cofactor matrix of the Hessian matrix D2uε.
Note that the first two equations of (1.9) consist of a Monge–Ampère equation for uε:

(1.10) detD2uε = w−1
ε in Ω,

and a linearized Monge–Ampère equation for wε:

(1.11)
n
∑

i,j=1

U ijε Dijwε = fε/ε in Ω,

because U ijε Dij comes from linearizing the Monge–Ampère operator detD2uε. The last two
equations of (1.9) prescribe the boundary values for uε and detD2uε (via wε). Moreover, the
first two equations of (1.9) are critical points, with respect to compactly supported variations,
of the following convex functional

Jε(v) =

∫

Ω0

F (x, v(x), Dv(x)) dx+
1

2ε

∫

Ω\Ω0

(v − µε)
2 dx− ε

∫

Ω
log detD2v dx.

For uε being merely convex, the right-hand side of (1.9) contains the term

(1.12) Suε := −

n
∑

i,j=1

∂2F 1

∂pi∂pj
(x,Duε(x))Dijuε

which is just a nonnegative measure. For this reason, we call (1.9) a singular Abreu equation.
The ultimate goal is to solve (1.9) for all small ε > 0, and then prove that, up to extracting

a subsequence of ε → 0, solutions uε tend to a minimizer u ∈ S̄[ϕ,Ω0] of (1.1). This turns
out to be highly challenging. One of the mains obstacles comes from the lack of regularity
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estimates for the linearized Monge–Ampère equation (1.11) with a very singular right-hand
side fε.

As explained in [L2, §1.3] and [LZ, §1.1], if one directly uses available results for the
linearized Monge–Ampère equation, one can only solve (1.9) in two dimensions. Section
1.2 will briefly mention this issue. On the other hand, if the singular term Suε is exactly
−∆uε (or a constant multiple thereof; Suε = −∆uε corresponds to F 1(x,p) = |p|2/2) and
−∆uε appears in the whole domain Ω, rather than just in the subdomain Ω0, then the recent
work [KLWZ] provides a new technique to solve (1.9) in all dimensions n ≥ 2. The reason
is that when −∆uε appears in the whole domain Ω, by using positive Hölder continuous
functions, one can transform the first two equations of (1.9) into a linearized Monge–Ampère
equation with a bounded drift, and the singular term goes away. Then one can use Hölder
estimates for linearized Monge–Ampère equation with a bounded drift, and the higher order
regularity estimates will eventually follow. This is not the case when −∆uε appears only
in the subdomain Ω0, since, to the best of the author’s knowledge, it cannot be completely
removed by any transformations. In additions, our situation here is more challenging as F 1

may depend on the spatial variable x, and thus Suε is not a positive constant multiple of
−∆uε in general.

In this paper, we introduce a new technique to solve (1.9) in all dimensions n ≥ 2 by
overcoming the difficulties mentioned above. The key technical device for obtaining regularity
estimates for the linearized Monge–Ampère equation (1.11) with a very singular right-hand
side fε is a Harnack inequality in Theorem 1.3 for singular linearized Monge–Ampère type
equations that satisfy certain twisted conditions. This allows us to solve (1.9) in all dimensions
n ≥ 2.

Our key observation here is that, granted positive lower and upper bounds for detD2uε
have been established,

(1) wε is a supersolution of the linearized Monge–Ampère operator U ijε Dij with bounded
right-hand side.

(2) (Twisted conditions) Up to multiplicative positive Hölder continuous functions, wε is

a subsolution of the linearized Monge–Ampère operator U ijε Dij with bounded drift
and bounded right-hand side.

Our first main theorem states as follows.

Theorem 1.1 (Solvability and convergence of singular Abreu equations to minimizers of
variational problems with a convexity constraint). Let Ω0 and Ω be bounded, smooth, and
convex domains in R

n (n ≥ 2) where Ω is uniformly convex and contains Ω0. Let ϕ ∈
C5(Ω), ψ ∈ C3(Ω) where ϕ is convex, and min∂Ω ψ > 0. Let F be given by (1.4) where the
smooth function F 0 satisfies (1.5) and the smooth function F 1 satisfies (1.6). If ε > 0 is
small (depending only on n,Ω,Ω0, dist(Ω0, ∂Ω), ϕ, ψ, η, and D∗), then, the following facts
hold:

(i) The equation (1.9) has a uniformly convex solution uε ∈W 4,s(Ω) for all s ∈ (n,∞).
(ii) Let uε ∈ W 4,s(Ω) (s > n) be a solution to (1.9). Then, after extracting a subse-

quence of ε→ 0, the sequence {uε} converges uniformly on compact subsets of Ω to a
minimizer u ∈ S̄[ϕ,Ω0] of (1.1).

We will prove Theorem 1.1 in Section 2.
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Remark 1.2. Theorem 1.1 resolves an open issue raised in [L3, Remark 1.9] for all dimen-
sions n ≥ 3. Moreover, its conclusions apply to the Rochet–Choné model with a quadratic
cost, that is, (1.3) with q = 2.

We will establish the solvability in Theorem 1.1(i) by using a priori estimates and degree
theory. For the a priori estimates, a key ingredient in our analysis is a Harnack inequality
for singular equations of linearized Monge–Ampère type satisfying certain twisted conditions.
This is the subject of the next subsection.

1.2. Singular linearized Monge–Ampère equations with drifts and twisted condi-

tions. Let λ,Λ, λ̃ and Λ̃ be fixed positive constants where λ ≤ Λ and λ̃ ≤ Λ̃. Let Ω ⊂ R
n

(n ≥ 2) be an open, convex and bounded domain. Assume that a strictly convex function
u ∈ C2(Ω) satisfies the Monge–Ampère equation

(1.13) λ ≤ detD2u ≤ Λ in Ω.

We will denote the section of u centered at x ∈ Ω with height h > 0 by

Su(x, h) = {y ∈ Ω : u(y) < u(x) +Du(x) · (y − x) + h}.

Throughout, we denote the cofactor matrix of the Hessian matrix D2u = (Diju)1≤i,j≤n by

U = (detD2u)(D2u)−1 ≡ (U ij)1≤i,j≤n.

Let A = (aij)1≤i,j≤n be a symmetric matrix satisfying

(1.14) λ̃U ≤ A ≤ Λ̃U in Ω.

We will establish a Harnack inequality for singular linearized Monge–Ampère equations with
bounded drifts

(1.15) aijDijv + b ·Dv = f in Ω,

where f is very singular in general.
Equations of the type (1.15) include the linearized Monge–Ampère equations when λ̃ =

Λ̃ = 1, and linear, uniformly elliptic equations when u(x) = |x|2/2 (so that λ = Λ = 1).

A Harnack inequality for (1.15) in the case without drifts, λ̃ = Λ̃ = 1, and f ∈ Lr where
r > n/2 was established in [LN], and in the case with bounded drifts and f ∈ Ln was
established in [L1]. Since the validity of a Harnack inequality will imply a Hölder continuity

estimate, the exponent n/2 is critical here, as the best regularity for ∆v ∈ Lr is v ∈ W 2,r
loc

when r ∈ (1,∞) and the Sobolev embedding W 2,r ↪→ Cα only holds when r > n/2.
In applications, as in (1.9), the right-hand side f is a priori only in L1+ε̂ where ε̂ > 0 is small

so f 6∈ Ln/2 when n ≥ 3. This integrability of fε in (1.9) comes from the sharp second-order
Sobolev regularity of the Monge–Ampère equation in the works of De Philippis–Figalli–Savin
[DFS] and Schmidt [Sc]. Thus, in general, there is no Harnack inequality for (1.15) for very
singular f .

However, if we can suitably “twist” v to make the right-hand side of (1.15) being bounded,
then a Harnack inequality can be established. We consider here twisting by positive multi-
plicative Hölder continuous functions. The rough idea is as follows. Suppose for each z ∈ Ω,
we can find positive Hölder continuous functions η̄z, ηz such that η̄z(z) = ηz(z) = 1, and the
“twisted versions” of v defined by v̄z := vη̄z and vz := vηz satisfy

aijDij v̄
z + bz ·Dv̄z ≤ f̄z, aijDijv

z + bz ·Dvz ≥ f z
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for suitable functions b̄
z
, f̄z, and bz, fz which are uniformly bounded in z. Then, locally,

up to positive multiplicative Hölder continuous corrections, v is a solution to a linearized
Monge–Ampère equation with bounded drifts and bounded right-hand side! Since a Harnack
inequality is a local statement, the multiplicative Hölder continuous corrections should not
affect the validity of a Harnack inequality for v. This is what we will prove in Theorem 1.3
which is of independent interest beyond its application to singular Abreu equations.

Our choice of terminologies “twist”, “twisting”, and “twisted” to describe the above mul-
tiplication process is motivated by the idea that, within a class of data, the transformed
functions in our applications usually change the solution nature of the original functions,
from being supersolutions to being subsolutions and vice versa. For example, in (1.16), v is
a supersolution while its transformed (or twisted) versions ηz are subsolutions (see (1.17)) of
a class of singular equations of linearized Monge–Ampère type with Ln right-hand side.

Our second main result states as follows.

Theorem 1.3 (Harnack inequality for singular equations of linearized Monge–Ampère type
with twisted conditions). Assume that (1.13) and (1.14) are satisfied in an open set Ω ⊂ R

n.
Let S := Su(x∗, h) ⊂⊂ Ω be a section satisfying S ⊂ Su(x̄, t̄/2) where Su(x̄, t̄) ⊂⊂ Ω and

BR−1(z) ⊂ Su(x̄, t̄) ⊂ BR(z) for some R > 1. Suppose that v ≥ 0 is a W 2,n
loc (Ω) function

satisfying the following conditions:

(i) It is a supersolution:

(1.16) aijDijv + b ·Dv ≤ |f | in S,

where f ∈ Ln(S), and b ∈ L∞(S;Rn).
(ii) (Twisted conditions) It is a subsolution up to multiplicative Hölder continuous cor-

rections. Precisely, for each z ∈ S, there are functions bz ∈ L∞(S;Rn), fz ∈ Ln(S),
Gz : S → [1,∞) such that

Gz(z) = 1, and Gz ∈W 2,n
loc (S) ∩ C

γ(S) for some γ ∈ (0, 1),

and ηz(x) = v(x)Gz(x) satisfies

(1.17) aijDijη
z + bz ·Dηz ≥ −|fz| in S.

Assume that

(1.18) ‖b‖L∞(S) + sup
z∈S

‖bz‖L∞(S) + sup
z∈S

sup
x∈S

|Gz(x)−Gz(z)|

|x− z|γ
≤ K.

Then, there exist positive constants h0 and C depending only on n, λ,Λ, λ̃, Λ̃, R, γ,K such
that whenever h ≤ h0, we have

(1.19) sup
Su(x∗,h/8)

v ≤ C
(

inf
Su(x∗,h/8)

v + h1/2‖f‖Ln(S) + h1/2 sup
z∈S

‖fz‖Ln(S)

)

.

In particular, v is locally Hölder continuous with a positive exponent depending on n, λ,Λ,λ̃, Λ̃,
R, γ, and K.

The proof of Theorem 1.3 will be given in Section 3.

Remark 1.4. When Gz ≡ 1, bz = b and f z = f for all z ∈ S, Theorem 1.3 was proved in
[L1, Theorem 1.1] which extends the fundamental Harnack inequality of the linearized Monge–
Ampère equation without drifts in Caffarelli–Gutiérrez [CG].
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Remark 1.5. We have the following remarks on the statement of Theorem 1.3:

(1) We only consider twisted conditions for the subsolution, and this version of Theorem
1.3 suffices for the proof of Theorem 1.1. Of course, one can also consider twisted
conditions for the supersolution.

(2) For simplicity, we use the same second order operator aijDij in (1.16) and (1.17).
The conclusion of Theorem 1.3 is unchanged if we use different operators aijDij as
long as (aij) satisfies (1.14).

We briefly explain the proof of Theorem 1.3 which follows that of [L1, Theorem 1.1]
where no twisted conditions were involved. First, exactly as in [L1, Theorem 5.3], we ob-
tain from the supersolution property (1.16) the Lε estimate for v. This means that there

exists ε(n, λ,Λ, λ̃, Λ̃, R) > 0 such that the distribution function of v, |{v > t} ∩ Su(x∗, h/4)|

decays like t−ε. Thus, up to constants depending only on n, λ,Λ, λ̃, Λ̃, R, v is comparable to
v(x∗) in Su(x∗, h/4) except a set of very small measure. Next, to prove the Harnack inequal-
ity, we show, by contradiction, that the maximum of v in Su(x∗, h/4) cannot be much larger
than v(x∗). Were this not the case, there would exist x̂ ∈ Su(x∗, h/4) such that v(x̂) is much
larger than v(x∗). Then, we apply the Lε estimate for the supersolution C1 − C2vG

x̂ (of the

operator aijDij + bx̂ ·D, due to (1.17)) to find that v is much larger than v(x∗) in a subset
of Su(x∗, h/4) of positive measure. This contradicts the Lε estimate for v.

The rest of paper is organized as follows. In Section 2, we will establish a priori estimates
for solutions to (1.9) and then prove Theorem 1.1. In Section 3, we will prove Theorem 1.3.

2. Solvability and convergence of singular Abreu equations

In this section, we prove Theorem 1.1 via a priori estimates and degree theory.

2.1. A priori higher order derivative estimates. Fix s ∈ (n,∞). Throughout this
section, we let uε ∈ W 4,s(Ω) be a uniformly convex solution to (1.9). Our main result in
this section is the global W 4,s(Ω) estimate in Theorem 2.11 for uε in terms of the given data
n,Ω,Ω0, ϕ, ψ, η, D∗, and ε. As the rewriting of (1.9) into (1.10) and (1.11) indicates, we will
obtain regularity estimates for uε first, and then for wε.

From the proof of Theorem 1.4(i) in [L3] (see (3.15) there), we have the following uniform
estimate.

Proposition 2.1 (Uniform estimate for uε). If ε ≤ ε0 is sufficiently small, depending only
on n,Ω,Ω0, ϕ, ψ, η, D∗, and dist(Ω0, ∂Ω), then

(2.1) ‖uε‖L∞(Ω) ≤ C

where C is independent of ε.

From now on, we fix ε ≤ ε0. Unless otherwise stated, constants in this section depend only
on n,Ω,Ω0, ϕ, ψ, η, dist(Ω0, ∂Ω), D∗, and possibly ε. For clarity, the dependence on ε will be
explicitly indicated.

Before going further, we establish some simple bounds for fε in Ω.

Lemma 2.2 (Estimates for fε in Ω). There is a positive constant C̃ such that

(2.2) − C̃ −D∗∆uε ≤ fε ≤ C̃ in Ω0.
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Proof. From (2.1) and the convexity of uε, we obtain

‖Duε‖L∞(Ω0) ≤
2‖uε‖L∞(Ω)

dist(Ω0, ∂Ω)
≤

2C

dist(Ω0, ∂Ω)
.

Thus, in Ω0, using the convexity of uε together with (1.5) and (1.6), one has

fε=
∂F 0

∂z
(x, uε(x))−

n
∑

i,j=1

∂2F 1

∂pi∂pj
(x,Duε(x))Dijuε −

n
∑

i=1

∂2F 1

∂xi∂pi
(x,Duε(x))

≤
∂F 0

∂z
(x, uε(x))−

n
∑

i=1

∂2F 1

∂xi∂pi
(x,Duε(x))

≤ η(‖uε‖L∞(Ω)) + nD∗(‖Duε‖L∞(Ω0) + 1) ≤ C̃.

Similarly, for the lower bound in Ω0, one has

fε ≥
∂F 0

∂z
(x, uε(x))−D∗∆uε −

n
∑

i=1

∂2F 1

∂xi∂pi
(x,Duε(x)) ≥ −C̃ −D∗∆uε.

Therefore, we obtain (2.2). �

Combining (2.1) with (2.2), we get

(2.3) ‖f+ε ‖L∞(Ω) ≤ C0(ε)

where
f+ε = max{fε, 0}.

Let us denote
(D2uε)

−1 = (uijε ).

The following lemma establishes an upper bound for the Hessian determinant of uε.

Lemma 2.3 (Upper bound for detD2uε). There is a positive constant C1(ε) such that

detD2uε ≤ C1(ε) in Ω.

Proof. For this, we use a trick of Chau–Weinkove [CW]. Let

v = logwε −Muε ∈W 2,s(Ω)

where M > 0 is large to be chosen. Then, in Ω, we have

uijε Dijv = uijε

(

Dijwε
wε

−
DiwεDjwε

w2
ε

−MDijuε

)

≤
uijε Dijwε

wε
− nM

=
fε/ε

wε detD2uε
− nM

≤
‖f+ε ‖L∞(Ω)

ε
− nM < 0,

provided M is large. In view of (2.3), one can take

M = 1 + C0(ε)/ε ≥ 1 + ‖f+ε ‖L∞(Ω)/ε.

By the maximum principle, v attains its minimum in Ω on the boundary ∂Ω. Thus, in Ω,

v ≥ min
∂Ω

v ≥ min
∂Ω

logψ −M‖uε‖L∞(Ω) ≥ logmin
∂Ω

ψ −MC,
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where C is the constant in (2.1). This implies that

logwε ≥ logmin
∂Ω

ψ − 2MC,

so
wε ≥ elogmin∂Ω ψ−2MC in Ω.

Therefore, detD2uε = w−1
ε is bounded from above by a positive constant C1(ε). �

Using uε = ϕ on ∂Ω, and the upper bound for detD2uε in Lemma 2.3, we can construct
suitable barriers to obtain the gradient estimate for uε:

(2.4) |Duε| ≤M0(ε) in Ω.

The following transformation of (1.9), initiated in [KLWZ, Lemma 2.1], will be crucially
used in our proof of Theorem 1.1.

Lemma 2.4 (Transformed versions of (1.9)). Fix x0 ∈ Ω. Consider the following functions
in Ω:

F x0ε (x) :=
D∗|x−Duε(x0)|

2

2ε
,

ηx0ε (x) := wε(x)e
F

x0
ε (Duε(x)),

bx0(x) := −(detD2uε(x))
D∗

ε
(Duε(x)−Duε(x0)).

Then,

(2.5) U ijε Dijη
x0
ε + bx0(x) ·Dηx0ε =

fε +D∗∆uε
ε

eF
x0
ε (Duε(x)) in Ω.

Proof. From [KLWZ, Lemma 2.1], we have in Ω

U ijε Dijη
x0
ε − (detD2uε)DF

x0
ε (Duε) ·Dη

x0
ε = [U ijε Dijwε + div (DF x0ε (Duε))]e

F
x0
ε (Duε(x)).

Since

DF x0ε (Duε) =
D∗

ε
(Duε −Duε(x0)),

and U ijε Dijwε = fε/ε, the lemma follows. �

Next, we establish a positive lower bound for the Hessian determinant of uε.

Lemma 2.5 (Lower bound for detD2uε). There is a positive constant C2(ε) such that

detD2uε ≥ C−1
2 (ε) in Ω.

Proof. We use the subsolution property of wε together with the transformed equation (2.5)
and the Aleksandrov–Bakelman–Pucci (ABP) estimate.

Fix x0 ∈ Ω. Let F x0ε , ηx0ε and bx0 be as in Lemma 2.4. Then (2.5) holds in Ω.
Using (2.5) together with the first inequality in (2.2) and the uniform estimate for uε in

(2.1), we obtain

U ijε Dijη
x0
ε + bx0(x) ·Dηx0ε =

fε +D∗∆uε
ε

eF
x0
ε (Duε(x))

≥















−
C̃

ε
eF

x0
ε (Duε(x)) in Ω0

[D∗

ε
∆uε +

1

ε2
(uε(x)− µε(x))

]

eF
x0
ε (Duε(x)) in Ω\Ω0
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≥−D2(ε).(2.6)

From the ABP estimate for elliptic, linear equations with drifts (see [GT, inequality (9.14)])
applied to (2.6), we find

(2.7) sup
x∈Ω

ηx0ε (x) ≤ sup
x∈∂Ω

ηx0ε (x)

+ diam(Ω)

{

exp
[ 2n−2

nnωn

∫

Ω

(

1 +
|bx0 |n

det(U ijε )

)

dx
]

− 1

}1/n
∥

∥

∥

D2(ε)

(det(U ijε ))1/n

∥

∥

∥

Ln(Ω)

where ωn is the volume of the unit ball B1(0) ⊂ R
n.

We now estimate each term appearing in (2.7). Clearly

(2.8) sup
x∈Ω

ηx0ε (x) ≥ sup
x∈Ω

wε(x).

Using (2.4) and wε = ψ on ∂Ω, we have

(2.9) sup
x∈∂Ω

ηx0ε (x) ≤ sup
x∈∂Ω

ψ(x)e
2D∗‖Duε‖

2
L∞(Ω)

ε ≤M1(ε).

Also from (2.4) and the definition of bx0 , one has

(2.10) |bx0(x)| ≤ 2 detD2uε(x)ε
−1D∗M0(ε) := D1(ε) detD

2uε(x) for all x ∈ Ω.

It follows from (2.10) and Lemma 2.3 that
∫

Ω

(

1 +
|bx0(x)|n

det(U ijε )

)

dx=

∫

Ω

(

1 +
|bx0(x)|n

[detD2uε(x)]n−1

)

dx

≤

∫

Ω

(

1 +Dn
1 (ε) detD

2uε(x)
)

dx ≤M2(ε).(2.11)

For the last term in (2.7), using

detU ijε = [detD2uε]
n−1 = w−(n−1)

ε ,

we have

(2.12)
∥

∥

∥

D2(ε)

(det(U ijε ))1/n

∥

∥

∥

Ln(Ω)
= D2(ε)‖w

n−1
n

ε ‖Ln(Ω) ≤ D2(ε)|Ω|
1
n

(

sup
x∈Ω

wε(x)
)

n−1
n .

Using (2.8), (2.9), (2.11) and (2.12) in (2.7), we deduce

sup
x∈Ω

wε(x) ≤M1(ε) +M3(ε)
(

sup
x∈Ω

wε(x)
)

n−1
n ,

for some constant M3(ε) > 0. It follows that wε is bounded from above by a constant C2(ε).
Therefore

detD2uε = w−1
ε ≥ C−1

2 (ε) in Ω.

�

Now, we prove a Hölder gradient estimate for uε.

Proposition 2.6 (Global C1,α estimates for uε). There is α0(ε) ∈ (0, 1) such that

‖uε‖C1,α0(ε)(Ω) ≤ C3(ε).
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Proof. By Lemmas 2.3 and 2.5, we have

C2(ε)
−1 ≤ detD2uε ≤ C1(ε).

Using these bounds, uε = ϕ on ∂Ω, and the global C1,α estimates for the Monge–Ampère
equation in [LS, Proposition 2.6], we obtain the desired global C1,α0(ε) estimates for uε. �

The rest of this section is devoted regularity estimates for wε.
For the Hölder continuity estimates for wε at the boundary, we will use the following

one-sided Hölder estimates for solutions to non-uniformly elliptic, linear equations.

Proposition 2.7 (One-sided pointwise Hölder estimate at the boundary for solutions to
non-uniformly elliptic, linear equations with pointwise Hölder continuous drift). Assume that
Ω ⊂ R

n is a bounded, uniformly convex domain. Let ϕ ∈ Cα(∂Ω) for some α ∈ (0, 1),
and g ∈ Ln(Ω). Assume that the matrix (aij) is measurable, positive definite and satisfies

det(aij) ≥ λ in Ω. Let b ∈ L∞(Ω;Rn). Let v ∈ C(Ω) ∩W 2,n
loc (Ω) be a function satisfying

aijDijv + b ·Dv ≥ −|g| in Ω, v = ϕ on ∂Ω.

Suppose there are constants µ, τ ∈ (0, 1), and M > 0 such that at some x0 ∈ ∂Ω, we have

|b(x)| ≤M |x− x0|
µ for all x ∈ Ω ∩Bτ (x0).

Then, there exist δ, C depending only on λ, n, α, µ, τ,M , ‖b‖L∞(Ω), and Ω such that

v(x)− v(x0) ≤ C|x− x0|
min{α,µ}

min{α,µ}+4
(

‖ϕ‖Cα(∂Ω) + ‖g‖Ln(Ω)

)

for all x ∈ Ω ∩Bδ(x0).

Proof. The proof follows from inspecting the proof of Proposition 3.1 in [KLWZ]. �

With the help of Proposition 2.7 and invoking the key transformations in Lemma 2.4, we
can now establish the Hölder continuity estimates for wε at the boundary.

Proposition 2.8 (Hölder continuity estimates for wε at the boundary). There are α1(ε) ∈
(0, 1) and C4(ε) > 0 such that for all x0 ∈ ∂Ω, we have

|wε(x)− wε(x0)| ≤ C4(ε)|x− x0|
α1(ε) for all x ∈ Ω ∩BC−1

4 (ε)(x0).

Proof. Fix x0 ∈ ∂Ω. Let F x0ε , ηx0ε and bx0 be as in Lemma 2.4. Then (2.5) holds in Ω.
Recall from (2.6) that

U ijε Dijη
x0
ε + bx0 ·Dηx0ε ≥ −D2(ε) in Ω.

By Lemma 2.3 and Proposition 2.6, the vector field

bx0(x) := −(detD2uε)ε
−1D∗(Duε(x)−Duε(x0))

satisfies
|bx0(x)| ≤ ε−1D∗C1(ε)C3(ε)|x− x0|

α0(ε) in Ω.

Now, applying Proposition 2.7, we have for some µ0(ε) ∈ (0, 1)

(2.13) ηx0ε (x)− ηx0ε (x0) ≤ C̃(ε)|x− x0|
µ0(ε) for all x ∈ Ω ∩BC̃−1(ε)(x0).

Recalling wε(x) = ηx0ε (x)e−F
x0
ε (Duε(x)), we have

wε(x)− wε(x0) = (ηx0ε (x)− ηx0ε (x0))e
−F

x0
ε (Duε(x))

+ ηx0ε (x0)e
−F

x0
ε (Duε(x0))(eF

x0
ε (Duε(x))−F

x0
ε (Duε(x0)) − 1).
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Thus, from (2.13) and Proposition 2.6, we obtain one-sided Hölder estimates for wε at x0:

wε(x)− wε(x0) ≤ Ĉ(ε)|x− x0|
µ1(ε) for all x ∈ Ω ∩BĈ−1(ε)(x0)

where

µ1(ε) = min{µ0(ε), α0(ε)}.

On the other hand, recalling (2.3), we also have

U ijε Dij(−wε) =
−fε
ε

≥
−C0(ε)

ε
= −D3(ε).

Applying Proposition 2.7, we have the other one-sided Hölder estimates for wε at x0:

wε(x)− wε(x0) ≥ Č(ε)|x− x0|
µ2(ε) for all x ∈ Ω ∩BČ−1(ε)(x0)

for some µ2(ε) ∈ (0, 1).
In conclusion, wε is pointwise Hölder continuous at x0 with stated estimate for C4(ε) =

max{Ĉ(ε), Č(ε)}. �

Using the twisted Harnack inequality in Theorem 1.3, we will establish interior Hölder
estimates for wε.

Proposition 2.9 (Interior Hölder estimates for wε). Let Ω
′ ⊂⊂ Ω. Then, there is an exponent

α2(ε) ∈ (0, 1), depending also on dist(Ω′, ∂Ω), such that wε ∈ Cα2(ε)(Ω′).

Proof. Let us summarize from the proof of Proposition 2.8 the following properties of wε:

(1) wε is a supersolution of the linearized Monge–Ampère operator U ijε Dij with bounded
right-hand side:

U ijε Dijwε ≤ D3(ε) in Ω.

(2) Up to a gauge transformation, wε is a subsolution of the linearized Monge–Ampère

operator, generated by U ijε Dij , with bounded drift and bounded right-hand side. More
precisely, for each x̄ ∈ Ω, there are functions bx̄ ∈ L∞(Ω;Rn), and Gx̄ ≥ 1 where
Gx̄(x̄) = 1 and Gx̄ is Hölder continuous on Ω such that ηx̄ = wεG

x̄ satisfies

U ijε Dijη
x̄ + bx̄(x) ·Dηx̄ ≥ −D2(ε) in Ω.

The explicit formulas for Gx̄ and bx̄ are:

Gx̄(x) = e
D∗|Duε(x)−Duε(x̄)|

2

2ε ; bx̄(x) = −(detD2uε)ε
−1D∗(Duε(x)−Duε(x̄)).

From Lemma 2.3 and Proposition 2.6, we can find a constant C̄(ε) such that

sup
x̄∈Ω

‖bx̄‖+ sup
x̄∈Ω

sup
x∈Ω

|Gx̄(x)−Gx̄(x̄)|

|x− x̄|α0(ε)
≤ C̄(ε).

For any x∗ ∈ Ω′, there exist h(ε), R(ε) > 0, depending also on dist(Ω′, ∂Ω), such that
Suε(x∗, h(ε)) ⊂⊂ Ω satisfies

BR−1(ε)(x∗) ⊂ Suε(x∗, h(ε)) ⊂ BR(ε)(x∗).

Applying Theorem 1.3 with

λ = C−1
2 (ε),Λ = C1(ε), λ̃ = Λ̃ = 1, γ = α0(ε),K = C̄(ε),

we find α2(ε) ∈ (0, 1), depending also on dist(Ω′, ∂Ω), such that wε ∈ Cα2(ε)(Ω′). �
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Combining the boundary and interior Hölder estimates for wε, we obtain its global Hölder
estimates in the following proposition.

Proposition 2.10 (Global Hölder estimates for wε). There is an exponent α3(ε) ∈ (0, 1) and
C5(ε) > 0 such that

‖wε‖Cα3(ε)(Ω) ≤ C5(ε).

Proof. The proposition follows from Propositions 2.8 and 2.9 using Savin’s boundary local-
ization theorem [S1, S2] for the Monge–Ampère equation to connect interior estimates and
boundary estimates for linearized Monge–Ampere type equations. It is similar to the proof
of [KLWZ, Theorem 3.2] so we omit it. �

Finally, we are ready to establish the global W 4,s estimates for uε.

Theorem 2.11 (Global W 4,s estimates for uε). For any s ∈ (n,∞), there is a constant
C∗(ε, s) such that any uniformly convex solution uε ∈W 4,s(Ω) to (1.9) satisfies

(2.14) ‖uε‖W 4,s(Ω) ≤ C6(ε, s).

Proof. From

detD2uε = w−1
ε in Ω, uε = ϕ on ∂Ω,

together with Proposition 2.10 and the global C2,α estimates for the Monge–Ampère equation
[S2, TW], we have

‖uε‖C2,α3(ε)(Ω) ≤ C6(ε).

Thus, the second order operator U ijε is uniformly elliptic with Cα3(ε)(Ω) coefficients. Moreover

‖fε‖L∞(Ω) ≤ Ĉ0(ε). Now, from

U ijε Dijwε = fε/ε in Ω, wε = ψ on ∂Ω,

we can estimate wε in W
2,s(Ω). The estimate (2.14) for uε in W

4,s(Ω) follows. �

2.2. Proof of Theorem 1.1. We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (i) From the a priori estimates in Theorem 2.11, one can argue using
degree theory as in the proof of [L3, Theorem 1.4(i)] to obtain the existence of a uniformly
convex solution uε ∈W 4,s(Ω) to (1.9) for all s ∈ (n,∞).

(ii) Let uε ∈ W 4,s(Ω) (s > n) be a solution to (1.9). Then, for ε ≤ ε0 small, the uniform
estimate (2.1) holds. From this and the convexity of uε, we find that Duε is uniformly
bounded on each compact subset of Ω. Thus, a subsequence of uε converges uniformly on
compact subsets of Ω to a convex function u on Ω. As in the proof of [L3, Theorem 1.4(ii)],
we can show that u is a minimizer of (1.1). �

3. Harnack inequality for singular linearized Monge–Ampère type equations

with twisted conditions

In this section, we prove Theorem 1.3 following that of [L1, Theorem 1.1] where no twisted
conditions were involved. For reader’s convenience, we recall in Subsection 3.1 estimates
from [L1] for supersolutions of (1.15) with Ln right-hand side: the critical density estimate
with Ln drift in Proposition 3.1, the critical density estimate with Lp drift in Lemma 3.2,
and the decay estimate of the distribution function (or Lε estimate) in Theorem 3.3. They
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will be used in Subsection 3.2 to prove a Harnack inequality for singular linearized Monge–
Ampère equations with small drifts under twisted conditions in Theorem 3.4. Theorem 1.3
then follows.

As preliminaries, we recall the volume estimates and interior C1,α∗ estimates for the Monge–
Ampère equation.

Assume that the strict convex function u satisfies (1.13). A section Su(x, h) is called R-
normalized if there is z ∈ R

n such that

BR−1(z) ⊂ Su(x, h) ⊂ BR(z).

If Su(z, h) ⊂⊂ Ω, then the following volume estimates for section hold:

(3.1) C−1
0 (n, λ,Λ)hn/2 ≤ |Su(z, h)| ≤ C0(n, λ,Λ)h

n/2;

see [F, Lemma 4.6], [G, Corollary 3.2.5], and [LMT, Theorem 3.42].
The strict convexity of u implies that for each x ∈ Ω, there is h(x) > 0 such that

Su(x, h(x)) ⊂⊂ Ω. Moreover, this together with (1.13) implies the existence of α∗ ∈ (0, 1)
that depends only on n, λ,Λ (but not on the C2 character of u) such that the following interior
C1,α∗ estimates for u hold: If Su(x, h) ⊂⊂ Ω is R-normalized, then

(3.2) |Du(y)−Du(z)| ≤ C(n, λ,Λ, R)|y − z|α∗ for all y, z ∈ Su(x, h/2);

see [F, Theorem 4.20], [G, Theorem 5.4.5], and [LMT, Theorem 3.58].
We will prove Theorem 1.3 with (1.18) being replaced by a slightly relaxed condition:

(3.3) ‖b‖Lq(S) + sup
z∈S

‖bz‖Lq(S) + sup
z∈S

sup
x∈S

|Gz(x)−Gz(z)|

|x− z|γ
≤ K

where

(3.4) q >
n(1 + α∗)

2α∗
:= p∗.

This range of q allows us to control the Lq norm of the vector field b when rescaling the
linearized Monge–Ampère equation (1.15); see (3.15). In what follows, we fix

p = (p∗ + q)/2.

In the rest of this section, we call a positive constant universal if it depends only on n, q, λ,Λ,
λ̃, Λ̃, and R. We denote universal constants by C,C1, C2, c1, c2, ε3, ε4, M, δ∗, · · · , etc, and
their values may change from line to line. We use C(·, ·, ·) to emphasize the dependence of
the constant C on the parameters in the parentheses.

3.1. Decay estimate of the distribution function for supersolutions. This section
recalls results from [L1] concerning properties of supersolutions to the linearized Monge–
Ampère type equation with Ln drift

aijDijv + b ·Dv ≤ f.

We first recall the critical density estimate.

Proposition 3.1 (Critical density estimate for supersolutions with small Ln drift; see Propo-
sition 5.1 in [L1]). Assume that (1.13) and (1.14) are satisfied in Ω ⊂ R

n. Suppose that v ≥ 0

is a W 2,n
loc (Ω) solution of

aijDijv + b ·Dv ≤ f
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in an n-normalized section Su(0, 4t0) ⊂⊂ Ω. Then, there are small, universal constants

δ∗ > 0, ε3 > 0 and a large constant M > 1(all depending only on n, λ,Λ, λ̃ and Λ̃) with the
following properties. If

‖b‖Ln(Su(0,4t0)) + ‖f+‖Ln(Su(0,4t0)) ≤ ε3,

and for some nonnegative integer k, we have

|{v > Mk+1} ∩ Su(0, t0)| > (1− δ∗)|Su(0, t0)|,

then
v > Mk in Su(0, t0).

Next, we would like to extend the above critical density estimate to non-normalized sections
Su(x0, h). For this, we will rescale the linearized Monge–Ampère equation. Due to the
degeneracy of (1.13), we will need higher integrability for the vector field b.

Rescaling linearized Monge–Ampère equations on a section using John’s lemma.

Assume that (1.13) and (1.14) are satisfied in Ω ⊂ R
n. We will investigate how the

inequalities

(3.5) aijDijv + b ·Dv ≤ (≥)f

change with respect to normalization, using John’s lemma, of a section Su(x0, h) ⊂⊂ Ω of u.
By subtracting u(x0) +Du(x0) · (x − x0) + h from u, we can assume that u|∂Su(x0,h) = 0,

and u achieves its minimum value −h at x0. From John’s lemma (see, for example [LMT,
Lemma 3.23]), we can find an affine transformation

Tx = Ahx+ bh

such that T−1(Su(x0, h)) is n-normalized; more precisely, we have

(3.6) B1(0) ⊂ T−1(Su(x0, h)) ⊂ Bn(0).

Let us consider the rescaled functions ũ of u, and ṽ of v defined by

ũ(x) = (detAh)
−2/nu(Tx), and ṽ(x) = v(Tx).

Then from (1.13), we have

(3.7) λ ≤ detD2ũ(x) = (detD2u)(Tx) ≤ Λ in T−1(Su(x0, h)), ũ = 0 on ∂T−1(Su(x0, h)),

and
B1(0) ⊂ S̃ := T−1(Su(x0, h)) = Sũ(y, (detAh)

−2/nh) ⊂ Bn(0)

where y is the minimum point of ũ in T−1(Su(x0, h)).

Consider the rescaled coefficient matrix Ã =
(

ãij
)

1≤i,j≤n
defined by

(3.8) Ã = (detAh)
2/nA−1

h A(A−1
h )t.

Define the rescaled vector field b̃ and function f̃ by

(3.9) b̃(x) = (detAh)
2/nA−1

h b(Tx), and f̃(x) = (detAh)
2/nf(Tx).

Then, the inequalities (3.5) become

ãijDij ṽ + b̃ ·Dṽ ≤ (≥)f̃(x) in T−1(Su(x0, h)).(3.10)

For completeness, we include the derivation of (3.10). We have

Dũ = (detAh)
−2/nAthDu; D

2ũ = (detAh)
−2/nAthD

2uAh,
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and

Dṽ = AthDv; D
2ṽ = AthD

2vAh.

The cofactor matrix Ũ = (Ũ ij)1≤i,j≤n of D2ũ is related to U = (detD2u)(D2u)−1 and Ah by

(3.11) Ũ = (detD2ũ)(D2ũ)−1 = (detAh)
2/nA−1

h U(A−1
h )t.

Therefore, from (3.8), we obtain

ãijDij ṽ(x) = trace (ÃD2ṽ) = (detAh)
2/ntrace (AD2v(Tx)) = (detAh)

2/naijDijv(Tx).

Hence, recalling (3.5), we easily obtain (3.10) from

ãijDij ṽ(x) ≤ (≥)(detAh)
2/n[f(Tx)− b(Tx) ·Dv(Tx)] = f̃(x)− b̃ ·Dṽ.

By (3.7), (3.8) and (3.11), ũ and Ã also satisfy the structural conditions (1.13) and (1.14)
on T−1(Su(x0, h)).

Using the volume estimates (3.1), we find from (3.6) that

(3.12) [C(n, λ,Λ)]−1hn/2 ≤ detAh ≤ C(n, λ,Λ)hn/2.

Assume now Su(x0, h) ⊂ Su(x̄, t̄/2) where Su(x̄, t̄) ⊂⊂ Ω is an R-normalized section.
From the volume estimates of sections, we can find c∗(n, λ,Λ, R) such that

(3.13) h ≤ c∗ whenever Su(x0, h) ⊂ Su(x̄, t̄/2), where Su(x̄, t̄) ⊂⊂ Ω is an R-normalized.

In [L1], a similar choice for c∗ was discussed before the statement of Lemma 5.2. Here it
also serves the role of h0 in Theorem 6.1 in [L1].

Note that the interior C1,α∗ estimate for u in (3.2) implies that

Su(x0, h) ⊃ B
c1h

1
1+α∗

(x0)

for some universal constant c1 = c1(n, λ,Λ, R). This combined with (3.6) gives

(3.14) ‖A−1
h ‖ ≤ C(n, λ,Λ, R)h−

1
1+α∗ .

By (3.9), (3.12) and (3.14), we can estimate

‖b̃‖Lp(S̃) ≤ Ch‖A−1
h b(Tx)‖Lp(S̃) ≤Ch

1− n
2p ‖A−1

h ‖‖b‖Lp(Su(x0,h))

≤C(n, λ,Λ, R)h
α∗

1+α∗
− n

2p ‖b‖Lp(Su(x0,h)).(3.15)

Then, by the Hölder inequality, we have

(3.16) ‖b̃‖Ln(S̃) ≤ |S̃|
1
n
− 1

p ‖b̃‖Lp(S̃) ≤ C(n, λ,Λ, R, p)h
α∗

1+α∗
− n

2p ‖b‖Lp(Su(x0,h)).

Recalling (3.12), we can estimate

(3.17) ‖f̃‖Ln(S̃) = (detAh)
2/nh−1/2‖f‖Ln(Su(x0,h)) ≤ C(n, λ,Λ)h1/2‖f‖Ln(Su(x0,h)).

Due to

p > p∗ =
n(1 + α∗)

2α∗
,

we deduce that in our rescaling process, the Ln norms of b and f+ are small if h is small, or
‖b‖Lp(Su(x0,h)) + ‖f+‖Ln(Su(x0,h)) is small.

Thus, rescaling and Proposition 3.1 give the following result.
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Lemma 3.2 (Critical density estimate for supersolution with small Lp drift; see Lemma 5.2
in [L1]). Assume that (1.13) and (1.14) are satisfied in Ω ⊂ R

n. Let p > p∗ where p∗ is as in

(3.4). There is a small number ε4 depending only on p, n,R, λ,Λ, λ̃ and Λ̃ with the following

property. Suppose that v ≥ 0 is a W 2,n
loc (Ω) solution of

aijDijv + b ·Dv ≤ f

in a section Su(x0, h) ⊂ Su(x̄, t̄/2) where Su(x̄, t̄) ⊂⊂ Ω is an R-normalized section, and

‖b‖Lp(Su(x0,h)) + ‖f+‖Ln(Su(x0,h)) ≤ ε4.

Let M and δ∗ be as in Proposition 3.1. If for some nonnegative integer k, we have

|{v > Mk+1} ∩ Su(x0, h/4)| > (1− δ∗)|Su(x0, h/4)|,

then

v > Mk in Su(x0, h/4).

By [L1, Lemma 2.14], there exists a universal constant K̂(n, λ,Λ) > 1 with the following
property:

If Su(x, t) ⊂ Su(y, h) where Su(y, K̂h) ⊂⊂ Ω then Su(x, 4t) ⊂ Su(y, K̂h).

We have the following result on the decay estimate of the distribution function (or Lε estimate)
of supersolutions.

Theorem 3.3 (Decay estimate of the distribution function of supersolutions with small Lp

drift; see Theorem 5.3 in [L1]). Assume that (1.13) and (1.14) are satisfied in Ω ⊂ R
n. Let

p > p∗ where p∗ is as in (3.4). Let ε4 and c∗ be as in Lemma 3.2. Suppose that v ≥ 0 is a

W 2,n
loc (Ω) solution of

aijDijv + b ·Dv ≤ f

in a section S4 = Su(0, 4t0) ⊂⊂ Ω with S := Su(0, K̂t0)) ⊂ Su(x̄, t̄/2) where Su(x̄, t̄) ⊂⊂ Ω is
an R-normalized section, and

‖b‖Lp(S) + ‖f+‖Ln(S) ≤ ε4.

Suppose that

inf
Su(0,t0)

v ≤ 1.

Then there are universal constants C1(n, λ,Λ, λ̃, Λ̃, R) > 1 and ε(n, λ,Λ, λ̃, Λ̃, R) ∈ (0, 1) such
that

|{v > t} ∩ Su(0, t0)| ≤ C1t
−ε|Su(0, t0)| for all t > 0.

3.2. Harnack inequality for singular linearized Monge–Ampère equation with small

drifts under twisted conditions. LetM > 1 be the constant in Proposition 3.1. Our main
result in this section is the following Harnack inequality under twisted conditions.

Theorem 3.4 (Harnack inequality for singular linearized Monge–Ampère type equation with
small drifts under twisted conditions). Assume that (1.13) and (1.14) are satisfied in Ω.

Suppose that v ≥ 0 is a W 2,n
loc (Ω) function satisfying the following conditions in a section

S := Su(x∗, h) ⊂ Su(x̄, t̄/2)

where Su(x̄, t̄) ⊂⊂ Ω is an R-normalized section:
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(i) It is a supersolution:

(3.18) aijDijv + b ·Dv ≤ |f | in S

where f ∈ Ln(S), and b ∈ Lp(S;Rn) with p > p∗ where p∗ is as in (3.4).
(ii) It is a subsolution up to positive multiplicative continuous corrections. Precisely, for

each z ∈ S, there are functions bz ∈ Lp(S;Rn), fz ∈ Ln(S), Gz : S → [1,∞) such
that

(3.19) Gz(z) = 1, Gz ∈W 2,n
loc (S), sup

x∈Su(x∗,h)
|Gz(x)−Gz(z)| ≤

1

3M + 1
,

and

ηz(x) = v(x)Gz(x)

satisfies

(3.20) aijDijη
z + bz ·Dηz ≥ −|fz| in S.

There exists a universal constant ε5(n, p, λ,Λ, λ̃, Λ̃, R) > 0 with the following property. If

‖b‖Lp(S) ≤ ε5/2, sup
z∈S

‖bz‖Lp(S) ≤ ε5/2

then

(3.21) sup
Su(x∗,h/8)

v ≤ C(n, λ,Λ, λ̃, Λ̃, R)
(

inf
Su(x∗,h/8)

v + h1/2‖f‖Ln(S) + h1/2 sup
z∈S

‖fz‖Ln(S)

)

.

Remark 3.5. In (3.19), we only need the small oscillation of Gz around z, and no continuity
properties are required.

Proof of Theorem 3.4. Let δ∗ ∈ (0, 1) be the constant in Proposition 3.1 and ε ∈ (0, 1) be the
constant in Theorem 3.3. Let c∗ be as (3.13), and let ε4 be as in Lemma 3.2. We choose ε5
so that

Cc
α∗

1+α∗
− n

2p
∗ ε5 ≤

ε4
16M

where C is the universal constant appearing in (3.15)- (3.17). We rescale (3.18), (3.20), the
domain, and functions as in Section 3.1. In particular, for x ∈ T−1(Su(x∗, h)), we have

ũ(x) = (detAh)
−2/nu(Tx), ṽ(x) = v(Tx), and G̃z(x) = Gz(Tx).

The corresponding matrix Ã = (ãij) is given by (3.8), and b̃, b̃
z
, f̃ and f̃z are given by (3.9).

By (3.15), the functions b̃, b̃
z
satisfy on the n-normalized section

S̃ = T−1(Su(x∗, h)) = Sũ(y, 4t0)

(see (3.6)) the bounds

(3.22) ‖b̃‖Lp(S̃) ≤ Cc
α∗

1+α∗
− n

2p
∗ ε5 ≤

ε4
16M

, sup
z∈S

‖b̃
z
‖Lp(S̃) ≤ Cc

α∗
1+α∗

− n
2p

∗ ε5 ≤
ε4

16M
.

From (3.18), we have the supersolution property

ãijDij ṽ + b̃ ·Dṽ ≤ |f̃ |.

For each z ∈ S = T (S̃), we have from (3.20) the following subsolution property

ãijDij η̃
z + b̃

z
·Dη̃z ≥ −|f̃z|.
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We also know that

(3.23) G̃z(T−1z) = 1, sup
x∈Su(x∗,h)

|G̃z(T−1x)− G̃z(T−1z)| ≤
1

3M + 1
.

We need to show that

(3.24) sup
Sũ(y,t0/2)

ṽ ≤ C(n, λ,Λ, λ̃, Λ̃)

(

inf
Sũ(y,t0/2)

ṽ + ‖f̃‖Ln(S̃) + sup
z∈S

‖f̃z‖Ln(S̃)

)

.

Since Sũ(y, 4t0) is n-normalized, and (3.7) holds, we can use the volume estimate (3.1) to
obtain

C−1(n, λ,Λ) ≤ t0 ≤ C(n, λ,Λ).

Without loss of generality, we can assume that t0 = 1 and y = 0. By changing coordinates
and subtracting an affine function from ũ, we can assume that

ũ ≥ 0, ũ(0) = 0, Dũ(0) = 0.

We divide the proof into several steps.
Step 1. We show that, if

(3.25) inf
Sũ(0,1/2)

ṽ ≤ 1, and ‖f̃‖Ln(S̃) + sup
z∈S

‖f̃z‖Ln(S̃) ≤
ε4

16M
,

then for some universal constant C, we have

(3.26) sup
Sũ(0,1/2)

ṽ ≤ C.

Our proof of (3.26) follows the lines of argument in Imbert-Silvestre [IS] in the case ũ(x) =
|x|2/2. Let β > 0 be a universal constant to be determined later and let

ht(x) = t(1− ũ(x))−β for x ∈ Sũ(0, 1).

We consider the minimum value of t > 0 such that ht ≥ ṽ in Sũ(0, 1). It suffices to show that
t is bounded from above by a universal constant C, because we have then

sup
Sũ(0,1/2)

ṽ ≤ C sup
Sũ(0,1/2)

(1− ũ)−β ≤ 2βC.

If t ≤ 1, then we are done. Hence, it remains to prove (3.26) for the case t ≥ 1.
Since t is chosen to be the minimum value such that ht ≥ ṽ, there is x0 ∈ Sũ(0, 1) such

that ht(x0) = ṽ(x0). Let

r = (1− ũ(x0))/2, and H0 := ht(x0) = t(2r)−β ≥ 1.

By the inclusion and exclusion property of sections (see [G, Theorem 3.3.10], and [LMT,
Theorem 3.57]), there is a small constant ĉ and large constant p1 depending on n, λ,Λ such
that

(3.27) Sũ(x0, K̂ĉr
p1) ⊂ Sũ(0, 1)

where K̂ is defined right before the statement of Theorem 3.3.
We bound t from above by estimating the measure of the set {ṽ ≥ H0/2} ∩ Sũ(x0, ĉr

p1)
from above and below.

The estimate from above can be done using Theorem 3.3. First, recalling S̃ = Sũ(0, 4), we
find from (3.22), (3.25) and (3.27) that

‖b̃‖Lp(Sũ(x0,K̂ĉrp1 ))
+ ‖f̃‖Ln(Sũ(x0,K̂ĉrp1 ))

≤ ε4.
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Then, Theorem 3.3 gives

(3.28) |{ṽ > H0/2} ∩ Sũ(x0, ĉr
p1)| ≤ CH−ε

0 |Sũ(x0, ĉr
p1)| ≤ CH−ε

0 |Sũ(0, 1)| ≤ Ct−ε(2r)βε.

Now, we estimate the measure of {ṽ ≥ H0/2} ∩ Sũ(x0, ĉr
p1) from below. To do this, we

modify the proof of Theorem 6.1 on pp. 35–37 in [L1]. The only part that is different starts

right after inequality (6.7). Here, C1−C2ṽ is not a supersolution of the operator ãijDij+b̃·D.
However,

C1 − C2ṽG̃
Tx0 = C1 − C2η̃

Tx0

is a supersolution of the operator ãijDij + b̃
Tx0

·D; see (3.31).
We will appropriately choose C1 and C2 (see (3.30)), and then applying Lemma 3.2 to

C1−C2ṽG̃
Tx0 on a small but definite fraction of the section Sũ(x0, ĉr

p1). For this, we introduce
several new constants. Denote

δ :=
1

3M + 1
<

1

3M
so 1 + δ < 4/3.

Let ρ be a small universal constant, and let β be a large universal constant such that

(3.29) M
(

(1 + δ)(1− ρ)−β − 1
)

=
1

3
; β ≥

np1
2ε

.

As in [L1, p. 36], we deduce from the interior C1,α∗ estimate (3.2) and the gradient estimate
for u that

1− ũ(x) ≥ 2r − 2ρr in the section Sũ(x0, c1r
p1)

if c1 is universally small.
Note that

ṽ(x0) = H0 ≥ 1.

The maximum of ṽ in the section Sũ(x0, c1r
p1) is at most the maximum of ht in Sũ(x0, c1r

p1)
which is not greater than t(2r − 2ρr)−β = (1− ρ)−βH0. Thus

ṽ ≤ (1− ρ−β)H0 in Sũ(x0, c1r
p1).

By (3.23), we have

Gm := max
Sũ(x0,c1rp1 )

G̃Tx0 ≤ 1 + δ.

Define the following functions for x ∈ Sũ(x0, c1r
p1)

(3.30) w(x) =
(1− ρ)−βH0Gm − ṽ(x)G̃Tx0

((1 + δ)(1− ρ)−β − 1)H0
, and f̄ =

|f̃Tx0 |

((1 + δ)(1− ρ)−β − 1)H0
.

Note that w(x0) ≤ 1, and w is a non-negative solution of

(3.31) ãijDijw + b̃
Tx0

·Dw ≤ f̄ in Su(x0, c1r
p1).

Observe that, by (3.29), (3.22) and the assumption on f̃Tx0 in (3.25),

‖f̄‖Ln(S̃) ≤
1

((1 + δ)(1− ρ)−β − 1)
‖f̃Tx0‖Ln(S̃) = 3M‖f̃Tx0‖Ln(S̃) ≤ ε4/2.

Therefore,

(3.32) ‖b̃
Tx0

‖Lp(Sũ(x0,c1rp1 )) + ‖f̄‖Ln(Sũ(x0,c1rp1 )) ≤ ε4.
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From (3.31) and (3.32), we can use Lemma 3.2 to obtain the estimate

(3.33) |{w ≤M} ∩ Sũ(x0, 1/4c1r
p1)| ≥ δ∗|Sũ(x0, 1/4c1r

p1)|.

We have that
(1− ρ)−βH0Gm − ṽ(x)G̃Tx0

((1 + δ)(1− ρ)−β − 1)H0
≤M

is equivalent to

ṽ(x)G̃Tx0(x) ≥ H0

[

(1− ρ)−βGm −M [(1 + δ)(1− ρ)−β − 1]
]

= H0

[

(1− ρ)−βGm −
1

3

]

,

so

ṽ(x) ≥
H0

1 + δ
((1− ρ)−β −

1

3
) ≥

H0

2
.

Thus, we obtain from (3.33) the estimate

|{ṽ ≥ H0/2} ∩ Sũ(x0, c1r
p1)| ≥ δ∗|Sũ(x0, c1r

p1)|.

In view of (3.28), and the volume estimate on sections in (3.1) (recalling that ũ satisfies (3.7)),
we find

Ct−ε(2r)βε ≥ δ∗|Sũ(x0, c1r
p1)| ≥ c3(n, λ, λ)r

np1/2,

for some universally small c3. By the choice of β in (3.29), and recalling 0 < r < 1, we find

that t is universally bounded from above by 2β(C/c3)
1
ε . This completes the proof of Step 1.

Step 2: Proof of the Harnack inequality. For each τ > 0, let

K(τ) = inf
Sũ(0,1/2)

ṽ + τ + 16M(‖f̃‖Ln(S̃) + sup
z∈S

‖f̃ z‖Ln(S̃))/ε4

and consider the functions

ṽτ =
ṽ

K(τ)
, and f̃ τ =

f̃

K(τ)
.

Then, we have the supersolution property

ãijDij ṽ
τ + b̃ ·Dṽτ ≤ |f̃ τ |,

where
‖b̃‖Lp(S̃) ≤

ε4
16M

, ‖f̃ τ‖Ln(S̃) ≤
ε4

16M
.

For each z ∈ S = T (S̃), consider the functions

η̃z,τ =
η̃z

K(τ)
=

ṽG̃z

K(τ)
, and f̃ z,τ =

f̃z

K(τ)
.

Then, we have the subsolution property

ãijDij η̃
z,τ + b̃

z
·Dη̃z,τ ≥ −|f̃z,τ |.

Moreover,

sup
z∈S

‖b̃
z
‖Lp(S̃) ≤

ε4
16M

, sup
z∈S

‖f̃z,τ‖Ln(S̃) ≤
ε4

16M
.

We apply the conclusion of Step 1 to ṽτ to obtain

sup
Sũ(0,1/2)

ṽ ≤ C

(

inf
Sũ(0,1/2)

ṽ + τ + 16M(‖f̃‖Ln(S̃) + sup
z∈S

‖f̃z‖Ln(S̃))/ε4

)

.

Sending τ → 0, we get the Harnack inequality (3.21), and completing the proof of the theorem.
�
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3.3. Proof of the twisted Harnack inequality.

Proof of Theorem 1.3. We prove the theorem when (1.18) is replaced by a slightly relaxed

condition (3.3). Let M > 1 be the constant in Proposition 3.1. Let ε5(n, p, λ,Λ, λ̃, Λ̃, R) be
as in Theorem 3.4. Using the Hölder inequality and the volume estimates for sections, we
have for S = Su(x∗, h)

‖b‖Lp(S) ≤ ‖b‖Lq(S)|S|
1
p
− 1

q ≤ K|C(n, λ,Λ)hn/2|
1
p
− 1

q .

Similarly,

sup
z∈S

‖bz‖Lp(S) ≤ K|C(n, λ,Λ)hn/2|
1
p
− 1

q .

Thus, if h ≤ h1(n, λ,Λ, λ̃, Λ̃, R, q,K), then

‖b‖Lp(S) + sup
z∈S

‖bz‖Lp(S) ≤ ε5/2.

Since Su(x̄, t̄) is R-normalized, by the estimate on the size of sections (see [LMT, Lemma
3.52]), there exist µ(n, λ,Λ) ∈ (0, 1) and C̄ = C̄(n, λ,Λ, R) such that whenever Su(x∗, h) ⊂
Su(x̄, t̄/2), one has

Su(x∗, h) ⊂ BC̄hµ(x∗).

Now we choose h0(n, λ,Λ, λ̃, Λ̃, R, q,K, γ) ≤ h1 so that

K(diam(Su(x∗, h0)))
γ ≤

1

3M + 1
.

Then for h ≤ h0 and for all z ∈ S, we have

sup
x∈S

|Gz(x)−Gz(z)| ≤ K|x− z|γ ≤ K(diam(Su(x∗, h0)))
γ ≤

1

3M + 1
.

The Harnack inequality (1.19) now follows from Theorem 3.4.
From the Harnack inequality, we easily obtain the interior Hölder regularity of v. The proof

is similar to that of [LMT, Theorem 2.9] for linearized Monge–Ampère equation without drifts,
so we omit it. �
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