TWISTED HARNACK INEQUALITY AND APPROXIMATION OF
VARIATIONAL PROBLEMS WITH A CONVEXITY CONSTRAINT BY
SINGULAR ABREU EQUATIONS

NAM Q. LE

ABSTRACT. We show in all dimensions that minimizers of variational problems with a con-
vexity constraint, which arise from the Rochet—Choné model with a quadratic cost in the
monopolist’s problem in economics, can be approximated in the uniform norm by solutions
of singular Abreu equations. The difficulty of our Abreu equations consists of having sin-
gularities that occur only in a proper subdomain and they cannot be completely removed
by any transformations. To solve them, we rely on a new tool which we establish here: a
Harnack inequality for singular linearized Monge—Ampere type equations that satisfy certain
twisted conditions.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In this paper, we show that minimizers of variational problems with a convexity constraint,
which arise from the Rochet—Choné model with a quadratic cost in the monopolist’s problem
in economics, can be approximated in the uniform norm by solutions of singular Abreu equa-
tions. We accomplish this in all dimensions by establishing the solvability of singular Abreu
equations in suitable Sobolev spaces, thus resolving an open issue raised in [L3, Remark 1.9].
A key ingredient in our analysis is a Harnack inequality for solutions of singular linearized
Monge-Ampere type equations satisfying certain twisted conditions.

1.1. Approximating minimizers of the Rochet—Choné model by singular Abreu
equations. Let Qp, Q be bounded, open, smooth, and convex domains in R™ (n > 2) where
Q) contains Q. Let F(z,z,p) : R" x R x R” — R be a smooth Lagrangian which is convex in
each of the variables z € R and p € R". Let » € C°(Q) be a convex function.

Consider the following variational problem subject to a convexity constraint:

(1.1) inf / F(z,u(x), Du(z)) dz
uES[cp,Qo} Qo

where

(1.2)  S[p, Qo] = {u : Qo — R | u is convex and admits a convex extension to 2

such that u = ¢ on Q\Qo}.

This type of problem arises in the analysis of several variational problems including: wrinkling
patterns in floating elastic shells in Elasticity [T], and the Rochet-Choné model [RC] in
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the monopolist’s problem in Economics. A typical Lagrangian for the case of g-power cost
(1 < ¢ < o0) in the Rochet-Choné model is

(1.3) F(z,z,p) = (Ipl?/q == - p+ 2)m()

where 7 is the nonnegative relative frequency of agents in the population; see [RC, p. 790].

Because the functions in S[p, o] are Lipschitz continuous with Lipschitz constants bounded
from above by || De||e(q), one can show, under quite general convexity and growth assump-
tions on F, that (1.1) has a minimizer in S|y, ]. Since it is in general difficult to handle
the convexity constraint, especially in numerical computations [BCMO, Mir], one wonders if
minimizers of (1.1) can be well-approximated in the uniform norm by solutions of some higher
order equations whose global well-posedness can be established. For the case of Lagrangians
F' being independent of the gradient variable p, this approximation question has been an-
swered in the affirmative by Carlier—Radice [CR] in all dimensions. When the Lagrangians F
depend on the gradient variable p, this has been done [L2, L3, LZ] in two dimensions for a
large class of Lagrangians F' which include the Rochet—Choné model (1.3). The approximat-
ing schemes proposed in [CR, L2, L3, LZ] use the second boundary value problem of fourth
order equations of Abreu type [Ab]. The Abreu equation

n 2 2,\—1
Z Uija [(det D7)} = f, where (UY) = (det D*u)(D?*u)™?,
— 0x;0x;
2,j=1
arises in complex geometry in the problem of finding Kéhler metrics of constant scalar cur-
vature for toric manifolds.

In our approximating scheme (see (1.9) and J.), Abreu-type equations arise from the vari-
ations of functionals involving the penalizations —& fQ log det D?u dx which are convex func-
tionals in the class of C2, strictly convex functions. Heuristically, the logarithm of the Hessian
determinant should act as a good barrier for the convexity constraint in problems like (1.1)—
(1.2). This was confirmed numerically in [BCMO] at a discretized level.

In the present work, we address the question of approximating minimizers of (1.1) in all
dimensions for the gradient-dependent Lagrangians. In particular, our result implies that
minimizers of the Rochet—Choné model with a quadratic cost can be approximated in the
uniform norm by solutions of singular Abreu equations.

Motivated by the Rochet—Choné model (1.3), and as in [L3], we will focus on Lagrangians
of the form

(1.4) F(z,2,p) = FO(z,2) + F'(z,p).

Here, the function F° satisfies the following convexity and growth assumptions:
0 0 0

(1.5) (aai(x,z)—aai(xj))(z—é) > 05 |F0(x,z)|+’%i(x,z)‘ <n(|z|) for all x € Qp and 2,2 € R
z z z

for some continuous and increasing function 7 : [0,00) — [0, 00); the function F! satisfies the
following convexity and growth assumptions for all p = (p1,--- ,pn) € R™
(1.6) 0< Fplipj (z,p) < Didy; |Fy . (x,p)] < Di(|p| +1) for all z € Q, and for each 4,
where I, is the identity n X n matrix, and D, is a given positive constant.

In this case, (1.1) has a minimizer in S[p,{p]. The minimizer is unique in the case

Fplipj (z,p) > C~'I, for some constant C > 0. To approximate minimizers of (1.1), we
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will use the following scheme proposed in [L3] that is well suited to handling the general case
of non-uniform convexity (if any) of the Lagrangian F' and the constraint barrier (.

Let v € C3(Q) with mingn ¢ > 0. Let p be a uniformly convex defining function of 2, that
is,
(1.7) Q:={zeR":p(x) <0}, p=0on 92 and Dp # 0 on 0N.

Denote by x g the characteristic function of a subset £ C R", that is xg(z) =1 if z € E and
xe(z)=0ifz € E.

For ¢ > 0, let
(1.8) He(@) = p(a) + 7 () — 1),

and consider the following second boundary value problem for a uniform convex function wu.:

€ Z U;jDijws = fe
ij=1
aFO "0 aFl I .

(1.9) = ( (z,ue) Z 6331 o (z D%)))XQO + fxg\go in Q,
w, = (det D%u.)™* in 0,
e =9 on 01,
we =1 on 0,

where

(Uaij) = (det DQUE)(D2U€)_1
is the cofactor matrix of the Hessian matrix D?u..
Note that the first two equations of (1.9) consist of a Monge—Ampere equation for u.:

(1.10) det D?u; = w-' in Q,
and a linearized Monge-Ampere equation for we:
n
(1.11) > UiDjwe. = fo/e inQ,
ij=1

because U’ D;; comes from linearizing the Monge-Ampére operator det D?u.. The last two
equations of (1.9) prescribe the boundary values for u. and det D?u. (via w.). Moreover, the
first two equations of (1.9) are critical points, with respect to compactly supported variations,
of the following convex functional

1
Je(v) = / F(z,v(x),Dv(x))de + — (v — pe)? dw—e/ log det D?v dz.
Q0 2e Jo\qo Q
For u. being merely convex, the right-hand side of (1.9) contains the term
"L 9%F!
(1.12) Sue 1= —ij:1 i, (2, Duc(z))Djju.

which is just a nonnegative measure. For this reason, we call (1.9) a singular Abreu equation.

The ultimate goal is to solve (1.9) for all small € > 0, and then prove that, up to extracting
a subsequence of € — 0, solutions u. tend to a minimizer u € S[p, Q] of (1.1). This turns
out to be highly challenging. One of the mains obstacles comes from the lack of regularity
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estimates for the linearized Monge-Ampere equation (1.11) with a very singular right-hand
side f..

As explained in [L2, §1.3] and [LZ, §1.1], if one directly uses available results for the
linearized Monge-Ampeére equation, one can only solve (1.9) in two dimensions. Section
1.2 will briefly mention this issue. On the other hand, if the singular term Swu. is exactly
—Au, (or a constant multiple thereof; Su. = —Awu, corresponds to F!(x,p) = |p|?/2) and
—Auwu, appears in the whole domain €2, rather than just in the subdomain g, then the recent
work [KLWZ] provides a new technique to solve (1.9) in all dimensions n > 2. The reason
is that when —Aw,. appears in the whole domain 2, by using positive Holder continuous
functions, one can transform the first two equations of (1.9) into a linearized Monge—Ampere
equation with a bounded drift, and the singular term goes away. Then one can use Holder
estimates for linearized Monge—Ampere equation with a bounded drift, and the higher order
regularity estimates will eventually follow. This is not the case when —Awu,. appears only
in the subdomain €2y, since, to the best of the author’s knowledge, it cannot be completely
removed by any transformations. In additions, our situation here is more challenging as F'!
may depend on the spatial variable x, and thus Su. is not a positive constant multiple of
—Au, in general.

In this paper, we introduce a new technique to solve (1.9) in all dimensions n > 2 by
overcoming the difficulties mentioned above. The key technical device for obtaining regularity
estimates for the linearized Monge—Ampere equation (1.11) with a very singular right-hand
side f; is a Harnack inequality in Theorem 1.3 for singular linearized Monge—Ampere type
equations that satisfy certain twisted conditions. This allows us to solve (1.9) in all dimensions
n > 2.

Our key observation here is that, granted positive lower and upper bounds for det D?u,
have been established,

(1) we is a supersolution of the linearized Monge-Ampéere operator Uz’ D;; with bounded
right-hand side.

(2) (Twisted conditions) Up to multiplicative positive Holder continuous functions, w; is
a subsolution of the linearized Monge-Ampere operator Uz D;; with bounded drift
and bounded right-hand side.

Our first main theorem states as follows.

Theorem 1.1 (Solvability and convergence of singular Abreu equations to minimizers of
variational problems with a convexity constraint). Let Qo and £ be bounded, smooth, and
conver domains in R™ (n > 2) where Q is uniformly convex and contains Q. Let p €
C5(Q), € C3(Q) where ¢ is convez, and mingg 1y > 0. Let F be given by (1.4) where the
smooth function FO satisfies (1.5) and the smooth function F' satisfies (1.6). If ¢ > 0 is
small (depending only on n,Q,Qq, dist(Qy, ), ¢,¥,n, and D,), then, the following facts
hold:

(i) The equation (1.9) has a uniformly convex solution u. € W4(Q) for all s € (n, 00).

(ii) Let u. € W43(Q) (s > n) be a solution to (1.9). Then, after extracting a subse-
quence of € — 0, the sequence {u.} converges uniformly on compact subsets of Q to a
minimizer u € S[p, Qo] of (1.1).

We will prove Theorem 1.1 in Section 2.
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Remark 1.2. Theorem 1.1 resolves an open issue raised in [L3, Remark 1.9] for all dimen-
sions n > 3. Moreover, its conclusions apply to the Rochet—Choné model with a quadratic
cost, that is, (1.3) with ¢ = 2.

We will establish the solvability in Theorem 1.1(i) by using a priori estimates and degree
theory. For the a priori estimates, a key ingredient in our analysis is a Harnack inequality
for singular equations of linearized Monge—Ampere type satisfying certain twisted conditions.
This is the subject of the next subsection.

1.2. Singular linearized Monge—Ampeére equations with drifts and twisted condi-
tions. Let A\, A, X and A be fixed positive constants where A < A and A < A. Let Q ¢ R”
(n > 2) be an open, convex and bounded domain. Assume that a strictly convex function
u € C?(Q) satisfies the Monge-Ampere equation

(1.13) A <detD?u <A in Q.
We will denote the section of u centered at x € Q2 with height h > 0 by
Sulw,h) = {y € uly) < u(w) + Du(x) - (y — z) + h}.

Throughout, we denote the cofactor matrix of the Hessian matrix D*u = (D;ju) by

1<i,j<n
U = (det D*u)(D*u)~! = (UY)1<i j<n.

Let A = (a¥)1<; j<n be a symmetric matrix satisfying

(1.14) AN <A<AU inQ.

We will establish a Harnack inequality for singular linearized Monge—Ampeére equations with
bounded drifts

(1.15) a’Dijv+b-Dv=f inQ,

where f is very singular in general. B

Equations of the type (1.15) include the linearized Monge—Ampeére equations when A\ =
A =1, and linear, uniformly elliptic equations when u(z) = |z|?/2 (so that A = A = 1).

A Harnack inequality for (1.15) in the case without drifts, A=A=1,and f € L" where
r > n/2 was established in [LN], and in the case with bounded drifts and f € L™ was
established in [L1]. Since the validity of a Harnack inequality will imply a Holder continuity
estimate, the exponent n/2 is critical here, as the best regularity for Av € L" is v € VVE)Z
when 7 € (1,00) and the Sobolev embedding W?2" < C® only holds when r > n/2.

In applications, as in (1.9), the right-hand side f is a priori only in L'*¢ where ¢ > 0 is small
so f & L™? when n > 3. This integrability of f. in (1.9) comes from the sharp second-order
Sobolev regularity of the Monge—Ampere equation in the works of De Philippis—Figalli-Savin
[DFS] and Schmidt [Sc]. Thus, in general, there is no Harnack inequality for (1.15) for very
singular f.

However, if we can suitably “twist” v to make the right-hand side of (1.15) being bounded,
then a Harnack inequality can be established. We consider here twisting by positive multi-
plicative Holder continuous functions. The rough idea is as follows. Suppose for each z € €,
we can find positive Holder continuous functions 7%, n* such that 7%(z) = n*(z) = 1, and the
“twisted versions” of v defined by ¥% := vij* and v* := vn? satisfy B

aijDiji_Jz +bz . D©? < f_z7 aijDijyz +bz X DQZ > iZ
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for suitable functions b*, f*, and b®, f* which are uniformly bounded in z. Then, locally,
up to positive multiplicative Hélder continuous corrections, v is a solution to a linearized
Monge—Ampere equation with bounded drifts and bounded right-hand side! Since a Harnack
inequality is a local statement, the multiplicative Holder continuous corrections should not
affect the validity of a Harnack inequality for v. This is what we will prove in Theorem 1.3
which is of independent interest beyond its application to singular Abreu equations.

Our choice of terminologies “twist”, “twisting”, and “twisted” to describe the above mul-
tiplication process is motivated by the idea that, within a class of data, the transformed
functions in our applications usually change the solution nature of the original functions,
from being supersolutions to being subsolutions and vice versa. For example, in (1.16), v is
a supersolution while its transformed (or twisted) versions n* are subsolutions (see (1.17)) of
a class of singular equations of linearized Monge—Ampere type with L™ right-hand side.

Our second main result states as follows.

Theorem 1.3 (Harnack inequality for singular equations of linearized Monge—Ampere type
with twisted conditions). Assume that (1.13) and (1.14) are satisfied in an open set Q C R™.
Let S := Sy(xs,h) CC Q be a section satisfying S C Syu(z,t/2) where S,(z,t) CC Q and
Bpr-1(z) C Su(Z,t) C Bgr(z) for some R > 1. Suppose that v > 0 is a Wli:(Q) function
satisfying the following conditions:

(1) It is a supersolution:
(1.16) a’Dijv+b-Dv < |f| inS,

where f € L™(S), and b € L*=(S;R").

(ii) (Twisted conditions) It is a subsolution up to multiplicative Hélder continuous cor-
rections. Precisely, for each z € S, there are functions b* € L*(S;R"), f* € L™(9),
G*: S — [1,00) such that

G*(z)=1, and G* € I/Vli’Cn(S) NCY(S)  for some v € (0,1),
and n*(z) = v(x)G*(x) satisfies
(1.17) a’Diin* +b* - Dn* > —|f*| in S.
Assume that

< K.

|G*(z) — G*(2)]
1.18 b||70c(g) + sup ||b?|| f00( 5y + sup sup
( ) [Plze=(s) zESH lz=(s) z€S zes |z — 2|

Then, there exist positive constants hy and C depending only on n, )\,A,X,INX,R,%K such
that whenever h < hg, we have

1.19 sup v<C inf o4 B2 fll g + B2 sup || £ o .
( ) Su(zx,h/8) (Su(x*,h/S) 1l zncs) zESH Iz (S))

In particular, v is locally Hélder continuous with a positive exponent depending onn, A, A,S\, A,
R,v, and K.

The proof of Theorem 1.3 will be given in Section 3.

Remark 1.4. When G* =1, b* = b and f* = f for all z € S, Theorem 1.3 was proved in
[L1, Theorem 1.1] which extends the fundamental Harnack inequality of the linearized Monge—
Ampére equation without drifts in Caffarelli-Gutiérrez [CG].
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Remark 1.5. We have the following remarks on the statement of Theorem 1.3:

(1) We only consider twisted conditions for the subsolution, and this version of Theorem
1.3 suffices for the proof of Theorem 1.1. Of course, one can also consider twisted
conditions for the supersolution.

(2) For simplicity, we use the same second order operator a* D;j in (1.16) and (1.17).
The conclusion of Theorem 1.8 is unchanged if we use different operators aijDij as
long as (a) satisfies (1.14).

We briefly explain the proof of Theorem 1.3 which follows that of [L1, Theorem 1.1]
where no twisted conditions were involved. First, exactly as in [L1, Theorem 5.3], we ob-
tain from the supersolution property (1.16) the L° estimate for v. This means that there
exists £(n, \, A, \, A, R) > 0 such that the distribution function of v, |[{v > t} N Sy (., h/4)]|
decays like t=¢. Thus, up to constants depending only on n, A\, A, X\, A, R, v is comparable to
v(x4) in Sy (x4, h/4) except a set of very small measure. Next, to prove the Harnack inequal-
ity, we show, by contradiction, that the maximum of v in S, (24, h/4) cannot be much larger
than v(z.). Were this not the case, there would exist & € S, (z«, h/4) such that v(Z) is much
larger than v(x,). Then, we apply the L¢ estimate for the supersolution C; — CovG?® (of the
operator a”’ D;; +b? - D, due to (1.17)) to find that v is much larger than v(x,) in a subset
of Sy(z«, h/4) of positive measure. This contradicts the L® estimate for v.

The rest of paper is organized as follows. In Section 2, we will establish a priori estimates
for solutions to (1.9) and then prove Theorem 1.1. In Section 3, we will prove Theorem 1.3.

2. SOLVABILITY AND CONVERGENCE OF SINGULAR ABREU EQUATIONS

In this section, we prove Theorem 1.1 via a priori estimates and degree theory.

2.1. A priori higher order derivative estimates. Fix s € (n,00). Throughout this
section, we let u. € W4%(Q) be a uniformly convex solution to (1.9). Our main result in
this section is the global W*(£2) estimate in Theorem 2.11 for u. in terms of the given data
n, 2, Qo, v, ¥, n, Dy, and €. As the rewriting of (1.9) into (1.10) and (1.11) indicates, we will
obtain regularity estimates for u. first, and then for w..

From the proof of Theorem 1.4(i) in [L3] (see (3.15) there), we have the following uniform
estimate.

Proposition 2.1 (Uniform estimate for u.). If € < g¢ is sufficiently small, depending only
on n,Q, Qo, p, 0,1, Dy, and dist(Qg, 0N2), then

(2.1 el ey < ©
where C' is independent of ¢.

From now on, we fix ¢ < gg. Unless otherwise stated, constants in this section depend only
on n, 2, Qo, ¢, ¥, n, dist(Qg, 9N), D, and possibly e. For clarity, the dependence on ¢ will be
explicitly indicated.

Before going further, we establish some simple bounds for f. in €.

Lemma 2.2 (Estimates for f. in Q). There is a positive constant C such that

(2.2) —C—DAu. < f. <C in Q.
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Proof. From (2.1) and the convexity of u., we obtain

2|uell Lo (o < 2C
) = dist(Q, 09) ~ dist(Qo, 09)°

Thus, in Qp, using the convexity of u. together with (1.5) and (1.6), one has

OF° “~ 0*F! —~ O?F!
fe= W(w’ ue (1)) — = M(ﬂfa Due(x)) Dijue —
OF° —~ O?F!
< = _ —_ -
= 82 <$,u5($>) — 81'@8]91

1=

[ Due]| Lo

— 8:1328]77, ('CC? Du@(x))

Qz

< n(lluellzoo (@) + 1D« ([ Due|| L (0p) + 1) <
Similarly, for the lower bound in €y, one has

0 n 2l
fs > %i(xvue(x» — D, Au, — aiF

0x;0p; -
Therefore, we obtain (2.2).
Combining (2.1) with (2.2), we get
(2.3) 1fF e () < Cole)

where

f& = max{f.,0}.
Let us denote -

(D?ue) ™ = (u).
The following lemma establishes an upper bound for the Hessian determinant of wu..
Lemma 2.3 (Upper bound for det D?u.). There is a positive constant Cy () such that

det D*u. < C1(e) in Q.
Proof. For this, we use a trick of Chau-Weinkove [CW]. Let
v = logw. — Mu. € W?*(Q)

where M > 0 is large to be chosen. Then, in €2, we have

. o Di;w Dyw:D;w uY Dyw
U?Dijv:u?< Yv_E ! E2j 8—MDZ']‘U5>§E Y S—nM
We w2 We
:7f5/5 —nM
w, det D?u,
Jr
< I £ | oo () M <,
€

provided M is large. In view of (2.3), one can take
M =1+Cole)/e 2 1+ | f (@) /e
By the maximum principle, v attains its minimum in Q on the boundary 9. Thus, in €,

> minv > minlog ) — M||ue||peo(q) > logminty — MC
v = minv > minlogy el o< (@) = log min< :
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where C'is the constant in (2.1). This implies that
log we > log rg})nw —2MC,

SO
we > 6logrnmag PY—2MC in Q.

Therefore, det D*u. = w2 ! is bounded from above by a positive constant C (). O

Using u. = ¢ on 05, and the upper bound for det D?u, in Lemma 2.3, we can construct
suitable barriers to obtain the gradient estimate for wu.:
(2.4) |Duc| < Mp(e) in .

The following transformation of (1.9), initiated in [KLWZ, Lemma 2.1], will be crucially
used in our proof of Theorem 1.1.

Lemma 2.4 (Transformed versions of (1.9)). Fiz zo € Q. Consider the following functions
in )
D.|z — Duc(x)|?

2e ’

N2 (@) 1= we(w)e!™ " (Prelr)

F¥o(x) :=

)

b (z) 1= —(det D2u5(x))%(Dug(m) ~ Du(a0)).

Then,
g D.A @
(2.5) U9 DymZo +b™(x) - Dpo = Je £ DuBte m2omue@) 4, ,
€
Proof. From [KLWZ, Lemma 2.1], we have in

UY Dy — (det D*u.) DE®(Du.) - Dn*° = [UY Djjw. + div (DF® (Du.))]e= " (Pus(@)),

Since

D,
DE™(Du,) = 2%
£
and U2’ D;jw, = f. /e, the lemma follows. O

(Due — Duc(zo)),

Next, we establish a positive lower bound for the Hessian determinant of w..

Lemma 2.5 (Lower bound for det D?u.). There is a positive constant Ca(e) such that
det D*u. > C5 ' (e) in Q.

Proof. We use the subsolution property of w, together with the transformed equation (2.5)
and the Aleksandrov—Bakelman—Pucci (ABP) estimate.

Fix zg € Q0. Let F*°, n¥° and b™ be as in Lemma 2.4. Then (2.5) holds in Q.

Using (2.5) together with the first inequality in (2.2) and the uniform estimate for u. in
(2.1), we obtain

e R
_geFé‘”O(Dua(x)) in O

>
N D* 1 v Ues(x))
?Au6 + = (ue(x) — pe(x)) efe" (Dus(@) i O\ Qo
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(2.6) > —Da(e).

From the ABP estimate for elliptic, linear equations with drifts (see [GT, inequality (9.14)])
applied to (2.6), we find

(2.7) supn®(x) < sup n2°(x)
e €00

. . 1/n
+ diam(Q){ exp [fﬂwn /Q (1 + d‘elt)(ULij))dx} - 1} H@de‘fif;)))l/”

where w,, is the volume of the unit ball By(0) C R™.
We now estimate each term appearing in (2.7). Clearly

Ln(©)

(2.8) supn2°(x) > sup we(z).
zeQ e

Using (2.4) and w. = v on 0%, we have

2
2D« || Due HLoo(Q>

(2.9) sup n2°(x) < sup ¥(z)e : < M (e).
x€0N €00
Also from (2.4) and the definition of b™, one has
(2.10) b% ()| < 2det D?*u.(2)e ' Dy My(e) := Dy(¢) det D*u.(z) for all z € Q.

It follows from (2.10) and Lemma 2.3 that

/Q (1+ m>dw = /Q (1+ [det|22(;fi)al:]"1)dx

(2.11) g/ (1 + D7) det D2u€(x))daz < Ma(e).
Q

For the last term in (2.7), using
det U7 = [det D?u.]" ! = w "V,

S

we have

iy [ 22 = Da@)l|wl™ [l < Dol QU (supue(a)
. (det(Ugj))l/” L"(Q)_ 2 e Q) > 2 meg e .

Using (2.8), (2.9), (2.11) and (2.12) in (2.7), we deduce

n—1
supwe () < My(e) + My(e) (sup we(x)) ™ |
e e

for some constant Ms(e) > 0. It follows that w, is bounded from above by a constant Cs(e).
Therefore

det D*u. = w;t > Cy(e) in Q.

Now, we prove a Holder gradient estimate for w..
Proposition 2.6 (Global C1® estimates for u.). There is ag(e) € (0,1) such that

e ”clvao(ﬁ(g) < Cs(e).
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Proof. By Lemmas 2.3 and 2.5, we have
02(5)_1 < det D2’LL5 < 01(6).
Using these bounds, u. = ¢ on 91, and the global C™® estimates for the Monge-Ampere

equation in [LS, Proposition 2.6], we obtain the desired global C120(e) estimates for u.. O

The rest of this section is devoted regularity estimates for we.
For the Holder continuity estimates for w. at the boundary, we will use the following
one-sided Holder estimates for solutions to non-uniformly elliptic, linear equations.

Proposition 2.7 (One-sided pointwise Holder estimate at the boundary for solutions to
non-uniformly elliptic, linear equations with pointwise Holder continuous drift). Assume that
Q C R" is a bounded, uniformly conver domain. Let ¢ € C*(0) for some o € (0,1),
and g € L™(2). Assume that the matriz (a¥) is measurable, positive definite and satisfies

det(a”) > X in Q. Let b € L®°(Q;R"). Let v € C(Q) N T/Vlzof(ﬂ) be a function satisfying
a’Dijjv+b-Dv > —|g| in Q, v=p on .

Suppose there are constants p, 7 € (0,1), and M > 0 such that at some x¢ € OS2, we have
|b(z)| < M|z —xo|#  for all z € QN Br(xo).

Then, there exist §,C depending only on A\,n,a, p, 7, M, [|b| 1 (q), and Q such that

r‘nin{a,u}
v(z) — v(xg) < Cla — ao| ™™+ ([lol|caan) + 19lln() for all x € QN Bs(xg).
Proof. The proof follows from inspecting the proof of Proposition 3.1 in [KLWZ]. O

With the help of Proposition 2.7 and invoking the key transformations in Lemma 2.4, we
can now establish the Holder continuity estimates for w. at the boundary.

Proposition 2.8 (Holder continuity estimates for w. at the boundary). There are aq(e) €
(0,1) and Cy(e) > 0 such that for all zy € OS2, we have

lwe(z) — we (20)] < Cy(e)|z — 20| for all z € AN Beoig (x0).
Proof. Fix xp € 09. Let FZ°, n° and b™ be as in Lemma 2.4. Then (2.5) holds in €.
Recall from (2.6) that
UYDijn* +b™ - Dnf® > —Dy(e) in Q.
By Lemma 2.3 and Proposition 2.6, the vector field
b*(x) := —(det D*u.)e ' D.(Du.(x) — Du.(x))
satisfies
b® ()| < e 1D, C1(e)Cs(e) |z — 20|*®  in Q.
Now, applying Proposition 2.7, we have for some po(e) € (0,1)
(2.13) N (z) — 2 (z0) < C(e)|z — zo|"0®)  for all z € AN Bea (zo).

e—FfO (Due(x)

Recalling w(x) = n2°(x) ), we have

we () — we(wo) = (N2°(z) — n2° (ﬂvo))e_F:O(Duf(x))

0 (g ) e P2 (De (w0)) ((F20 (Due )~ FE0 (Due(w0)) _ 1y
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Thus, from (2.13) and Proposition 2.6, we obtain one-sided Holder estimates for w, at x:
we(z) — we(wp) < Ce)lw — ol for all 2 € QN Bp s, (o)
where

p1(e) = minfyuo(e), o (e)}-
On the other hand, recalling (2.3), we also have

_€f€ > —Cg(é‘) _ —Dg(&).

Applying Proposition 2.7, we have the other one-sided Holder estimates for w, at xq:

we () — we(wo) > C(e)|x — wo|**©) for all z € AN By, (w0)

UY Dyj(~w:) =

for some pa(e) € (0,1).
In conclusion, w, is pointwise Holder continuous at zy with stated estimate for Cy(e) =
max{C(c),C(e)}. O

Using the twisted Harnack inequality in Theorem 1.3, we will establish interior Holder
estimates for w;.

Proposition 2.9 (Interior Holder estimates for w.). Let Q' CC Q. Then, there is an exponent
as(e) € (0,1), depending also on dist(Y,0), such that w. € C*2(E)(Q).

Proof. Let us summarize from the proof of Proposition 2.8 the following properties of w.:

(1) we is a supersolution of the linearized Monge—Ampere operator Ugj D;; with bounded
right-hand side:

U¥ D;jw. < D3(g) in Q.

(2) Up to a gauge transformation, we is a subsolution of the linearized Monge—Ampere
operator, generated by Ugj D;;, with bounded drift and bounded right-hand side. More
precisely, for each & € €, there are functions b* € L*°(Q;R"), and G* > 1 where
G*(Z) = 1 and G* is Holder continuous on  such that 7% = w.G? satisfies

U¥ D™ +b®(z) - Dn* > —Da(e) in Q.
The explicit formulas for G* and b? are:

Dy |Dug (¢)— Dug (2)|?
2e N

G*(r)=e . b%(z) = —(det D*u.)e ' Dy (Duc(z) — Duc(z)).

From Lemma 2.3 and Proposition 2.6, we can find a constant C/(g) such that
_ G*(x) — G*(x
sup [b7| 4 supsup 148 =~ G (@)
z€Q zeQoeQ | — z|*0)

For any z. € ', there exist h(e), R(e) > 0, depending also on dist(2’,09), such that
Su. (x4, h(g)) CC Q satisfies

Bpr () € Su. (@0, h(2)) € Brioy (),
Applying Theorem 1.3 with
A=Cy'e),A=Ci(e), A=A =1,v=ag(c), K = C(e),
we find as () € (0, 1), depending also on dist(€', d2), such that w. € C*?©)(Q). O

< C(e).
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Combining the boundary and interior Holder estimates for we, we obtain its global Holder
estimates in the following proposition.

Proposition 2.10 (Global Holder estimates for w.). There is an exponent as(e) € (0,1) and
Cs(e) > 0 such that

[wel oo @) < Cs(e)-

Proof. The proposition follows from Propositions 2.8 and 2.9 using Savin’s boundary local-
ization theorem [S1, S2] for the Monge-Ampere equation to connect interior estimates and
boundary estimates for linearized Monge—Ampere type equations. It is similar to the proof
of [KLWZ, Theorem 3.2] so we omit it. O

Finally, we are ready to establish the global W** estimates for u,.

Theorem 2.11 (Global W** estimates for u.). For any s € (n,c0), there is a constant
C.(g, s) such that any uniformly convex solution u. € W4%(Q) to (1.9) satisfies

(2.14) [uellwas @) < Cele, 5).

Proof. From
det D?u, = w:l inQ, wu.=¢ ondQ,

together with Proposition 2.10 and the global C*® estimates for the Monge-Ampere equation
[S2, TW], we have

Hug”02,a3(s)(§) < Cg(e).

Thus, the second order operator UY is uniformly elliptic with C*3(5)(Q) coefficients. Moreover
| fell oo (@) < Co(e). Now, from

U9Djjwe. = f-/¢ inQ, w.=1¢ ondQ,
we can estimate w. in W%*(Q). The estimate (2.14) for u. in W**(Q) follows. O

2.2. Proof of Theorem 1.1. We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (i) From the a priori estimates in Theorem 2.11, one can argue using
degree theory as in the proof of [L3, Theorem 1.4(i)] to obtain the existence of a uniformly
convex solution u. € W45(Q) to (1.9) for all s € (n, ).

(ii) Let u. € W45(Q) (s > n) be a solution to (1.9). Then, for ¢ < gy small, the uniform
estimate (2.1) holds. From this and the convexity of wu., we find that Du. is uniformly
bounded on each compact subset of 2. Thus, a subsequence of u. converges uniformly on
compact subsets of € to a convex function w on Q. As in the proof of [L3, Theorem 1.4(ii)],
we can show that u is a minimizer of (1.1). O

3. HARNACK INEQUALITY FOR SINGULAR LINEARIZED MONGE-AMPERE TYPE EQUATIONS
WITH TWISTED CONDITIONS

In this section, we prove Theorem 1.3 following that of [L1, Theorem 1.1] where no twisted
conditions were involved. For reader’s convenience, we recall in Subsection 3.1 estimates
from [L1] for supersolutions of (1.15) with L™ right-hand side: the critical density estimate
with L™ drift in Proposition 3.1, the critical density estimate with LP drift in Lemma 3.2,
and the decay estimate of the distribution function (or L° estimate) in Theorem 3.3. They
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will be used in Subsection 3.2 to prove a Harnack inequality for singular linearized Monge—
Ampere equations with small drifts under twisted conditions in Theorem 3.4. Theorem 1.3
then follows.

As preliminaries, we recall the volume estimates and interior C'% estimates for the Monge—
Ampere equation.

Assume that the strict convex function u satisfies (1.13). A section Sy(x,h) is called R-
normalized if there is z € R™ such that

Bgr-1(z) C Sy(z,h) C Bgr(z).
If Su(z,h) CC £, then the following volume estimates for section hold:
(3.1) Cyt(n, A, A)R™? < |8, (2, h)| < Co(n, A, )b,

see [F, Lemma 4.6], [G, Corollary 3.2.5], and [LMT, Theorem 3.42].

The strict convexity of w implies that for each x € §, there is h(x) > 0 such that
Su(z, h(z)) CC Q. Moreover, this together with (1.13) implies the existence of a, € (0,1)
that depends only on n, A\, A (but not on the C? character of u) such that the following interior
Cho« estimates for u hold: If S, (z,h) CC Q is R-normalized, then

(3.2) |Du(y) — Du(z)| < C(n, A\, A, R)|y — z|** for all y,z € Sy(z,h/2);

see [F, Theorem 4.20], |G, Theorem 5.4.5], and [LMT, Theorem 3.58].
We will prove Theorem 1.3 with (1.18) being replaced by a slightly relaxed condition:

|G*(x) = G*(2)]

3.3 b + sup ||b? + sup sup <K
( ) ” HL‘I(S) z€eS ” HLQ(S) zeS zeS ‘LI}‘ - Z’Fy
where
n(1+ o)
3.4 > ——= 1= p,.
(3.4) 9 200, P

This range of ¢ allows us to control the L? norm of the vector field b when rescaling the
linearized Monge-Ampere equation (1.15); see (3.15). In what follows, we fix

p=(p+q)/2
In the rest of this section, we call a positive constant universal if it depends only on n, g, A, A,
A A, and R. We denote universal constants by C,C1,Co, c1,co, €3,€4, M, 0y, -+, etc, and

their values may change from line to line. We use C(-,-,-) to emphasize the dependence of
the constant C' on the parameters in the parentheses.

3.1. Decay estimate of the distribution function for supersolutions. This section
recalls results from [L1] concerning properties of supersolutions to the linearized Monge—
Ampere type equation with L™ drift
a’Djjv+b-Dv < f.
We first recall the critical density estimate.

Proposition 3.1 (Critical density estimate for supersolutions with small L™ drift; see Propo-
sition 5.1 in [L1]). Assume that (1.13) and (1.14) are satisfied in Q@ C R™. Suppose that v > 0
is a W' (2) solution of

a’Dijjuv+b-Dv < f



TWISTED HARNACK INEQUALITY AND SOLVABILITY OF SINGULAR ABREU EQUATIONS 15

in an n-normalized section S,(0,4ty) CC Q. Then, there are small, u?,iversal constants
0« > 0,e3 > 0 and a large constant M > 1(all depending only on n,\, A, X\ and A) with the
following properties. If
1Bl L (50 (0,a20)) + 1T | m (80 (0,420)) < €35
and for some nonnegative integer k, we have
[{v > M1} 0.5,(0,t0)] > (1 = 6.)5u(0, %0),
then
v>MF  in S,(0,t).

Next, we would like to extend the above critical density estimate to non-normalized sections
Su(zg,h). For this, we will rescale the linearized Monge-Ampere equation. Due to the
degeneracy of (1.13), we will need higher integrability for the vector field b.

Rescaling linearized Monge—Ampeére equations on a section using John’s lemma.

Assume that (1.13) and (1.14) are satisfied in Q2 C R™. We will investigate how the
inequalities
(3.5) a’Dijv+b-Dv < (>)f
change with respect to normalization, using John’s lemma, of a section Sy (xg, h) CC £ of w.

By subtracting u(xo) + Du(zo) - (x — x0) + h from u, we can assume that ulyg, (zo,n) = 0,
and u achieves its minimum value —h at xg. From John’s lemma (see, for example [LMT,
Lemma 3.23]), we can find an affine transformation

Tx = Apx + by,
such that T-1(S,(zo,h)) is n-normalized; more precisely, we have
(3.6) B1(0) € T71(Sy(x0,h)) C B,(0).
Let us consider the rescaled functions @ of u, and v of v defined by
a(x) = (det Ap)~?™u(Tx), and 9(z) = v(Tz).
Then from (1.13), we have
(3.7) A < det D%u(z) = (det D*u)(Tz) < A in T 1(S, (0, h)), @ =0 on dT(Syu(xo, h)),

and
B1(0) € § :=T7Y(Sy (w0, h)) = Saly, (det A,)~2/"h) C B,(0)

where y is the minimum point of @ in 771 (S,(xo ).

Consider the rescaled coefficient matrix A = ( g ) i<n defined by
(3.8) A= (detAh)2/nA,;1A( St
Define the rescaled vector field b and function f by
(3.9) b(z) = (det Ah)z/"A,zlb(Ta?), and f(x) = (det Ap)¥™ f(Tx).
Then, the inequalities (3.5) become
(3.10) @ Dyio +b - Do < (2)f(x) in T7HS,(xo, h)).

For completeness, we include the derivation of (3.10). We have

D = (det Ap) "™ Al Du; D6 = (det Ay)~ 2™ Al D*uAy,,
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and
Do = Al Dv; D*3 = Al D*vA,,.
The cofactor matrix U = (U¥)1<; j<, of D?i is related to U = (det D?u)(D?u)~! and Ay, by
(3.11) U = (det D*a)(D%*a) ™ = (det Ap,)¥ " AU (ALY,
Therefore, from (3.8), we obtain
@' D;;0(x) = trace (AD?0) = (det Ap,)¥™trace (AD*v(Tz)) = (det Ap,)*™a" D;ju(Tx).
Hence, recalling (3.5), we easily obtain (3.10) from
@9 Dyyi(x) < (2)(det 42/ [f(T) — b(Tx) - Do(Tx)] = f(x) — b - Di.

By (3.7), (3.8) and (3.11), @ and A also satisfy the structural conditions (1.13) and (1.14)
on T~1(Sy(xo,h)).
Using the volume estimates (3.1), we find from (3.6) that

(3.12) [C(n, A, A)] 7 A2 < det Aj, < C(n, A, A)R™2,

Assume now Sy(xg, h) C Su(Z,t/2) where Sy, (Z,t) CC Q is an R-normalized section.
From the volume estimates of sections, we can find c,(n, A, A, R) such that

(3.13) h < ¢, whenever Sy(xo,h) C Syu(Z,t/2), where S, (7,t) CC Q is an R-normalized.

In [L1], a similar choice for ¢, was discussed before the statement of Lemma 5.2. Here it
also serves the role of hg in Theorem 6.1 in [L1].
Note that the interior Ch** estimate for u in (3.2) implies that
Su(l'o,h) OB 1 (mo)
C1

h I+ax

for some universal constant ¢; = ¢;(n, A\, A, R). This combined with (3.6) gives
(3.14) 1A < C(n, M\ A, R)R ™ Tar
By (3.9), (3.12) and (3.14), we can estimate

1Bl 5 < CRIAL BT sy < OB 51147 1l (5. (romy
(3.15) <O, A A, R)ATH 3B | Los, (o hy)-
Then, by the Holder inequality, we have
~ ~ 1 1 ~ _Qk _ m
(3.16) Bllnis) < 15155 Bl gy < Clu A A, By p)hT5 55 [b oo (o i)
Recalling (3.12), we can estimate
(3.17) HfHLn(g) = (det Ap)*"h 2| 1l 1o (50 won)) < C(ry X AR 2| Fll o (S (0.h)) -
Due to
n(l+ ax)
P >ps= Y
Qix

we deduce that in our rescaling process, the L™ norms of b and fT are small if A is small, or

DIl Lo (S (o.h)) F 1Tl L7 (S (0,)) 15 small.
Thus, rescaling and Proposition 3.1 give the following result.
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Lemma 3.2 (Critical density estimate for supersolution with small LP drift; see Lemma 5.2
in [L1]). Assume that (1.13) and (1.14) are satisfied in Q@ C R™. Let p > p, where p. is as in
(8.4). There is a small number e4 depending only on p,n, R, \, A, X and A with the following
property. Suppose that v >0 is a VVli?(Q) solution of

a’Dijjv+b-Dv < f
in a section Sy(xo,h) C Su(Z,t/2) where Su(Z,t) CC Q is an R-normalized section, and

1Bl Lo (S0 (zo,m)) + 1T Ln (S0 @on)) < €4

Let M and d, be as in Proposition 3.1. If for some nonnegative integer k, we have
[{v > M*1} 0 Sy(o, h/4)| > (1= 84)|Su(xo, h/4),

then
v>MF in Sy(xo,h/4).

By [L1, Lemma 2.14], there exists a universal constant K (n, A\, A) > 1 with the following
property:
If Sy(2,t) C Su(y, h) where S, (y, Kh) CC Q then S, (z,4t) C Sy(y, Kh).
We have the following result on the decay estimate of the distribution function (or L estimate)
of supersolutions.

Theorem 3.3 (Decay estimate of the distribution function of supersolutions with small LP
drift; see Theorem 5.3 in [L1]). Assume that (1.13) and (1.14) are satisfied in Q C R™. Let
p > p. where py is as in (3.4). Let €4 and ¢, be as in Lemma 3.2. Suppose that v > 0 is a
W2M(Q) solution of )

a’Dijv+b-Dv < f
in a section Sy = Sy (0,4tg) CC Q with S := S, (0, Kto)) C Sy(&,1/2) where Sy(Z,1) CC Q is
an R-normalized section, and

IbllLocs) + 1 nns) < ea

Suppose that

inf v <I1.
Su(oyto)

Then there are universal constants C1(n, A\, A, A\, A, R) > 1 and e(n, \, A, \, A, R) € (0,1) such
that

H{v >t} NSL(0,t0)| < C1t™¢]Su(0,t0)| for all t > 0.
3.2. Harnack inequality for singular linearized Monge—Ampeére equation with small

drifts under twisted conditions. Let M > 1 be the constant in Proposition 3.1. Our main
result in this section is the following Harnack inequality under twisted conditions.

Theorem 3.4 (Harnack inequality for singular linearized Monge—Ampere type equation with
small drifts under twisted conditions). Assume that (1.13) and (1.14) are satisfied in Q.
Suppose that v > 0 is a VVI?):(Q) function satisfying the following conditions in a section

S = Su(ws, h) C Su(z,/2)

where Sy, (Z,t) CC Q is an R-normalized section:
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(1) It is a supersolution:
(3.18) aDijv+b-Dv<|f| inS

where f € L™(S), and b € LP(S;R™) with p > p, where py is as in (3.4).
(ii) It is a subsolution up to positive multiplicative continuous corrections. Precisely, for
each z € S, there are functions b* € LP(S;R™), f* € L"(S), G*: S — [1,00) such

that
3.19 G*(z) =1, G*eW>"(S), sup  |GF(z) — GA(2)] < ,
(3.19) (2) Joc (5) wesu(w*,h)| (2) (2)] SV 1
and
n*(z) = v(z)G*(z)
satisfies
(3.20) a’Diin* +b* - Dn* > —|f*| in S.

There exists a universal constant e5(n, p, \, A, A, A, R) > 0 with the following property. If
[bllzrs) <es/2, sup [b%las) < e5/2
z€

then

3.21 sup v < Cm,\ANAR inf v+ A2 . +h1/2sup . ‘
(321 Su(@ash/8) ( )( (Tarh/8) 11z s zeSHf I3 (5))

Su(Tx,

Remark 3.5. In (3.19), we only need the small oscillation of G* around z, and no continuity
properties are required.

Proof of Theorem 3.4. Let . € (0,1) be the constant in Proposition 3.1 and € € (0, 1) be the
constant in Theorem 3.3. Let ¢, be as (3.13), and let €4 be as in Lemma 3.2. We choose €5
so that

Qe n

CCijLQ* 2p65 <

— 16M
where C' is the universal constant appearing in (3.15)- (3.17). We rescale (3.18), (3.20), the
domain, and functions as in Section 3.1. In particular, for x € T=(S, (74, h)), we have

a(x) = (det Ap)"2/"u(Tz), o(z) = v(Tz), and G*(x) = G*(Tx).

The corresponding matrix A = (@) is given by (3.8), and b, b’, f and f* are given by (3.9).
By (3.15), the functions b, b” satisfy on the n-normalized section
S = T71(Su(ws, h)) = Saly, 4to)
(see (3.6)) the bounds

n

v ) Trar 2 €4
(3.22) [Bll sy < Cel™™ ¥es < o4,

~ 2
sup ||b o < Cc
sup 67,5, < Cc’

From (3.18), we have the supersolution property

@ D;jo+b- Do < |f].

For each z € S = T(S), we have from (3.20) the following subsolution property
a’Dyii* +b° - Dy > —| f?.
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We also know that

~ ~ ~ 1
3.23 G*(T7'2) =1, sup  |GAH(T7'z) — G*(T7'2)| < .
(3.23) (T 2) :pESu(az*,h)‘ (T ) (T2l < 3377
We need to show that
3.24 sup < C(n, A\ AN A ( inf 0+ ||l ncq + sup || f? ,L~>.
( ) Sa(y.to/2) ( ) a(y,t0/2) 1711z (5) z€S 1750 (5)

Since Si(y,4to) is n-normalized, and (3.7) holds, we can use the volume estimate (3.1) to
obtain

C7(n, X\, A) < tg < C(n, \A).
Without loss of generality, we can assume that tg = 1 and y = 0. By changing coordinates
and subtracting an affine function from @, we can assume that

@>0, @(0)=0, Da(0)=0.

We divide the proof into several steps.
Step 1. We show that, if

. ~ X B e ~ E4
(3.25) sinf (0<1, and 118 +sup 1 en sy = 1607
then for some universal constant C', we have
(3.26) sup 0 < C.
S3(0,1/2)

Our proof of (3.26) follows the lines of argument in Imbert-Silvestre [IS] in the case u(z) =
|z|?/2. Let B8 > 0 be a universal constant to be determined later and let

hi(x) = t(1 —a(z))™? for x € S5(0,1).
We consider the minimum value of ¢t > 0 such that h; > v in S5(0,1). It suffices to show that
t is bounded from above by a universal constant C, because we have then
sup 9<C sup (1—a)?<28C.
S:(0,1/2) S4(0,1/2)

If t <1, then we are done. Hence, it remains to prove (3.26) for the case ¢t > 1.
Since t is chosen to be the minimum value such that h; > o, there is zp € Sz(0,1) such
that h¢(xo) = 0(xg). Let

r=(1—a(x))/2, and Hy:= hy(xo) =t(2r)™? > 1.

By the inclusion and exclusion property of sections (see [G, Theorem 3.3.10], and [LMT,
Theorem 3.57]), there is a small constant ¢ and large constant p; depending on n, A, A such
that

(3.27) Sa(zo, KérP) C S5(0,1)

where K is defined right before the statement of Theorem 3.3.
We bound ¢ from above by estimating the measure of the set {0 > Hy/2} N Si(zo, érP)
from above and below.

The estimate from above can be done using Theorem 3.3. First, recalling S = S(0,4), we
find from (3.22), (3.25) and (3.27) that

Hb‘|Lp(sﬁ(x0,Karp1)) + ||f||L"(Sa(xo,Kérpl)) < &4
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Then, Theorem 3.3 gives
(3.28) [{0 > Ho/2} N Sa(xo, erPt)| < CHy ®|Sa(zo, érP?)| < CHy|S5(0,1)] < Ct’€(2r)'85.

Now, we estimate the measure of {0 > Hy/2} N Sy(zo,érP') from below. To do this, we
modify the proof of Theorem 6.1 on pp. 35-37 in [L1]. The only part that is different starts
right after inequality (6.7). Here, C; —C40 is not a supersolution of the operator @/ D;; +b-D.
However,

Cy — CooGT*0 = ¢ — Con™o

is a supersolution of the operator a* D;; + b . D; see (3.31).

We will appropriately choose C; and Cs (see (3.30)), and then applying Lemma 3.2 to
C1—C50GT*0 on a small but definite fraction of the section Sa(xg, érPt). For this, we introduce
several new constants. Denote

1 1
0= — 1+6<4/3.
M1 am OlTo<4s
Let p be a small universal constant, and let 8 be a large universal constant such that
- 1 npi
3.29 M(l §)(1 — 5—1):7; > P
(329) (1+8)(1-p) i 82 L

As in [L1, p. 36], we deduce from the interior C*® estimate (3.2) and the gradient estimate
for u that
1 —a(x) > 2r —2pr in the section Si(xo, c1r?t)
if ¢q is universally small.
Note that
TN)(.CU()) = H() > 1.
The maximum of ¢ in the section Sg(xg, c17P!) is at most the maximum of h; in Si(xg, c17P?)
which is not greater than ¢(2r — 2pr)~? = (1 — p)"#Hy. Thus
2 < (1—pP)Hy in Sa(zo,c1rPt).

By (3.23), we have

Gpm:= max GT% <1454,

Sa (:Co,cl rP1 )

Define the following functions for x € Si(xq, c17P?)

(1—p) PHyG,, — 0(x)GT0
(L+0)(1—p)™F —1)Ho

Note that w(zg) < 1, and w is a non-negative solution of

7]
(I+0)(1—p)=P =1)Ho'

(3.30) w(z) = , and f =

(3.31) @ Dgw+b " Dw < f in Su(xo, c1r™).

Observe that, by (3.29), (3.22) and the assumption on f7*0 in (3.25),
- 1
fllzneg <
s = @sa—p 71

Therefore,

17720 gy = BMIFT sy < 20/2.

~Txg

(332) ||b HLP(Sﬁ(:ro,clrpl)) + "f‘|L7L(Sﬁ(xo,clrp1)) < eg.
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From (3.31) and (3.32), we can use Lemma 3.2 to obtain the estimate
(3.33) Hw < M} N Sa(zo, 1/4c17Pt)| > 64| Sa(zo, 1/4c1rPr)|.
We have that

(1 —p) PHoG — 0(x)GT0 Py
(A+6)(I—p)P=1)Hy —
is equivalent to

8()GT0 () > Ho (1~ p) PG — M1+ 0)(1 — ) = 1]] = Ho[(1 = p) PG — 5.
W02 (- - ) 2 L

Thus, we obtain from (3.33) the estimate
{0 > Hy/2} N Sa(zo, c1rPY)| > 64]Sa(zo, c17P)).

In view of (3.28), and the volume estimate on sections in (3.1) (recalling that @ satisfies (3.7)),
we find
Ct=2(2r)% > 6,|Sa(z0, c17P)| = c3(n, A, A)r™P1/2,
for some universally small ¢3. By the choice of g in (3 29), and recalling 0 < r < 1, we find
that ¢ is universally bounded from above by 25(C/ 03) This completes the proof of Step 1.
Step 2: Proof of the Harnack inequality. For each 7 > 0, let

and consider the functions

~T v T f
CTE@ MM T EE
Then, we have the supersolution property

a“ Dy o" +b - DT < |f7],

where
b fr n(g) < .
For each z € S = T(S), consider the functlons
~2,T ﬁz fDéz [2,T fz
V= = d V=
TURG R MM TR

Then, we have the subsolution property
jD n2T+b D~zT _|fz;r|‘

Moreover,

up [B7l15) < 1507 S IF s < 537

We apply the conclusmn of Step 1to 0" to obtam
sup f)SC'( inf o9+7+16M f nGy Sup fz G €4>.
Sa(0,1/2) 5a(0,1/2) (71l ©) 7 Ces 171 (S))/

Sending 7 — 0, we get the Harnack inequality (3.21), and completing the proof of the theorem.
O
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3.3. Proof of the twisted Harnack inequality.

Proof of Theorem 1.3. We prove the theorem when (1.18) is replaced by a slightly relaxed
condition (3.3). Let M > 1 be the constant in Proposition 3.1. Let e5(n,p, X\, A, \, A, R) be

as in Theorem 3.4. Using the Holder inequality and the volume estimates for sections, we
have for S = Sy (z«, h)

11 /21
Ibllzr(s) < IbllLags)S|7 e < K|C(n, A, A)p™=[w .
Similarly,
sup [ 1) < KIC(m A A2373,

Thus, if h < hl(n,A,A,X,A,R ¢, K), then
[bllze(s +suprZHLp <es/2.

Since S,(7,t) is R-normalized, by the estimate on the size of sections (see [LMT, Lemma
3.52]), there exist u(n,A\,A) € (0,1) and C = C(n, A, A, R) such that whenever S, (z.,h) C
Su(Z,t/2), one has
Su(x, h) C Bapu ().
Now we choose ho(n, A, A, MAR, ¢ K, v) < hy so that
1

. T =
K (diam(Sy(x«, ho)))? < 3M + 1

Then for h < hg and for all z € S, we have

G*(z) — G* < K|z — 2|7 < K(diam(Sy (s, ho)))? < ———.
sup|G*(a) = G*()] < Ko = 2 < K(diam(S, (., o)) < 777
The Harnack inequality (1.19) now follows from Theorem 3.4.
From the Harnack inequality, we easily obtain the interior Holder regularity of v. The proof
is similar to that of [LMT, Theorem 2.9] for linearized Monge—Ampeére equation without drifts,
so we omit it. I
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