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ARTICLE INFO ABSTRACT
Keywords: Trajectory optimization, as a key connected automated vehicles (CAVs) operation task, has the
Signalized arterial potential to mitigate traffic congestion, lower energy consumption, and increase the efficiency of

connected automated vehicles
Trajectory optimization
Decentralized control

traffic operation. This study proposes a decentralized approach to optimization CAV trajectories
in both longitudinal and lateral dimensions along a signalized arterial under the mixed traffic
environment, where human vehicles (HVs) and CAVs co-exist. More specifically, a 2-stage model
is developed to optimize CAV trajectories based on traffic signal plans of downstream in-
tersections and trajectory information of surrounding vehicles. The stage-1 is formulated to
provide a rough estimate of the minimal travel time required for a single CAV traveling along this
arterial with minimum stops. The stage-2 model is then designed to optimize the longitudinal and
lateral behavior of CAVs with the objective of minimizing delay and lane-changing costs. This
model is solved by a dynamic programming algorithm to satisfy the real-time optimization needs.
A rolling horizon approach is adapted to dynamically implement the proposed model in light of
changing traffic conditions. Numerical experiments have been conducted on a real-world arterial
to evaluate the model performances. By comparing the optimized trajectories to the no optimi-
zation benchmark, the proposed model can reduce average stop delays of CAVs. Moreover, it can
also reduce the stop delays of HVs and mixed traffic.

1. Introduction

Traffic conflict points (e.g., intersections, freeway merges, etc.) frequently cause vehicles to make numerous stop-and-go ma-
neuvers (Li et al., 2010,Wang et al., 2021). Stop-and-go traffic results in a number of negative impacts, including increased traffic
delay, excessive energy consumption and emissions, and boosted safety concerns (Li et al., 2019). Several solutions, including traffic
signal control, ramp metering, work-zone management, etc., have been proposed to schedule the right of way of conflicting vehicles to
mitigate such negative impacts. However, the effectiveness of those control strategies is limited because they can only guide or adjust
the behavior of human-drivers rather than controlling vehicle movements directly. Fortunately, recent advances in connected auto-
mated vehicles (CAVs) technologies render it possible to implement vehicle movement/trajectory control directly. CAV is a
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combination of connected vehicle (CV) and automated vehicle (AV). Using CV technology, real-time information can be transmitted
through both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) channels. AV technology is capable of making precise
vehicle level controls. As a result, the combination of them provides technical support for implementing information-based vehicle
trajectory control.

In the literature, CAV trajectory optimization at intersections has received increasing attention and interest. Feng et al. (2018)
applied optimal control theory to regulate the trajectory of platoon leading vehicles with the objective of minimizing fuel consumption
and emission, while the trajectories of the following vehicles are captured by a car-following model. Leveraging the same method, Yu
et al. (2018)designed vehicle trajectories based on optimized vehicle arrival times. Zhou et al. (2017) proposed a parsimonious
shooting heuristic algorithm for designing vehicle trajectories for a stream of vehicles considering several boundary conditions. In a
later study on the basis of the same algorithm, Ma et al. (2017) developed a holistic optimization model to determine vehicle tra-
jectories with the optimal performance in terms of mobility, environment, and safety. To summarize, these studies were performed in a
fully CAV environment. Moreover, the design of vehicle trajectory in those studies signal timing information. Some studies, on the
other hand, do not require the use of traffic signals to design CAV trajectories. By assuming a fully CAV environment, those studies
developed the concept of “signal-free”. Among those studies, one direction is based on some reservation scheme. When vehicles
approach the intersection, they transmit information to the central controller to request reservations of space and time slots. Requests
may be accepted or rejected based on a variety of rule-based policies, such as the “first-come, first-serve” (FCFS) strategy (Dresner and
Stone, 2008; Au and Stone, 2010; Li et al., 2013; Zhang et al., 2016), planning-based strategy (Zhang et al., 2015), or actuation-based
strategy (Carlino et al.,2013). Another direction is based on the optimization models. In this category, researchers mainly developed
models to optimize vehicle arrival times with the goal of minimizing delay (Zohdy and Rakha, 2016; Li et al., 2019), travel time (Fayazi
and Vahidi, 2018; Mirheli et al., 2019), safety risk (Lee and Park, 2012), and energy consumption (Zhang et al., 2016; Malikopoulos
etal., 2018; Xu et al., 2018). In summary, although existing studies can optimize CAV trajectories and enable them to travel across the
intersection without stop, most models are based on a fully CAV environment. However, it is expected that the market penetration rate
of CAVs will remain low in the near future due to technological and economical challenges (Volpe National Transportation Systems
Center, 2008).

More recently, numerous studies have been conducted to optimize CAV trajectories at intersections under the mixed traffic
environment. Such studies require taking into account the human vehicles (HVs). Accordingly, the majority of research began by
predicting HV behaviors and then optimized CAV trajectories based on the prediction. Yang et al. (2016a,2016b), firstly estimated the
arrival sequence and trajectories of HVs using kinematic wave theory and Newell’s car following model. They proposed a bi-level
model to optimize the CAV trajectories. The upper-level model is leveraged to optimize the vehicle departure sequence and then
the lower-level model is developed to optimize the CAV trajectories according to the determined departure sequence. Zhao et al.
(2018) applied an optimal velocity model to predict the HV behaviors. They assumed the preceding vehicle of each CAV travels at a
constant speed. Therefore, the time for the CAV to arrive at the intersection during green time can be estimated. Then, they developed a
model predictive control (MPC) method to enable a platoon of vehicles to pass the intersection on the green phase. Pourmehrab et al.
(2019) predicted HV trajectories using the Gipps car-following model and then proposed a framework to adjust CAV trajectories to
minimize total travel delay. Yao and Li (2020) also applied the Gipps car-following model to predict HV trajectories. Then, they
proposed a decentralized control model to optimize CAV trajectories on a single-lane road to minimize travel time, fuel consumption,
and safety risks. Guo et al. (2019) incorporated dynamic programming and shooting heuristic to propose an efficient DP-SH algorithm
to optimize CAV trajectories. In their study, vehicle detectors are assumed to be installed upstream of the intersection at the beginning
of the trajectory control section to obtain the HVs entry boundary information. Based on this, they proposed HVs shooting heuristic
algorithm to predict their trajectories. Jiang et al. (2017) developed an eco-driving system to optimize CAV trajectories with the
objective to improve fuel efficiency. The future HV trajectories are predicted by using the Intelligent Driver Model based on the
collected current state of HVs, signal timing, and trajectory information of the preceding vehicle. The aforementioned studies have
demonstrated that trajectory optimization strategies can improve the performance of CAV in terms of traffic delay, fuel consumption,
and safety. However, they involve two main limitations: (a) those studies are only designed for isolated intersections; (b) those studies
assume there is only one lane at intersections, or they only consider longitudinal optimization of CAV trajectories without considering
lane-changing behavior, which is inappropriate in the real world. Until now, few studies have been conducted to optimize CAV tra-
jectories considering lane-changing behavior. Ma et al. (2021) developed a bi-level optimization model to optimize CAV trajectories in
both the longitudinal and lateral dimensions based on the signal timing and the predicted trajectories of surrounding vehicles. In this
model, the upper level is to optimize lateral lane-changing strategies and the lower level is used to optimize longitudinal acceleration
profiles. While this study considered the lateral behavior, it is still designed for the scenario with isolated intersections.

To the best of our knowledge, there is only a limited number of studies on CAV trajectory optimization along an arterial with
multiple adjacent intersections. He et al. (2015) proposed a multi-stage optimal control model to optimize vehicle speed trajectory on
signalized arterials considering both signal timing and queue impacts. Huang and Peng (2017) also developed a strategy to optimize
vehicle speed trajectory to minimize fuel consumption and travel time considering the traffic signal information. However, these two
studies were only applied to one individual vehicle. Zhao et al (2018) investigated the coordination of a number of CAVs travelling
through a corridor. They derived a closed-form analytical solution considering interior boundary conditions. This strategy can provide
optimal trajectory for the entire route of the vehicle. Wang et al (2019) proposed a cluster-wise cooperative eco-approach and de-
parture applications for CAVs traveling along signalized arterials. This application consists of different stages, initial vehicle clustering,
intra-cluster sequence optimization, cluster formation control, and cooperative eco-approach and departure. By incorporating those
stages, energy consumptions and pollutant emissions of CAVs can be reduced. Du et al (2018) proposed a hierarchical distributed
coordinated strategy for CAVs to travel through multiple unsignalized intersections. This hierarchical structure includes three layers.
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First, the road desired average velocity considering both upstream and downstream traffic is evaluated. Second, the reference velocity
is assigned to each vehicle. Finally, fast model predictive control is applied for each vehicle to track their reference velocity in a
computationally efficient manner. However, those studies are conducted based on the assumption that the market penetration rate is
100 %. Wan et al (2016) conducted a study on optimal speed advisory for connected traveling along an arterial. They formulated the
speed advisory system as an optimal control problem. Then they achieved the general structure of fuel optimal solution analytically.
They leveraged several microsimulation case studies to demonstrate that vehicles equipped with a speed advisory system can decrease
fuel consumption significantly and the conventional vehicles can also have better energy efficiency. Yu et al (2019) proposed a mixed-
integer linear programming model to cooperatively optimize CAV trajectories along an arterial. In this study, they considered not only
the longitudinal optimization but also the lateral optimization. However, they assumed a 100 % market penetration rate of CAVs.
Besides, although they designed the concept for CAV trajectory optimization along an arterial, the model implementation is still at the
intersection level.

To summarize, notwithstanding the abundant studies on the optimization of CAV trajectories, it is noted that most of them are
designed for isolated intersections and there are several limitations: (i) the CAV market penetration rate of many studies is assumed to
be 100 %; and (ii) most models only consider the longitudinal behaviors without involving lateral behaviors. Also, despite a few studies
have been conducted to optimize CAV trajectories along an arterial, some of them focused on the design of trajectories for only one
individual vehicle instead of studying the overall traffic and a 100 % CAV environment is often required. To fill those research gaps,
this paper takes a further step to optimize CAV trajectories along an arterial under a mixed traffic environment. A 2-stage optimization
model is proposed to cooperatively optimize both longitudinal and lateral trajectories in a decentralized way based on the signal timing
and the surrounding vehicle information. The stage-1 model is constructed to roughly estimate the minimal travel time required for a
single CAV traveling along this arterial with minimum number of stops caused by red signal phase. Then, the stage-2 model is
formulated to optimize CAV trajectories by minimizing the stop delay and numbers of lane-changing maneuvers. A dynamic pro-
gramming (DP) algorithm is applied to solve this model and a rolling horizon method is designed to apply this algorithm considering
the time-varying traffic condition.

The remainder of this paper is organized as follows. Section 2 presents the general problem nature. Section 3 builds the 2-stage
model to optimize CAV trajectories along an arterial and the implementation procedure of the proposed model. Section 4 conducts
the numerical study. Finally, conclusions and recommendations for future study direction are summarized in section 5.

2. Problem statement

Fig. 1 illustrates the CAV trajectory optimization problem along an arterial with several signalized intersections. Nodes in this
figure represent intersections (i.e., the red nodes) and origins/destinations of vehicles entering/exiting this arterial (i.e., the blue
nodes). The edge between two adjacent nodes is the road that vehicles travel on. By connecting a sequence of roads, we can obtain the
paths that vehicles travel along this arterial. The orange dash arrow is a travel path example. Indeed, each path along this arterial can
be divided into two distinct road types: links and connectors. The link is the road between the origin/destination and the intersection or
between two intersections. The connector is the road that runs through the intersection and connects two continuous links.

To better understand the layout of the arterial and illustrate the subsequent problem, we take one intersection in Fig. 1 as an
example and depict it from a microscopic perspective. We assume that the travel path spans through this intersection, as illustrated in
Fig. 2. In this study, CAVs and HVs co-exist and travel along this arterial. As shown in Fig. 2, there is a no-lane-changing zone near the
intersection, which is a common practice in the real road network. If vehicles are required to make lane-changings, they must finish the
maneuvers prior to entering this zone. In this study, we assume CAVs can collect real-time information about their surrounding HVs,
including location, speed, acceleration, and lane choice, etc., through the onboard sensors. Additionally, CAVs can share the data with
each other and collect the signal timing information. Then, using the real-time vehicle information and signal timing plan collected,
CAV trajectories along this arterial can be controlled to achieve certain objectives.

Since then, numerous studies have been conducted to optimize CAV trajectories in a centralized mode (Ma et al., 2017; Zhou et al.,
2017; Wei et al., 2017; Wang et al., 2018). While centralized control can result in optimal system performance, the computational
efficiency is low and the costs of the coordination of the central controller are high. Compared with the centralized control, numerous
studies have proved that a decentralized control is more appropriate for CAVs to achieve real-time automation (HomChaudhuri et al.,
2016; Yang et al., 2016a,2016b; Malikopoulos et al., 2018; Mahbub et al., 2019; Mirheli et al., 2019, Yao and Li, 2020). Therefore, this

Fig. 1. A simple arterial with several signalized intersections.



Q. Wang et al. Transportation Research Part C 145 (2022) 103918

--------------------------- = 0 @
””””””””””””” - = -
= = —Commector ~ —----—-------------
1l M
S
bink No lane-
= AV changing area

Fig. 2. An example intersection of CAV trajectories optimization.

study leverages the decentralized mode to optimization CAV trajectories. In other words, each CAV can be regarded as an intelligent
device and optimized by itself. CAV trajectories are optimized one by one based on their location distribution along the arterial in this
study. More specifically, the closer the link is from the entrance to the arterial, the later the CAV on it is optimized. Moreover, on each
link, the optimization sequence of CAV trajectories is based on the distance to the stop bar, the closer the CAV is to the stop bar, the

Signal timing information;
Current status and planned destination of vehicles along the arterial;
Planned trajectories of preceding CAV.

Predict trajectories of the Predict trajectories of the
preceding HV. following vehicles.

Optimizing CAV trajectories by applying the proposed model and
solution algorithm.

Output the optimized trajectory

Fig. 3. The overall framework of CAV trajectories optimization.
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earlier it will be optimized. The detailed optimization strategy is summarized as shown in Fig. 3.

For a CAV indexed by i, its surrounding vehicles can be classified into two categories: preceding vehicles A7 and the following
vehicles Af. The elements in these two categories satisfy x; ;(k) >= x;;(k),i € AT and x; ;(k)(x;;(k),i” € AF, where x;;(k) is the location
of vehicle i on link j at time step k. The preceding vehicles include the preceding CAVs Af ¢ and preceding HVs Af H (e,
AP :/\f <u Af H). When optimizing the trajectory of CAV i, the future trajectories of its preceding CAVs are already planned and shared
with it due to the optimization sequence as stated above. In this study, we applied a car-following model and a lane-changing model to
predict the future trajectories of its preceding HVs. Moreover, the future trajectories of its following vehicles are predicted using the
same car-following model and lane-changing model. The predicted future trajectories are shared with CAV i and then CAV i can
dynamically optimize its trajectory in real-time. Notably, the planned trajectory of CAV i doesn’t affect the operation of its preceding

Table 1
Summary of Key Notations.

General notations

i Vehicle index

j Link index

z Speed collection interval

A Set of vehicles along the arterial

AP Set of preceding vehicles of CAV i. It includes the preceding CAVs (Af ) and preceding HVs (Af’ Hy (e, A; = Af <y /\f Hy,
Af Set of following vehicles of CAV i

AC Set of CAVs

C Cycle length

G Green time

N Number of vehicles detected by the detector during each time interval

Pt Path of CAV i

M A sufficiently large number

m Lane number

M Set of lanes on link or connector j

J Set of links

Je Set of connectors

J Set of links and connectors, where J = Jt UJC

L; Length of link or connector j

Parameters

At Length of each time step

K Trajectory planning horizon of CAV i

Xsafe Safe driving distance between two adjacent vehicles on the same lane

Lnc Length of the area that vehicle cannot change lanes

toafe Safe time interval between two consecutive lane changings

7 Reaction time

Vihre Threshold of speed difference between two consecutive time steps

Viin Minimum vehicle travelling speed

kic Lane changing time step

Vmax Maximum vehicle travelling speed

Apnin Minimum deceleration

Amax Maximum acceleration

Variables

L?p' Travel time of vehicle i traveling along path p without or with minimum stops

Vij Constant travel speed of CAV i on edge j

ti Travel time of vehicle i on link or connector j

t Time that CAV i will arrive at the stop bar of link j

t; Time that CAV i starts to enter link j

Vj(2) Average speed of vehicles on link j during the z th time interval

vi(2) Detected travel speed of vehicle i during time interval z

tipi Travel time that CAV i traveling along path p'

x;j(k) Location of vehicle i on link j at time step k. It represents the distance to the start of the link.
X;j(k) Location relative to the entering point of this arterial

X1 (k) Location of the following vehicle of vehicle i on the lane to which vehicle i will change
x; ¢ (k) Location of the preceding vehicle of vehicle i on the lane to which vehicle i will change
vij(k) Speed of vehicle i on link j at time step k

a;;(k) Acceleration/deceleration of vehicle i on link j at time step k

9;j(k) Binary variable. If vehicle i changes lane on link j at time step k, 9;j(k) = 1; 9;;(k) = 0, otherwise
e(k) Binary variable. if CAV is still on the arterial at time step k, e(k) = 1; e(k) = 0, otherwise
pij(k) Binary variable. If vehicle i is on link or connector j, f;;(k) = 1; §;;(k) = 0, otherwise
8imj(k) Binary variable. If vehicle i is on lane m of link or connector j at time step k, d;m;j(k) = 1; 6;m;j(k) = O, otherwise
0 (k) Binary variable. If vehicle i is in front of vehicle i, ¢;; (k) = 1, ¢;; (k) = 0; otherwise
ij Binary variable. If vehicle have passed link j, ¢;; = 1; otherwise, ¢;; = 0.

4 Binary variable. If vehicle i is the first vehicle on the lane, 5; = 1; otherwise,o; = 0
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vehicles but would affect the driving behaviors of its following vehicles.
3. Methodology

This section introduces the 2-stage model to optimize CAV trajectories under a series of conditions. The longitudinal and lateral
behaviors are considered and then the longitudinal location and lane-changing behavior are optimized for each CAV. For the con-
venience of discussion, key notations of the proposed model are summarized in Table 1.

3.1. Optimization model

3.1.1. Stage-1 model

In the literature, most studies optimized CAV trajectories with the objective of minimizing the total travel time. While this may be
an advantageous strategy for vehicles to travel across an isolated intersection, it may exert negative impacts on the driving experience
when traveling along an arterial. As shown in Fig. 4, the orange line is the vehicle trajectory traveling along this arterial with minimal
travel time. It can be observed that this vehicle needs to stop at each intersection according to this designed trajectory. In contrast, if
the trajectory is designed as the blue line shown in Fig. 4, although the minimum travel time is not achieved, the vehicle could travel
along the arterial without the interruption of the red signals. This is the primary goal of several arterial management strategies, such as
the traffic signal progression. Therefore, the primary objective of this study is to optimize CAV trajectories and minimize the number of
stops caused by red signal phases.

To such a need, the proposed model will optimize the trajectory of each CAV at each time step, considering the entire period when it
is on the studied arterial segment. However, it can be expected that such an optimization will result in a huge computation burden.
Moreover, due to the time-varying traffic conditions, it is challenging to enable each CAV to travel along the arterial without stops at
each time step. To tackle those issues, this study develops a 2-stage framework, where the stage-1 model is to roughly estimate the
minimal time that a vehicle may take to pass the arterial segment when its number of stops is minimized. Then, the stage-2 model is to
optimize CAV trajectories using a rolling horizon scheme that takes time-varying conditions into account. The stage-1 model is
constructed on the assumption that CAVs do not consider driving impacts of other vehicles and can maintain a constant travel speed on
each link. Then the stage-1 model is formulated in Egs. (1) — (7).

ity + Y v~ 2) w
lep'
By= tpicAjep o
jep'
L; .
tij = —Lie Ac,j ep' @
Vij
1 o
vj(Z):NZV,‘(Z)JEAJEp @
i=1
A .
Distance
L Intersection 4

Intersection 3

Intersection 2

Intersection 1
/ Timg

Fig. 4. An illustration of a vehicle traveling along an arterial.
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th=t,+1,i €A jep (5)
1 if mod(t};, C) € [0, G]
G(th)= ’ ' (6)
(=1 [IL/C-‘ *C, otherwise

Vinin < Vij < Vinax )

Eq. (1) is the objective function of minimizing the travel time of CAVs along the arterial and speed oscillation amplitude, where /-
and «-, are weighting parameters (»q > «- to differentiate the importance of the objectives). tfpi is the travel time of vehicle i, along

path p’, when its minimal number of stops is achieved. It can be determined by summing up the travel time on each link and connector
along the path, as shown in Eq. (2). In Eq. (3), t;; is the travel time of vehicle i on link j, where its value is estimated when the CAV
arrives at the link, v;; is the constant travel speed of vehicle i on link j, and A° is the set of CAVs. The travel time on the connector is not
consider due to the short travel distance. Eq. (4) aims to calculate ¥;(z), which is defined as the average speed of vehicles on link j
during the 2z th time interval. In this study, we assume detectors are installed in the middle of each link to collect the speed of each
vehicle. Herein, v;(z) is the collected speed by the detector during the z th time interval and N denotes the number of vehicles detected.
Eq. (5) is to estimate the time that CAV i will arrive at the stop bar of link j, represented by ¢}, where t;; is the time that CAV i starts to
enter link j. Eq. (6) is used to estimate the optimal vehicle travel time along the link that can ensure the passing during green signal
phase, where C denotes the cycle time and G is the green time. Eq. (7) is the speed constraint. Notably, when no feasible solution could
be found, the proposed model will select the default speed (e.g., the speed limit) directly to calculate the required link travel time at
this stage.

3.1.2. Stage-2 model

The stage-2 model is constructed to optimize the longitudinal and lateral driving behavior based on the solution from the stage-1.
More specifically, this study considers the optimal vehicle travel time along the link as the optimization target for allowing vehicles to
pass the intersection during green signal phases. Then, the objective of the stage-2 model is to minimize the difference between the
ideal and actual link travel times, and lane-changing numbers, as shown in Eq. (8).

min((/g (I,-‘],, — tgp,) + /{/4223,‘\/(/{)) 8)

Jjep' keK?
where t;,,; is the actual travel time that CAV i traveling along path p'. Notably, the ideal travel time, t{_’p,-, is obtained from stage-1
model which assumes a free-flow traffic condition. Hence, the difference (t; 7tl9pl) could be viewed as a travel delay indicator. The
secondary objective function term is to minimize the number of lane-changing maneuvers. This is to improve the smoothness of the
lateral trajectory. Here, 9;;(k) is an auxiliary binary variable to indicate if vehicle i changes lane on link j at time step k. If vehicle i
changes lane on link j at time step k, 8;j(k) =1; 8;;(k) =0, otherwise. 5 and «4 are weighting parameters and 3 > «4 to differentiate
the importance of the objectives.
Note that the first objective function term makes this model difficult to solve. Therefore, we discretize the period and then it can be
reformulated as:
K .
tip =Y e(k)*Ati€ A k€K' 9)
k=0
where, ¢(k) is an auxiliary binary variable to indicate whether CAV iis still on the arterial at time step k. If yes, ¢(k) = 1; otherwise,
e(k) = 0. K is the trajectory planning horizon of CAV i. Other constraints are described in the following part.
Longitudinal vehicle dynamics.
For safety concerns, vehicles are not allowed to move backward on links and connectors along the arterial:

xij(k+1)(=x (k)i e Ajep kek (10)

where x;;(k) is the location of vehicle i on link or connector j at time step k. Eq. (10) is used to ensure the vehicle to be closer to its
destination when traveling along the arterial and to avoid unregular driving behaviors that might cause collisions.

Vehicles are supposed to be on the link or connector of this arterial until they reach their destinations. This can be ensured by Eq.
11):

M*(B,;(k) = 1) < xiy(k) < LB (k)i € Ajep keK (11)

where, f;;(k) is an auxiliary binary variable. If vehicle i is on link or connector j, #;;(k) = 1; f;;(k) = 0, otherwise.

Vehicles can only occupy one lane at each time step during the trajectory planning horizon:
D Similk) =lieAjep kek 12)
meM/

where, §; (k) is an auxiliary binary variable. If vehicle i is on lane m of link or connector j at time step k, §;mj(k) = 1; 6;mj(k) = O,
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otherwise.
To maintain the stability of the vehicle operation, the following constraint should be satisfied.

[vij (ke + 1) = vij(k) | < Vinre 13)

where vy, is the threshold of the speed difference between the two consecutive time steps.

Longitudinal safety.

When vehicles are on the same lane along an arterial, it should keep a safe distance with its preceding vehicle and its following
vehicle. When vehicle i and vehicle i are on the same link, Eq. (14) and Eq. (15) should be satisfied.

N T . . i i
(3= iy (k) = 87 (k) — 01 (K))*M + X, (k - E> — X, (k) > Xy i EAjEP K EK (14)

T ) )
(2 = Bimj(k) = 8¢ mj(k) — 0 (k))*MJrX{.j(k _E> —Xij(k) > X i € AjEP Kk EK (15)

where g;; (k) is an auxiliary binary variable that defines the order between vehicle i and vehicle i' on the same lane. If vehicle i is in
front of vehicle i, ¢;; (k) =1, ¢;; (k) = 0; otherwise. 7 is the reaction time. X;;(k) is the location relative to the entering point of this
arterial. As shown in Fig. 5, the location of vehicle i on link j at time step k is x;;(k) and its relative location should be L; + Ly + L3 +
L4 + x;5(k). Then, the relative location can be represented by Eq. (16).

Xij(k) =D o L+ > Bk xi(k),i € Aj € plk €K' (16)
j=1 Jj=1

where ¢;; is an auxiliary binary variable to describe if vehicle have passed link j. If yes, ¢;; = 1; otherwise, ¢;; = 0.

If vehicle i is on the link and vehicle i is on the connector, as shown in Fig. 7, Egs. (14)-(15) can still ensure the safety gap between
the two vehicles.

Considering the impacts of red indication of traffic signals, Eq. (16) should be satisfied.

xij(k) <Li+MQ2—r(k)—0c,),i€ Ajep keK 17

where L; is the length of link L. r(k) is an auxiliary binary variable to indicate the status of traffic signals. If the traffic signal indicates
red at time step t, r(k) = 1; otherwise, r(k) = 0. o; is another auxiliary binary variable to determine the location of vehicle i. If vehicle i
is the first vehicle on the lane, 6; = 1; otherwise, 6; = 0. By defining those variables, Eq. (17) can ensure vehicle i would travel through
the intersection when the traffic signal is green and stop when the traffic signal is red.
Lateral operation.
In this paper, we assume that vehicles can finish lane-changing within one time step.
(8,0 2k 1) = 8 1 (k) *9,(k) =0, i € A,j € Pk €K' ymy,m; € M, mi; # my

im 1,1

If vehicle i plans to change lanes at time step k, it can only change to its adjacent lane during this lane-changing maneuver for safety
concern.

(&',m’,.j(k + l) 75,3,,,[,](]() )*19,(/() + {mj —m'j| = 17 i€ A,_] S p[7k S Kﬂm,mv S Mj,m.j 7£ m; (19)

where m; and m; are lane number. In this paper, the lane number increases from the outermost lane to the innermost lane.
The lane-changing maneuver is forbidden for vehicle i if it stops.

=M (xij(k+ 1) = x;;(k) ) < Simjk+ 1) = 8imj(k) < M(xij(k+ 1) —xij(k),i € Ajep k€K meM (20)

Vehicles are not allowed to change lanes when they are close to the stop bar at each intersection along this arterial, which is a
common practice in the real road network.

Fig. 5. Relative location of a vehicle.



Q. Wang et al. Transportation Research Part C 145 (2022) 103918

Lyc — Xij(k) < M*(1 = |8ymy(k + 1) — 8ij(k) | ), i €A jET kEK meM (21
where Ly is the length of the region that vehicles cannot change lanes.
In this paper, vehicles are also not allowed to change lanes on connectors for safety concern:

(Simj(k+1) = 8 m(k) =0,i € A,jEIJ  kEK meM (22)

Lateral safety.
For safety concerns, if a vehicle plans to change lanes, the space in the target lane for lane-changing should be sufficiently large to
avoid collisions:

(1= 8i(k) )*M +x;, r (k) = x;4(k) > Xyaper | € A j cp keK meM (23)

(1= 8:(k) )*M +x;(k) = x;, 1 (k) > Xeaei € Aj€p ok €K' me M/ 24

where, x;, r (k) is the location of the preceding vehicle of CAV i on the target lane if at time step k CAV i changes lanes; x; ; (k) is the
location of the following vehicle of CAV i on the target lane if at time step k CAV i changes lanes; and X, is the safe space for lane-
changing, which includes the distance between this vehicle and the preceding vehicle and following vehicle on the adjacent lanes.
When a vehicle finishes changing lane, it should keep a safe distance with its preceding vehicle and following vehicle:

1 .
i (ko Kie) 2 x5, (K) + vy (0) KAt 5%a (k)i = (A + M(8:(k) — 1), i,ip,ir € Aj € J k €K' (25)
1 A
xir (ktkie) < 0 (K) vy, (K) e+ 5%, (k) ki * (A + M(8:(k) — 1), i,ip iy €A jET kEK (26)

The time interval between the consecutive lane-changing maneuvers should be constrained to avoid a high frequency of such
behaviors:

M*(2—9(k)) — (ko) ) + (k1 — ko) *At > typer k1 ko €K (27)

where ty, is the minimum time between two consecutive lane-changing maneuvers.

Longitudinal vehicle kinematics.

In this paper, we apply the second-order vehicle kinematics model to describe the longitudinal movement dynamics of vehicles, as
shown below:

vij(k+1) = vi;(k) + a;;(k)*At k € K (28)
1 .

x,;j(k-i- 1) :X,'J(k)+§*di_j(k)*(Af)2,k ek (29)

0 <vij(k) < Vpar 30)

Apin S aij(k) S Amax (31)

3.2. Solution algorithm

As aforementioned, the optimization of CAV trajectories should include two procedures. First, future trajectories of other vehicles
should be predicted. Second, the CAV trajectory is optimized based on the predicted trajectories. They are specified in the following
part.

3.2.1. Vehicle trajectory prediction

To optimize the trajectory of a CAV i, trajectories of its adjacent vehicles need to be identified to determine the solution space.
Therefore, what need to predict are trajectories of its preceding HVs and its all following vehicles (i.e. CAVs and HVs). The process of
trajectory prediction is as follows:

Step 1: Obtain the current state (e.g., location, speed) of each vehicle at the current step k.

Step 2: Obtain the states of CAVs in Af at the next step k+1 according to the optimized trajectories.

Step 3: Predict the longitudinal states of HV in A at time step k+1 one by one based on Wiedemann’s car-following 74 model
(Wiedemann, 1974). It divides the traffic state into four categories: free driving, closing in, following, and emergency state. For each
state, it leverages different regimes to determine the future state of each vehicle. The lane-changing decision is based on Gipp’s lane-
changing model (Gipps, 1986).

Step 4: Predict the states of CAV i and vehicles in A. The prediction process is the same as that in step 3.

Step 5: Considering the model complexity and computational burden, we set the prediction length as T instead of the whole tra-
jectory planning horizon. If k*At = T, output the predicted trajectories. Otherwise, check if vehicle i still on the arterial at the time step
k + 1, then set k = k+1 and go back to step 2.
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3.2.2. CAV trajectory optimization

CAV trajectories optimization is achieved by solving the proposed 2-stage model. In this paper, both stage-1 and stage-2 models are
solved by applying dynamic programming (DP). For the stage-1 model, the travel speed without stops for each vehicle is roughly
estimated when they arrive on each link for the first time. Based on the output, the stage-2 model is solved to obtain the control and
lane-changing decisions. Due to the complexity of this model, we discretize the control variables (i.e., speed in the stage-1 model, and
acceleration and deceleration rate in the stage-2) to make them solvable. The same method can be found in several existing studies
(Wei et al., 2017; Wang et al., 2020).

The basic principle behind the DP algorithm is that a decision problem is broken into several manageable decision stages and the
optimal performance is computed in a recursive manner. The recursion can be performed in a forward manner starting from the initial
decision stage or in a backward manner from the final decision stage. In this paper, we adapt the forward manner. Based on this setting,
the value function at any decision stage is an accumulated measure of the effectiveness of the current and all previous stages. In
general, to specify a DP formulation, we must define several basic elements, including stage, control variable, state variable, per-
formance measurement function, and value function.

In the stage-1, the recursion is based on using links for each path as stages. Starting with the initial link that CAVs on this arterial for
the first time, DP treats each link of each path as a stage and optimizes within a control horizon to obtain the optimal plan. The index
for stages at this level can be represented by n. Let xU be the control variable denoting the travel speed for CAVs on stage n. The state
variable is the set of available travel speeds for CAVs at stage n, denoted by s¥. We use f(s{,xV) to denote the performance mea-
surement cost given s¥ and x¥, and use v,(s¥) to denote value function which is the cumulative value of prior performance cost. For the
stage-2, the discretized time horizon is set as stages. Following the same way, DP regards each time step as a stage to achieve the
optimal result starting from the initial time point. In this level, we use x% to denote the control variable which is the combination of
acceleration and lane-changing variable for CAVs at stage n, and st is the state variable denoting the combination of speed and lo-
cations of CAVs. f(st, xL) denotes the performance measurement cost given s; and x4, and vy (st) denotes value function. Based on those
defined notations, the pseudo code for the stage-1 and stage-2 are shown below. For the stage-2, we consider a random planning
horizon of H and step size €, which reflects the generality of the algorithm.

DP algorithm for stage-1 model

Initialization: n = 1,s§ = 0,vo(so) =0
forn=20toN:
for s¥in SY //SY is the value of state variable at stage n
while x¥ in XY (SV) //XY(SY) is the set of control variables given state variable

I,
if gstart < tewr + x% < &enda// CAVs can travel within the green period
T

calculate f(s¥.xY)
Loop

va(s) = min(7 (s 22) + va s (59))

record x,Y(s¥)
End
Forn=Nto I1:
Trace back to find the optimal solution at each stage

DP algorithm for the stage-2 model.

Define time horizon as global variable

Initialization:n = 1,s§ = 0,vo(so) =0
forn=0toN:
for sk in SL //St is the state of state variable at stage n
while x% in XL (SL) //X5(SL) is the set of control variables given state variable
if vehicle kinematics satisfies &
if longitudinal safety satisfies and lateral safety satisfies:
calculate f(sk, xt)
Loop
Va(sp) = min(f(sp, xz) + Va1 (53))

record x* (st)
if sk doesn’t satisfy longitudinal and lateral operation:
continue
End
Forn=Nto I1:
Trace back to find the optimal solution at each stage

10
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3.2.3. Rolling horizon scheme

Due to real-time varying traffic conditions, we apply a rolling horizon scheme to dynamically implement the trajectory optimi-
zation model. The basic logic of the rolling horizon scheme is to determine the optimal trajectory for a future time horizon at each time
step considering the surrounding traffic environment, but the resulted optimization strategy is applied only over a much shorter time
period. Such a scheme is adapted by CAV one by one according to their location distribution on this arterial. When the parameters such
as planning time horizon are initialized, the trajectory optimization procedure for each CAV follows the algorithm depicted in Section
3.2.1 and 3.2.2.

Based on the algorithm of vehicle trajectory prediction and dynamic programming, the process of CAV trajectories optimization can
be summarized in Fig. 6.

Initialization

Determine the optimization sequence of CAVs
along the arterial

|

CAV i,

l

Conducting trajectory optimization based on
the algorithm describe in Section 3.2.1 and
3.2.2 and output the optimized trajectory

|

CAV i,

CAV i,

t=t,+1

End of simulation time?

Finish

Fig. 6. Optimization framework of CAV trajectories.
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4. Numerical examples
4.1. Experimental design

To evaluate the effectiveness of the proposed trajectory optimization model, we select a real-world network on Redwood Road in
Salt Lake City, Utah for study. As shown in Fig. 7, this selected segment includes four intersections which are operated by the Utah
Department of Transportation (UDOT). Considering the complexity of this problem, only through movements of one direction along
this arterial are taken for the experiments.

To better illustrate the benefits of the proposed CAV trajectories planning strategy, both CAVs and HVs share the same parameters
in driving behavior models. The maximum speed limit for CAVs is 60 km/h. The maximum acceleration rate for CAVs is 4 m/s? and the
minimum acceleration rate for CAVs is —3 m/s2. The minimum time interval between two consecutive lane-changing behaviors of one
vehicle is 5 s. The threshold of speed difference between two consecutive time steps is 10.8 m/s. The safe space for vehicles to conduct
lane-changing is 6 m. The safe distance between two vehicles on the same lane is 6 m. The time step is 1 s. The planning horizon in the
rolling horizon is 5 s.

To illustrate the effectiveness of the proposed CAV trajectories, we apply the scenario in which trajectories are not optimized as the
benchmark for comparison. The simulation is conducted in VISSIM. Nine random seeds are used in the simulation and each simulation
runs for 1800 s with a warm-up period of 300 s. Each seed is tested by four scenarios with 20 %, 25 %, 30 %, 35 %, and 100 % of CAV
market penetration rates. Traffic demands are collected from Automated Traffic Signal Performance Measures (ATSPM) system which
uses Wavetronix SmaterSensor Matrix detectors to collect and restore lane-by-lane turning counts. Raw data on August 2019 was
extracted and peak period are selected for this study.

4.2. Result analysis

4.2.1. Benefits analysis for CAVs, HVs, and mixed traffic

In this section, experiments are conducted in mixed traffic with a 35 % market penetration rate to evaluate the proposed trajectory
optimization strategy. Table 2 shows the average stop delays and average lane-changing numbers of CAVs, HVs, and mixed traffic.

As shown in Table 2, the proposed trajectory optimization strategy outperforms the benchmark in terms of stop delays for CAVs.
This is because the proposed strategy could optimize CAV trajectories to make them travel along this arterial with fewer stops. It can be
observed that the optimization strategy can also reduce the stop delays of HV and mixed traffic compared with the benchmark tra-
jectories. Since some HVs follow the CAVs to travel along this arterial, their trajectories are similar to the optimized CAV trajectories, i.
e., they can also travel through each intersection without stops. Then the stop delays of mixed traffic decrease due to the reduced stop
delays of CAVs and HVs. Compared with the benchmark trajectories, the optimization of CAV trajectories can reduce the average stop
delays of CAVs, HVs, and mixed traffic by 80.55 %, 24.12 %, and 43.49 %, respectively. We can observe that the average stop delays of
CAVs decreased most. This is because the proposed trajectory optimization strategy is designed for CAVs and thus most CAVs can travel
through each intersection without stops. Table 2 also demonstrates that the optimization of CAV trajectories produce a larger lane-
changing numbers of CAVs compared with the benchmark. This is because the proposed strategy could enable CAVs to change lane
to travel through the intersection during green time if there is a slow traffic on current lane. Besides, if there is a congestion traffic in
front of CAVs, the proposed strategy could make CAVs change lane to avoid congestion as more as possible. Moreover, we can see that
the average lane-changing numbers of HV increases compared with the benchmark. This is because the proposed strategy may enable
CAVs in the upstream to slow down to across the intersection without stops. As a result, the following HV choose to change lanes to
avoid collisions.

The above analysis can also be explained by visualizing CAV trajectories and HVs traveling along this arterial. Fig. 8 illustrates
example CAV trajectories and HVs when the market penetration rate is 35 %. The CAV trajectories are plotted lane by lane, In each
lane, there are two colors of lines. The trajectories of CAVs are marked in dark colors and the trajectories of HVs are marked in light
colors. The dash line between different lanes indicates the lane changing maneuvers of CAVs. As we can see, most CAVs can travel
along this arterial without stopping, and some HV following the CAVs also travel through some of those four intersections without
stopping. To better illustrate the lane-changing maneuver of CAVs and HVs, we select part of Fig. 8 and amplify, as shown in Fig. 9 and
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Fig. 7. The geometry layout of simulated arterial.
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Table 2

Performance of the proposed trajectory optimization strategy.

Transportation Research Part C 145 (2022) 103918

Vehicle type

Average stop delays (sec)

Average lane-changing numbers

Benchmark Proposed model Benchmark Proposed model
CAV 60.47 11.71 2.896 2.673
HV 57.94 40.98 2.892 3.053
Mixed traffic 58.78 31.82 2.897 2.917

Fig. 10. As shown in Fig. 9, when there is enough space in the adjacent lane for the CAV to change lanes, the CAV can conduct a lane-
changing maneuver according to the optimized trajectory. From Fig. 10, we can see that an HV on lane 3 was forced to change to lane 2
at around 600 s because of the lower speed of its preceding CAVs on lane 3.

4.2.2. Sensitivity analysis

To further validate the effectiveness of the proposed optimization strategy, we conduct the sensitivity analysis in terms of different
market penetration rates. The proposed trajectory optimization strategy is tested in four scenarios with CAVs market penetration rates
of 20 %, 25 %, 30 %, 35 %, and 100 %. The average stop delays and average lane-changing numbers under various market penetration
rates are displayed in Table 3 and Table 4.

As shown in Table 3, the proposed trajectory optimization strategy outperforms the benchmark regarding average stop delays for
CAVs, HVs, and mixed traffic under all scenarios with various market penetration rates. Moreover, with the increase of CAVs market
penetration rate, the average stop delays decrease for CAVs, HVs, and mixed traffic. This is because a higher CAVs market penetration
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Fig. 8. Spatial-temporal CAV trajectories and HVs in the mixed traffic.
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Fig. 9. Lane-changing of CAVs.
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Fig. 10. Lane-changing of HVs.

Table 3
Average stop delays with various market penetration rate.
Market penetration rate Strategies Vehicle type
CAV HV Mixed traffic
20 % Benchmark 61.89 56.93 57.84
Proposed 16.44 42.43 38.01
25 % Benchmark 63.89 56.12 57.92
Proposed 13.86 41.77 35.49
30 % Benchmark 62.45 56.13 58.06
Proposed 12.61 41.46 33.47
35 % Benchmark 60.47 57.95 58.78
Proposed 11.71 40.98 31.82
100 % Benchmark 61.18 / 61.18
Proposed 9.07 / 9.07
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rate means more CAVs traveling along the arterial, the trajectory optimization strategy can enable more CAVs travel along this arterial
without stopping and more HVs following those CAV can also avoid stops. This indicates that trajectory optimization for CAVs has the
potential to reduce the stop delays of HVs and mixed traffic when there are more CAVs in the mixed traffic. It can be observed from
Table 4 that the proposed trajectory optimization strategy can lower the lane changing number of CAVs under all CAV market
penetration rates compared with the benchmark. Moreover, trajectory optimization for CAVs could increase the lane-changing
numbers of HVs under the market penetration rate of 20 %, 25 %, 30 %, and 35 %. This is also because the low speed of upstream
CAVs with optimized trajectories forces their following HVs to change lanes.

We further conduct the testing under three traffic demand scenarios. Traffic data recorded by ATSPM are regarded as average
demand. The cases of high demand and low demand are defined as being + 20 % of average demand (Rafter et al., 2020), respectively.
Those tests also reveal the performance sensitivity of the optimization strategy with different market penetration rates. The average
stop delays under different penetration rates of various traffic demands are shown in Fig. 11.

As shown in Fig. 11, the average vehicle stops delays for CAVs, HVs, and mixed traffic rise with the increase of traffic demand. This
is because higher traffic demand means more vehicles travel along this arterial, which may lead to congestion. For each demand level,
the average stop delays of the three types of vehicles decrease with increasing CAVs market penetration rates. This indicates that HVs
can benefit more when there is more CAVs in the network. Although this study only optimizes CAV trajectories in a decentralized way,
it can also improve the operational performance of HVs and the mixed traffic. In addition, it can be observed that the proposed
optimization strategy performs better than the benchmark regarding the average stop delays under all demand levels.

Fig. 12 shows the average lane changing numbers of CAVs, HVs, and the mixed traffic with various market penetration rates under
different demand levels. It can be observed that although the lane changing numbers varies under different demand levels, the dif-
ference is not significant. It also shows that the optimized trajectories of CAVs can reduce the lane changing numbers under all tested
scenarios. However, it can increase the lane changing numbers of HVs when the market penetration rate is 20 %, 25 %, 30 %, and 35 %
under all demand levels.

To better evaluate the proposed model, we next analyze the fuel consumption. Many methods for measurement of fuel consumption
and emissions have been reported in the literature (e.g., MOVES (Koupal et al., 2002); CMEM (Barth et al., 2000); VT-Micro (Ahn et al.,
2002)) to estimate instantaneous fuel consumption and emissions based on functions of a vehicle’s location, velocity, and acceleration/
deceleration at the measured time point (Wang et al., 2020). In this paper, we apply the VT-Micro model to calculate the fuel con-
sumption. The model and related coefficients can be found in the study developed by Ma et al. (2017). Fig. 13 shows the average fuel
consumption for each type of vehicle when traveling along this arterial with various market penetration rates under all traffic demand
levels. As shown in the table, the optimized trajectory reduced the fuel consumption of CAVs compared with the benchmark trajec-
tories. This is because the proposed strategy can optimize CAV trajectory to reduce the stop-and-go movements traveling along this
arterial. Therefore, fuel consumption during starting and stopping can be avoided. Those figures also indicate that the average fuel
consumption for HVs and mixed traffic can also be reduced compared with the benchmark. This is because some HVs follow the CAVs
to travel along without stops. Then the stop delays of mixed traffic decrease due to the reduced stop delays of CAVs and HVs.

4.2.3. More discussions

We use surrogate safety assessment model (SSAM) to conduct safety analysis. SSAM is a safety assessment software developed by
FHWA. SSAM can conduct conflict analysis by processing vehicle trajectory files produces during the simulation. For each vehicle-to
vehicle interaction, SSAM calculates surrogate measures of safety and determines whether that interaction satisfies the criterial to be
deemed a conflict (Vasconcelos et al., 2014). Time to collision (TTC) is selected as a threshold to define if a given vehicle is a conflict
and it is commonly set to be 1.5 s. Based on the trajectories from simulation and applying SSAM, the rear-end collision is summarized as
shown in Fig. 14. We can see that there is no significant difference between the proposed model and the benchmark. Therefore, the
safety of the proposed model is reliable.

Moreover, this study uses the case of average demand as an example to analyze the average delay, as shown in Table 5. The table
indicates that the proposed model will increase the average delay of CAV compared with the benchmark. This is because the goal of this
paper is to minimize the stop delay. More specifically, the proposed model will enable some CAV to slow down to travel across the
intersection during the green indication, which may result in a higher travel time and thus the increased average delays. In some cases,

Table 4
Average lane-changing numbers with various market penetration rate.
Market penetration rate Strategies Vehicle type
CAV HV Mixed traffic
20 % Benchmark 2.867 2.896 2.895
Proposed 2.641 2911 2.862
25 % Benchmark 2.874 2.895 2.894
Proposed 2.796 2.939 2.907
30 % Benchmark 2.901 2.902 2.094
Proposed 2.735 3.022 2.937
35 % Benchmark 2.896 2.892 2.897
Proposed 2.673 3.053 2.917
100 % Benchmark 2.891 / 2.891
Proposed 2.615 / 2.615
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Fig. 11. Average stop delays with various market penetration rate under different demand levels.
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Fig. 12. Average lane changing number with various market penetration rate under high traffic demand.

there is a trade-off between reducing average vehicle stop delay and average vehicle delay. For example, the average delay of CAV is
increases by about 9 s (+-10.98 %) compared with the benchmark when the market penetration rate is 35 %. However, the average stop
delay is reduced by about 49 s (—80.63 %).

5. Conclusions

CAVs technologies are one of the most promising solutions to the challenges the transportation system undergoing. Trajectory
optimization has significant potential to mitigate congestion, reduce energy consumption, improve traffic operation efficiency. This
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Fig. 14. Rear-end collision of the two different models.

Table 5
Average vehicle delay with various market penetration rate under average demand.
CAV HV All
Benchmark Proposed model Benchmark Proposed model Benchmark Proposed model
20 % 82.86 86.8 76.38 62.61 77.56 67.36
25 % 85.48 87.36 75.38 62.26 77.72 68.35
30 % 83.76 88.39 75.55 62.69 78.04 70.45
35% 81.84 90.86 77.49 63.32 78.94 73.14

study proposes a strategy to optimize CAV trajectories along a signalized arterial under the mixed traffic environment consisting of HVs
and CAVs. This strategy optimizes CAV trajectories one by one in a decentralized way. Car-following and lane-changing behavior are
optimized jointly for each CAV. More specifically, on the basis of signal information and trajectory information of surrounding ve-
hicles, a 2-stage optimization model is developed to optimize CAV trajectories. The stage-1 model is formulated to roughly estimate the
minimum travel time with minimum stops of a single CAV traveling along this arterial. Based on this, the stage-2 model is constructed
to optimize longitudinal and lateral behavior with minimal delay and lane-changing costs. To solve this model, we applied dynamic
programming. Due to time-varying traffic conditions, a rolling horizon scheme is applied to dynamically implement the proposed
model.

To evaluate the effectiveness of the proposed strategy, a simulated traffic network is constructed and tested in VISSIM. The pro-
posed model is compared to the benchmark without CAVs trajectory optimization. Results show a sound performance and validate the
advantages of the proposed model. As results show, the proposed strategy outperforms the benchmark by reducing the stop delays and
lane-changing numbers. Although trajectory optimization is only designed for CAVs, the stop delays of HVs and mixed traffic can also
be reduced by the optimized CAV trajectories, especially with a high CAVs market penetration rate. In addition, sensitivity analysis of
CAVs market penetration rates and traffic demands all indicate a better performance of the proposed model.

In this study, we assume the signal timing is fixed at each intersection along the arterial. This may limit the improvement the
operational performance. Therefore, signal timing optimization and CAV trajectories optimization are supposed to be integrated into a
single process to achieve maximum benefits. Moreover, we assume there are no communication delays and CAVs will exactly follow
the optimized trajectory, which may not be true in reality. Thus, robust optimization is another research direction. Besides, currently
we only considered the through movements of one direction. The mandatory lane changes will be considered in the future research.
Last, the microscopic lateral movement will be optimized.
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