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Extracting roads in aerial images has numerous applications in artificial intelligence and multimedia computing, including
traffic pattern analysis and parking space planning. Learning deep neural networks, though very successful, demands vast
amounts of high-quality annotations, of which acquisition is time-consuming and expensive. In this work, we propose a
semi-supervised approach for image-based road extraction where only a small set of labeled images are available for training
to address this challenge. We design a pixel-wise contrastive loss to self-supervise the network training to utilize the large
corpus of unlabeled images. The key idea is to identify pairs of overlapping image regions (positive) or non-overlapping
image regions (negative) and encourage the network to make similar outputs for positive pairs or dissimilar outputs for
negative pairs. We also develop a negative sampling strategy to filter false negative samples during the process. An iterative
procedure is introduced to apply the network over raw images to generate pseudo-labels, filter and select high-quality labels
with the proposed contrastive loss, and re-train the network with the enlarged training dataset. We repeat these iterative
steps until convergence. We validate the effectiveness of the proposed methods by performing extensive experiments on the
public SpaceNet3 and DeepGlobe Road datasets. Results show that our proposed method achieves state-of-the-art results on
public image segmentation benchmarks and significantly outperforms other semi-supervised methods.

CCS Concepts: « Computing methodologies — Image segmentation; - Theory of computation — Semi-supervised
learning.

Additional Key Words and Phrases: Deep Learning; Semi-supervised Learning; Contrastive Loss; Iterative Labeling; Road
Extraction

1 INTRODUCTION

With the rapid development of remote sensing technology, high-quality, fine-resolution aerial and satellite
images can be acquired at much lower cost and provide promising resources for various applications, including
emergency management, urban planning, and disaster monitoring. Road extraction is one of the most critical
tasks that utilize these image data and plays a vital role in autonomous driving, road condition evaluation, Global
Positioning System (GPS) navigation, and intelligent city management [1, 30]. In the literature, deep learning-based
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approaches have shown great potential in road extraction from aerial and satellite images [5, 6, 23, 24, 38, 46, 55].
However, most of these methods are based on supervised learning, which highly relies on the quantity and
quality of annotations. More data help improve the precision and recall of a supervised model for road extraction.
Nevertheless, creating and maintaining images with pixel-wise road labels is time-consuming and expensive. In
this work, we will develop a learning-based method to leverage large-scale raw satellite images while minimizing
human efforts. Figure 1 shows the results of the proposed method over two satellite images.
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Fig. 1. Image-based road extraction. (a) Two aerial images; (b) ground-truth pixel-wise labels; (c) labels estimated by a
supervised method [49]; (d) labels estimated by the proposed semi-supervised method. Both methods (c) and (d) have access
to the same labeled data. Our method (d) utilizes extra unlabeled images.

Our work is relevant to past efforts on semi-supervised learning and its applications over semantic segmentation.
These methods can maximize the use of unlabeled images and have gained encouraging successes on various
image-based-tasks, including image classification [2, 8, 57, 66], text classification [37, 65], object detection
[31, 52, 64], and dehaze 35, 54, 60]. However, few studies employ semi-supervised methods for image-based road
extraction [38]. This paper introduces a semi-supervised iterative approach for road extraction, where a small
set of labeled images and a large number of unlabeled images are incorporated for training. As shown in Figure
2, our empirical study suggested that training a supervised road extraction model with fewer satellite images
will lead to inferior performance. We propose an iterative learning framework to fully take advantage of the
unlabeled image corpus. Our framework includes three iterative steps: initially training a semi-supervised model
with a pixel-wise contrastive loss; applying the current network to the raw images to obtain their pseudo labels
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Fig. 2. Precision-Recall curve for U-Net [49] trained with different proportions of the labeled images on the dataset
SpaceNet3 [56].

which are used to enlarge the training set; retraining a semi-supervised model with pseudo labels. We repeat the
last two steps until convergence.

Our work is also inspired by the so-called contrastive learning, which has been proven to be a practical
self-supervised approach for generic image tasks [11; 22]. It aims to learn a deep representation so that positive
pairs of training images have similar representations, whereas the representations of negative pairs are dissimilar.
Previous contrastive learning methods usually work on image-level features and minimize the distance between
augmented views of the same image while maximizing the distance between different images [11, 22]. The same
idea is not valid for pixel-wise image tasks, including image-based road extraction, because of the challenges of
finding positive and negative pairs without access to pixel-level labels. In this work, we propose a simple yet
effective way to collect positive pairs of image regions for roadway extraction. We first randomly crop an image
region (e.g., 256 by 256 pixels) and expand this region into the adjacent areas to obtain a pair of overlapping
image regions. These two enlarged regions are then fed into the network, and the network outputs are expected
to be the same for the common area. This leads to the positive pairs of image regions. This method extracts
the feature representations of the common area with different surrounding contexts and tries to minimize the
divergence between these representations. Similarly, we will crop negative image regions that include different
shapes of infrastructures and backgrounds. A contrastive loss function is then defined over both the positive and
negative pairs to guide the training of the network. This pixel-wise contrastive learning scheme can be applied to
both labeled and unlabeled images.

We further introduce an iterative scheme to take advantage of the raw images in the semi-supervised setting.
Similar approaches were previously developed to apply self-supervised techniques to semi-supervised segmenta-
tion tasks [8, 10, 19, 26]. These methods usually first obtain pseudo annotations from the model trained with
labeled data and retrain the model repeatedly. One might also use curriculum learning [7] to select the most
appropriate training samples at each training iteration. In this work, we develop an iterative labeling method
that employs the proposed contrastive loss to rank raw images with pseudo labels and add the highly-ranked
pseudo labels into the labeled set. The iterative scheme leads to a progressive growing algorithm that can grow

the labeled set with high-confident pseudo labels.
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We conduct extensive experiments on the public SpaceNet3 [56] and DeepGlobe Road [17] datasets. Results
suggest that the proposed semi-supervised method outperforms other semi-supervised methods. The main
technical contributions of this study include:

e We develop an effective contrastive learning approach for extracting roadways in images. A pixel-wise
contrastive loss is introduced to explore the contextual representation of local image regions and leverage
both labeled and unlabeled training images.

e We propose an iterative self-training framework that can employ the proposed contrastive loss to identify
high-quality pseudo labels and gradually grow the training dataset to boost model performance.

e The proposed method achieves state-of-the-art results on the public SpaceNet3 and DeepGlobe Road
datasets and significantly outperforms the alternative supervised methods using the same amount of
labeled images.

The rest of this paper is organized as follows. Section 2 briefly reviews the related work. In section 3, the
proposed iterative semi-supervised approach with the pixel-wise contrastive loss for road extraction is illustrated
in detail. Experimental results are presented in Section 4. Finally, we draw our conclusions in Section 5.

2 RELATIONSHIPS TO PREVIOUS WORK

This work is closely relevant to four research streams in the literature: image-based road extraction, semi-
supervised semantic segmentation, contrastive loss, and self-supervised learning.

2.1 Image-based Road Extraction

Numerous approaches have been explored to extract roads from aerial and satellite images. In the past few
decades, traditional methods employed hand-crafted image features to represent individual pixels [41, 48] or
objects [42, 44] in images. Although traditional road extraction methods have achieved some good results, the
robustness and generalization ability is limited as the features are manually designed and the procedure might
not be generalized well to new testing images.

With the successes of deep neural networks, state-of-the-art methods usually cast road extraction as a seg-
mentation problem and employ an end-to-end trained network to output pixel-wise labels directly. U-Net [49]
introduced a downsampling path to obtain semantic information and a symmetric upsampling path to acquire
localization information, and has been widely used for image-based road extraction[40, 71]. To further boost road
extraction performance, cascaded neural networks are utilized to carry out a multistage semantic segmentation
framework [14]. Generative Adversarial Network (GAN) was also incorporated with road detection models
[70]. Some recent works focus on improving connections of road networks [6, 43]. In [6], Batra et al.proposed
a supervised learning framework where a multi-branch Convolutional Neural Network (CNN) is utilized to
simultaneously learn road orientation and segmentation, where the orientation branch aims to improve road
connectivity.

Deep learning methods can be further integrated with graph-based representations of roadways to improve
system accuracy. A classical way is to consider each road segment as a graph node and connect nodes following
the road topology [5, 55]. The classical work RoadTracer [5] trains a CNN and adopts an iterative search process
to capture connected road pixels to get the road graph.

Both segmentation-based and graph-based methods have achieved impressive performance for road extraction
tasks. However, most of these methods use supervised learning techniques and require a large scale of annotated
training data. A few studies employed semi-supervised road extraction methods [38]. Liu et al.[38] proposed a
semi-supervised framework to extract roads, incorporating high-level feature selection, Markov Random Field
(MRF), and ridge transversal method. Unlike the mentioned methods, our study focuses on the segmentation-based
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method to explore a practical semi-supervised approach with pixel-wise contrastive loss and iterative labeling
for road extraction.

2.2 Semi-supervised Semantic Segmentation

Semi-supervised learning aims to employ a small set of labeled and a significant number of unlabeled data to
enhance representation learning. In the literature, multiple efforts exist to train deep networks in the semi-
supervised setting [10, 13, 15, 26, 39, 59, 62]. One category of these methods added the so-called consistency
regularization to the loss function to promote the consistency of predictions under different perturbations
[20, 21, 33, 47]. One popular choice is to augment data and impose consistency regularization between the
augmented and original samples. In particular, Yun et al.[20] applied CutMix over training images and imposed
the consistency between the network outputs over mixed images and raw images. Ouali et al.[47] further presented
a cross-consistency training (CCT) scheme, which enforces consistency between the outputs of the primary and
affiliated decoder.

Generative models are also leveraged with consistency regularization for semi-supervised semantics segmenta-
tion [45, 53]. In [45], Mittal et al.utilized two network branches to learn from limited labeled and annotation-free
samples, and one branch was a Generative Adversarial Network (GAN)-based model. Souly et al.[53] proposed a
GAN-based approach to train the network with additional weakly labeled data. They employed GAN to generate
additional images useful for the classification task.

2.3 Contrastive Learning

Contrastive learning can be used in both supervised and unsupervised settings, and some studies have explored
the application of contrastive learning on semantic segmentation [3, 11, 22, 34, 57, 60, 72, 73, 75]. The goal is
to learn a representation space where positive pairs are close to each other while negative ones are far away.
They utilize augmented versions of the same instance as positive pairs and others randomly sampled as negative
ones. Some studies have investigated strategies to select negative pairs [11, 12, 22, 61]. Wu et al.[61] employed a
memory bank to store representation and increase the number of negative samples. In MoCo [12, 22], a memory
buffer and momentum encoder are proposed to build large and consistent dictionaries for unsupervised learning.

Recently, the pixel-wise contrastive loss has been explored for semi-supervised semantic segmentation [3, 9, 34,
58, 73, 75]. Alonso et al.[3] and Zhou et al.[75] yielded intra-class similarity and inter-class discrimination when
implementing contrastive loss. Wang et al.[58] proposed a fully supervised contrastive learning approach for
semantic segmentation, emphasizing the similarity of embeddings within the same class and their dissimilarity
across different classes. Chaitanya et al.[9] aimed to maximize intra-class similarity and inter-class separability
for the segmentation task, which is effective for generic multi-class semantic segmentation. Our work specifically
focuses on road extraction from images, which involves a binary classification task and differs from generic
semantic segmentation. Our pixel-wise contrastive loss is specifically designed for the road extraction task,
utilizing positive pairs of regions to capture contextual information and introducing a negative sampling strategy
to identify valid negative region pairs.

The contrastive learning idea has also been exploited for remote sensing imagery classification in recent years
[29, 32]. Jean et al.[29] introduced Tile2Vec, an unsupervised learning algorithm, for land cover classification
and poverty prediction tasks. Their algorithm leverages the observation that spatially proximate remote sensing
image tiles tend to exhibit similar representations, contrasting with those farther apart. By utilizing geospatial
information as prior knowledge, Tile2Vec learns vector representations of remote sensing images. On the
other hand, Kang et al.[32] proposed an unsupervised deep model for remote sensing imagery classification.
They highlighted the semantic similarities among nearby geospatial locations and the diverse representations
of contrasting land cover types. Although the above-mentioned contrastive learning methods have achieved
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Fig. 3. Network Architecture. There are two network branches: one for labeled data and the other for unlabeled data. The
supervised branch is trained with a binary cross entropy loss. The unsupervised branch is trained with the proposed pixel-wise
contrastive loss defined over both positive pairs of regions < p1, p2 > and negative pairs of regions < p1,n > or < pa, n >.
The blue and green boxes are two overlapping regions, and their common regions (in yellow) form a positive pair; The red
region and one of the yellow regions form a negative pair.

promising results, they seldom considered pixel-wise contrastive loss with contextual information for road
extraction tasks.

2.4  Self-training

Self-training is first applied for classification (8, 50, 67, 76] and has been commonly employed for semantic
segmentation with deep learning [13, 19, 27, 45]. These techniques produce pseudo-segmented images by training
a model with annotated data and utilizing the pseudo labels to retrain the models iteratively. Different strategies
are designed to decide pseudo labels. For example, Cascante-Bonilla et al.[8] introduced curriculum learning to
self-training, selecting pseudo labels with increasing thresholds. Hung et al.[26] proposed a GAN-based approach
by designing a discriminator to distinguish the predicted confidence maps from the ground-truth segmentation
distribution and select high-confident predicted segmentation as pseudo labels. In [13], cross pseudo supervision
(CPS) was proposed, where the pseudo segmentation labels produced by one network are exploited to supervise
the other with perturbations and vice versa. Unlike the methods mentioned above, we propose a new iterative
labeling strategy for self-training, which utilizes the proposed contrastive loss to select high-quality pseudo labels
and increase the training dataset gradually. Our method is effective in road extraction with fewer labeled data.

3 METHOD
3.1 Method Overview

Figure 3 summarizes the sketch of the proposed semi-supervised method for extracting road regions in aerial
images. The inputs to our method include a set of labeled images D; = {(x;,y;) | x; € Xj,y; € Y7} and a set of
unlabeled images D, = {x, | x, € X, }, where (x7, y;) is a pair of image-label and x,, a raw image. The network
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includes two branches of sub-networks, one for supervised learning and the other for unsupervised learning. To
train the supervised branch, we apply an encoder-decoder network over each training image x; to extract its
feature maps, and train the network using a binary cross-entropy loss Ls.

The unsupervised branch shares the same network backbone as the supervised branch. It takes as input a raw
image and is trained with the proposed contrastive loss function. The loss function is defined over both positive
pairs of images and negative pairs. As Figure 3 illustrates, we crop two overlapping regions from the same image
to form a positive pair. Similarly, two non-overlapping regions in the same image will be randomly selected and
cropped to form a negative pair. Each cropped region is associated with a region in the network confidence map.
The confidence maps over positive pairs of regions are expected to be similar, whereas the maps over negative
pairs of regions are expected to be dissimilar. We employ this intuitive expectation to regularize the training
of the network. To measure the similarities between the two confidence maps, we employ a histogram-based
descriptor [16] to account for pixel-wise misalignment. A negative sampling strategy is incorporated to filter out
false negative samples in contrastive learning. We also develop an iterative process that employs contrastive loss
to identify raw images with high-quality pseudo labels and retrains the network using both human labels and
pseudo labels.

3.2 Pixel-wise Contrastive Loss

We introduce a pixel-wise contrastive loss function to supervise the training of the unsupervised network branch.
This loss is defined over both positive and negative pairs of images. In this context, each pair of positive images
denotes two overlapping regions; a pair of negative samples includes two image regions that do not overlap
with each other. To collect a positive pair, we randomly select an image region and crop two image patches that
enclose the overlapping region. Next, we select another region that is spatially far away from the above-shared
region and pair it with the previously selected region to form a negative pair. The collected negative pairs might
include false negatives, i.e., two disjoint regions yet share similar roadway patterns. We will introduce a sampling
algorithm to remove these false negative pairs. Figure 4 illustrates the process of generating negative pairs.

Let < p1, p2 > denote a positive pair of image regions, < p;,n > or < p,, n > a negative pair, sim(py, pz)
returns the similarity between the network outputs of regions p; and p,. One possible similarity measure is
directly comparing the two network outputs pixel by pixel. However, it is not applicable here because there are
misalignments caused by step-by-step downsampling network operations and contextual information fusion
[25]. Instead, we extract the histogram of oriented gradients (HOG) from the network output of an image region
and calculate the cosine similarity between HOG descriptors. The histogram-based features can ensure the
measurement is invariant against geometric transformations, effective for the misalignment issue. The contrastive
loss is defined as the following:

l(Pl,Pz,n) =
I exp(sim(p1, p2)/7) (1)
& exp(sim(py, p2)/7) + 3 exp(sim(py, 1) /7)
Le= Y (Upypan) +1(psp1)n) (2)
<p1,p2.n>

where 7 is a temperature hyper-parameter [61]. Backpropagation of I(py, p2, n) is stopped for p,. Note that each
region in the positive pair might be paired with multiple non-overlapping regions to form different negative
pairs. Then the total semi-supervised loss L can be written as:

L=MhLs+1Lc (3)
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Fig. 4. Generation of negative pairs. For each positive pair of regions (green and blue boxes), we find and crop a non-
overlapping region (orange box) from which a set of sub-regions (n1, ny, ...) are sampled and paired with the positive regions
to form negative pairs. The proposed negative sampling algorithm is used to identify false negative pairs (dotted box).

Algorithm 1 Negative sampling strategy

Input: A pair of positive regions, p; where i = 1, 2
Input: An image region having no overlap with the positive pair, q
Output: Valid negative samples, N; where i = 1,2
for iin [1,2] do
N =]
j=1
while j < 10 do
sample a sub-region n; from the region g to obtain a negative pair < p;,n; >
N.append(n;)
j+=1
end while
N; < select 5 negative pairs with the lowest similarity score from N
end for
11: return N;

N AR A T > e

—-
=4

where Ay and A, are balancing weights for Ls and L, respectively.

Negative Sampling Strategy. Filtering false negative samples is a crucial component of the proposed con-
trastive learning because there is a high chance for two disjoint regions to have similar appearances. On the one
hand, a large portion of a roadway aerial image might be of backgrounds; on the other hand, many road instances
share similar shapes. Including these false negative samples in the contrastive loss function would sacrifice the
effectiveness of the training. Algorithm 1 and Figure 4 describe the proposed negative sampling process. We first
apply the previously trained network to a cropped region that has no overlap with positive pairs to obtain its
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Algorithm 2 Iterative labeling
Input: Labeled data D,
Input: Unlabeled data D,
Input: Number of self-training iteration ¢
Input: Percentile threshold thr; (e.g., 80%)
Input: Contrastive loss threshold thr; (e.g., 4.7)
Output: Labels for self-training [ Dy, ..., Dy_1]
1: f(-) « train with D
2:i=1
3: whilei <t do
4: Z)i = Z)l
5. Rank all the raw images D,, and their confidence maps Sigmoid(f(D,)) based on average confidence
scores
6 D, « select the top ranked thry raw images from D,
7. Rank raw images D,, based on the contrastive loss
8 D « select raw images with contrastive loss smaller than thr, from Dy, as pseudo labeled samples
9 D;i=D;U Dy
10: if i > 1 then
1t D =D; V(D1 \ D)
122 endif
13:  f(+) « train from scratch with D;
14: i=i+1
15: end while
16: return [Dy, ..., D;_{]

confidence map and HOG descriptor. Then, we sample sub-regions from the cropped region and calculate each
negative pair’s cosine similarity sim(). A negative pair with a high similarity score (or a large contrastive loss)
would likely be a false negative. We sample 10 negative pairs and select 5 with the lowest similarity score.

3.3 lterative Labeling

We develop an iterative labeling scheme to fully explore the set of unlabeled images and the proposed pixel-wise
contrastive learning framework. Our iterative algorithm starts with initially training the network using both
labeled data 9; and unlabeled data D,,. Next, we apply the network over each raw image in 9, to obtain its
confidence map. The estimated maps are used as the pseudo labels and will be used to enlarge the labeled data set
Dy in the next iteration. We repeat the above process multiple times till the network converges. Similar iterative
algorithms have been used in the relevant literature for various image tasks [8, 28, 69]. While being effective,
a critical challenge to these iterative learning schemes is how to filter out low-quality pseudo labels to avoid
model collapse. In this work, we employ the loss function to score pseudo labels and grow the labeled dataset.
We crop overlapping regions from the pseudo labels to form the positive pair and use the negative sampling
strategy to generate the negative pair. We compute the contrastive loss of pseudo labels with generated positive
and negative pairs.

Algorithm 2 describes the sketch of the proposed iterative labeling process. At the beginning of the algorithm
(t = 1), we select the top thr pseudo labels from Sigmoid(f(D,)) with the highest average confidence score
and remove the images whose contrastive loss is above an empirical threshold. The contrastive loss describes
how consistent the current network works for a raw image and can be used as a successful measure to select
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Fig. 5. Examples of raw images and pseudo labels with low contrastive loss (high-quality pseudo labels) and high contrastive
loss (low-quality pseudo labels).

pseudo labels. We set the threshold to be 4.7 in this work. Figure 5 demonstrates some examples of raw images
and pseudo labels with low (high-quality pseudo labels) and high contrastive loss (low-quality pseudo labels).
We can combine these raw images with pseudo labels and the labeled set D to train the supervised branch. For
the subsequent self-training (¢t > 2), we combine D; and D;- together for the supervised branch. Compared
with the original self-training with all Sigmoid(f(9,,)) for'training, our iterative labeling selection strategy can
increase the quantity and quality of pseudo labels for the supervised branch and boost the model performance
step by step.

3.4 Training Data and Test-Time Augmentation

Training data augmentation (TA) is a common practice to produce training samples for supervised learning when
data are insufficient, but an effective way is sought to produce different perturbations of the same unlabeled
image [18, 36, 68, 74]. When training our semi-supervised model, we employ flipping, rotating, and color jitter
augmentation for both supervised and unsupervised branches.

Test-time augmentation (TTA) contains augmentation, prediction, transformation back, and merging. For a
test image x;, we rotate it by 90°, 180°, and 270°, respectively. Then we predict results based on both original and
augmented images and transform the predicted results back. Towards the end, we average the four outputs to get
the final prediction.

4 EXPERIMENTS AND RESULTS
4.1 Dataset

We apply the proposed semi-supervised approach to the public SpaceNet3 [56] and DeepGlobe Road [17] datasets
and compare it to other alternative semi-supervised methods in the recent literature.

SpaceNet3. This dataset contains 2780 images. The size of each image is 1300 X 1300, with a ground resolution
of 30 cm/pixel. We remove the images without roads and obtain a subset of 2549 images. The annotations are in
the format of line strings for roads. Following [6], we first employ the Euclidean distance transform along the
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line strings to get the Gaussian maps and then threshold the map using a constant of 0.76 to obtain the binary
mask, which corresponds to 6-7 meters wide road. We split the dataset into a subset of 2018 images for training,
100 for validation, and 431 for testing, following the approach described in [6].

DeepGlobe Road. This dataset includes a total of 6226 satellite images, which are captured over Thailand,
Indonesia, and India, spanning 1632 km? in ground area. All pixels belong to the road areas. Each image has a
size of 1024 x 1024 pixels and a ground resolution of 50 cm/pixel. Following [6, 51], we divide the dataset into
4496 for training, 200 for validation, and 1530 for testing.

4.2 Evaluation Metrics

We use the pixel-based FI-score and road intersection over union (IoU) to evaluate the model performance,
following the previous works [1, 56]. The model outputs are confidence maps for road extraction, and each
threshold gives different results of FI and road IoU. We report the highest F1 and road IoU as our evaluation
metric. Similar evaluation metrics have been widely used in edge/boundary-related tasks in the computer vision
community, such as ODS and OID at best scales in BSD500 [4, 63]. The motivation is to get the best performance
for each model to compare and avoid evaluation bias, which ends up with different thresholds.

4.3 Implementations

We use U-Net [49] as the backbone network. For the supervised branch, we crop multiple image regions of
256 X 256 from each labeled image and use these cropped images to enlarge the training set. For the unlabeled
branch, we first select a region of 256 X 256 and draw two outside regions of 384 x 384. These two larger regions
overlap with each other, and their overlapping areas (256 X 256) form the positive pairs. To collect negative pairs,
we crop a region of 512 X 512 having no overlap with positive pairs and select negative samples from this region
that are perceptually dissimilar from positive samples. We extract a HOG descriptor from the network output
over each region and measure their distance to prune similar regions. We also augment the cropped images by
applying different transformations, including flipping, rotating, and color jitter augmentations.

We train all the models using a single GTX1080ti GPU with a batch size of 6 for labeled data and 2 for unlabeled
data. Adam optimizer is implemented with a weight decay of 0.0001. The supervised and unsupervised loss
weights are set as 1 and 0.1, respectively. There are a total of 100 epochs for SpaceNet3 and 60 for DeepGlobe Road.
We start with a learning rate of 0.0005 with a step scheduler by a factor of 0.1 at epochs {60, 75} for SpaceNet3 and
{30, 40} for Deepglobe. The first four and two epochs are trained only with the supervised loss for stabilization
for the SpaceNet3 and DeepGlobe, respectively. The temperature hyper-parameter r is 0.07. The patch size is
8 X 8, and the bin number is 12 to generate HOG descriptors. The percentile threshold thr; and contrastive
loss threshold thr, are 80% and 4.7, respectively, to select pseudo labels for the iterative labeling process. The
supervised baseline model is U-Net trained without data augmentation (TA) or test-time augmentation (TTA).
We compare our model on 1% and 5% of the labeled data of SpaceNet3 and DeepGlobe Road datasets.

4.4 Comparison with State-of-the-art Methods

We apply both the proposed method and other recently published semi-supervised segmentation methods,
including C*-SemiSeg [75], PC%Seg [73], Cross Pseudo Supervise (CPS) [13], and Cross-Consistency Training
(CCT) [47] over the same datasets and compare their performance. We compared models using the same partition
protocols for fairness.

Results on SpaceNet3. Table 1 reports the comparison results of the proposed method and the other four
methods on the SpaceNet3 dataset while using 1% or 5% of the labeled samples. We include the results of the
baseline method for comparison. Besides the proposed iterative labeling method, we also implement a variant
of our method that does not use the iterative labeling. The comparison in Table 1 suggests that the proposed
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1% (20) 5% (101)

Method FI U | FI IoU

C®SemiSeg [75] | 05448 03749 | 05987 04279
PC2Seg [73] 04788 03109 | 05601 0.3924
CPS [13] 0.3475  0.2002 | 05788  0.4037
CCT [47] 0.5785 04142 | 0.6358 04722
Sup. Baseline [49] | 0.4886  0.3363 | 0.6052 04431
Ours w/o IL 0.6097 0.4480 | 0.6671 0.5038
Ours with IL 0.6554 0.4900 | 0.6775 0.5044

Table 1. Performance on the SpaceNet3 dataset under different proportions of labeled samples. Ours w/o IL: our proposed
semi-supervised learning of one single iteration without iterative labeling. Ours with IL: our proposed semi-supervised
learning of multiple iterations of self-training with iterative labeling.

semi-supervised method with iterative labeling (IL) achieves the highest performance in both settings and clearly
outperforms the other four state-of-the-art semi-supervised segmentation methods [75], [73],[13], [47]. Moreover,
the proposed method can still outperform other methods without iterative labeling. Note that there are only
20 training images using 1% labeled data. The proposed method can still work well and even outperforms the
baseline method trained on (5%) labeled data.

Figure 6 further plots the F1 and IOU of both the supervised baseline and the proposed semi-supervised
methods using 1%, 5%, and 100% labeled data. When we apply our method to the fully supervised setting where
all data are assigned for both supervised and unsupervised training, our method (FI: 0.7223; IoU: 0.5712) can
still beat the baseline (F1: 0.7066; IoU: 0.5578) with-an improvement of 1.57% and 1.34% for F1 and road IoU,
respectively.

Figure 7 visualizes the results of our method and five other methods, including the supervised baseline and four
state-of-the-art methods. For the images in the first seven rows, our method can produce much higher quality
results than others. The last three rows also show three challenging images for which our method did not work
well. These images include complicated highways and partially visible roadways, and these patterns did not
appear in the training set. Actually, none of the six learning-based methods can work properly over these three
images. One potential solution is the so-called sample-specific data augmentation method [36]. In our current
experiment, we applied the same set of augmentation operations, including cropping, flipping, rotating, and color
jitter, over every image. A more reasonable augmentation solution is to assess how difficult an image is regarding
the current model, and to produce more augmented samples for these difficult samples than easy samples. We
will explore this direction in future work.

Results on DeepGlobe Road. Table 2 reports the results of different methods over the DeepGlobe Road
dataset. Some examples of results are shown in Figure 8. The recently proposed methodC?—SemiSeg [75] achieves
F1 0.6383 while using 1% labeled data which clearly outperforms other methods, including the baseline network.
Our method with iterative labeling can further improve its performance with a significant margin of 3.46 percent.
Similar improvements are obtained by the proposed method over other methods while using 5% labeled data.
When we apply our method to the fully supervised setting where all data are assigned for both supervised and
unsupervised training, our method (F1: 0.7100; IoU: 0.5712) can still beat the baseline (F1: 0.6992; IoU: 0.5577).

4.5 Ablation Study

We perform ablation studies to validate the effectiveness of the proposed components on the SpaceNet3 with
1% (i.e., 20) labeled and 99% (i.e., 1998) unlabeled training data. Table 3 reports the F1—score and road IoU of
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Fig. 6. Comparison between the supervised baseline model [49] and our proposed approach under varying proportions (1%,
5% and 100%) of the labeled data on the SpaceNet3 dataset.

1% (45) 5% (225)

Method F1 ToU F1 ToU

C3—SemiSeg [75] | 0.6383 0.4530 | 0.6949  0.5232
PC2Seg [73] 0.4693  0.2960 | 0.5987 0.4189
CPS [13] 02751 0.1549 | 0.5884  0.4079
CCT [47] 05475 03664 | 0.6305 0.4552
Sup. Baseline [49] | 0.5763 | 0.3952 | 0.6800 0.5083
Ours w/o IL 0.6546 0.4745 | 0.7043  0.5352
Ours with IL 0.6729 0.4956 | 0.7249 0.5605

Table 2. Performance on the DeepGlobe Road dataset using 1% or 5% labeled samples.

these methods. The method of ID T represents the supervised baseline model without training data augmentation
(TA), test-time augmentation (TTA), pixel-wise contrastive loss (PCL), histogram of oriented gradients (HOG),
negative sampling (NS), or self-training (ST).

Effectiveness of Histogram of Oriented Gradients (HOG). Misalignment is a challenge when working
with pixel-wise tasks and calculating between-sample similarities. In this work, a roadway appears anywhere or
at any scale in an image. We employ a histogram-based feature (HOG) to ensure the contrastive loss is invariant
against geometric transformations. In Table 3, the comparison between Model VIII and IX suggests that the
semi-supervised model with HOG descriptors is superior to that without HOG, improving FI from 0.5958 to
0.6028 and road IoU from 0.4342 to 0.4405.

Effectiveness of Negative Sampling. The proposed negative sampling method aims to prune or filter false
negative pairs of samples during training. We evaluate and report the results of the semi-supervised model with
and without negative sampling (NS). Model IX and XI resutls in Table 3 show that integrating NS can lead to
improved FI and road IoU.

Effectiveness of Contextual Information. To verify the effectiveness of the contextual information on the
predictions of overlap regions, we compare the models with and without contextual information. For the model
without contextual information, we crop the same region with different data augmentations to generate positive
pairs for the contrastive loss. The two cropped patches of the unlabeled image are totally overlapped and have
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Image GT Ours Supervised  C*-SemiScg PCSen CPS CCT
bascline

Fig. 7. Comparison results of six different methods on the SpaceNet3 dataset with 1% labeled data. The last three rows
demonstrate some failure cases of our proposed method.
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Fig. 8. Comparison results of six different methods on the DeepGlobe Road dataset with 1% labeled data

the same contextual information. In Table 3, the comparison between Model X and XI shows that considering
contextual information in the model can significantly improve F1 by 2.01 percent and IoU by 2.86 percent.

Effectiveness of Pixel-wise Contrastive Loss. Our proposed pixel-wise contrastive loss (PCL), considering
contextual information, is performed on the pixel level. It encourages the network to have similar outputs for
positive pairs and different results for negative ones. In Table 3, the comparisons between Model VIII and Model
IV show that utilizing PCL over unsupervised images can lead to a gain of 1.67 percent in F1 and 2.08 percent in
road IoU while using augmentation techniques for both testing and training. We observe an even more significant
improvement from the comparisons of Model V and Model I. Using PCL and negative sampling will lead to a gain
of 7.18 percent in F1 and 6.46 percent in road IoU. These experiments with comparisons indicate that our PCL is
effective for road extraction as it helps to learn more semantic representations for the model and alleviate the
over-fitting issue.

Effectiveness of Iterative Labeling. Table 4 reports how the proposed method works over iterations. The
method called plain ST w/o IL is a naive implementation of the proposed method where the pseudo labels at the
previous iterations are directly used as the labeled samples at the current iteration. When applying this naive
implementation with our semi-supervised model, we observe that the F1 and road IoU decrease in the second
iteration. In contrast, the method ST with IL that uses the proposed iterative labeling strategy can progressively
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Model ID | TA TTA Context PCL HOG NS F1 IoU
I 0.4886  0.3363
Supervised II v 0.5507  0.3856
I v 0.5223  0.3677
v v v 0.5791 0.4134
\% v v v v/ | 05604 0.4009
VI v v v v v/ | 0.5908 0.4206
Semi-supervised VII v v v v v/ | 05914  0.4292
VIII v v v v 0.5958  0.4342
IX v v v v v 0.6028  0.4405
X v v v v v/ | 05896 0.4194
XI v v v v v v/ 1 0.6097 0.4480

Table 3. Ablation study on the SpaceNet3 dataset with 1% labeled data. TA: training data augmentation; TTA: test-time
augmentation; Context: contextual information; PCL: pixel-wise contrastive loss; HOG: histogram of oriented gradients; NS:
negative sampling.

improve the F1 and road IoU of our semi-supervised model over the first four iterations and converge at the
fifth iteration. The best performance of our semi-supervised iterative approach on the 1% labeled Spacenet3
dataset achieves 0.6551 F1 and 0.4900 road IoU, which are much higher than those of the supervised baseline
model employing plain ST w/o IL. This set of comparisons shows that the proposed iterative labeling process can
effectively prune the noisy data.

In this study, we employ contrastive loss during the iterative labeling process to filter out low-quality pseudo
labels. Our offline experiments show that directly ranking all pseudo-labels based on their contrastive loss and
classification loss can slightly enhance system robustness. In previous literature, various measures have been
introduced to identify and select high-quality pseudo-labels when learning from raw data. These measures
include confidence scores, diversity of selected samples, and other learning-based metrics. However, finding
an optimal combination of these measures is a non-trivial problem. In this study, we focus exclusively on the
proposed pixel-wise constructive loss and empirically demonstrate its effectiveness as a measure for selecting
pseudo-labels. We remain open to exploring different measurement combinations to select high-quality pseudo
labels in future research.

Effectiveness of Training Data and Test-Time Augmentation. As shown in Table 3, the supervised and
semi-supervised models with TA (Model II and Model VII) have better F1 and road IoU than corresponding
models without TA (Model I and Model V). Model IIT and Model VI with TTA also perform better than Model I
and Model V, respectively. When both TA and TTA are incorporated together in the supervised Model IV and
semi-supervised Model XI, we obtain better results than using TA or TTA alone. These comparisons suggest that
integrating TA, TTA, or both can significantly improve the model performance of road extraction.

Analysis on the 1% Labeled DeepGlobe Road Dataset. We further validate the effectiveness of the proposed
components on the Deepglobe Road dataset with 1% (i.e., 45) labeled and 99% (i.e., 4451) unlabeled data. Table 5
reports the results of multiple implementations of our methods. We can observe consistent improvements while
using TA & TTA, PCL & HOG & NS, ST with IL, or the combinations. The model incorporating ST with IL
achieves the best performance, whose F1 is 9.66 percent higher and road IoU is 10.04 higher than the baseline
method.

Analysis on the 5% Labeled SpaceNet3 Dataset. Table 6 reports the performance of our model on the
SpaceNet3 dataset while using 5% (i.e., 101) labeled and 95% (i.e., 1917) unlabeled data. TA & TTA, PCL & HOG &
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Method t F1 IoU

0| 0.4886 0.3363

Supervised baseline with 1| 0.5375 0.3791

plain ST w/o IL 2| 0.5491 0.3906

31 0.5597 0.3991

Our proposed semi-supervised | 0 | 0.6097  0.4480

with TA, TTA, PCL, HOG,NS and | 1 | 0.6399 0.4740

plain ST w/o IL 2| 0.6368 0.4637

0| 0.6097 0.4480

. . 1] 0.6425 0.4779

Our proposed semi-supervised o | 0.6482 04837
with TA, TTA, PCL, HOG, NS and ’ ’

ST with IL 3| 0.6534 0.4870

41 0.6554 0.4900

51| 0.6551 0.4872

Table 4. Effectiveness of iterative labeling on the SpaceNet3 dataset with 1% labeled data. ST: self-training; IL: iterative
labeling; t: iteration of self-training model. See text for more details.

TA& PCL& ST Fi IoU
TTA HOG&NS with IL

0.6052  0.4431

v 0.6374  0.4736

v 0.6304 0.4676
v v 0.6671  0.5038
v v v 0.6775 0.5044

Table 5. Effectiveness of our proposed components on the DeepGlobe Road dataset with 1% labeled data. TA: training data
augmentation; TTA: test-time augmentation; PCL: pixel-wise contrastive loss; HOG: histogram of oriented gradients; NS:
negative sampling; ST: self-training; IL: iterative labeling.

TA& PCL& ST F1 IoU
TTA HOG&NS withIL

0.5763  0.3952

v 0.6496  0.4696

v 0.5944 0.4132
v v 0.6546  0.4745
v v v 0.6729 0.4956

Table 6. Effectiveness of our proposed components on the SpaceNet3 dataset with 5% labeled data.

NS, and ST with IL effectively boost model performance, which is consistent with our previous experimental
results obtained from 1% labeled SpaceNet3 data. The F1 score of our proposed semi-supervised iterative method
achieves 0.6774, which outperforms the result of the supervised model trained with 10% labeled data (0.6295) and
is only 2.9 percent lower than the supervised model trained over the full dataset (0.7066).
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5 CONCLUSION

In this paper, we propose an iterative semi-supervised approach for extracting roads in aerial images. We developed
a pixel-wise contrastive loss to force similarity between positive pairs and dissimilarity for negative pairs. An
iterative labeling scheme is employed to fully explore the knowledge of raw unlabeled images and generate pseudo
image labels. Based on the proposed contrastive loss, a negative sampling strategy is developed to filter false
negative samples. Extensive experiments on public datasets demonstrate that our method achieves state-of-the-art
in the task of image-based road extraction and outperforms the other semi-supervised segmentation models.
Our method can also be generalized well on different datasets while trained on varying amounts of labeled data.
The developed techniques have broad applications in multimedia computing, including video parsing, image
understanding, and classification.
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