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ABSTRACT
In order tomeet the capacity needs of LoRa networks, Adaptive Data
Rate (ADR) has been proposed and implemented in LoRaWANs.
The network server running ADR determines the optimum data-
rate and hence spreading factor setting for each LoRa device in a
network. This in turn requires the gateway to be capable of receiv-
ing all possible spreading factors. Existing gateways achieve this
by using multiple RF front ends, increasing their overall cost and
complexity. In this work, we propose a Discrete Wavelet Transform
based spreading factor detection algorithm that is agnostic to trans-
mitter settings. This computationally light-weight algorithm can
be implemented on any off-the-shelf SDR, bringing down the cost
and ease of LoRaWAN gateway implementations. Using experimen-
tal, real-world datasets, we show that the proposed algorithm can
detect the spreading factor of over 99.5% of the received packets at
SNRs down to -10dB.

CCS CONCEPTS
• Networks → Wireless access points, base stations and in-
frastructure; Packet classification.
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1 INTRODUCTION
The popularity of LoRa [1] has highlighted the need to support large-
scale deployments of end devices spread across a wide area [2–4].
LoRaWAN [5] was proposed as the Medium Access Control (MAC)
layer to address the growing capacity needs of LoRa networks. Lo-
RaWAN architecture connects the end devices to a network server
through gateways. The end devices implement an ALOHA-based
MAC protocol to communicate with the gateway, and are hence
not associated with a specific gateway. The gateway demodulates
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LoRa samples, converts to IP packet, and relays them to a network
server through the internet backhaul.

To meet the connectivity and capacity needs of networks, multi-
ple LoRa gateways have been proposed as a solution [6]. If multiple
copies of the same message are received by the network server,
only one of the duplicates are forwarded to applications. Thus, the
network server keeps track of messages from the same end devices
through multiple gateways. The benefits of multiple gateways were
experimentally shown in a case study by LoRa [7]. However, simply
adding more gateways is a costly solution. This led to the devel-
opment of Adaptive Data Rate (ADR) by LoRa alliance [8]. ADR
optimizes network capacity and energy consumption of end devices
by allowing gateways to dictate the transmit power, SF, bandwidth
and coding rates of end nodes based on the history of their received
Signal to Noise Ratios (SNR). ADR is implemented at the network
server; this allows gateways to intelligently reduce transmit powers
of end devices to only be heard by the closest gateway, while also
setting SF to improve overall network throughput. [9].

The data-rate of a LoRa end device can be set by three key factors:
1) Spreading Factor (SF) 2) Bandwidth (BW) and 3) Coding Rate
(CR). LoRaWAN standards allow SF to takes values from [7, 8, 9, 10,
11, 12], a BW from [125kHz, 250kHz, 500kHz] and a CR from [4/5,
4/6, 4/7, 4/8]. Of these parameters, SF is unique to LoRa modulation.
By changing their SF, LoRa devices can directly trade-off their range
for their data-rate. Therefore, to successfully implement ADR in a
LoRaWAN network, the end devices will often vary their data-rate
through their individual SFs. However, unlike WiFi, where the data-
rate is indicated in the physical layer header of every packet, a LoRa
end device transmits the entire packet, including its preamble using
a predetermined SF. Therefore, in an ADR network, the gateway
must be capable of receiving LoRa packets with any of the six SFs.
Current LoRa gateways achieve this by implementing multiple,
parallel radio frontends [10], each continually demodulating using
a specific SF. Thus a LoRa gateway capable of ADR correlates raw
I/Q samples with the preamble of each SF (7 through 12) to detect
the SF of the transmitter.

This expensive requirement has led to the development of LoRa
gateways costing over 100s and even 1000s of dollars, depend-
ing on the number of parallel SFs and channels that can be pro-
cessed [11, 12]. The focus of this work is to connect LoRa devices to
a network server with ADR while only using a single low-cost LoRa
gateway implemented on relatively inexpensive software defined
radios (SDR) [3, 13, 14]. Particularly, we focus on the problem
of detecting the spreading factor of a single received LoRa
packet at the gateway without the prior knowledge of the
transmitter settings in real-time using a single RF front end.

We propose a Discrete Wavelet Transform (DWT) based SF detec-
tor that can estimate the SF of a received packet without any prior
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Figure 1: (a) Existing Technique for SF detection (b)
Proposed Technique for SF detection

knowledge of the transmitter settings. The proposed DWT-based SF
detection can be implemented using off-the-shelf SDR in conjunc-
tion with software defined LoRa demodulators and decoders. Thus,
a low-cost SDR with the ability to detect SF can open the research
community to explore more challenges and opportunities in ADR
for LoRaWAN without the need for expensive ADR-capable base
stations.

Towards our goal of low-cost LoRaWAN gateways, we make the
following contributions:

• We propose a low complexity, Discrete Wavelet Transform
(DWT) based spreading factor detector to estimate the data-
rate settings of LoRa end devices without prior knowledge
of the transmitter settings.

• We perform practical experiments and show that the pro-
posed algorithm can detect all SFs making it suitable for
practical deployments with ADR.

• We show that the proposed algorithm can correctly detect
all SFs for 99.5% of received packets at or above -10dB of
SNR, displaying its potential for use in long-range, wide area
networks.

2 AN OVERVIEW OF LORAWAN AND ADR
CSS Modulation. LoRa uses Chirp Spread Spectrum (CSS) scheme
to modulate data. Data symbol is derived by cyclically shifting a
base chirp by a frequency 𝑓𝑠𝑦𝑚 . Base chirp’s frequency increases
linearly from −𝐵𝑊

2 to 𝐵𝑊
2 over a symbol duration 𝑇𝑠 where 𝐵𝑊 is

the bandwidth of transmission and 𝑇𝑠 can be defined as 𝑇𝑠 = 2𝑆𝐹
𝐵𝑊

.
𝑆𝐹 ∈ {7, 8, 9, 10, 11, 12} defines a packet’s Spreading Factor, a value
that dictates both data-rate and resilience to interference.

In order to demodulate LoRa’s symbols, the receiver starts by
determining the boundaries of symbols within a packet by search-
ing for its preamble. The LoRa preamble comprises of a sequence
of 𝑁 = 6 to 65535 consecutive base chirps, followed by two SYNC

Figure 2: Time-Frequency Slope of different SFs

symbols, 2.25 down-chirps and then the data symbols. LoRa packet
structure does not contain Spreading factor information explicitly.
To detect a new packet, the receiver has to continuously de-chirp
the received buffer with downchirps of S= 7,8, . . . , 12 and performs
an FFT to each SF stream until it finds 𝑁 consecutive peaks with
the same frequency. Alternatively, recent works [15–17] rely on
correlating received buffer with base chirp to detect preamble se-
quence. The SYNC words and down-chirps then help locate the
symbol boundaries, followed by de-chirping and FFT.
Adaptive Data Rate (ADR): LoRaWAN supports ADR [5], through
which it assigns or changes the data rates of end nodes based on
their proximity to the gateway and their link quality. As mentioned
earlier, end nodes can transmit at different SFs, which in turn de-
termines the data rate. If an end node is closer to the gateway, it is
generally assigned a lower SF which promises low time-on-air for
packets i.e. higher data rates. Whereas the end nodes not enjoying
a good link quality are given higher SF, which ensures connectivity
at the cost of more airtime, i.e. low data rates.
Existing SF Detection in LoRaWAN Gateways: To support ADR
in a network, LoRaWAN will distribute SFs across multiple end
nodes to optimize throughput andminimize airtime. Upon receiving
any arbitrary SF packet, gateways will lack prior knowledge of what
SF to demodulate. As discussed earlier, to detect every possible SF,
ADR enabled gateways must correlate the received buffer with
Upchirps of SF= 7, 8, . . ., 12 as shown in Fig. 1(a), or dechirp the
buffer with Downchirps of each SF. The upchirp whose SF matches
the SF of the packet in the received buffer yields 8 consecutive
correlation peaks that are 2𝑆𝐹 samples apart. The gateway looks
for such peaks across all the branches and upon detecting these
peaks finalizes the packet start time and the corresponding SF. The
packet start time is then used to demodulate the packet.

3 DISCRETE WAVELET TRANSFORM TO
DETECT SPREADING FACTOR

In this work, we propose to use Discrete Wavelet Transform (DWT)
followed by Fast Fourier Transform (FFT) to detect the SF and
hence the data-rate settings of a LoRa packet, without correlating
the buffer with downchirps of all SFs. We leverage the periodicity
of DWT coefficients that is unique to each SF to determine the
data-rate settings of a given packet. Since LoRa uses CSS modula-
tion, the frequency of a symbol increases linearly with time. SFs
define the slope of this linear increase. For example in Fig. 2, given
a BW, packets of different SFs have different slopes. This slope
governs the rate at which the frequency varies, and correspond-
ingly varies the duration of individual chirps. Given the preamble
of LoRa packets contain repeated chirps, we can infer SF from the
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unique frequency-duration signature of any given packet. We ex-
tract this information using a light-weight, time-frequency analysis
algorithm and estimate the SF without relying on dechirping or
correlation.

3.1 A Primer on DWT
The Wavelet Transform is a multi-resolution technique that de-
composes an input signal using a set of mutually orthogonal ba-
sis functions which are shifted and scaled versions of a ‘mother
wavelet’. Each shifting and scaling of the mother wavelet provides
a unique band-pass spectrum that can correlate with the input sig-
nal’s spectral content at that time and frequency. These various
scaled wavelets can be converted to high and low-pass filters that
can efficiently decompose a signal’s frequency and time content.
Different mother wavelets have been designed for specific applica-
tions ranging from computational efficiency to specific input signal
correlation.

The Discrete Wavelet Transform (DWT) is a popular, low com-
plexity variant of the Wavelet Transform, that is used for time-
frequency analysis and compression of digital signals [18]. We
propose to use DWT to infer the spectral content and inturn the
SF of a LoRa packet. DWT extracts spectral content by dyadically
applying a discretized mother wavelet’s low and high-pass filters
on a signal. Fig. 3 shows a k-level DWT that uses a series of high
and low pass filters ℎ[𝑛] and 𝑔[𝑛] respectively to decompose a
signal to fewer and fewer coefficients at each level, where the low-
pass coefficients are downsampled and iterated upon again. Initial
decomposition levels provide high time-resolution but poor fre-
quency resolution, whereas later levels trade time resolution for
higher frequency resolution.

Given an input signal of length N, the above described filter
bank implementation of DWT could be implemented in𝑂 (𝑁 ) time
complexity. DWT’s lower computational complexity and its ability
to provide time-frequency resolution makes it an excellent choice
for extracting SF from chirp signals in real-time.

3.2 Periodicity of DWT coefficients
Typically, the raw samples at the LoRa gateways are oversampled in
order to capture hardware based frequency offsets and time offsets.
Therefore, the DWT coefficients corresponding to lower levels are
mostly attributed to high frequency noise. However, as the order of
the level increases, we begin to observe a periodicity in the DWT
coefficients. Fig. 4 shows the DWT coefficients of an SF 10 and an
SF 11 signal respectively, particularly over a preamble portion. A
periodic pattern in the DWT coefficients can be clearly seen in the
levels 3 through 5+ in Fig. 4(a) and (c) for both the SFs. While the
pattern looks similar for both SFs, the time period over which the
parabolic pattern repeats is different for both SFs. This periodicity
corresponds to the symbol duration of the packet and hence
is unique to each SF.More precisely, the period of an SF11’s single
level DWT coefficients are twice that of an SF10 signal’s coefficients.
We then leverage an FFT to capture this periodicity and uniquely
identify the SF of any received packet without prior knowledge of
the transmitter settings.

Figure 3: DWT Filter Bank Representation

In this work, we focus on DWT-based SF detection for LoRaWAN
Class B and Class C devices, where the gateway transmits a syn-
chronization beacon to schedule uplink data transmission. Class
A LoRaWAN devices follows ALOHA-based MAC protocol where
end nodes initiate the transmission, while class B and C utilize a
slotted ALOHA protocol. Because class B and C end devices are
synchronized to the base station our algorithm can easily run on the
portion of a received buffer corresponding to any received packet’s
preamble. Our algorithm assumes that there exists some packet in
the receive buffer at these time slots and only acts as an SF estimate,
not a packet detector. The SF estimate can then be provided to any
LoRa demodulation and decoding technique running on the base
station before being sent to the cloud.

Fig. 1(b) illustrates the components of our proposed SF detection
algorithm. On receiving raw I/Q samples in the receive buffer, we
compute an N-level DWT. The DWT level of interest is determined
by the oversampling factor. An oversampling factor of 4X would
render meaningful time-frequency resolution in Level 3 and a factor
of 8X would lead to meaningful information in Level 4. For a given
bandwidth, the oversampling factor is known at the gateway and
hence the corresponding level is determined. Let us consider an
oversampling factor of 4X in the rest of this discussion; Level-3
DWT coefficients convey the time-frequency components of the re-
ceived signal. Therefore, performing an FFT on Level-3 coefficients
will reveal the periodicity of chirp signals, and correspondingly
the SF. However, the length of this FFT window will determine the
accuracy of detecting the above mentioned periodicity.

We identify the optimum FFT window size to be equal to 8 sym-
bols of SF10 (this corresponds to the preamble length of an SF10
packet. This choice is experimentally justified in section 4.2).Within
the FFT, we compute the index of the maximum peak which tells
us about the SF of the underlying packet (assuming there always is
one). For example, the Level-3 DWT Coefficients and their corre-
sponding FFT of an SF10 packet is shown in Fig. 4(a) and Fig. 4(b)
respectively. The index of the maximum is 8Hz, i.e, the periodicity
of DWT coefficients is 8Hz. On the other hand, Level-3 DWT Co-
efficients and the corresponding FFT of an SF11 packet is shown
Fig. 4(c) and Fig. 4(d) respectively; here, the index of maximum peak
is 4Hz. Since SF11 chirps have twice the symbol duration as that of
SF10, its corresponding DWT coefficients display a frequency half
that of SF10. By comparing Figs 4(b) and (d), the frequency peak
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(a) (b)

(c) (d)
Figure 4: 5-Level DWT Coefficients of LoRa Signal with different SF (a) SF = 10, 5-Level DWT Coeff. (b) SF = 10, FFT of 3rd level

Coeff. (c) SF = 11, 5-Level DWT Coeff. (d) SF = 11, FFT of 3rd level Coeff.

for (d) is exactly half of that of (b). 1 Thus, we uniquely map the
FFT peak of DWT coefficients to the SF of the received packet. Our
results in Section 4 show that the proposed algorithm extracts the
maximum peak index which identifies accurate SF of LoRa signal
at SNRs lower than -20dB.

FFT window selection algorithm: In order to track the period-
icity of DWT coefficients, we need at least 2 symbols for all SFs to
be lying in our window, so that FFT is able to capture the frequency
with high resolution. A preamble of SF10 contains at least 2 symbols
of SF12 and 64 symbols of SF7 (ref. Fig. 2). Our choice of 8 SF10
symbols ensures that at least 2 symbols from the preamble for each
SF would lie within our window and it’s periodicity be captured by
FFT.

3.3 Computational Complexity
Our proposed framework significantly reduces the number of oper-
ations performed to detect SF unlike in current LoRa gateways, as
evident in Fig. 1s (a) and (b). Existing gateways perform correlation
for each individual SF to detect incoming packets. Given𝑀 SFs and
a received buffer of length 𝑁 , it takes 𝑂 (𝑀𝑁 2) computations to
accurately detect every incoming packet. Whereas our proposed
method consists of only a single operation for all SFs, and identifies
the SF with only 𝑂 (𝑁 + 𝑁𝑙𝑜𝑔𝑁 ) run-time.
1We also observe some harmonics in high SNR packets, but these harmonics are always
less in magnitude than the chirp frequency and showed no hindrance to our results in
practice.

4 EVALUATION
We evaluate the accuracy of DWT-based SF detection using real-
world traces of LoRa packets across all SFs and over a wide range
of SNRs. We show that we can detect the SFs of close to 100% of all
packets received at SNRs greater than -10 dB. We further evaluate
the impact of DWT wavelet family selection, and the length of FFT
window on the accuracy of SF detection.

Experimental Setup. We collected samples using USRP B200 [19],
sampling at 1 MSamples per second in an outdoor setup, with COTS
LoRa transceivers [20] sending packets with BW = 125kHz and SF
ranging form 7 through 12 to emulate an ADR driven network.
Each trace lasts 5 minutes. The distance between the transmitter
and the receiver was varied between 2 meters and 100 meters, both
line-of-sight and non-line-of-sight to emulate SNR variations. To
simulate longer network distances, the LoRa node’s transmit power
was restricted to the hardware minimum of 2dBm. To determine the
ground truth, the captured trace was passed through six standard
LoRa demodulators and decoders (one of each spreading factor).
The six demodulators were able to successfully detect and decode
a total of 1694 total packets. As can be seen in Fig. 5, these packets
span an SNR range from -30dB to +30dB with an average of 0dB.

Implementation. The proposed SF detector is implemented as
a python function utilizing the pyWavelets library for the initial
DWT, and Numpy for the chirp frequency calculation. Overall this
simple-yet-efficient function consists of only 5 lines of python code
and can run on any low-cost SDR I/Q stream in real-time. While in
post-processing, the algorithm qualitatively can more than keep up
with our collected 8x over-sampled data. Thus promising real-time
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Figure 5: SNR distribution of collected LoRa packets

operation in practical deployments even at 1 MSamples per second
sampling frequency. We choose biorthogonal wavelets in the rest of
our implementation, as well as an SF10 8-chirp preamble window
size for our FFT. These configuration parameters are discussed
below in 4.2 and 4.3 respectively.

4.1 Overall SF Detector Accuracy
We perform DWT-based SF detection on the 1694 packets collected
from our real-world trace. The SNR of these 1694 packets varied
from -30dB to +30dB while SF sweeps from 7 through 12. The
overall accuracy of our proposed SF detection against standard
LoRa’s parallel front-end detection is presented in Fig. 6 for various
SNR ranges and SFs. These results show the excellent performance
in the SF detector in accurately determining a single packet’s SF
without any prior knowledge about the transmitter. Overall our
design showed 99.5% accuracy across all spreading factors with an
SNR over -10dB, and 100% accuracy across all spreading factors
over -5dB. As can be seen in Fig. 6, the detection accuracy for
SF9-10 packets was 100% even down to -20dB of SNR. Due to the
limitations of the window size (further evaluated below), we do
witness a drop in accuracy for the largest and the smallest SF packets
at the moment. We plan to explore this further in our future work
to improve the accuracy of all SFs to 100% even in these ultra-low
SNR ranges. It must be noted the achieved accuracy in detecting
SFs was done at the low computation cost of one DWT+FFT, and
low hardware cost of one SDR front-end. As opposed to multi-
channel LoRa gateways with parallel front-ends, we are able to
detect majority of the packets using COTS software defined radios.

4.2 Impact of FFT Window Size
As discussed in §3.2, the FFT window size determines the resolu-
tion of periodicity, in turn the accuracy of SF detection. While the
ideal window size would be equal to a packet’s preamble length,
this length will vary depending on the SF, creating a chicken-egg
problem. For example: if a selected window is only as long as an
SF7 preamble, packets of SF10 will only fit a single chirp, and pack-
ets of SF11 and 12 will not even fit in this window (thus they are
undetectable). Conversely, if a window is the length of an SF12
preamble, an SF7 preamble will only make up at most 1/32nd of
the overall FFT energy, and will be buried in the noise of its own

Figure 6: SF predictor accuracy over various ranges of SNRs

Figure 7: Impact of FFT window size on SF detector accuracy.
The optimum window size is highlighted.

data symbols. With these issues in mind, we decided an optimal
window would be around 8 SF10 chirps long.

We verify the correctness of our design choice in Fig 7. Here, we
present a heat map of the percentage of packets detected for each
SF in x-axis, for varying DWT+FFT window sizes in y-axis. It can
be seen that SF7 packets are detected with the highest accuracy
when the window length is equal to SF7 and similarly for other
SFs. We can also clearly see that when a small window such as
an SF7 preamble is used, larger packets are almost never properly
detected. Conversely, SF11-12 sized windows detect <50% of SF7-8
packets while detecting >95% of SF11-12 packets. As can be seen
in the darkened diagonal line in Fig. 7, a window with the same
length as a preamble will yield the most accurate results.

We selected the window length that provided the most accuracy
across all 6 SFs which, as assumed, happened to be an SF10 preamble
(dashed box). This window size is able to still accumulate two chirps
of SF12 preambles, while SF7 preambles will at least account for
1/8th of the overall window’s energy.

4.3 Effect of Wavelet Families
DWT allows users to pick and choose among various families of
"Mother-Wavelets". The choice of mother wavelet changes the fre-
quency response of the low pass and high pass filters in the filter
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Figure 8: SF detector accuracy as a function of
Wavelet-Families over various SNR ranges.

bank implementation(Fig. 3). In this section, we evaluate the impact
of various wavelet families on the accuracy of SF detection. Fig. 8
plots the SF detection accuracy over all SFs for various SNR ranges
as a function of four wavelet families viz., Daubechies, Symlet,
Bi-orthogonal, and Reverse Bi-orthogonal. While all of them have
comparable detection accuracy at high SNRs, at extremely low SNR,
biorthogonal has the highest accuracy. Based on our exhaustive
search over all available wavelet families, Bi-orthogonal performs
the best in majority of the scenarios. We believe further analysis
on the theoretical and experimental evaluation of the impact of
wavelet families will further improve the detection accuracy.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we present a DWT-based SF detection algorithm that
enables an inexpensive SDR to replace high-end LoRa gateways.
The low complexity of the DWT significantly reduces the number
of computations compared to existing solutions. We hope that this
work will allow researchers to use SDRs to implement and improve
Adaptive Data Rate algorithms in actual LoRaWAN deployments, as
there is plenty of room to improve LoRa network throughput. We
also believe that there is room for further research to improve the
proposed algorithm and the achieved results. We plan on addressing
the following as part of our future work.
• At SNRs < -10dB, SF detection suffers due to the choice of FFT
window sizing. Our current FFT window encompasses only 2
symbols of SF12 packets, whereas a larger window would im-
prove the detection accuracy of these packets. This would lead to
higher FFT peaks and thus further improve SF detection at lower
SNRs. We plan on working with multiple FFT sub-windows to
accumulate larger SFs energy over a long period of time, while
not forfeiting the accuracy of smaller FFT windows on smaller
SFs.

• Due to hardware inaccuracies as well as DWT filter transition-
bands, chirp energy leaks across adjacent DWT levels as shown
in Fig. 4(a), resulting in harmonics. Further work needs to be
done on either suppressing these harmonics to obtain clean FFT
peaks, or accumulating signal energy from these harmonics to
potentially boost SNR robustness.

• We currently use standard signal processing to infer SF from the
distribution of FFT peaks. Simple machine-learning algorithms
could be trained on these FFT peaks to potentially further boost
performance.

• The current design assumes course synchronization i.e. it detects
SF on a received buffer in time slots followed by beacons (per
LoRaWAN Class B and C). We plan on presenting a similar frame-
work for LoRaWAN Class A devices as well where end nodes are
completely un-synchronized with the base station. Initial results
show that as long as a preamble is contained within the bounds
of the FFT window, accuracy is not hindered.

• Our current implementation assumes prior knowledge of the
bandwidth of operation. Due to DWT’s dyadic filter decomposi-
tion, incoming packet bandwidths can also be estimated through
simple level-wise energy comparisons, allowing us to expand
on the range of variables ADR can change.. We have estimated
signal bandwidth by simply comparing average energy at each
potential bandwidth’s corresponding DWT decomposition level.

• ADR allows multiple end devices to transmit simultaneously. We
plan to expand this work to detect in the presence of inter-SF
packet collisions.
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