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Figure 1: A drawing transform (DT) is a fexible primitive that uses vector geometry to defne a procedural transformation. 
Here we show the breadth of ways DTs can transform artwork: (a) position artwork, (b) update a hue distribution, (c) translate 
a shape, (d), animate vertex geometry, (e) interpolate duplication rates, and (f) loop and modify the easing of an animation. 

ABSTRACT 
Procedural functionality enables visual creators to rapidly edit, 
explore alternatives, and fne-tune artwork in many domains in-
cluding illustration, motion graphics, and interactive animation. 
Symbolic procedural tools, such as textual programming languages, 
are highly expressive but often limit directly manipulating con-
crete artwork; whereas direct manipulation tools support some 
procedural expression but limit creators to pre-defned behaviors 
and inputs. Inspired by visions of using geometric input to create 
procedural relationships, we identify an opportunity to use vector 
geometry from artwork to specify expressive user-defned proce-
dural functions. We present Drawing Transforms (DTs), a technique 
that enables the use of any drawing to procedurally transform the 
stylistic, spatial, and temporal properties of target artwork. We 
apply DTs in a prototype motion graphics system to author contin-
uous and discrete transformations, modify multiple elements in a 
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composition simultaneously, create animations, and control fne-
grained procedural instantiation. We discuss how DTs can unify 
procedural authoring through direct manipulation across visual 
media domains. 
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1 INTRODUCTION 
Procedural authoring—describing a visual work as a series of instruc-
tions or relationships executed by a computer—enables creators to 
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create generative and interactive works, automate tasks, and man-
age complex compositions [35]. Creators procedurally defne and 
parameterize many types of artwork: data visualizations [16], mod-
els in computer-aided design and fabrication [39], and generative 
illustrations and animations [33]. 

To work procedurally, creators often rely on symbolic tools [35]. 
Symbolic tools for generating visual output consist of textual [43] 
or visual [10, 12, 17] programming languages. These tools are ex-
tremely computationally expressive because creators can use low-
level primitives and abstractions to create custom procedural be-
haviors. The representational nature of symbolic tools can present 
barriers for some visual creators who are accustomed to working 
with graphic representations and direct manipulation. Direct manip-
ulation software lets creators access the benefts of digital author-
ing and interact through concrete representations with continuous 
and immediate visual feedback on the results of their actions [45]. 
Moreover, visual thinkers can use direct manipulation for problem 
solving [53] because they can develop mental models of abstract 
problems through concrete visual interaction [24]. 

To integrate the opportunities of symbolic programming and 
direct manipulation, researchers and software designers have devel-
oped procedural direct manipulation systems: tools where creators 
control procedural relationships through the direct manipulation 
of graphical elements [13, 20, 25, 55, 57, 58]. These systems are 
powerful because they support describing constraints, mappings, 
and other procedural efects through direct selection and sketching 
in the drawing canvas. Current procedural direct manipulation sys-
tems are often limited in comparison to symbolic tools in two ways. 
First, they may rely on predefned mapping behaviors [20, 28, 58], 
limiting creators to accessing procedural functionality that is en-
capsulated in fxed, high-level data types which constrain the range 
of outcomes. Second, diferent systems rely on diferent types of 
mappings to achieve similar outcomes [55, 58]. As a result, specifc 
interaction techniques developed in one system often only apply 
to one target efect. For example, a creator might use object con-
straints to control the layout of multiple elements [20] and kinetic 
textures to control the animation of multiple elements [26]. While 
this may not be a signifcant restriction for individual applications, 
it presents a fundamental limitation towards developing interop-
erable procedural direct manipulation paradigms [1]–for example 
in cases where creators seek to integrate procedural layout and 
animation. 

We are inspired by the opportunities of domain-specifc proce-
dural direct manipulation systems. Our objective is to contribute 
a generalizable procedural-graphical interaction approach. Specif-
ically, we seek to develop a fexible mechanism for procedural 
authoring wherein creators use geometry to describe processes for 
transforming graphical elements. Our objective is centered around 
three intersecting design objectives: 

• Flexible input: any geometry should be interpretable as 
procedure. 

• Procedural expressiveness: geometry should determine 
the behavior of low-level procedural relationships. 

• Breadth of application: our method should generalize to 
efects afording procedural control of stylistic, spatial, and 
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temporal qualities of visual output, as well as behaviors that 
integrate these properties. 

We introduce Drawing Transforms (DTs), a novel interaction 
primitive that extracts geometry from any manually-drawn input 
to specify expressive procedural transformations of target artwork. 
DTs enable authoring low-level transformations of target artwork 
through a fexible parameterization of arbitrary vector graphic in-
put; creators can use hand-drawn input to describe continuous and 
discrete transformations, evaluate conditionals, and map transfor-
mations to single or multiple targets. DTs also support abstraction 
and reuse by enabling creators to create diferent transformations 
by manipulating the geometry context. 

To illustrate how a person would use DTs within a sample system, 
we describe an example artist, Lily, who is creating a digital birthday 
invitation. Lily has drawn a balloon and wants to change its color. 
She taps on it to select its color and then draws a vector curve in 
an upward arc. The system uses the starting point of the curve 
to map to the default base color of the balloon and interprets the 
curve to change the color of the balloon to red. Lily selects the arc 
and clicks on a play icon in the system interface that allows her 
to see that instead of instantly changing the color of the balloon 
she can play the change over time as an animation. She creates 
many copies of the balloon and applies the same animation. She 
draws another upward arc to test out a diferent color change from 
blue to purple. She tries to group both arcs and use them together 
to transform the color of the balloons. They change from blue to 
a range of colors between purple and red. Then she realizes she 
can also animate how the balloons are moving by selecting their 
position and drawing a few winding motion paths from the middle 
to the top of the page. Instead of having them move at a steady 
rate, she taps on the motion paths and draws how she wants the 
balloons to move: a straight line for a steady speed, then an arc 
curved upwards so they increase in speed. For good measure, she 
moves her pen in a squiggly line up and down so the balloons bob 
up and down near the top of the card. Lily has created a custom, 
generative animation of a bunch of balloons by hand. 

DTs builds on prior approaches in procedural direct manipula-
tion to use properties of artwork to manipulate artwork [20]. We 
contribute an interaction primitive that enables controlling distribu-
tions across space, style, and time for multiple elements. In contrast 
to higher-level procedural direct manipulation tools, DTs are akin 
to a lower-level programming language: more procedurally expres-
sive and requiring additional authoring efort to express complex 
outcomes. 

We informed the design and implementation of DTs through 
expert interviews with visual motion graphics artists and designers 
who work across symbolic programming and direct manipulation. 
We used these interviews to identify strategies for managing distri-
butions of visual elements across space and time. We also analyzed 
the interaction techniques and applications of prominent proce-
dural direct manipulation tools for visual art, design, animation, and 
interactivity to identify factors that shape authoring expressiveness 
across multiple visual media domains. 

We evaluated the procedural expressiveness of our approach 
by implementing the DT primitive in an example animation and 
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motion graphics system for animating multiple elements simul-
taneously (AMES). We used this system to recreate and extend 
animation and motion graphics work created with prominent pro-
cedural direct manipulation and symbolic programming systems. 
Our examples demonstrate the range of procedural control and 
expression that is possible with our approach. We demonstrate 
how DTs can: 1) recreate procedural distributions from prior direct 
manipulation systems while also augmenting the output with an-
imated efects, 2) reproduce complex motion graphics work that 
was originally developed with the Java programming language, and 
3) generate and control a variety of particle-system efects from 
the ground up rather than rely on pre-defned particle behaviors. 
We draw from these example applications to describe the potential 
applications of DTs to other domains of visual expression. 

2 RELATED WORK 
Working through concrete, visual, and geometric depictions has 
many advantages. Manual and digital sketching tools enable artists 
to create sophisticated outcomes through manual skill [38]. Sketch-
ing can also play a role in cognition. Many people solve problems 
by sketching graphic elements, and drawings can encapsulate infor-
mation more efciently than symbols [11]. Graphic depiction is also 
fast [22] and the speed of drawing allows creators to make decisions 
and act on them while working [3]. Eforts to integrate sketching, 
geometric representation, and computational expression have been 
underway since the advent of modern computing [11, 14]. Notable 
examples include SketchPad, which supports object-oriented rela-
tionships in geometry [46] and GRAIL which enables creators to 
quickly specify procedures by graphically drawing fowcharts [7]. 
In the remainder of this section, we describe recent eforts to blend 
procedural authoring and direct manipulation. 

2.1 Integrating Symbolic and Direct Interaction 
Researchers and software developers have augmented direct ma-
nipulation design tools through the addition of symbolic program-
ming languages. Commercial design technologies for motion graph-
ics [17], VR development [48], and CAD [10] feature visual program-
ming languages that can read input from the direct manipulation 
environment and produce visual output. These languages extend 
direct manipulation by enabling automation and non-destructive 
edits, however; they enforce a strong separation between editing 
procedures and directly interacting with the artwork [51]. 

HCI researchers have explored visual programming interfaces 
and language design aimed at lowering barriers to generating pro-
cedural behaviors for visual design applications. Interstate enables 
the creation of interactive behaviors through a visual notation that 
graphically depicts state-constraint program structure [41]. Dy-
namic Brushes enables visual artists to author manual-procedural 
drawing behaviors by using stylus input as a frst-class datatype [19] 
and by visualizing program state on the drawing canvas [34]. Ma 
et al. developed a tool for stylized animations that propagates high-
level edits to animation behavior in a timeline sequencer using a 
node-graph-based programming language that supports custom 
behaviors [37]. These works demonstrate how low-level proce-
dural descriptions support idiosyncratic visual expression. We aim 
to support similar degrees of expressiveness while avoiding the 
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separation imposed by combining symbolic language and direct 
editing of geometry. Researchers have also developed systems for 
bi-directional control between symbolic programming and direct 
manipulation. Leogo supports learners by integrating programming 
by demonstration, manipulating graphic UI elements and textual 
scripting [6] and Sketch-n-Sketch supports the authoring of textual 
programs for vector graphics creation by exposing intermediate ex-
ecution products that enable users to specify program functionality 
as they draw [13]. Our objective is aligned with the spirit of Sketch-
n-Sketch in that we seek to enable fexible procedural behaviors; 
however, we eschew symbolic languages for a geometry-oriented 
primitive that generalizes to spatial and temporal efects. 

2.2 Procedural-Direct Manipulation 
Enabling people to create visual procedural output without a sym-
bolic programming language is a major focus within HCI. Re-
searchers have developed procedural-direct manipulation systems 
across a wide range of domains. For illustration and graphic design, 
Many-Spector [15] and Para [20] enable the creation of paramet-
ric constraints between graphic elements which are automatically 
maintained as the artist edits their artwork. Recursive Drawing sup-
ports self-similar generative illustrations by embedding one draw-
ing canvas within another [44]. In animation, Skuid [28], Draco [26], 
and Energy Brushes [59] enable animators to control predefned 
animation efects and particle systems with hand-drawn strokes. 
Megafauna [4] and Kitty [25] enable creators to manipulate ani-
mation efects by sketching mapping functions on a control graph. 
Our research aims to support procedural direct manipulation ap-
plications across illustration, graphic design, and animation while 
avoiding the use of high-level pre-defned procedural functional-
ity. Our technique supports a greater range of outcomes with the 
tradeof of requiring more operations by the creator to defne a 
procedural efect. 

Researchers have also explored procedural direct manipulation 
as a means to reduce challenges in data visualization. Data Illustra-
tor [36], Struct Graphics [49] and CAST [8] enable creating static 
and animated data visualizations through a direct manipulation 
UI rather than a symbolic programming language. Data Ink [58] 
and Data-Driven Guides [29] integrate manual illustration and data 
visualization by enabling creators to constrain stylistic properties 
of hand-drawn illustrations to datasets. Unlike systems that neces-
sarily rely on using numerical datasets as input to drive procedural 
efects, DTs enables creators to use geometry as input. Victor has 
also conducted extensive work in procedural direct manipulation by 
presenting example techniques for animation [54], data visualiza-
tion [55], and game development [52]. In describing these systems, 
Victor notes the absence of a general-purpose tool or conceptual 
framework for procedural authoring through drawing [51]. Our 
work targets this exact challenge. 

Procedural direct manipulation is also powerful for designing for 
the physical world. Computer-aided design (CAD) systems such as 
Sketch-it, Make-it [21] and Cuttle [18] enable the parametric design 
of precise and complex cut patterns through automatic constraints 
on hand-drawn geometry and pre-defned parametric modifers re-
spectively. Dream Sketch integrates generative design for additive 
fabrication by constraining high-level generative growth patterns 
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within hand-drawn constraints [27]. Reality Sketch enables creators 
to sketch dynamic graphics that respond to real-world interac-
tions [47], and ChalkTalk uses sketching to create instructional 
animated diagrams [42]. These systems depend on predefned con-
straint behaviors, heuristics, or automatic sketch recognition to 
determine the procedural intent of a creator’s sketches. In contrast, 
our approach enables the creator to defne how input geometry is 
interpreted by specifying mapping context. 

Finally, researchers have applied procedural direct manipulation 
toward the development of new user interface mechanisms. Object-
Oriented Drawing [57] and StickyLines [5] support non-WIMP inter-
action paradigms by reifying graphical object editing functionality 
and layout guidelines through visually-represented constraints and 
object-oriented relationships. Sketch-sliders [50] enables creators 
to explore data visualizations through hand-sketched interface ele-
ments. Attribute Objects enables creators in VR to simultaneously 
edit the visual and animated properties of multiple 3D objects by 
grouping selected properties in a 3D graph space, and manually 
adjusting property parameters [31]. Our approach can also be used 
to create automated mechanisms for layout or animation; however, 
unlike techniques that focus exclusively on procedural manipula-
tion of visual properties, our approach also supports the creation 
of dynamic animation. 

3 DESIGN SPACE 
We informed the design and implementation of DTs by conduct-
ing expert interviews and analyzing the interaction techniques of 
prominent procedural direct manipulation tools. 

3.1 Informational Interviews 
We interviewed three professional motion graphics artists and de-
signers who work with both direct and symbolic tools. We received 
IRB approval and participant permission to participants’ identities. 
Miwa Matreyek1 is a performance artist who creates animations 
with AfterEfects. James Paterson2 is an experimental animator 
who uses symbolic tools animate hand-drawn animations. Kurt 
Kaminski3 is a media artist who uses programming languages to 
build particle systems and real-time AR animation. Each interview 
lasted 1.5 to 2 hours. We developed custom interview frameworks 
for each participant by analyzing samples of their artwork (see fg. 2 
for examples) and developing questions targeting specifc efects for 
object animation, layout, and content generation. Across all inter-
views, we focused on each artist’s use of manual and computational 
tools and methods to organize animations spatially and visually. 
We recorded each interview and discussed initial observations and 
impressions after each interview. We analyzed the recording tran-
scripts to conceptualize themes on distribution strategies, timing 
manipulation, and manual input. Our approach centered on refex-
ive analysis with a focus on emergent themes. We also distilled 
workfow descriptions for specifc efects to explore the range of 
methods in procedural and manual digital visual art. 

3.1.1 Interview Theme #1: Arrangement-Level Visual Design Prac-
tices. All three artists create and manage representations of groups 
1Miwa Matreyek: http://www.semihemisphere.com/ 
2James Paterson: https://presstube.com/hello/ 
3Kurt Kaminski: https://www.kurtkaminski.com/ 
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Figure 2: Artist work showing diferent approaches. Left: 
Kurt Kaminski– a. Melange (2017) , d. Dust (2019). Middle: 
Miwa Matreyek– b. This World Made Itself (2013), e. Infnitely 
Yours (2020). Right: James Paterson– c. Colossal Wave (2017) 
f. A 25 Minute Silent Ambient Animation Compilation (2012) 

of animations. Matreyek creates groupings of related graphic ele-
ments and then animates each group in the direct manipulation 
tool AfterEfects. She manually adjusts the animation efects of 
individual graphics to achieve variation. Kaminski uses symbolic 
programming languages to author custom particle behaviors that 
integrate fuid simulations with audio synthesis. He described how 
he envisions a collection of particles as a single entity with proper-
ties that can manifest individually. Paterson works across manual 
illustration and symbolic programming and he also develops his 
own direct manipulation animation tools. He described the difer-
ences between working on manually created artwork and “con-
trolling visual arrangements with code.” He emphasized how he 
works back and forth between symbolically describing “arrange-
ment patterns” and iterating on manually created forms. Paterson, 
Matreyek, and Kaminski’s workfows demonstrate how artists work 
at an arrangement-level to develop coordinated visual efects. 

3.1.2 Interview Theme #2: Precise Manipulation of Timing across 
Manual and Procedural Methods. Each artist relied on precise tim-
ing control regardless of their method. Paterson uses woven loops– 
variable length loops of animation where the last frame fows seam-
lessly back to the frst– to create phasing efects. He also creates 
visual density by staggering the starting points of visually related 
animations, like a cloud of ghosts, across time and space. Matreyek 
uses manual methods to manipulate loops of rotating images. She 
manually adjusts their position to correspond with other animated 
elements like a wave. Kaminski enacts precise timing control over 
his particle efects to develop interactive visuals for augmented re-
ality. He fne-tunes the timing to generate cascading efects across 
multiple particles. Collectively all artists increase the visual com-
plexity of their animations by manipulating a group of animations 
across time and fne-tuning their temporal behaviors collectively, 
either through manual or procedural methods. 

3.1.3 Interview Theme #3: Value of Manual Input. All three artists 
valued manual input for enacting control and engaging with their 
artwork regardless of whether or not they used symbolic languages. 
Kaminski desired easier mechanisms to leverage physical inputs 
like drawing curves as input. He described the improvisational 

http://www.semihemisphere.com/
https://presstube.com/hello/
https://www.kurtkaminski.com/


Drawing Transforms (DT) 

opportunities of designing animations that respond to gestural in-
puts. Matreyek described using her hands as input to create manual 
variation in the timing of particle-based animation behaviors. She 
also described the importance of manually manipulating easing 
functions to produce an efect that is “not just the same mechanical 
movement.” Paterson developed a custom VR animation tool cen-
tered around manual sketching. He emphasized how using drawing 
as the primary interaction modality made the tool “as physical 
as possible. . . leaving that spell of fow and expression unbroken.” 
Overall using manual inputs created expressive opportunities and 
facilitated continuous workfows. 

3.2 Analysis of Existing Procedural Authoring 
Techniques and Design Objectives 

We compared the results of our expert interviews to our review of 
existing procedural direct manipulation systems. We identifed four 
qualities in the design of existing procedural direct manipulation 
systems that were likely to impact key forms of expressiveness 
from our interview participants. We focused on capturing the range 
of interface and interaction design methods that shape editing 
fexibility, visual expression, and application domain. We analyzed 
how diferent approaches in existing systems contrasted or aligned 
with the practices of our interview participants. Our goal was to 
illuminate key approaches for a representation that could work 
across existing procedural direct manipulation technologies and 
support a range of visual art production. 

Editing mechanism: Mechanisms with low fexibility map a spe-
cifc geometric input in a fxed way. Strongly typed geometric inputs 
enable a system to infer author intent; however, they restrict out-
comes. Integrating symbolic notation supports expressive outcomes 
but prevents graphic manipulation. 

Procedural expression: Artists either relied on symbolic proce-
dural tools or extensive manual efort to create coordinated ani-
mations consisting of multiple elements. When using predefned 
or custom-built procedural behaviors, artists used manual input to 
fne-tune the efect. Existing systems support various degrees of 
procedural expression for the control of multiple objects including 
selecting predefned behaviors, modifying parameters of behaviors, 
designing new behaviors from fxed data types, and enabling user-
defned behaviors. Procedural tools that enable authoring low-level 
abstractions, like constraints, enable users to create their own pro-
cedural relationships to integrate the behavior of multiple elements. 

Timing support: Fine-grained control of temporal efects is criti-
cal for producing stylistically distinct animated works. In existing 
systems, timing support can be static (no representation of time), 
fxed (such as movement at a fxed rate), manipulable (varying how 
property changes over time), or (re)defnable (changing how timing 
is interpreted). 

Target application: Our interview participants worked across in-
teractive, 2D, and 3D domains. Kaminski and Paterson also blended 
software development with animation production. Existing tech-
niques in procedural direct manipulation primarily focus on author-
ing a specifc efect or target a single application area. Application-
based research is important but can create strong boundaries be-
tween tools and high learning thresholds [2]. An alternative is to 
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Figure 3: DT: geometry defnes a procedural function. A DT 
evaluates geometry based on inputs (cyan) to describe multi-
ple types of procedural behavior (green). 

develop techniques that act as substrates across diferent media 
[30]. 

We drew from our analysis to defne intersecting design objec-
tives for the DTs interaction primitive. These were: 

• Flexible input: Our approach should enable interpreting 
any 2D geometry as input. Stylistic diferences in the struc-
ture of the geometry should produce diferent procedural 
outcomes. 

• Procedural expressiveness: Creators should be able to use 
geometric input to describe low-level procedural relation-
ships that can be combined to produce diferent efects. We 
aim to support modifying attributes of abstract data types, 
to create interoperability. Creators should also be able to 
modify data structures containing artwork. 

• Breadth of application: Our approach should function for 
both static and animated output. Creators should be able to 
integrate control of spatial, stylistic, and temporal properties 
of artwork. 

4 DRAWING TRANSFORMS 
We contribute DTs a direct-manipulation primitive that uses draw-
ing to author low-level transformations of target artwork through 
a parameterization of arbitrary vector paths. Compared to exist-
ing procedural direct manipulation the DT primitive is akin to a 
low-level programming representation: more expressive and more 
complex with a greater range of parameters. The process of working 
with the DTs primitive is shaped, in part, by how it is implemented 
within a specifc procedural direct manipulation system. We de-
scribe the functional properties of the DTs primitive and then list 
several applications of DTs to author diferent types of procedural 
behavior. We provide pseudocode for the DTs parameterization and 
transformation in appendix A. 

4.1 Structure of the DT Interaction Primitive 
A drawing transform (DT) is a procedural transformation func-
tion that interprets input geometry to transform the spatial, stylistic, 
and timing properties of a target. Input geometry consists of one 
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Figure 4: Parameterization specifes how vector strokes are 
interpreted. This enables input artwork to drive function 
because segment indices can be mapped to either time or to 
an index in a collection. 

or more continuous, closed, or open vector-graphic paths with a 
start and end point. This can include but is not limited to lines, 
polylines, arcs, Bezier curves, ellipses, and irregular polygons. A 
DT procedurally transforms a target: a graphical element. In prac-
tice, targets are individual vector graphics or ordered collections of 
vector graphics. We visually summarize the DT primitive in Figure 
3. Any ordered collection can serve as either input or target geom-
etry for a DT. This could include existing vector-graphic collection 
representations like Illustrator groups–where the order is implicitly 
assigned, drawing order, or lists in procedural direct manipulation 
tools like Para [20]–where the order is explicitly set by the artist. 
Finally, because DTs themselves contain vector graphic input ge-
ometry they can also function as targets and be transformed by 
other DTs. 

With DTs, drawing is akin to authoring a function. The DT trans-
formation function evaluates input geometry through fve param-
eters: 1) geometry parameterization, which calculates numerical 
values from input geometry, 2) property mappings, which control 
how target artwork is transformed, 3) behaviors, which determine 
how property mappings function for targets comprising multiple 
elements, 4) mode which specifes if a transformation is relative or 
absolute, and 5) playback points, which are used to trigger discrete 
events when a DT is executed. We detail each parameter below. 

4.1.1 Geometry Parameterization. The geometry parameterization 
segments input geometry at even intervals to output a sequence of 
numerical values. Segmentation depends on the drawing direction 
or the start and end of the vector path. Each DT segments geometry 
in one of two ways. The frst segmentation approach is x-value 
where paths are split as even segments along the x-width. X-value 
is like using a straight edge for measurement (see fg. 4-a). The 
second segmentation approach is path-length where the path is 
split as even segments along its length (see fg. 4-c). Path-length is 
like using a measuring tape that winds along the entire length of 
the path. 
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DTs support path-length parameterization for two reasons. First, 
path-length parameterization is not dependent on traversing an 
axis from left to right. Instead, the artist can use their direction 
to describe procedural functionality. Second, path-length parame-
terization also simplifes describing periodic structure with hand-
drawn forms. For example, say the artist seeks to create a seamless 
looping animation of a bouncing ball. They can do so using an 
x-value segmentation of a waveform function (see fg 5-a) wherein 
x-value corresponds to time and y-value is mapped to the ball y-
position. However to ensure a seamless loop they must draw a 
precise waveform. The artist can create an identical transformation 
using path-length parameterization on a circle wherein path length 
corresponds to time and y-value corresponds to the ball y-position 
(see fg 5-b). If the DT is played and looped, the circle serves as a 
literal representation of a seamless loop. 

Parameterized segments are numbered. They start at index 0 (the 
start point) and continue as the artist draws. For closed shapes, seg-
mentation start and end points depend on the geometry implemen-
tation of a given system. For our testbed, we use the Paper.js [23] 
vector geometry implementation wherein the start and end points 
of a closed shape are set at the lowest point of the shape on the 
y-axis. The total segment count is determined by a predefned pa-
rameter. In practice we set this parameter dynamically with respect 
to the mapping in our testbed implementation; however, depending 
on implementation, the artist could directly specify this value for 
greater control. The segment index is used to drive the function in 
an unambiguous fashion. For example, say an artist draws a vertical 
zig-zag path where there are multiple y-values for every x-value 
on a standard x-y graph. Because segments depend on drawing 
direction, the system calculates the y value for each segment with 
respect to path length and x-intersection. Figures 4-b and 4-d show 
examples of x-value and path-length parameterization of zig-zag 
paths respectively. 

Each segment outputs four numerical values: segment index, x-
value, y-value, and path-length. Artists can use the same input path 
to specify a function across time or across a collection. Depending 
on the mapping, the DT will assign values to the target with the 
segment index corresponding to either time or collection index. If 
multiple paths are used as input, for every segment index the DT 
will calculate an array of x-value, y-value, and path-length values to 
update the target. We provide further detail on interpreting multiple 
paths in section 4.1.3. 

4.1.2 Property Mappings. The property mapping controls how the 
target artwork is updated in response to the values generated by 
the geometry parameterization. Default property mappings con-
sist of lower and upper bounds and set functions which linearly 
map a numerical value to a graphical property (e.g. property[min, 
max] = f(time or index, x, y, path length)). For example, 
consider a DT that uses the hue property to map output y-values 
from the geometry to a range of hue property values from 0 to 360. 
The property mapping sets the hue property of the target to that 
mapped value. 

The min and max ranges can be set to the default ranges for 
the given property. In our testbed, we include four categories of 
property mappings specifc to visual design applications, listed 
in Table 1. Property mappings could be expanded or modifed to 

https://Paper.js


CHI ’23, Hamburg, Germany, 
Drawing Transforms (DT) 

Figure 5: To modify the property of an element from [-1, 1] an artist can either draw a sine wave or a circle. The second repre-
sentation, using path-length parameterization, enables creating a perfect looping animation, where the end fows seamlessly to 
the start state. 

support specifc application domains. For instance, in our testbed, 
we use a property mapping to duplicate new elements where the 
property duplicates can be used to create or remove copies of an 
element. Together, parameterizations and property mappings pro-
duce diferent outcomes. For example, when a DT with a position 
property and path-length parameterization is applied or played, 
the input geometry is interpreted as a set of position values for 
multiple graphic elements in the target artwork, or a motion path 
(see fg. 1-a and c). 

We reify how the property and parameterization are used to 
interpret geometry through a graphical representation, which we 
call the mapping context. The mapping context maps the x or y-axis 
of the bounding box of input geometry to the property mapping 
range and the segmentation basis (x-width or path-length) to time 
or an indexed list. In our testbed, mapping contexts can be directly 
manipulated through operations like dragging the y-min and y-max 
values. 

4.1.3 Behaviors. Behaviors determine how a DT samples and in-
terpolates mapped property values by index to transform a target 
collection of vector graphics (e.g. Targets[i] = alternate(i, 
f[inputs])). In our testbed, we implement three behaviors listed 
in Table 1: interpolate, alternate, and random. 

Behaviors also determine how values are calculated with respect 
to the geometry of multiple paths. Figure 6 demonstrates sample 
motion-path transformations for a DT that uses two vertical curved 
paths as input to control the motion path of a collection of nine cir-
cles. In this example, interpolation produces nine diferent motion 
paths that correspond with an interpolation of the points across 
the original two input paths. Alternate produces two motion paths 
that correspond with the input paths, with odd-indexed circles 
traversing a path that corresponds with the left-most input path, 
and even-indexed circles traversing a path that corresponds with 
the right-most input. Random samples a random interpolated path 
using the input geometry paths with indices closest to the relative 
randomized index from the artwork in the target collection. The 
interpolated path is then used to calculate the value update of the 
target artwork. 

4.1.4 Modes. Modes enable describing two types of transforma-
tions for a property mapping: absolute or relative (see table 1). The 
mode determines if a property is set with or without respect to 

Table 1: Example DT Property Mappings, Behaviors, and 
Modes. 

Mappings 
Spatial E.g. position distribution, motion path, scale animation. 
Stylistic E.g. hue distribution. 
Geometric E.g. polygon number of sides distribution, vertex animation. 
Instancing E.g. duplicate each. 

Behavior 

Interpolate 
Generate a Lagrange polynomial using input, 
sample with target index / total input paths. 

Alternate 
Cycle through input geometry using 
the target index % the number of input paths. 

Random 
Generate a Lagrange polynomial using input, 
sample using a randomized index. 

Modes 
Absolute Set the target state to the start state given by the input. 
Relative Transform with respect to the original target state. 

its initial value. The transformation begins by either resetting or 
preserving the original property value for the target based on the 
mode. In our testbed, artists select a mode with a dropdown. 

4.1.5 Playback points. Playback points determine how DTs elicit 
discrete events during geometry evaluation to trigger other func-
tions. They consist of trigger-value pairs of pre-defned geometric 
conditionals like slope change and other functions, including DTs. 
Each type of playback point, such as slope change, can be calcu-
lated based on the outputs from the parameterization (e.g. segment 
index, x, y, path length) and evaluated as the DT executes. Granu-
larity afects accuracy, so the system may evaluate fner-grained 
segments to assist with playback points if a threshold is detected. 
In our testbed, artists can select playback point triggers through a 
drop-down and then indicate the triggered function by drawing a 
link to the artwork used as input to a specifc DT. 

4.2 Applications of Drawing Transforms 
Artists can author diferent types of procedural behavior with DTs 
including the following: 
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Figure 6: DTs support using multiple input paths which enables artists to author and edit a small number of input paths to 
rapidly and precisely control a large number of elements. These motion path animations were created using two paths drawn 
in opposite directions. The grey line indicates the starting point of the circles that are onion-skinned. Each application uses 
diferent interpolation behaviors: (a) interpolate, (b) alternate, and (c) random. 

4.2.1 Modify a Property Across Multiple Elements. DTs can create a 
range of property values across a collection of artwork. We use an x-
value parameterization and hue property to specify a range of hues 
in a sequence of triangles (see fg. 1-b). The artist can use random 
or evenly-spaced values from the parameterization to update or set 
hue across a collection by using diferent behaviors. 

4.2.2 Transform A Property in Time. Artists can use DTs to change 
properties over time, such as animating artwork along a motion 
path (see fg. 1-c). Because DTs use artwork as input and output, 
they support chaining behaviors. For instance, we play two DTs: a 
DT with a circle as input that defnes a motion path for a triangle 
and a DT that uses another circle to scale the frst circle. The triangle 
traverses an expanding and contracting motion path, creating an 
efect where the triangle spirals outwards and then inwards. 

4.2.3 Transform Multiple Elements Across Time. DTs also enable 
generative many-to-many animations, for example by using two 
motion paths to control the change in position over time for multi-
ple target elements. This allows artists to generate and vary multiple 
animations procedurally and drive variation across procedural func-
tions through dynamic instantiation. In Figure 1-e, we use input 
geometry paths to interpolate diferent rates at which particles 
should be duplicated across a target collection of artwork. This 
creates an efect where new instances of artwork move upwards at 
a constant rate for a fxed duration before disappearing. 

4.2.4 Transform DTs with Other DTs. DTs can procedurally trans-
form properties of other DTs. For instance, a control DT (a DT that 
modifes a DT) can modify how a target DT’s segments are mapped 
to time. We linearly map the total number of segments from the 
control DT to the total number of segments in the target DT. Then, 
when the control DT is played, its outputs (the segment index, 
time, and path length) re-parameterize the target DT’s input geom-
etry. That portion of geometry, calculated with the linear mapping 
described above, is then mapped to the time specifed by the con-
trolling DT’s output. In Figure 1-f, we use a control DT to modify a 
target DT that encodes a motion path. When the motion path DT 
is played, the pink squares traverse the motion path at a constant 
rate. When the control DT is played, the square accelerates up the 
path, slows down and descends halfway, slows down, and fnishes 
moving upwards before moving back down along the motion path. 

instance, the DT shown in Figure 1-e, uses a playback point that 
is called when new instances are generated. This playback point 
activates the motion path mapping. Another playback point for the 
motion path uses the end of the transformation to trigger removing 
the transformed artwork. With this structure, we can edit artwork 
that is being duplicated, geometry that describes the duplication 
rate, and the motion path. When we play the duplication DT, new 
instances will traverse the motion path and disappear. 

5 DEMONSTRATIVE EVALUATION 
We implemented a version of DTs by developing a testbed mo-
tion graphics system, Animating Multiple Elements Simultaneously 
(AMES) 4 with Paper.js, a JavaScript vector-graphic scripting library 
[23]. We evaluate our approach by using the DTs implementation 
in AMES to recreate and extend work from prominent procedural 
layout and motion graphics systems. First, we describe a sample 
workfow with the AMES system. Then, we show how DTs can 
support a range of procedural behaviors possible through both di-
rect manipulation and symbolic tools. We apply DTs to 1) extend 
direct-manipulation constraints to procedurally generate shapes 
and animations, 2) recreate motion graphics artwork made in a 
symbolic programming language, and 3) author distinct behaviors 
for particle systems solely through direct manipulation. 

5.1 Sample AMES Workfow 
Figure 7 shows an artist creating a DT in the AMES UI to animate 
goldfsh. After she draws a goldfsh, she uses the collection tool 
to select the goldfsh and create a collection. She then drags the 
count value (shown in UI on the canvas in a green box) to create 
additional copies. She draws two paths and adds them to a second 
collection. Using the DT button, she creates a new DT and corre-
sponding DT editor. She draws links from the input feld in the 
DT editor to the path collection and the target feld to the gold-
fsh collection. In AMES, we made a design decision to combine 
selecting property and parameterization. In our examples, static 
transformations combine a property with x-value parameterization, 
and transformations in time combine a property with a path-length 
parameterization. From a dropdown, the artist selects motion path 
(path-length parameterization and position property mapping). She 

4The source code for the AMES implementation of DTs can be found at https://github. 
4.2.5 Define Responsive Event-Driven Sequences. We can author com/SoniaHashim/ames-playground. The repository includes a link to a web-based 
persistent procedural sequences using DT playback points. For executable demonstration of the AMES system 

https://github.com/SoniaHashim/ames-playground
https://github.com/SoniaHashim/ames-playground
https://Paper.js
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Figure 7: The AMES UI (cyan annotations) enables creating 
DTs. We graphically summarize the DT that is being edited. 

adds a playback point using the playback point editor. We use this 
basic interaction structure in the examples we describe below. 

5.2 Generate Shapes and Animations 
DTs enables using manually drawn paths to author diferent types 
of procedural behavior, while also supporting the reuse of manually 
created geometry in multiple ways. In our frst example (fg. 8), an 
artist creates a twinkling starfeld by animating procedurally gen-
erated artwork. This example recreates and extends the approach 
used in the Para software [20]. 

First, four DTs are used to procedurally generate and arrange 
artwork. The frst DT controls procedural shape generation. This 
DT uses two short, vertical paths, one drawn up and one down, 
as the input geometry to modify the vertex position of a regular 
polygon (fg. 8-a). By applying this animation with alternate and 
relative behavior, each input path transforms every other vertex 
inwards or outwards based on its starting position relative to the 
polygon path. The DT creates a star shape. Moreover, it encodes a 
procedural function to create a star shape on any regular polygon 
with any number of sides. The artist can modify the number of 
sides of the polygon and experiment with diferent star shapes. The 
DT uses the drawing direction to specify meaningful information 
about how the geometry is interpreted. Next, two DTs that use the 
same input geometry are used to vary the hue and scale across 
a collection of 15 stars (fg. 8-b). The artist can edit the mapping 
context of the scale property mapping to modify the range of scale 
values that the DT uses to map output values that set the scale of 
each star. Because the same geometry is used to generate output 
values for both functions, the relative relationships between the 
hue and scale of the stars will remain the same. The last DT that 
we use to arrange artwork positions the stars at random locations 
between two hand-drawn lines by using random behavior to map 
the outputs of the DTs to generate random values constrained by 
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the input geometry (fg. 8-c). This interaction enables a random 
position distribution defned by hand-drawn geometry. 

We use two additional DTs to animate the stars– one to specify 
vertex animation and one to control animation rate. The animation 
transformation DT reuses the same input geometry used in the frst 
DT to specify a vertex animation. Instead of playing this animation 
once, which would deform the target shapes, we use a circle as 
input geometry to a second control DT. By playing the control DT, 
the animation progresses from its start to end state and then returns 
to its original state, 8. The control DT also modifes the easing of 
vertex geometry animation: the stars expand slowly at frst, then 
increase and decrease in speed. They contract with the same easing 
efect, returning to their original state. Repeating the execution of 
the control DT loops the animation seamlessly. In the fnal result, 
shown in fg. 8-e, the stars twinkle perpetually. 

Overall this example shows how DTs enable the same paramet-
ric artwork generation and layout features as Para, with greater 
fexibility. We can control both the geometry and the layout with 
the same underlying representation. Furthermore, unlike Para, this 
representation can also support the animation of the resulting art-
work. 

5.3 Recreate Artwork made with Textual Code 
DTs can recreate event-driven sequences originally created in sym-
bolic textual programming tools. In our second example (see fg. 
9), we use DTs to recreate an animation made with a textual pro-
gramming language [43] by artist Dave Whyte5 [56]. We refer to 
this artwork as the N-Gon. In the comparison of Whyte’s work 
and our recreation, we show the animation behavior of the N-Gon 
(fg.9-h, i): circles traverse as nested regular polygons with diferent 
numbers of sides. As each circle changes direction on the corner of 
a polygon, it is duplicated. The duplicated copy increases in scale 
and disappears. The circle hue matches the hue of its motion path. 

To create the N-Gon with our approach, we frst use two DTs 
to create the nested polygon structure. They both transform a 
collection of six triangles. The frst DT uses a hand-drawn line 
as input geometry to scale the triangles, creating a set of nested 
shapes (fg. 9-a). The second DT uses another hand-drawn line as 
input geometry and uses a property mapping to set the number 
of sides of each shape (fg. 9-b). Both input geometry paths reify 
the parameterization of the N-Gon geometry based on the scale 
and the number of sides respectively. Each one can be individually 
manipulated to transform a key visual attribute of the N-Gon. 

Next, we re-create the procedural event-driven animation where 
circles traverse the nested geometry as motion paths and scale up 
at the corners. We use three DTs to do this. The frst DT uses a short 
hand-drawn curve as input geometry to defne a scale animation 
(fg. 9-e). We use a playback point on this DT to remove the circle 
at the end of the scale animation. The second DT uses the same 
hand-drawn path to control the duplication of circles (fg. 9-d). 
We use a playback point on this DT where new instances trigger 
the scale animation. The third DT uses the nested polygon paths, 
(the procedurally generated artwork described above), as the input 
geometry to specify motion paths (fg. 9-c). We add a playback point 

5Dave Whyte: https://beesandbombs.com/ 

https://beesandbombs.com/
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Figure 8: Artists can use DTs to defne, arrange and animate artwork. Example 1: Twinkling Starfeld: (a) transform vertex 
geometry to procedurally generate shapes and animate artwork, (b) use a DT to vary scale and color, (c) randomly position 
stars, (e) animate vertex geometry, (c) modify animation playback to create twinkling stars, (e) the fnal result. 

so that the slope change that occurs at the corners of each polygon 
triggers the duplication DT. 

Together, these three DTs enable recreating the N-Gon anima-
tion through graphical representation rather than symbolic code. 
When we play the motion path DT, each circle is animated around 
a polygon path. When the slope of its trajectory changes, the cir-
cle is duplicated. The newly instantiated circle is scaled up before 
it disappears. Additionally, because DTs represent procedural re-
lationships as input geometry, an artist can create variations of 
the DT by editing vector graphics and visualizing geometric rela-
tionships (fg. 9-g), as opposed to editing numeric values or using 
algebraically-defned functions. DTs support reusing geometry in 
multiple ways which enables defning meaningful procedural re-
lationships directly on the canvas. Here, the nested polygons are 
used on the canvas as artwork, as motion paths, and to evaluate 
conditional events. 

5.4 Author Particle System Behaviors 
Prior procedural direct manipulation tools like Draco [26] and 
Kitty [25] rely on predefned particle behaviors to create animated 
textures. We demonstrate how DTs can be used to author particle 
system behaviors from the ground up by generating three distinct 
stylized particle system efects (fg. 10). 

5.4.1 Particle Efects: Fireworks. DTs enable 1) automating the gen-
eration of new elements using user-defned events and 2) using new 
instances to trigger animations represented by expressive, hand-
drawn artwork. In Figure 10-a, we combine these two afordances 
to create an animation of a frework. 

This example uses four DTs. The frst DT describes a motion 
path and uses hand-drawn paths in a frework shape to animate 
particles. The second DT is a control DT that changes the easing 
of the motion path animation. Instead of the animation playing 
at a constant rate, the particles accelerate as they move outward. 
The third DT duplicates the particles. We use a playback point to 
connect the end of the second DT to the third DT so that after 
the frework explodes, new particles are generated. The fourth DT 
specifes a scale animation, and uses a playback point to remove 
artwork at the end of the animation. New instances trigger the scale 
animation. 

The result is a frework-like particle system: as particles explode 
outward new particles are created that pulse briefy and disappear. 

We can loop the execution of the control DT to loop the particle 
system behavior. 

5.4.2 Particle Efects: Rain. Because DTs enable defning geometric 
procedural relationships and using geometry as fexible input, an 
artist can use DTs to interpret geometry to defne many kinds of 
procedural functionality including defning a clock. In Figure 10-b, 
we create a rain efect that consists of procedurally instantiated 
droplets at a rate determined by a motion path that acts like a clock. 
Rain is distributed evenly across motion paths that are positioned 
randomly between two horizontal lines to create uneven, but struc-
tured, animation behavior. The frst DT transforms the position 
of vertical paths across a space given by two horizontal lines. The 
second DT uses the vertical paths as motion paths to transform 
raindrops. Raindrops are procedurally instantiated using a DT that 
maps a hand-drawn curve to a duplication rate. A playback point 
uses new instances to trigger a motion transformation. Another 
playback point triggers removing the raindrop at the end of the 
motion path animation. The last DT creates a motion path-based 
animation of a small circle that traverses a large circle. This DT 
provides the timing functionality; at the end of each iteration, it 
triggers the duplication DT to create more rain. The timing DT 
determines the frequency and intensity of the rain. 

Both the frework and rain example use the same number of DTs. 
Because DTs support many types of procedural control, the artist 
can create an entirely diferent efect using low-level procedural 
functions as building blocks. 

5.4.3 Particle Efects: Smoke. DTs enable using a few input geome-
try paths to interpolate transformations of many target elements. 
We demonstrate how this afordance enables the approximation 
of the fuid movement of multiple particles. In Figure 10-c, we use 
DTs to create a particle system that resembles smoke. This example 
uses four DTs. The frst modifes the hue and scale of a collection 
of translucent circles. The remaining three specify the animation 
and use interpolate behavior to smoothly interpolate transforma-
tion functions across multiple elements. The second and third DTs 
use two hand-drawn paths that have spirals like smoke as input 
geometry. The second DT defnes a motion path transformation of 
the particles, which are removed at the end of the animation with 
a playback point. The third DT specifes the rates of procedural 
instantiation of the smoke particles. Because one path is shorter 
than the other, unequal numbers of copies are made. Fewer large 
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Figure 9: DTs enable artists to create work made in symbolic programming tools through direct graphic representation. Example 
2. N-Gon: Reproducing animation made by artist Dave Whyte. We show the authoring process (a-e), comparisons of the original 
and recreated artwork (f, h, i), and exploratory variations of our N-Gon (g). 

purple particles are duplicated in comparison to the small green 
particles. The fourth DT defnes the motion path animation of the 
smoke particles moving up a chimney. At the conclusion of the 
motion path animation, the DT triggers the duplication DT to create 
smoke particles. 

The fnal efect is a smooth animation where smoke particles 
are emitted continuously. They swirl upwards in circular patterns. 
This example shows how manually drawn motion paths can serve 
as a structure to a generative efect in DTs. 

Collectively these examples suggest that DTs could ofer a means 
to provide greater expressive control by creators in direct manipula-
tion by enabling them to edit existing behaviors or create their own 
without resorting to a symbolic representation. When we asked 
one of the artists from our formative interviews to provide their 
impressions of a full demo of DTs and its potential application to 
their work, Kurt Kaminski shared “I wish more content creation ap-
plications had interfaces like this. I use Houdini and the interface is 
not geared toward gestural input. I would love to see DTs integrated 
into Houdini, or even more so in Photoshop or AfterEfects which lag 
in both gestural and procedural tools.”. 

6 LIMITATIONS 
We focus on evaluating the computational expressiveness of DTs 
through demonstrative examples which is a common method in 
HCI toolkit research [32]. In particular, we showcase the "expressive 
match" [40] enabled by using drawing to enact multiple forms of 
procedural control akin to other procedural tools. Our starfeld 
extends an example from Para [20]: we manipulate a collection 
and also procedurally generate shapes and animations. The N-Gon 
recreates work made in Processing [43]: DTs enable describing 
user-defned procedural sequences through direct manipulation. 
Our particle systems show efects comparable to those in Kitty [25]: 
DTs let artists describe this functionality from the ground up versus 
relying on predefned efects. 

Studies with external participants would provide valuable further 
insights. We omit a study from this work because our goal is to 
present the abstraction without a prescriptive implementation of 
that abstraction. For instance, in AMES, artists can use a drop-down 
to select a property. A voice command or radial in-canvas menu may 
be a more usable mechanism to set this parameter depending on the 
use-case. Additionally, our abstraction can apply across applications 
such as VR animation tools that use VR controllers to author input 
artwork. We hope our contribution will enable others to apply 
and evaluate this primitive across diferent applications. Our focus 
is on determining the expressive range of an entirely graphical 
procedural specifcation with respect to existing standards within 
the feld of procedural direct manipulation. 

Lastly, while DTs enables artists to directly edit their artwork 
to change procedural behavior, DTs does not support bidirectional 
editing. In other words, artists can interactively edit input geometry 
to modify the result in a continuous way, but they can not modify 
the result directly. We believe this is still a valuable form of direct 
manipulation as it provides a means to enact procedural control 
through drawing and editing drawings directly. Enable bidirectional 
editing is a promising direction for future work. 

7 DISCUSSION 
In developing DTs, we sought to create a primitive that supports 
fexible input, high procedural expressiveness, and breadth of ap-
plication. In our discussion, we examine how DTs fulflls these 
objectives by analyzing how DTs applies to domains of visual cre-
ation, the trade-ofs of geometric authoring of low-level procedural 
functionality, and how DTs supports manual drawing expression. 

7.1 Supporting Drawing Expression 
Drawing is a highly expressive medium. DTs supports manual 
drawing expressiveness by enabling creators to defne procedural 
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Figure 10: DTs enable authoring distinct particle system behaviors. Example 3. Particle Efects: (a) frework, (b) rain, (c) smoke. 

behaviors through the quality of their hand-drawn lines. DTs’ path 
length parametrization allows artists to draw in any direction and 
leverage directionality in drawing to encode information about a 
transformation. This parameterization approach also allows artists 
to encode periodic structures through hand-drawn loops instead of 
drawing precise, repeating waveforms. The ability to use the same 
vector artwork as input for multiple DTs with diferent mapping 
contexts allows artists to reuse hand-drawn inputs to describe dif-
ferent procedural behaviors. This structure creates the opportunity 
to develop expressive behavior by using contextual information 
to modify how hand-drawn geometry is interpreted for specifc 
procedural functions. Lastly, playback points tie event-driven func-
tionality to properties of the drawn geometry. This combination of 
approaches can allow artists to develop their own visual structures 
for creating sequences through drawing that best serve the visual 
design task at hand. 

7.2 Geometric Authoring of Low-level 
Procedural Functionality 

DTs are aligned with the stored-program concept: a principle from 
computer architecture of using the same substrate to represent data 
and programs to operate on that data [9]. Stored-program architec-
ture can expand access to who can defne procedural functionality 
and increase the types of procedural routines that can be developed 
by using the same representation as data to defne operations on 
it. DTs apply this idea to vector graphics. Through DTs, artists use 
artwork to represent both data– the inputs and outputs of their 
compositions and programs– the procedural routines that shape 
their compositions. Beyond using artwork to control artwork in 
fxed ways, artists can author low-level forms of procedural control, 
because they can directly manipulate the artwork as data itself. 
While the ability to author low-level procedural relationships may 
increase the range of outcomes that are enabled through DTs, it can 
also place a greater burden on the artist to defne detailed mappings. 
Artists value efciency and may prefer forms of automation that 
keep them “in the loop” [35]. While DTs support “in the loop” in-
teraction through low-level procedural control, we could envision 
cases where creators might also value workfows that mix low-level 
procedural control mechanisms with pre-defned procedural behav-
iors. We see future opportunities to explore how DTs can support 

layered procedural direct manipulation systems that enable cre-
ators to move between low-level authoring and adjusting high-level 
parameters without resorting to a symbolic programming language. 

7.3 DTs as a General Visual Creation Primitive 
We build from our examples to discuss how DTs could apply to data 
visualization, CAD, and interactivity. 

7.3.1 Data Visualization. Although we did not implement data 
bindings for this work, we see opportunities for DTs to control 
how a data vector maps to a specifc property of artwork, across a 
collection or across time. For instance, a designer could use visual 
input geometry that represents the data values of deforestation 
across a collection of countries as input for a DT that sets the hue 
across a collection of illustrated tree graphics. 

7.3.2 Parametric CAD. Parametric CAD and direct modeling en-
able visual designers to construct models of objects based on con-
straints and direct manipulation of 3D geometry models. In such 
cases, designers often rely on blueprints to refer to numeric values 
to establish constraints for models. Instead of designing numeric 
constraints, artists could use DTs to directly encode procedural re-
lationships through geometry. A designer could use DTs to directly 
map the length of a line in a diagram to the geometric features 
of an input model. As a result, in addition to having procedural 
relationships update 3d geometric models based on changes to the 
model, updates to a blueprint could map directly to model edits. 

7.3.3 Interactive Illustration. Existing tools for interactive illustra-
tion allow visual creators to defne dynamic relationships between 
illustrated entities. These are often encoded through data types 
that represent specifc inputs and types of efects. DTs could aid in 
reifying relationships that might be useful in designing interactive 
relationships such as the distance from one object to another. Dis-
tance could be represented through a geometric object that serves 
as the input geometry to a DT that may control the scale of the 
target artwork. Embedded sketching tools and procedural author-
ing tools for AR and VR contexts could also use real-world inputs 
such as tracked objects. Instead of using pre-defned mappings to 
pipe these inputs into specifc procedural functions, DTs could en-
able creators to author custom procedural functionality that uses 
geometric inputs to author a variety of responsive behaviors. 



CHI ’23, Hamburg, Germany, 
Drawing Transforms (DT) 

8 CONCLUSION 
We present drawing transforms (DTs), an interaction primitive that 
expressively interprets input geometry and allows visual artists 
to use drawing and artwork to author procedural behaviors to 
manage distributions, modify one or more pieces of artwork, and 
control animations and instancing across time. We motivated DTs 
by identifying a signifcant design barrier that limits procedural 
support in visual art and design. We demonstrate several concrete 
examples of applying DTs in practice to procedural art and motion 
graphics, and we also discuss how artists can leverage DTs to author 
procedural functionality in other domains. 
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Drawing Transforms (DT) 

A PSEUDOCODE FOR DTS 
// Drawing Transform: A class that provides a mechanism to 
// transform any attribute of target artwork, stylistic, spatial, 
// or temporal by interpreting vector geometry as input for the 
// creation of fexible user-defned, procedural mapping functions 
// Parameters: Setters & getters omitted 
input // input shape or collection 
target // target shape, collection or transformation 
mode // enumerator for modes: relative, absolute 
segmentation // enumerator for parameterization: 

// x-value, path-length 
// determines state of DT (seg 0 = idx 0) 

behavior // enumerator for mapping behaviors: 
// e.g. random, alternate, interpolate 

tf_space // struct (mapping context): describes x, y range 
// for property mapping and x.y screen coords 
// and axis mappings (for linear mapping) 

property // property function of target 
is_dynamic // describes if DT is static or dynamic 
playback_points // list of key, value pairs: (conditions, functions) 
x; y; v // arrays for each path in the input to track 

// execution state 
loops; max_loops // array for each input path & max loop count 

// Applies the DT by updating the target statically or dynamically 
transform() { 

For every element in the target. . . 

... If the mode is absolute, call get_transform_value 
to get the value of this DT at the start state (segment 
index = 0) and call update_target 

... If this DT is static, call get_transform_value based 
on the at the state mapped to the target index and call 
update_target 

... If the transformation is dynamic (temporal), call 
playback_helper 

} 

// Recursive function that activates diferent states in the DT by 
// cycling through segments on the input artwork 
playback_helper(target_idx, curr_state_idx, next_state_idx, 
stop_state_idx, bool reverse) { 

A base case evaluates the stopping and looping condi-
tions for the DT: IF (!reverse && state_idx >= stop_state_idx) 
|| (reverse && state_idx <= stop_state_idx) IF loops[target_idx] 
< max_loops call transform ELSE return 

Call get_transform_value based on the curr_state_idx 
and next_state_idx and pass the output values to up-
date_target 

Call playback_helper for the next state 
} 
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// Segments, indexes, and maps input values to calculate 
// property values; returns a tuple 
get_transform_value(target_idx, 
curr_state_idx, next_state_idx, axis_mapping) { 

If the DT is static, call calculate_state on curr_state_idx 

If the DT is temporal, calculate diference between the 
outputs from calling calculate_state on curr_state_idx 
and next_state_idx 

// Exact sampling is determined by behavior or if the 
input is a collection; details omitted 
Sample the input: call calculate_state on one or more 
input paths using an index given by the behavior 
(e.g.alternate), then interpolate or select across those 
values according to the behavior 

Return calculated tuple (dx, dy, dv) values based on x 
value, y value, and path length 

} 

// Gets input segment values, maps to property values, and 
// returns a point 
calculate_state(s_idx, in_artwork) { 

If the parameterization is path-length return point on 
the input at the segment s_idx 

If the parameterization is x-value... 

... If the path is non-looping calculate the intersec-
tion point of the x-axis at the segment s_idx and the 
input artwork path 

... If the path is looping use the point of the input path 
at segment s_idx to calculate the nearest segment on 
the x-axis to calculate the nearest intersection point 

Linearly map the point to the property range given 
in tf_space and return the new point 

} 

// Updates the target property and triggers playback points 
update_target(dx, dy, dv) { 

Update the execution state and check if any play-
back point conditions have been met based on the 
execution state. If so, call the playback point values 
(functions) 

Call the property function of the target passing in 
dx, dy, or dv 

} 
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