
Drawing Transforms: A Unifying Interaction Primitive to
Procedurally Manipulate Graphics across Style, Space, and Time

Sonia Hashim Tobias Höllerer Jennifer Jacobs
University of California University of California University of California
Santa Barbara, USA Santa Barbara, USA Santa Barbara, USA

Figure 1: A drawing transform (DT) is a fexible primitive that uses vector geometry to defne a procedural transformation.
Here we show the breadth of ways DTs can transform artwork: (a) position artwork, (b) update a hue distribution, (c) translate
a shape, (d), animate vertex geometry, (e) interpolate duplication rates, and (f) loop and modify the easing of an animation.

ABSTRACT
Procedural functionality enables visual creators to rapidly edit,
explore alternatives, and fne-tune artwork in many domains in-
cluding illustration, motion graphics, and interactive animation.
Symbolic procedural tools, such as textual programming languages,
are highly expressive but often limit directly manipulating con-
crete artwork; whereas direct manipulation tools support some
procedural expression but limit creators to pre-defned behaviors
and inputs. Inspired by visions of using geometric input to create
procedural relationships, we identify an opportunity to use vector
geometry from artwork to specify expressive user-defned proce-
dural functions. We present Drawing Transforms (DTs), a technique
that enables the use of any drawing to procedurally transform the
stylistic, spatial, and temporal properties of target artwork. We
apply DTs in a prototype motion graphics system to author contin-
uous and discrete transformations, modify multiple elements in a

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’23, Hamburg, Germany,
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3580642

composition simultaneously, create animations, and control fne-
grained procedural instantiation. We discuss how DTs can unify
procedural authoring through direct manipulation across visual
media domains.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Graphical user interfaces; • Applied computing
→ Fine arts; Media arts.

KEYWORDS
creativity support tools, direct manipulation, procedural art

ACM Reference Format:
Sonia Hashim, Tobias Höllerer, and Jennifer Jacobs. 2023. Drawing Trans-
forms: A Unifying Interaction Primitive to Procedurally Manipulate Graph-
ics across Style, Space, and Time. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI ’23), April 23–28, 2023, Ham-
burg, Germany. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3544548.3580642

1 INTRODUCTION
Procedural authoring—describing a visual work as a series of instruc-
tions or relationships executed by a computer—enables creators to

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3580642
https://doi.org/10.1145/3544548.3580642
https://doi.org/10.1145/3544548.3580642
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3580642&domain=pdf&date_stamp=2023-04-19

CHI ’23, Hamburg, Germany,

create generative and interactive works, automate tasks, and man-
age complex compositions [35]. Creators procedurally defne and
parameterize many types of artwork: data visualizations [16], mod-
els in computer-aided design and fabrication [39], and generative
illustrations and animations [33].

To work procedurally, creators often rely on symbolic tools [35].
Symbolic tools for generating visual output consist of textual [43]
or visual [10, 12, 17] programming languages. These tools are ex-
tremely computationally expressive because creators can use low-
level primitives and abstractions to create custom procedural be-
haviors. The representational nature of symbolic tools can present
barriers for some visual creators who are accustomed to working
with graphic representations and direct manipulation. Direct manip-
ulation software lets creators access the benefts of digital author-
ing and interact through concrete representations with continuous
and immediate visual feedback on the results of their actions [45].
Moreover, visual thinkers can use direct manipulation for problem
solving [53] because they can develop mental models of abstract
problems through concrete visual interaction [24].

To integrate the opportunities of symbolic programming and
direct manipulation, researchers and software designers have devel-
oped procedural direct manipulation systems: tools where creators
control procedural relationships through the direct manipulation
of graphical elements [13, 20, 25, 55, 57, 58]. These systems are
powerful because they support describing constraints, mappings,
and other procedural efects through direct selection and sketching
in the drawing canvas. Current procedural direct manipulation sys-
tems are often limited in comparison to symbolic tools in two ways.
First, they may rely on predefned mapping behaviors [20, 28, 58],
limiting creators to accessing procedural functionality that is en-
capsulated in fxed, high-level data types which constrain the range
of outcomes. Second, diferent systems rely on diferent types of
mappings to achieve similar outcomes [55, 58]. As a result, specifc
interaction techniques developed in one system often only apply
to one target efect. For example, a creator might use object con-
straints to control the layout of multiple elements [20] and kinetic
textures to control the animation of multiple elements [26]. While
this may not be a signifcant restriction for individual applications,
it presents a fundamental limitation towards developing interop-
erable procedural direct manipulation paradigms [1]–for example
in cases where creators seek to integrate procedural layout and
animation.

We are inspired by the opportunities of domain-specifc proce-
dural direct manipulation systems. Our objective is to contribute
a generalizable procedural-graphical interaction approach. Specif-
ically, we seek to develop a fexible mechanism for procedural
authoring wherein creators use geometry to describe processes for
transforming graphical elements. Our objective is centered around
three intersecting design objectives:

• Flexible input: any geometry should be interpretable as
procedure.

• Procedural expressiveness: geometry should determine
the behavior of low-level procedural relationships.

• Breadth of application: our method should generalize to
efects afording procedural control of stylistic, spatial, and

Hashim, Höllerer, Jacobs

temporal qualities of visual output, as well as behaviors that
integrate these properties.

We introduce Drawing Transforms (DTs), a novel interaction
primitive that extracts geometry from any manually-drawn input
to specify expressive procedural transformations of target artwork.
DTs enable authoring low-level transformations of target artwork
through a fexible parameterization of arbitrary vector graphic in-
put; creators can use hand-drawn input to describe continuous and
discrete transformations, evaluate conditionals, and map transfor-
mations to single or multiple targets. DTs also support abstraction
and reuse by enabling creators to create diferent transformations
by manipulating the geometry context.

To illustrate how a person would use DTs within a sample system,
we describe an example artist, Lily, who is creating a digital birthday
invitation. Lily has drawn a balloon and wants to change its color.
She taps on it to select its color and then draws a vector curve in
an upward arc. The system uses the starting point of the curve
to map to the default base color of the balloon and interprets the
curve to change the color of the balloon to red. Lily selects the arc
and clicks on a play icon in the system interface that allows her
to see that instead of instantly changing the color of the balloon
she can play the change over time as an animation. She creates
many copies of the balloon and applies the same animation. She
draws another upward arc to test out a diferent color change from
blue to purple. She tries to group both arcs and use them together
to transform the color of the balloons. They change from blue to
a range of colors between purple and red. Then she realizes she
can also animate how the balloons are moving by selecting their
position and drawing a few winding motion paths from the middle
to the top of the page. Instead of having them move at a steady
rate, she taps on the motion paths and draws how she wants the
balloons to move: a straight line for a steady speed, then an arc
curved upwards so they increase in speed. For good measure, she
moves her pen in a squiggly line up and down so the balloons bob
up and down near the top of the card. Lily has created a custom,
generative animation of a bunch of balloons by hand.

DTs builds on prior approaches in procedural direct manipula-
tion to use properties of artwork to manipulate artwork [20]. We
contribute an interaction primitive that enables controlling distribu-
tions across space, style, and time for multiple elements. In contrast
to higher-level procedural direct manipulation tools, DTs are akin
to a lower-level programming language: more procedurally expres-
sive and requiring additional authoring efort to express complex
outcomes.

We informed the design and implementation of DTs through
expert interviews with visual motion graphics artists and designers
who work across symbolic programming and direct manipulation.
We used these interviews to identify strategies for managing distri-
butions of visual elements across space and time. We also analyzed
the interaction techniques and applications of prominent proce-
dural direct manipulation tools for visual art, design, animation, and
interactivity to identify factors that shape authoring expressiveness
across multiple visual media domains.

We evaluated the procedural expressiveness of our approach
by implementing the DT primitive in an example animation and

Drawing Transforms (DT)

motion graphics system for animating multiple elements simul-
taneously (AMES). We used this system to recreate and extend
animation and motion graphics work created with prominent pro-
cedural direct manipulation and symbolic programming systems.
Our examples demonstrate the range of procedural control and
expression that is possible with our approach. We demonstrate
how DTs can: 1) recreate procedural distributions from prior direct
manipulation systems while also augmenting the output with an-
imated efects, 2) reproduce complex motion graphics work that
was originally developed with the Java programming language, and
3) generate and control a variety of particle-system efects from
the ground up rather than rely on pre-defned particle behaviors.
We draw from these example applications to describe the potential
applications of DTs to other domains of visual expression.

2 RELATED WORK
Working through concrete, visual, and geometric depictions has
many advantages. Manual and digital sketching tools enable artists
to create sophisticated outcomes through manual skill [38]. Sketch-
ing can also play a role in cognition. Many people solve problems
by sketching graphic elements, and drawings can encapsulate infor-
mation more efciently than symbols [11]. Graphic depiction is also
fast [22] and the speed of drawing allows creators to make decisions
and act on them while working [3]. Eforts to integrate sketching,
geometric representation, and computational expression have been
underway since the advent of modern computing [11, 14]. Notable
examples include SketchPad, which supports object-oriented rela-
tionships in geometry [46] and GRAIL which enables creators to
quickly specify procedures by graphically drawing fowcharts [7].
In the remainder of this section, we describe recent eforts to blend
procedural authoring and direct manipulation.

2.1 Integrating Symbolic and Direct Interaction
Researchers and software developers have augmented direct ma-
nipulation design tools through the addition of symbolic program-
ming languages. Commercial design technologies for motion graph-
ics [17], VR development [48], and CAD [10] feature visual program-
ming languages that can read input from the direct manipulation
environment and produce visual output. These languages extend
direct manipulation by enabling automation and non-destructive
edits, however; they enforce a strong separation between editing
procedures and directly interacting with the artwork [51].

HCI researchers have explored visual programming interfaces
and language design aimed at lowering barriers to generating pro-
cedural behaviors for visual design applications. Interstate enables
the creation of interactive behaviors through a visual notation that
graphically depicts state-constraint program structure [41]. Dy-
namic Brushes enables visual artists to author manual-procedural
drawing behaviors by using stylus input as a frst-class datatype [19]
and by visualizing program state on the drawing canvas [34]. Ma
et al. developed a tool for stylized animations that propagates high-
level edits to animation behavior in a timeline sequencer using a
node-graph-based programming language that supports custom
behaviors [37]. These works demonstrate how low-level proce-
dural descriptions support idiosyncratic visual expression. We aim
to support similar degrees of expressiveness while avoiding the

CHI ’23, Hamburg, Germany,

separation imposed by combining symbolic language and direct
editing of geometry. Researchers have also developed systems for
bi-directional control between symbolic programming and direct
manipulation. Leogo supports learners by integrating programming
by demonstration, manipulating graphic UI elements and textual
scripting [6] and Sketch-n-Sketch supports the authoring of textual
programs for vector graphics creation by exposing intermediate ex-
ecution products that enable users to specify program functionality
as they draw [13]. Our objective is aligned with the spirit of Sketch-
n-Sketch in that we seek to enable fexible procedural behaviors;
however, we eschew symbolic languages for a geometry-oriented
primitive that generalizes to spatial and temporal efects.

2.2 Procedural-Direct Manipulation
Enabling people to create visual procedural output without a sym-
bolic programming language is a major focus within HCI. Re-
searchers have developed procedural-direct manipulation systems
across a wide range of domains. For illustration and graphic design,
Many-Spector [15] and Para [20] enable the creation of paramet-
ric constraints between graphic elements which are automatically
maintained as the artist edits their artwork. Recursive Drawing sup-
ports self-similar generative illustrations by embedding one draw-
ing canvas within another [44]. In animation, Skuid [28], Draco [26],
and Energy Brushes [59] enable animators to control predefned
animation efects and particle systems with hand-drawn strokes.
Megafauna [4] and Kitty [25] enable creators to manipulate ani-
mation efects by sketching mapping functions on a control graph.
Our research aims to support procedural direct manipulation ap-
plications across illustration, graphic design, and animation while
avoiding the use of high-level pre-defned procedural functional-
ity. Our technique supports a greater range of outcomes with the
tradeof of requiring more operations by the creator to defne a
procedural efect.

Researchers have also explored procedural direct manipulation
as a means to reduce challenges in data visualization. Data Illustra-
tor [36], Struct Graphics [49] and CAST [8] enable creating static
and animated data visualizations through a direct manipulation
UI rather than a symbolic programming language. Data Ink [58]
and Data-Driven Guides [29] integrate manual illustration and data
visualization by enabling creators to constrain stylistic properties
of hand-drawn illustrations to datasets. Unlike systems that neces-
sarily rely on using numerical datasets as input to drive procedural
efects, DTs enables creators to use geometry as input. Victor has
also conducted extensive work in procedural direct manipulation by
presenting example techniques for animation [54], data visualiza-
tion [55], and game development [52]. In describing these systems,
Victor notes the absence of a general-purpose tool or conceptual
framework for procedural authoring through drawing [51]. Our
work targets this exact challenge.

Procedural direct manipulation is also powerful for designing for
the physical world. Computer-aided design (CAD) systems such as
Sketch-it, Make-it [21] and Cuttle [18] enable the parametric design
of precise and complex cut patterns through automatic constraints
on hand-drawn geometry and pre-defned parametric modifers re-
spectively. Dream Sketch integrates generative design for additive
fabrication by constraining high-level generative growth patterns

CHI ’23, Hamburg, Germany,

within hand-drawn constraints [27]. Reality Sketch enables creators
to sketch dynamic graphics that respond to real-world interac-
tions [47], and ChalkTalk uses sketching to create instructional
animated diagrams [42]. These systems depend on predefned con-
straint behaviors, heuristics, or automatic sketch recognition to
determine the procedural intent of a creator’s sketches. In contrast,
our approach enables the creator to defne how input geometry is
interpreted by specifying mapping context.

Finally, researchers have applied procedural direct manipulation
toward the development of new user interface mechanisms. Object-
Oriented Drawing [57] and StickyLines [5] support non-WIMP inter-
action paradigms by reifying graphical object editing functionality
and layout guidelines through visually-represented constraints and
object-oriented relationships. Sketch-sliders [50] enables creators
to explore data visualizations through hand-sketched interface ele-
ments. Attribute Objects enables creators in VR to simultaneously
edit the visual and animated properties of multiple 3D objects by
grouping selected properties in a 3D graph space, and manually
adjusting property parameters [31]. Our approach can also be used
to create automated mechanisms for layout or animation; however,
unlike techniques that focus exclusively on procedural manipula-
tion of visual properties, our approach also supports the creation
of dynamic animation.

3 DESIGN SPACE
We informed the design and implementation of DTs by conduct-
ing expert interviews and analyzing the interaction techniques of
prominent procedural direct manipulation tools.

3.1 Informational Interviews
We interviewed three professional motion graphics artists and de-
signers who work with both direct and symbolic tools. We received
IRB approval and participant permission to participants’ identities.
Miwa Matreyek1 is a performance artist who creates animations
with AfterEfects. James Paterson2 is an experimental animator
who uses symbolic tools animate hand-drawn animations. Kurt
Kaminski3 is a media artist who uses programming languages to
build particle systems and real-time AR animation. Each interview
lasted 1.5 to 2 hours. We developed custom interview frameworks
for each participant by analyzing samples of their artwork (see fg. 2
for examples) and developing questions targeting specifc efects for
object animation, layout, and content generation. Across all inter-
views, we focused on each artist’s use of manual and computational
tools and methods to organize animations spatially and visually.
We recorded each interview and discussed initial observations and
impressions after each interview. We analyzed the recording tran-
scripts to conceptualize themes on distribution strategies, timing
manipulation, and manual input. Our approach centered on refex-
ive analysis with a focus on emergent themes. We also distilled
workfow descriptions for specifc efects to explore the range of
methods in procedural and manual digital visual art.

3.1.1 Interview Theme #1: Arrangement-Level Visual Design Prac-
tices. All three artists create and manage representations of groups
1Miwa Matreyek: http://www.semihemisphere.com/
2James Paterson: https://presstube.com/hello/
3Kurt Kaminski: https://www.kurtkaminski.com/

Hashim, Höllerer, Jacobs

Figure 2: Artist work showing diferent approaches. Left:
Kurt Kaminski– a. Melange (2017) , d. Dust (2019). Middle:
Miwa Matreyek– b. This World Made Itself (2013), e. Infnitely
Yours (2020). Right: James Paterson– c. Colossal Wave (2017)
f. A 25 Minute Silent Ambient Animation Compilation (2012)

of animations. Matreyek creates groupings of related graphic ele-
ments and then animates each group in the direct manipulation
tool AfterEfects. She manually adjusts the animation efects of
individual graphics to achieve variation. Kaminski uses symbolic
programming languages to author custom particle behaviors that
integrate fuid simulations with audio synthesis. He described how
he envisions a collection of particles as a single entity with proper-
ties that can manifest individually. Paterson works across manual
illustration and symbolic programming and he also develops his
own direct manipulation animation tools. He described the difer-
ences between working on manually created artwork and “con-
trolling visual arrangements with code.” He emphasized how he
works back and forth between symbolically describing “arrange-
ment patterns” and iterating on manually created forms. Paterson,
Matreyek, and Kaminski’s workfows demonstrate how artists work
at an arrangement-level to develop coordinated visual efects.

3.1.2 Interview Theme #2: Precise Manipulation of Timing across
Manual and Procedural Methods. Each artist relied on precise tim-
ing control regardless of their method. Paterson uses woven loops–
variable length loops of animation where the last frame fows seam-
lessly back to the frst– to create phasing efects. He also creates
visual density by staggering the starting points of visually related
animations, like a cloud of ghosts, across time and space. Matreyek
uses manual methods to manipulate loops of rotating images. She
manually adjusts their position to correspond with other animated
elements like a wave. Kaminski enacts precise timing control over
his particle efects to develop interactive visuals for augmented re-
ality. He fne-tunes the timing to generate cascading efects across
multiple particles. Collectively all artists increase the visual com-
plexity of their animations by manipulating a group of animations
across time and fne-tuning their temporal behaviors collectively,
either through manual or procedural methods.

3.1.3 Interview Theme #3: Value of Manual Input. All three artists
valued manual input for enacting control and engaging with their
artwork regardless of whether or not they used symbolic languages.
Kaminski desired easier mechanisms to leverage physical inputs
like drawing curves as input. He described the improvisational

http://www.semihemisphere.com/
https://presstube.com/hello/
https://www.kurtkaminski.com/

Drawing Transforms (DT)

opportunities of designing animations that respond to gestural in-
puts. Matreyek described using her hands as input to create manual
variation in the timing of particle-based animation behaviors. She
also described the importance of manually manipulating easing
functions to produce an efect that is “not just the same mechanical
movement.” Paterson developed a custom VR animation tool cen-
tered around manual sketching. He emphasized how using drawing
as the primary interaction modality made the tool “as physical
as possible. . . leaving that spell of fow and expression unbroken.”
Overall using manual inputs created expressive opportunities and
facilitated continuous workfows.

3.2 Analysis of Existing Procedural Authoring
Techniques and Design Objectives

We compared the results of our expert interviews to our review of
existing procedural direct manipulation systems. We identifed four
qualities in the design of existing procedural direct manipulation
systems that were likely to impact key forms of expressiveness
from our interview participants. We focused on capturing the range
of interface and interaction design methods that shape editing
fexibility, visual expression, and application domain. We analyzed
how diferent approaches in existing systems contrasted or aligned
with the practices of our interview participants. Our goal was to
illuminate key approaches for a representation that could work
across existing procedural direct manipulation technologies and
support a range of visual art production.

Editing mechanism: Mechanisms with low fexibility map a spe-
cifc geometric input in a fxed way. Strongly typed geometric inputs
enable a system to infer author intent; however, they restrict out-
comes. Integrating symbolic notation supports expressive outcomes
but prevents graphic manipulation.

Procedural expression: Artists either relied on symbolic proce-
dural tools or extensive manual efort to create coordinated ani-
mations consisting of multiple elements. When using predefned
or custom-built procedural behaviors, artists used manual input to
fne-tune the efect. Existing systems support various degrees of
procedural expression for the control of multiple objects including
selecting predefned behaviors, modifying parameters of behaviors,
designing new behaviors from fxed data types, and enabling user-
defned behaviors. Procedural tools that enable authoring low-level
abstractions, like constraints, enable users to create their own pro-
cedural relationships to integrate the behavior of multiple elements.

Timing support: Fine-grained control of temporal efects is criti-
cal for producing stylistically distinct animated works. In existing
systems, timing support can be static (no representation of time),
fxed (such as movement at a fxed rate), manipulable (varying how
property changes over time), or (re)defnable (changing how timing
is interpreted).

Target application: Our interview participants worked across in-
teractive, 2D, and 3D domains. Kaminski and Paterson also blended
software development with animation production. Existing tech-
niques in procedural direct manipulation primarily focus on author-
ing a specifc efect or target a single application area. Application-
based research is important but can create strong boundaries be-
tween tools and high learning thresholds [2]. An alternative is to

CHI ’23, Hamburg, Germany,

Figure 3: DT: geometry defnes a procedural function. A DT
evaluates geometry based on inputs (cyan) to describe multi-
ple types of procedural behavior (green).

develop techniques that act as substrates across diferent media
[30].

We drew from our analysis to defne intersecting design objec-
tives for the DTs interaction primitive. These were:

• Flexible input: Our approach should enable interpreting
any 2D geometry as input. Stylistic diferences in the struc-
ture of the geometry should produce diferent procedural
outcomes.

• Procedural expressiveness: Creators should be able to use
geometric input to describe low-level procedural relation-
ships that can be combined to produce diferent efects. We
aim to support modifying attributes of abstract data types,
to create interoperability. Creators should also be able to
modify data structures containing artwork.

• Breadth of application: Our approach should function for
both static and animated output. Creators should be able to
integrate control of spatial, stylistic, and temporal properties
of artwork.

4 DRAWING TRANSFORMS
We contribute DTs a direct-manipulation primitive that uses draw-
ing to author low-level transformations of target artwork through
a parameterization of arbitrary vector paths. Compared to exist-
ing procedural direct manipulation the DT primitive is akin to a
low-level programming representation: more expressive and more
complex with a greater range of parameters. The process of working
with the DTs primitive is shaped, in part, by how it is implemented
within a specifc procedural direct manipulation system. We de-
scribe the functional properties of the DTs primitive and then list
several applications of DTs to author diferent types of procedural
behavior. We provide pseudocode for the DTs parameterization and
transformation in appendix A.

4.1 Structure of the DT Interaction Primitive
A drawing transform (DT) is a procedural transformation func-
tion that interprets input geometry to transform the spatial, stylistic,
and timing properties of a target. Input geometry consists of one

CHI ’23, Hamburg, Germany,

Figure 4: Parameterization specifes how vector strokes are
interpreted. This enables input artwork to drive function
because segment indices can be mapped to either time or to
an index in a collection.

or more continuous, closed, or open vector-graphic paths with a
start and end point. This can include but is not limited to lines,
polylines, arcs, Bezier curves, ellipses, and irregular polygons. A
DT procedurally transforms a target: a graphical element. In prac-
tice, targets are individual vector graphics or ordered collections of
vector graphics. We visually summarize the DT primitive in Figure
3. Any ordered collection can serve as either input or target geom-
etry for a DT. This could include existing vector-graphic collection
representations like Illustrator groups–where the order is implicitly
assigned, drawing order, or lists in procedural direct manipulation
tools like Para [20]–where the order is explicitly set by the artist.
Finally, because DTs themselves contain vector graphic input ge-
ometry they can also function as targets and be transformed by
other DTs.

With DTs, drawing is akin to authoring a function. The DT trans-
formation function evaluates input geometry through fve param-
eters: 1) geometry parameterization, which calculates numerical
values from input geometry, 2) property mappings, which control
how target artwork is transformed, 3) behaviors, which determine
how property mappings function for targets comprising multiple
elements, 4) mode which specifes if a transformation is relative or
absolute, and 5) playback points, which are used to trigger discrete
events when a DT is executed. We detail each parameter below.

4.1.1 Geometry Parameterization. The geometry parameterization
segments input geometry at even intervals to output a sequence of
numerical values. Segmentation depends on the drawing direction
or the start and end of the vector path. Each DT segments geometry
in one of two ways. The frst segmentation approach is x-value
where paths are split as even segments along the x-width. X-value
is like using a straight edge for measurement (see fg. 4-a). The
second segmentation approach is path-length where the path is
split as even segments along its length (see fg. 4-c). Path-length is
like using a measuring tape that winds along the entire length of
the path.

Hashim, Höllerer, Jacobs

DTs support path-length parameterization for two reasons. First,
path-length parameterization is not dependent on traversing an
axis from left to right. Instead, the artist can use their direction
to describe procedural functionality. Second, path-length parame-
terization also simplifes describing periodic structure with hand-
drawn forms. For example, say the artist seeks to create a seamless
looping animation of a bouncing ball. They can do so using an
x-value segmentation of a waveform function (see fg 5-a) wherein
x-value corresponds to time and y-value is mapped to the ball y-
position. However to ensure a seamless loop they must draw a
precise waveform. The artist can create an identical transformation
using path-length parameterization on a circle wherein path length
corresponds to time and y-value corresponds to the ball y-position
(see fg 5-b). If the DT is played and looped, the circle serves as a
literal representation of a seamless loop.

Parameterized segments are numbered. They start at index 0 (the
start point) and continue as the artist draws. For closed shapes, seg-
mentation start and end points depend on the geometry implemen-
tation of a given system. For our testbed, we use the Paper.js [23]
vector geometry implementation wherein the start and end points
of a closed shape are set at the lowest point of the shape on the
y-axis. The total segment count is determined by a predefned pa-
rameter. In practice we set this parameter dynamically with respect
to the mapping in our testbed implementation; however, depending
on implementation, the artist could directly specify this value for
greater control. The segment index is used to drive the function in
an unambiguous fashion. For example, say an artist draws a vertical
zig-zag path where there are multiple y-values for every x-value
on a standard x-y graph. Because segments depend on drawing
direction, the system calculates the y value for each segment with
respect to path length and x-intersection. Figures 4-b and 4-d show
examples of x-value and path-length parameterization of zig-zag
paths respectively.

Each segment outputs four numerical values: segment index, x-
value, y-value, and path-length. Artists can use the same input path
to specify a function across time or across a collection. Depending
on the mapping, the DT will assign values to the target with the
segment index corresponding to either time or collection index. If
multiple paths are used as input, for every segment index the DT
will calculate an array of x-value, y-value, and path-length values to
update the target. We provide further detail on interpreting multiple
paths in section 4.1.3.

4.1.2 Property Mappings. The property mapping controls how the
target artwork is updated in response to the values generated by
the geometry parameterization. Default property mappings con-
sist of lower and upper bounds and set functions which linearly
map a numerical value to a graphical property (e.g. property[min,
max] = f(time or index, x, y, path length)). For example,
consider a DT that uses the hue property to map output y-values
from the geometry to a range of hue property values from 0 to 360.
The property mapping sets the hue property of the target to that
mapped value.

The min and max ranges can be set to the default ranges for
the given property. In our testbed, we include four categories of
property mappings specifc to visual design applications, listed
in Table 1. Property mappings could be expanded or modifed to

https://Paper.js

CHI ’23, Hamburg, Germany,
Drawing Transforms (DT)

Figure 5: To modify the property of an element from [-1, 1] an artist can either draw a sine wave or a circle. The second repre-
sentation, using path-length parameterization, enables creating a perfect looping animation, where the end fows seamlessly to
the start state.

support specifc application domains. For instance, in our testbed,
we use a property mapping to duplicate new elements where the
property duplicates can be used to create or remove copies of an
element. Together, parameterizations and property mappings pro-
duce diferent outcomes. For example, when a DT with a position
property and path-length parameterization is applied or played,
the input geometry is interpreted as a set of position values for
multiple graphic elements in the target artwork, or a motion path
(see fg. 1-a and c).

We reify how the property and parameterization are used to
interpret geometry through a graphical representation, which we
call the mapping context. The mapping context maps the x or y-axis
of the bounding box of input geometry to the property mapping
range and the segmentation basis (x-width or path-length) to time
or an indexed list. In our testbed, mapping contexts can be directly
manipulated through operations like dragging the y-min and y-max
values.

4.1.3 Behaviors. Behaviors determine how a DT samples and in-
terpolates mapped property values by index to transform a target
collection of vector graphics (e.g. Targets[i] = alternate(i,
f[inputs])). In our testbed, we implement three behaviors listed
in Table 1: interpolate, alternate, and random.

Behaviors also determine how values are calculated with respect
to the geometry of multiple paths. Figure 6 demonstrates sample
motion-path transformations for a DT that uses two vertical curved
paths as input to control the motion path of a collection of nine cir-
cles. In this example, interpolation produces nine diferent motion
paths that correspond with an interpolation of the points across
the original two input paths. Alternate produces two motion paths
that correspond with the input paths, with odd-indexed circles
traversing a path that corresponds with the left-most input path,
and even-indexed circles traversing a path that corresponds with
the right-most input. Random samples a random interpolated path
using the input geometry paths with indices closest to the relative
randomized index from the artwork in the target collection. The
interpolated path is then used to calculate the value update of the
target artwork.

4.1.4 Modes. Modes enable describing two types of transforma-
tions for a property mapping: absolute or relative (see table 1). The
mode determines if a property is set with or without respect to

Table 1: Example DT Property Mappings, Behaviors, and
Modes.

Mappings
Spatial E.g. position distribution, motion path, scale animation.
Stylistic E.g. hue distribution.
Geometric E.g. polygon number of sides distribution, vertex animation.
Instancing E.g. duplicate each.

Behavior

Interpolate
Generate a Lagrange polynomial using input,
sample with target index / total input paths.

Alternate
Cycle through input geometry using
the target index % the number of input paths.

Random
Generate a Lagrange polynomial using input,
sample using a randomized index.

Modes
Absolute Set the target state to the start state given by the input.
Relative Transform with respect to the original target state.

its initial value. The transformation begins by either resetting or
preserving the original property value for the target based on the
mode. In our testbed, artists select a mode with a dropdown.

4.1.5 Playback points. Playback points determine how DTs elicit
discrete events during geometry evaluation to trigger other func-
tions. They consist of trigger-value pairs of pre-defned geometric
conditionals like slope change and other functions, including DTs.
Each type of playback point, such as slope change, can be calcu-
lated based on the outputs from the parameterization (e.g. segment
index, x, y, path length) and evaluated as the DT executes. Granu-
larity afects accuracy, so the system may evaluate fner-grained
segments to assist with playback points if a threshold is detected.
In our testbed, artists can select playback point triggers through a
drop-down and then indicate the triggered function by drawing a
link to the artwork used as input to a specifc DT.

4.2 Applications of Drawing Transforms
Artists can author diferent types of procedural behavior with DTs
including the following:

CHI ’23, Hamburg, Germany,
Hashim, Höllerer, Jacobs

Figure 6: DTs support using multiple input paths which enables artists to author and edit a small number of input paths to
rapidly and precisely control a large number of elements. These motion path animations were created using two paths drawn
in opposite directions. The grey line indicates the starting point of the circles that are onion-skinned. Each application uses
diferent interpolation behaviors: (a) interpolate, (b) alternate, and (c) random.

4.2.1 Modify a Property Across Multiple Elements. DTs can create a
range of property values across a collection of artwork. We use an x-
value parameterization and hue property to specify a range of hues
in a sequence of triangles (see fg. 1-b). The artist can use random
or evenly-spaced values from the parameterization to update or set
hue across a collection by using diferent behaviors.

4.2.2 Transform A Property in Time. Artists can use DTs to change
properties over time, such as animating artwork along a motion
path (see fg. 1-c). Because DTs use artwork as input and output,
they support chaining behaviors. For instance, we play two DTs: a
DT with a circle as input that defnes a motion path for a triangle
and a DT that uses another circle to scale the frst circle. The triangle
traverses an expanding and contracting motion path, creating an
efect where the triangle spirals outwards and then inwards.

4.2.3 Transform Multiple Elements Across Time. DTs also enable
generative many-to-many animations, for example by using two
motion paths to control the change in position over time for multi-
ple target elements. This allows artists to generate and vary multiple
animations procedurally and drive variation across procedural func-
tions through dynamic instantiation. In Figure 1-e, we use input
geometry paths to interpolate diferent rates at which particles
should be duplicated across a target collection of artwork. This
creates an efect where new instances of artwork move upwards at
a constant rate for a fxed duration before disappearing.

4.2.4 Transform DTs with Other DTs. DTs can procedurally trans-
form properties of other DTs. For instance, a control DT (a DT that
modifes a DT) can modify how a target DT’s segments are mapped
to time. We linearly map the total number of segments from the
control DT to the total number of segments in the target DT. Then,
when the control DT is played, its outputs (the segment index,
time, and path length) re-parameterize the target DT’s input geom-
etry. That portion of geometry, calculated with the linear mapping
described above, is then mapped to the time specifed by the con-
trolling DT’s output. In Figure 1-f, we use a control DT to modify a
target DT that encodes a motion path. When the motion path DT
is played, the pink squares traverse the motion path at a constant
rate. When the control DT is played, the square accelerates up the
path, slows down and descends halfway, slows down, and fnishes
moving upwards before moving back down along the motion path.

instance, the DT shown in Figure 1-e, uses a playback point that
is called when new instances are generated. This playback point
activates the motion path mapping. Another playback point for the
motion path uses the end of the transformation to trigger removing
the transformed artwork. With this structure, we can edit artwork
that is being duplicated, geometry that describes the duplication
rate, and the motion path. When we play the duplication DT, new
instances will traverse the motion path and disappear.

5 DEMONSTRATIVE EVALUATION
We implemented a version of DTs by developing a testbed mo-
tion graphics system, Animating Multiple Elements Simultaneously
(AMES) 4 with Paper.js, a JavaScript vector-graphic scripting library
[23]. We evaluate our approach by using the DTs implementation
in AMES to recreate and extend work from prominent procedural
layout and motion graphics systems. First, we describe a sample
workfow with the AMES system. Then, we show how DTs can
support a range of procedural behaviors possible through both di-
rect manipulation and symbolic tools. We apply DTs to 1) extend
direct-manipulation constraints to procedurally generate shapes
and animations, 2) recreate motion graphics artwork made in a
symbolic programming language, and 3) author distinct behaviors
for particle systems solely through direct manipulation.

5.1 Sample AMES Workfow
Figure 7 shows an artist creating a DT in the AMES UI to animate
goldfsh. After she draws a goldfsh, she uses the collection tool
to select the goldfsh and create a collection. She then drags the
count value (shown in UI on the canvas in a green box) to create
additional copies. She draws two paths and adds them to a second
collection. Using the DT button, she creates a new DT and corre-
sponding DT editor. She draws links from the input feld in the
DT editor to the path collection and the target feld to the gold-
fsh collection. In AMES, we made a design decision to combine
selecting property and parameterization. In our examples, static
transformations combine a property with x-value parameterization,
and transformations in time combine a property with a path-length
parameterization. From a dropdown, the artist selects motion path
(path-length parameterization and position property mapping). She

4The source code for the AMES implementation of DTs can be found at https://github.
4.2.5 Define Responsive Event-Driven Sequences. We can author com/SoniaHashim/ames-playground. The repository includes a link to a web-based
persistent procedural sequences using DT playback points. For executable demonstration of the AMES system

https://github.com/SoniaHashim/ames-playground
https://github.com/SoniaHashim/ames-playground
https://Paper.js

Drawing Transforms (DT)

Figure 7: The AMES UI (cyan annotations) enables creating
DTs. We graphically summarize the DT that is being edited.

adds a playback point using the playback point editor. We use this
basic interaction structure in the examples we describe below.

5.2 Generate Shapes and Animations
DTs enables using manually drawn paths to author diferent types
of procedural behavior, while also supporting the reuse of manually
created geometry in multiple ways. In our frst example (fg. 8), an
artist creates a twinkling starfeld by animating procedurally gen-
erated artwork. This example recreates and extends the approach
used in the Para software [20].

First, four DTs are used to procedurally generate and arrange
artwork. The frst DT controls procedural shape generation. This
DT uses two short, vertical paths, one drawn up and one down,
as the input geometry to modify the vertex position of a regular
polygon (fg. 8-a). By applying this animation with alternate and
relative behavior, each input path transforms every other vertex
inwards or outwards based on its starting position relative to the
polygon path. The DT creates a star shape. Moreover, it encodes a
procedural function to create a star shape on any regular polygon
with any number of sides. The artist can modify the number of
sides of the polygon and experiment with diferent star shapes. The
DT uses the drawing direction to specify meaningful information
about how the geometry is interpreted. Next, two DTs that use the
same input geometry are used to vary the hue and scale across
a collection of 15 stars (fg. 8-b). The artist can edit the mapping
context of the scale property mapping to modify the range of scale
values that the DT uses to map output values that set the scale of
each star. Because the same geometry is used to generate output
values for both functions, the relative relationships between the
hue and scale of the stars will remain the same. The last DT that
we use to arrange artwork positions the stars at random locations
between two hand-drawn lines by using random behavior to map
the outputs of the DTs to generate random values constrained by

CHI ’23, Hamburg, Germany,

the input geometry (fg. 8-c). This interaction enables a random
position distribution defned by hand-drawn geometry.

We use two additional DTs to animate the stars– one to specify
vertex animation and one to control animation rate. The animation
transformation DT reuses the same input geometry used in the frst
DT to specify a vertex animation. Instead of playing this animation
once, which would deform the target shapes, we use a circle as
input geometry to a second control DT. By playing the control DT,
the animation progresses from its start to end state and then returns
to its original state, 8. The control DT also modifes the easing of
vertex geometry animation: the stars expand slowly at frst, then
increase and decrease in speed. They contract with the same easing
efect, returning to their original state. Repeating the execution of
the control DT loops the animation seamlessly. In the fnal result,
shown in fg. 8-e, the stars twinkle perpetually.

Overall this example shows how DTs enable the same paramet-
ric artwork generation and layout features as Para, with greater
fexibility. We can control both the geometry and the layout with
the same underlying representation. Furthermore, unlike Para, this
representation can also support the animation of the resulting art-
work.

5.3 Recreate Artwork made with Textual Code
DTs can recreate event-driven sequences originally created in sym-
bolic textual programming tools. In our second example (see fg.
9), we use DTs to recreate an animation made with a textual pro-
gramming language [43] by artist Dave Whyte5 [56]. We refer to
this artwork as the N-Gon. In the comparison of Whyte’s work
and our recreation, we show the animation behavior of the N-Gon
(fg.9-h, i): circles traverse as nested regular polygons with diferent
numbers of sides. As each circle changes direction on the corner of
a polygon, it is duplicated. The duplicated copy increases in scale
and disappears. The circle hue matches the hue of its motion path.

To create the N-Gon with our approach, we frst use two DTs
to create the nested polygon structure. They both transform a
collection of six triangles. The frst DT uses a hand-drawn line
as input geometry to scale the triangles, creating a set of nested
shapes (fg. 9-a). The second DT uses another hand-drawn line as
input geometry and uses a property mapping to set the number
of sides of each shape (fg. 9-b). Both input geometry paths reify
the parameterization of the N-Gon geometry based on the scale
and the number of sides respectively. Each one can be individually
manipulated to transform a key visual attribute of the N-Gon.

Next, we re-create the procedural event-driven animation where
circles traverse the nested geometry as motion paths and scale up
at the corners. We use three DTs to do this. The frst DT uses a short
hand-drawn curve as input geometry to defne a scale animation
(fg. 9-e). We use a playback point on this DT to remove the circle
at the end of the scale animation. The second DT uses the same
hand-drawn path to control the duplication of circles (fg. 9-d).
We use a playback point on this DT where new instances trigger
the scale animation. The third DT uses the nested polygon paths,
(the procedurally generated artwork described above), as the input
geometry to specify motion paths (fg. 9-c). We add a playback point

5Dave Whyte: https://beesandbombs.com/

https://beesandbombs.com/

CHI ’23, Hamburg, Germany,
Hashim, Höllerer, Jacobs

Figure 8: Artists can use DTs to defne, arrange and animate artwork. Example 1: Twinkling Starfeld: (a) transform vertex
geometry to procedurally generate shapes and animate artwork, (b) use a DT to vary scale and color, (c) randomly position
stars, (e) animate vertex geometry, (c) modify animation playback to create twinkling stars, (e) the fnal result.

so that the slope change that occurs at the corners of each polygon
triggers the duplication DT.

Together, these three DTs enable recreating the N-Gon anima-
tion through graphical representation rather than symbolic code.
When we play the motion path DT, each circle is animated around
a polygon path. When the slope of its trajectory changes, the cir-
cle is duplicated. The newly instantiated circle is scaled up before
it disappears. Additionally, because DTs represent procedural re-
lationships as input geometry, an artist can create variations of
the DT by editing vector graphics and visualizing geometric rela-
tionships (fg. 9-g), as opposed to editing numeric values or using
algebraically-defned functions. DTs support reusing geometry in
multiple ways which enables defning meaningful procedural re-
lationships directly on the canvas. Here, the nested polygons are
used on the canvas as artwork, as motion paths, and to evaluate
conditional events.

5.4 Author Particle System Behaviors
Prior procedural direct manipulation tools like Draco [26] and
Kitty [25] rely on predefned particle behaviors to create animated
textures. We demonstrate how DTs can be used to author particle
system behaviors from the ground up by generating three distinct
stylized particle system efects (fg. 10).

5.4.1 Particle Efects: Fireworks. DTs enable 1) automating the gen-
eration of new elements using user-defned events and 2) using new
instances to trigger animations represented by expressive, hand-
drawn artwork. In Figure 10-a, we combine these two afordances
to create an animation of a frework.

This example uses four DTs. The frst DT describes a motion
path and uses hand-drawn paths in a frework shape to animate
particles. The second DT is a control DT that changes the easing
of the motion path animation. Instead of the animation playing
at a constant rate, the particles accelerate as they move outward.
The third DT duplicates the particles. We use a playback point to
connect the end of the second DT to the third DT so that after
the frework explodes, new particles are generated. The fourth DT
specifes a scale animation, and uses a playback point to remove
artwork at the end of the animation. New instances trigger the scale
animation.

The result is a frework-like particle system: as particles explode
outward new particles are created that pulse briefy and disappear.

We can loop the execution of the control DT to loop the particle
system behavior.

5.4.2 Particle Efects: Rain. Because DTs enable defning geometric
procedural relationships and using geometry as fexible input, an
artist can use DTs to interpret geometry to defne many kinds of
procedural functionality including defning a clock. In Figure 10-b,
we create a rain efect that consists of procedurally instantiated
droplets at a rate determined by a motion path that acts like a clock.
Rain is distributed evenly across motion paths that are positioned
randomly between two horizontal lines to create uneven, but struc-
tured, animation behavior. The frst DT transforms the position
of vertical paths across a space given by two horizontal lines. The
second DT uses the vertical paths as motion paths to transform
raindrops. Raindrops are procedurally instantiated using a DT that
maps a hand-drawn curve to a duplication rate. A playback point
uses new instances to trigger a motion transformation. Another
playback point triggers removing the raindrop at the end of the
motion path animation. The last DT creates a motion path-based
animation of a small circle that traverses a large circle. This DT
provides the timing functionality; at the end of each iteration, it
triggers the duplication DT to create more rain. The timing DT
determines the frequency and intensity of the rain.

Both the frework and rain example use the same number of DTs.
Because DTs support many types of procedural control, the artist
can create an entirely diferent efect using low-level procedural
functions as building blocks.

5.4.3 Particle Efects: Smoke. DTs enable using a few input geome-
try paths to interpolate transformations of many target elements.
We demonstrate how this afordance enables the approximation
of the fuid movement of multiple particles. In Figure 10-c, we use
DTs to create a particle system that resembles smoke. This example
uses four DTs. The frst modifes the hue and scale of a collection
of translucent circles. The remaining three specify the animation
and use interpolate behavior to smoothly interpolate transforma-
tion functions across multiple elements. The second and third DTs
use two hand-drawn paths that have spirals like smoke as input
geometry. The second DT defnes a motion path transformation of
the particles, which are removed at the end of the animation with
a playback point. The third DT specifes the rates of procedural
instantiation of the smoke particles. Because one path is shorter
than the other, unequal numbers of copies are made. Fewer large

CHI ’23, Hamburg, Germany,
Drawing Transforms (DT)

Figure 9: DTs enable artists to create work made in symbolic programming tools through direct graphic representation. Example
2. N-Gon: Reproducing animation made by artist Dave Whyte. We show the authoring process (a-e), comparisons of the original
and recreated artwork (f, h, i), and exploratory variations of our N-Gon (g).

purple particles are duplicated in comparison to the small green
particles. The fourth DT defnes the motion path animation of the
smoke particles moving up a chimney. At the conclusion of the
motion path animation, the DT triggers the duplication DT to create
smoke particles.

The fnal efect is a smooth animation where smoke particles
are emitted continuously. They swirl upwards in circular patterns.
This example shows how manually drawn motion paths can serve
as a structure to a generative efect in DTs.

Collectively these examples suggest that DTs could ofer a means
to provide greater expressive control by creators in direct manipula-
tion by enabling them to edit existing behaviors or create their own
without resorting to a symbolic representation. When we asked
one of the artists from our formative interviews to provide their
impressions of a full demo of DTs and its potential application to
their work, Kurt Kaminski shared “I wish more content creation ap-
plications had interfaces like this. I use Houdini and the interface is
not geared toward gestural input. I would love to see DTs integrated
into Houdini, or even more so in Photoshop or AfterEfects which lag
in both gestural and procedural tools.”.

6 LIMITATIONS
We focus on evaluating the computational expressiveness of DTs
through demonstrative examples which is a common method in
HCI toolkit research [32]. In particular, we showcase the "expressive
match" [40] enabled by using drawing to enact multiple forms of
procedural control akin to other procedural tools. Our starfeld
extends an example from Para [20]: we manipulate a collection
and also procedurally generate shapes and animations. The N-Gon
recreates work made in Processing [43]: DTs enable describing
user-defned procedural sequences through direct manipulation.
Our particle systems show efects comparable to those in Kitty [25]:
DTs let artists describe this functionality from the ground up versus
relying on predefned efects.

Studies with external participants would provide valuable further
insights. We omit a study from this work because our goal is to
present the abstraction without a prescriptive implementation of
that abstraction. For instance, in AMES, artists can use a drop-down
to select a property. A voice command or radial in-canvas menu may
be a more usable mechanism to set this parameter depending on the
use-case. Additionally, our abstraction can apply across applications
such as VR animation tools that use VR controllers to author input
artwork. We hope our contribution will enable others to apply
and evaluate this primitive across diferent applications. Our focus
is on determining the expressive range of an entirely graphical
procedural specifcation with respect to existing standards within
the feld of procedural direct manipulation.

Lastly, while DTs enables artists to directly edit their artwork
to change procedural behavior, DTs does not support bidirectional
editing. In other words, artists can interactively edit input geometry
to modify the result in a continuous way, but they can not modify
the result directly. We believe this is still a valuable form of direct
manipulation as it provides a means to enact procedural control
through drawing and editing drawings directly. Enable bidirectional
editing is a promising direction for future work.

7 DISCUSSION
In developing DTs, we sought to create a primitive that supports
fexible input, high procedural expressiveness, and breadth of ap-
plication. In our discussion, we examine how DTs fulflls these
objectives by analyzing how DTs applies to domains of visual cre-
ation, the trade-ofs of geometric authoring of low-level procedural
functionality, and how DTs supports manual drawing expression.

7.1 Supporting Drawing Expression
Drawing is a highly expressive medium. DTs supports manual
drawing expressiveness by enabling creators to defne procedural

CHI ’23, Hamburg, Germany,
Hashim, Höllerer, Jacobs

Figure 10: DTs enable authoring distinct particle system behaviors. Example 3. Particle Efects: (a) frework, (b) rain, (c) smoke.

behaviors through the quality of their hand-drawn lines. DTs’ path
length parametrization allows artists to draw in any direction and
leverage directionality in drawing to encode information about a
transformation. This parameterization approach also allows artists
to encode periodic structures through hand-drawn loops instead of
drawing precise, repeating waveforms. The ability to use the same
vector artwork as input for multiple DTs with diferent mapping
contexts allows artists to reuse hand-drawn inputs to describe dif-
ferent procedural behaviors. This structure creates the opportunity
to develop expressive behavior by using contextual information
to modify how hand-drawn geometry is interpreted for specifc
procedural functions. Lastly, playback points tie event-driven func-
tionality to properties of the drawn geometry. This combination of
approaches can allow artists to develop their own visual structures
for creating sequences through drawing that best serve the visual
design task at hand.

7.2 Geometric Authoring of Low-level
Procedural Functionality

DTs are aligned with the stored-program concept: a principle from
computer architecture of using the same substrate to represent data
and programs to operate on that data [9]. Stored-program architec-
ture can expand access to who can defne procedural functionality
and increase the types of procedural routines that can be developed
by using the same representation as data to defne operations on
it. DTs apply this idea to vector graphics. Through DTs, artists use
artwork to represent both data– the inputs and outputs of their
compositions and programs– the procedural routines that shape
their compositions. Beyond using artwork to control artwork in
fxed ways, artists can author low-level forms of procedural control,
because they can directly manipulate the artwork as data itself.
While the ability to author low-level procedural relationships may
increase the range of outcomes that are enabled through DTs, it can
also place a greater burden on the artist to defne detailed mappings.
Artists value efciency and may prefer forms of automation that
keep them “in the loop” [35]. While DTs support “in the loop” in-
teraction through low-level procedural control, we could envision
cases where creators might also value workfows that mix low-level
procedural control mechanisms with pre-defned procedural behav-
iors. We see future opportunities to explore how DTs can support

layered procedural direct manipulation systems that enable cre-
ators to move between low-level authoring and adjusting high-level
parameters without resorting to a symbolic programming language.

7.3 DTs as a General Visual Creation Primitive
We build from our examples to discuss how DTs could apply to data
visualization, CAD, and interactivity.

7.3.1 Data Visualization. Although we did not implement data
bindings for this work, we see opportunities for DTs to control
how a data vector maps to a specifc property of artwork, across a
collection or across time. For instance, a designer could use visual
input geometry that represents the data values of deforestation
across a collection of countries as input for a DT that sets the hue
across a collection of illustrated tree graphics.

7.3.2 Parametric CAD. Parametric CAD and direct modeling en-
able visual designers to construct models of objects based on con-
straints and direct manipulation of 3D geometry models. In such
cases, designers often rely on blueprints to refer to numeric values
to establish constraints for models. Instead of designing numeric
constraints, artists could use DTs to directly encode procedural re-
lationships through geometry. A designer could use DTs to directly
map the length of a line in a diagram to the geometric features
of an input model. As a result, in addition to having procedural
relationships update 3d geometric models based on changes to the
model, updates to a blueprint could map directly to model edits.

7.3.3 Interactive Illustration. Existing tools for interactive illustra-
tion allow visual creators to defne dynamic relationships between
illustrated entities. These are often encoded through data types
that represent specifc inputs and types of efects. DTs could aid in
reifying relationships that might be useful in designing interactive
relationships such as the distance from one object to another. Dis-
tance could be represented through a geometric object that serves
as the input geometry to a DT that may control the scale of the
target artwork. Embedded sketching tools and procedural author-
ing tools for AR and VR contexts could also use real-world inputs
such as tracked objects. Instead of using pre-defned mappings to
pipe these inputs into specifc procedural functions, DTs could en-
able creators to author custom procedural functionality that uses
geometric inputs to author a variety of responsive behaviors.

CHI ’23, Hamburg, Germany,
Drawing Transforms (DT)

8 CONCLUSION
We present drawing transforms (DTs), an interaction primitive that
expressively interprets input geometry and allows visual artists
to use drawing and artwork to author procedural behaviors to
manage distributions, modify one or more pieces of artwork, and
control animations and instancing across time. We motivated DTs
by identifying a signifcant design barrier that limits procedural
support in visual art and design. We demonstrate several concrete
examples of applying DTs in practice to procedural art and motion
graphics, and we also discuss how artists can leverage DTs to author
procedural functionality in other domains.

ACKNOWLEDGMENTS
We extend special thanks to Miwa Matreyek, Kurt Kaminski, James
Paterson, and Dave Whyte for granting us permission to use their
work as examples or inspiration for our research. This research was
funded in part by the NSF IIS Human-Centered Computing Program
(Award: 2007094) and a generous gift from Adobe Research.

REFERENCES
[1] Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An Interaction Model

for Designing Post-WIMP User Interfaces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (The Hague, The Netherlands) (CHI ’00).
Association for Computing Machinery, New York, NY, USA, 446–453. https:
//doi.org/10.1145/332040.332473

[2] Michel Beaudouin-Lafon. 2019. UIST 2019 Visions - A World Without Apps. https:
//www.youtube.com/watch?v=ntaudUum06E

[3] John Berger. 2008. Drawing. In Selected Essays of John Berger, Geof Dyer (Ed.).
Knopf Doubleday Publishing Group.

[4] Samuelle Bourgault and Jennifer Jacobs. 2021. Preserving Hand-Drawn Qualities
in Audiovisual Performance Through Sketch-Based Interaction. In 2021 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 1–10.
https://doi.org/10.1109/VL/HCC51201.2021.9576315

[5] Marianela Ciolf Felice, Nolwenn Maudet, Wendy E. Mackay, and Michel
Beaudouin-Lafon. 2016. Beyond Snapping: Persistent, Tweakable Alignment
and Distribution with StickyLines. In Proceedings of the 29th Annual Sympo-
sium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). As-
sociation for Computing Machinery, New York, NY, USA, 133–144. https:
//doi.org/10.1145/2984511.2984577

[6] Andy Cockburn and Andrew Bryant. 2001. Leogo: An Equal Opportunity User
Interface for Programming. Journal of Visual Languages & Computing 8 (01 2001).
https://doi.org/10.1006/jvlc.1997.0152

[7] Thomas O Ellis, John F Heafner, and William L Sibley. 1969. The GRAIL Project:
An experiment in man-machine communications. Technical Report. RAND CORP
SANTA MONICA CA.

[8] Tong Ge, Bongshin Lee, and Yunhai Wang. 2021. CAST: Authoring Data-Driven
Chart Animations. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing
Machinery, New York, NY, USA, Article 24, 15 pages. https://doi.org/10.1145/
3411764.3445452

[9] Stanley Gill. 2003. Stored Program Concept. John Wiley and Sons Ltd., GBR,
1691–1693.

[10] Grasshopper 2007. Grasshopper. http://www.grasshopper3d.com.
[11] M. D. Gross. 2009. Visual Languages and Visual Thinking: Sketch Based In-

teraction and Modeling. In Proceedings of the 6th Eurographics Symposium
on Sketch-Based Interfaces and Modeling (New Orleans, Louisiana) (SBIM ’09).
Association for Computing Machinery, New York, NY, USA, 7–11. https:
//doi.org/10.1145/1572741.1572743

[12] Experimental Media Research Group. 2004. NodeBox. http://www.nodebox.net.
[13] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-

Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 281–292.
https://doi.org/10.1145/3332165.3347925

[14] Christopher F Herot. 1976. Graphical input through machine recognition of
sketches. In Proceedings of the 3rd annual conference on Computer graphics and
interactive techniques. 97–102.

[15] Raphaël Hoarau and Stéphane Conversy. 2012. Augmenting the Scope of In-
teractions with Implicit and Explicit Graphical Structures. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA)

(CHI ’12). Association for Computing Machinery, New York, NY, USA, 1937–1946.
https://doi.org/10.1145/2207676.2208337

[16] Enamul Hoque and Maneesh Agrawala. 2020. Searching the Visual Style and
Structure of D3 Visualizations. IEEE Transactions on Visualization and Computer
Graphics 26, 1 (2020), 1236–1245. https://doi.org/10.1109/TVCG.2019.2934431

[17] Houdini 2022. Houdini. https://www.sidefx.com/products/houdini/.
[18] Cuttle Labs Inc. 2022. Cuttle: A design tool for digital cutting machines. https:

//cuttle.xyz/
[19] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending

Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY,
USA, 1–13. https://doi.org/10.1145/3173574.3174164

[20] Jennifer Jacobs, Sumit Gogia, Radomír Mech, and Joel R. Brandt. 2017. Supporting˘
Expressive Procedural Art Creation Through Direct Manipulation. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI ’17). ACM, New York, NY, USA, 6330–6341. https://doi.
org/10.1145/3025453.3025927

[21] Gabe Johnson, Mark Gross, Ellen Yi-Luen Do, and Jason Hong. 2012. Sketch
It, Make It: Sketching Precise Drawings for Laser Cutting. In CHI ’12 Extended
Abstracts on Human Factors in Computing Systems (Austin, Texas, USA) (CHI
EA ’12). Association for Computing Machinery, New York, NY, USA, 1079–1082.
https://doi.org/10.1145/2212776.2212390

[22] Gabe Johnson, Mark Gross, Jason Hong, and Ellen Do. 2009. Computational
Support for Sketching in Design: A Review. Foundations and Trends in Human-
Computer Interaction 2 (01 2009), 1–93. https://doi.org/10.1561/1100000013

[23] Jonathan Puckey Jürg Lehni. 2021. Paper.js, The Swiss Army Knife of Vector
Graphics Scripting. Retrieved April 7, 2022 from http://paperjs.org/

[24] Alan C. Kay. 1990. User Interface: A Personal View. Addison-Wesley.
[25] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice.

2014. Kitty: Sketching Dynamic and Interactive Illustrations. In Proceedings
of the 27th Annual ACM Symposium on User Interface Software and Technology
(Honolulu, Hawaii, USA) (UIST ’14). ACM, New York, NY, USA, 11 pages.

[26] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and
George Fitzmaurice. 2014. Draco: Bringing Life to Illustrations with Kinetic
Textures. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Toronto, Ontario, Canada) (CHI ’14). Association for Computing Ma-
chinery, New York, NY, USA, 351–360. https://doi.org/10.1145/2556288.2556987

[27] Rubaiat Habib Kazi, Tovi Grossman, Hyunmin Cheong, Ali Hashemi, and George
Fitzmaurice. 2017. DreamSketch: Early Stage 3D Design Explorations with
Sketching and Generative Design. In Proceedings of the 30th Annual ACM Sym-
posium on User Interface Software and Technology (Québec City, QC, Canada)
(UIST ’17). Association for Computing Machinery, New York, NY, USA, 401–414.
https://doi.org/10.1145/3126594.3126662

[28] Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani, and George Fitzmaurice.
2016. SKUID: Sketching Dynamic Drawings Using the Principles of 2D Animation.
In ACM SIGGRAPH 2016 Talks (Anaheim, California) (SIGGRAPH ’16). ACM, New
York, NY, USA, Article 84, 1 pages. https://doi.org/10.1145/2897839.2927410

[29] Nam Wook Kim, Eston Schweickart, Zhicheng Liu, Mira Dontcheva, Wilmot Li,
Jovan Popovic, and Hanspeter Pfster. 2017. Data-Driven Guides: Supporting
Expressive Design for Information Graphics. IEEE Transactions on Visualization
and Computer Graphics 23, 1 (2017), 491–500. https://doi.org/10.1109/TVCG.2016.
2598620

[30] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. <i>Webstrates</i>: Shareable Dynamic Media. In
Proceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery,
New York, NY, USA, 280–290. https://doi.org/10.1145/2807442.2807446

[31] Cheryl Lao, Haijun Xia, Daniel Wigdor, and Fanny Chevalier. 2021. Attribute
Spaces: Supporting Design Space Exploration in Virtual Reality. In Symposium on
Spatial User Interaction (Virtual Event, USA) (SUI ’21). Association for Computing
Machinery, New York, NY, USA, Article 11, 11 pages. https://doi.org/10.1145/
3485279.3485290

[32] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–17. https://doi.org/10.1145/3173574.3173610

[33] G. Levin and T. Brain. 2021. Code as Creative Medium: A Handbook for Compu-
tational Art and Design. MIT Press. https://books.google.com/books?id=hs_
tDwAAQBAJ

[34] Jingyi Li, Joel Brandt, Radomír Mech, Maneesh Agrawala, and Jennifer Jacobs.
2020. Supporting Visual Artists in Programming through Direct Inspection and
Control of Program Execution. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3313831.3376765

https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/332040.332473
https://www.youtube.com/watch?v=ntaudUum06E
https://www.youtube.com/watch?v=ntaudUum06E
https://doi.org/10.1109/VL/HCC51201.2021.9576315
https://doi.org/10.1145/2984511.2984577
https://doi.org/10.1145/2984511.2984577
https://doi.org/10.1006/jvlc.1997.0152
https://doi.org/10.1145/3411764.3445452
https://doi.org/10.1145/3411764.3445452
http://www.grasshopper3d.com
https://doi.org/10.1145/1572741.1572743
https://doi.org/10.1145/1572741.1572743
http://www.nodebox.net
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/2207676.2208337
https://doi.org/10.1109/TVCG.2019.2934431
https://www.sidefx.com/products/houdini/
https://cuttle.xyz/
https://cuttle.xyz/
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1145/3025453.3025927
https://doi.org/10.1145/3025453.3025927
https://doi.org/10.1145/2212776.2212390
https://doi.org/10.1561/1100000013
http://paperjs.org/
https://doi.org/10.1145/2556288.2556987
https://doi.org/10.1145/3126594.3126662
https://doi.org/10.1145/2897839.2927410
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/3485279.3485290
https://doi.org/10.1145/3485279.3485290
https://doi.org/10.1145/3173574.3173610
https://books.google.com/books?id=hs_tDwAAQBAJ
https://books.google.com/books?id=hs_tDwAAQBAJ
https://doi.org/10.1145/3313831.3376765
https://doi.org/10.1145/3313831.3376765
https://Paper.js

CHI ’23, Hamburg, Germany,

[35] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn
From Visual Artists About Software Development. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
’21). Association for Computing Machinery, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3411764.3445682

[36] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey, Sam
Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting Vector
Design Tools with Lazy Data Binding for Expressive Visualization Authoring. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173697

[37] Jiaju Ma, Li-Yi Wei, and Rubaiat Habib Kazi. 2022. To Appear: A Layered Au-
thoring Tool for Creating Stylized 3D Animations. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI
’22). Association for Computing Machinery, New York, NY, USA.

[38] M. McCullough. 1996. Abstracting Craft: The Practiced Digital Hand. The MIT
Press, Cambridge, Massachusetts.

[39] Lora Oehlberg, Wesley Willett, and Wendy E. Mackay. 2015. Patterns of Physical
Design Remixing in Online Maker Communities. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
639–648. https://doi.org/10.1145/2702123.2702175

[40] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.1294256

[41] Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState: A Language and
Environment for Expressing Interface Behavior. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and Technology (Honolulu, Hawaii,
USA) (UIST ’14). Association for Computing Machinery, New York, NY, USA,
263–272. https://doi.org/10.1145/2642918.2647358

[42] Ken Perlin. 2017. Introduction to Chalktalk. https://github.com/kenperlin/
chalktalk

[43] C. Reas and B. Fry. 2004. Processing. http://processing.org.
[44] Toby Schachman. 2012. Alternative Programming Interfaces for Alternative

Programmers. In Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Refections on Programming and Software (Tucson, Arizona,
USA) (Onward! 2012). ACM, New York, NY, USA.

[45] Ben Shneiderman. 1997. Direct manipulation for comprehensible, predictable
and controllable user interfaces. In Proceedings of the 2nd international conference
on Intelligent user interfaces. 33–39.

[46] Ivan E. Sutherland. 1964. Sketchpad a Man-Machine Graphical Communication
System. Transactions of the Society for Computer Simulation 2, 5 (1964), R–3–R–20.
https://doi.org/10.1177/003754976400200514

[47] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and
Daniel Leithinger. 2021. RealitySketch: Augmented Reality Sketching for Real-
Time Embedded and Responsive Visualizations. In SIGGRAPH Asia 2021 Real-Time
Live! (Tokyo, Japan) (SA ’21). Association for Computing Machinery, New York,
NY, USA, Article 5, 1 pages. https://doi.org/10.1145/3478511.3491313

[48] Unity Technologies. 2022. Develop Gameplay Mechanics with Visual Scripting in
Unity. https://unity.com/products/unity-visual-scripting.

[49] Theophanis Tsandilas. 2021. StructGraphics: Flexible Visualization Design
through Data-Agnostic and Reusable Graphical Structures. IEEE Transac-
tions on Visualization and Computer Graphics 27, 2 (2021), 315–325. https:
//doi.org/10.1109/TVCG.2020.3030476

[50] Theophanis Tsandilas, Anastasia Bezerianos, and Thibaut Jacob. 2015. SketchSlid-
ers: Sketching Widgets for Visual Exploration on Wall Displays. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul,
Republic of Korea) (CHI ’15). Association for Computing Machinery, New York,
NY, USA, 3255–3264. https://doi.org/10.1145/2702123.2702129

[51] B. Victor. 2011. Dynamic Pictures. http://worrydream.com/
DynamicPicturesMotivation.

[52] B. Victor. 2012. Inventing on Principle. In Proc. of the Canadian University Software
Engineering Conference.

[53] B. Victor. 2012. Learnable Programing: Designing a programming sys-
tem for understanding programs. (2012). http://http://worrydream.com/
LearnableProgramming/

[54] B. Victor. 2012. Stop Drawing Dead Fish. In ACM SIGGRAPH 2012 Talks (SIG-
GRAPH ’12).

[55] B. Victor. 2013. Drawing Dynamic Data Visualizations (Talk). http://vimeo.com/
66085662.

[56] Dave Whyte. 2017. Retrieved April 7, 2022 from https://www.instagram.com/p/
BVAb1LuhNBz/

[57] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-
Oriented Drawing. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (Santa Clara, California, USA) (CHI ’16). ACM, New York,
NY, USA, 4610–4621. https://doi.org/10.1145/2858036.2858075

Hashim, Höllerer, Jacobs

[58] Haijun Xia, Nathalie Henry Riche, Fanny Chevalier, Bruno De Araujo, and Daniel
Wigdor. 2018. DataInk: Direct and Creative Data-Oriented Drawing. In Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY,
USA, 1–13. https://doi.org/10.1145/3173574.3173797

[59] Jun Xing, Rubaiat Habib Kazi, Tovi Grossman, Li-Yi Wei, Jos Stam, and George
Fitzmaurice. 2016. Energy-Brushes: Interactive Tools for Illustrating Stylized Ele-
mental Dynamics. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Ma-
chinery, New York, NY, USA, 755–766. https://doi.org/10.1145/2984511.2984585

https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/2702123.2702175
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/2642918.2647358
https://github.com/kenperlin/chalktalk
https://github.com/kenperlin/chalktalk
http://processing.org
https://doi.org/10.1177/003754976400200514
https://doi.org/10.1145/3478511.3491313
https://unity.com/products/unity-visual-scripting
https://doi.org/10.1109/TVCG.2020.3030476
https://doi.org/10.1109/TVCG.2020.3030476
https://doi.org/10.1145/2702123.2702129
http://worrydream.com/DynamicPicturesMotivation
http://worrydream.com/DynamicPicturesMotivation
http://http://worrydream.com/LearnableProgramming/
http://http://worrydream.com/LearnableProgramming/
http://vimeo.com/66085662
http://vimeo.com/66085662
https://www.instagram.com/p/BVAb1LuhNBz/
https://www.instagram.com/p/BVAb1LuhNBz/
https://doi.org/10.1145/2858036.2858075
https://doi.org/10.1145/3173574.3173797
https://doi.org/10.1145/2984511.2984585

Drawing Transforms (DT)

A PSEUDOCODE FOR DTS
// Drawing Transform: A class that provides a mechanism to
// transform any attribute of target artwork, stylistic, spatial,
// or temporal by interpreting vector geometry as input for the
// creation of fexible user-defned, procedural mapping functions
// Parameters: Setters & getters omitted
input // input shape or collection
target // target shape, collection or transformation
mode // enumerator for modes: relative, absolute
segmentation // enumerator for parameterization:

// x-value, path-length
// determines state of DT (seg 0 = idx 0)

behavior // enumerator for mapping behaviors:
// e.g. random, alternate, interpolate

tf_space // struct (mapping context): describes x, y range
// for property mapping and x.y screen coords
// and axis mappings (for linear mapping)

property // property function of target
is_dynamic // describes if DT is static or dynamic
playback_points // list of key, value pairs: (conditions, functions)
x; y; v // arrays for each path in the input to track

// execution state
loops; max_loops // array for each input path & max loop count

// Applies the DT by updating the target statically or dynamically
transform() {

For every element in the target. . .

... If the mode is absolute, call get_transform_value
to get the value of this DT at the start state (segment
index = 0) and call update_target

... If this DT is static, call get_transform_value based
on the at the state mapped to the target index and call
update_target

... If the transformation is dynamic (temporal), call
playback_helper

}

// Recursive function that activates diferent states in the DT by
// cycling through segments on the input artwork
playback_helper(target_idx, curr_state_idx, next_state_idx,
stop_state_idx, bool reverse) {

A base case evaluates the stopping and looping condi-
tions for the DT: IF (!reverse && state_idx >= stop_state_idx)
|| (reverse && state_idx <= stop_state_idx) IF loops[target_idx]
< max_loops call transform ELSE return

Call get_transform_value based on the curr_state_idx
and next_state_idx and pass the output values to up-
date_target

Call playback_helper for the next state
}

CHI ’23, Hamburg, Germany,

// Segments, indexes, and maps input values to calculate
// property values; returns a tuple
get_transform_value(target_idx,
curr_state_idx, next_state_idx, axis_mapping) {

If the DT is static, call calculate_state on curr_state_idx

If the DT is temporal, calculate diference between the
outputs from calling calculate_state on curr_state_idx
and next_state_idx

// Exact sampling is determined by behavior or if the
input is a collection; details omitted
Sample the input: call calculate_state on one or more
input paths using an index given by the behavior
(e.g.alternate), then interpolate or select across those
values according to the behavior

Return calculated tuple (dx, dy, dv) values based on x
value, y value, and path length

}

// Gets input segment values, maps to property values, and
// returns a point
calculate_state(s_idx, in_artwork) {

If the parameterization is path-length return point on
the input at the segment s_idx

If the parameterization is x-value...

... If the path is non-looping calculate the intersec-
tion point of the x-axis at the segment s_idx and the
input artwork path

... If the path is looping use the point of the input path
at segment s_idx to calculate the nearest segment on
the x-axis to calculate the nearest intersection point

Linearly map the point to the property range given
in tf_space and return the new point

}

// Updates the target property and triggers playback points
update_target(dx, dy, dv) {

Update the execution state and check if any play-
back point conditions have been met based on the
execution state. If so, call the playback point values
(functions)

Call the property function of the target passing in
dx, dy, or dv

}

	Abstract
	1 Introduction
	2 Related Work
	2.1 Integrating Symbolic and Direct Interaction
	2.2 Procedural-Direct Manipulation

	3 Design Space
	3.1 Informational Interviews
	3.2 Analysis of Existing Procedural Authoring Techniques and Design Objectives

	4 DRAWING TRANSFORMS
	4.1 Structure of the DT Interaction Primitive
	4.2 Applications of Drawing Transforms

	5 Demonstrative Evaluation
	5.1 Sample AMES Workflow
	5.2 Generate Shapes and Animations
	5.3 Recreate Artwork made with Textual Code
	5.4 Author Particle System Behaviors

	6 Limitations
	7 Discussion
	7.1 Supporting Drawing Expression
	7.2 Geometric Authoring of Low-level Procedural Functionality
	7.3 DTs as a General Visual Creation Primitive

	8 Conclusion
	Acknowledgments
	References
	A Pseudocode for DTs

