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The microservice architecture style has gained popularity due to its ability to fault isolation, ease of scaling applications,
and developer’s agility. However, writing applications in the microservice design style has its challenges. Due to the loosely
coupled nature, services communicate with others through standard communication APIs. This incurs significant overhead
in the application due to communication protocol and data transformation. An inefficient service communication at the
microservice application logic can further overwhelm the application. We perform a grey literature review showing that
unnecessary data transfer is a real challenge in the industry. To the best of our knowledge, no effective tool is currently
available to accurately identify the origins of unnecessary microservice communications that lead to significant performance
overhead and provide guidance for optimization.

To bridge the knowledge gap, we propose MICROPROF, a dynamic program analysis tool to detect unnecessary data transfer
in Java-based microservice applications. At the implementation level, MICROPROF proposes novel techniques such as remote
object sampling and hardware debug registers to monitor remote object usage. MICROPROF reports the unnecessary data
transfer at the application source code level. Furthermore, MicROPROF pinpoints the opportunities for communication API
optimization. MICROPROF is evaluated on four well-known applications involving two real-world applications and two
benchmarks, identifying five inefficient remote invocations. Guided by MicroProF, API optimization achieves an 87.5%
reduction in the number of fields within REST API responses. The empirical evaluation further reveals that the optimized
services experience a speedup of up to 4.59%.

CCS Concepts: » Software and its engineering — Software performance; Cloud computing.

Additional Key Words and Phrases: Microservice, Unnecessary communication, Dynamic program analysis

1 INTRODUCTION

Recent years have seen increasing adoption of microservice architecture in cloud application design. Big tech
companies such as Amazon, Twitter, Facebook, Netflix, Uber, and eBay have adopted various microservice-based
design patterns while designing their services [62] [44] [15] [61]. The microservice architectural design leverages
service-oriented architecture (SOA) principles at a finer granularity. Each service in microservice applications
is loosely coupled and communicates with others through standard communication APIs. Such modularity
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h==————== Employee. java ---------------- %
public class Employee {

public String name;

public String address;

public String email;

}
h===——=== PayrollController.java ------ %
@RestController

public class PayrollController {

@Autowired

private HRService hrService;

@GetMapping ("/getEmployee/{id}")

public String getPaidEmployeeNameById(int id) {
Employee e = hrService.getEmployee(id); // unnecessary data transfer
return e.getName();

}

@GetMapping("/getEmployee/validate/{id}")

public String validatePaidEmployeeInfo(int id) {
Employee e = hrService.getEmployee(id); // not an unnecessary

— transfer

return validate(id, e.getName(), e.getAddress(), e.getEmail());

Listing 1. A motivating example: unnecessary data transfer

enables the developer’s agility, fault isolation, and scalability. However, on the downside, due to disaggregation,
microservice applications pose new challenges, such as efficient CPU and memory resource utilization [6] [69],
reducing communication overhead [41] [18] [30] [63], and meeting the quality of service (QoS) [20] [47].

Previous research [19] [32] [58] has indicated that microservice applications possess a higher communication-
to-computation ratio compared to monolithic applications. Microservice applications spend significant time
processing network requests across services, contributing significantly to the end-to-end tail latency. Existing
studies have addressed the communication overhead by communication-aware microservice scheduling [18],
designing hardware acceleration for network packet processing [32], and coupling the dependent services [41].
However, these techniques fail to address the inherent communication overhead originating from unnecessary
data transfer due to inefficient service API design. Listing 1 demonstrates the problem of unnecessary data
transfer with an example.

In this example, the payroll-service microservice implements a function getPaidEmployeeNa- meById(id)
inside the PayrollController, which returns the requested employee name. Within getPaidEmployeeNameById(id),
another remote microservice HR-service’s getEmployee (id) method is invoked to search its database for the
requested employee. The API returns an object of the Employee class over the communication channel. Since
payroll-service receives the Employee object from a remote service, we call it a remote object. While the
Employee class has three fields, the caller function, getEmployeeNameById(id) only accesses a single field, name.
As a result, transferring the other two object fields becomes unnecessary.

Recent research [5] has shown that optimizing microservice APIs can significantly reduce the number of
object fields and transferred bytes up to 94% and 99%, respectively. To motivate the significance of the problem,
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we further conducted a comprehensive grey literature review in Section 2. We identified 27 tech companies
highlighting the prevalence of this category of code inefficiency in their microservice applications. Through
optimization, developers reported improved resource efficiency.

One source of unnecessary data transfer is the inflexibility of traditional REST APIL. New query language and
runtime engines such as GraphQL [23] were proposed to address this inflexibility. GraphQL enables clients to
specify exactly what data they need, rather than retrieving a pre-determined set of data, which can help reduce
the amount of unnecessary data transfer and improve performance.

However, the major challenge lies in the inability to determine the data usage in the caller microservices.
Real-world microservices are vast and complex, which makes manual analysis to identify object field usage
impractical. For example, Uber’s microservice architecture has over 4,000 microservices and 40,000 distinct remote
procedure call (RPC) endpoints [68]. Due to code complexity, scale, and data flow, identifying object field access
manually is challenging for developers. Additionally, developers must prioritize optimizing unnecessary data
transfer that causes significant performance constraints [27]. Due to the lack of observability tools, applications
using GraphQL still encounter unnecessary data transfer due to developers making inessential field requests [53].

Previous research [8] [7] has explored the potential of static program analysis tools as a solution; however, they
have certain limitations. One of the key limitations is the inability to accurately measure program performance
inefficiencies. Performance measurement is crucial to prioritize code optimization based on the significance
of performance issues. Additionally, static analysis tools have limited context; they can only examine code in
isolation. However, it cannot monitor the calling context (aka call path), the context in which a function is invoked.
While RPC APIs can be invoked from multiple caller functions, not all of them result in unnecessary data transfer
and cause significant performance challenges. Therefore, knowing the calling context of an inefficient RPC API
invocation through dynamic analysis is crucial. Moreover, static analysis tools often fall short of handling complex
code analysis such as alias analysis. Hence, identifying such optimization opportunities without dynamic program
analysis techniques is difficult. To the best of our knowledge, there are currently no dynamic program analysis
tools capable of identifying performance inefficiencies in microservice applications resulting from unnecessary
data communication and guiding developers on optimizing them.

Building such dynamic program analysis tools has its challenge. The tool requires monitoring remote objects
received through RPC and their usage in the service. One way to monitor these remote object usage is to
instrument the microservices and trace every memory access. However, tracing every memory access causes a
significant overhead for the applications. For instance, HOTL [64] shows that trace-based memory analysis can
incur 153X runtime overhead. As a result, a tracing-based approach to monitor every memory access becomes
impractical. Especially, microservice applications are latency sensitive and have strict QoS requirements.

In this paper, we propose MICROPROF, a lightweight dynamic program analysis tool, to tackle the aforementioned
challenges. MiCROPROF uses a principled approach to identify unnecessary data communication that causes
significant performance overhead. For this purpose, it evaluates the microservice applications in two phases. Firstly,
it utilizes Jaeger [29] RPC tracing to pinpoint communication choke points. In the second phase, MICROPROF
leverages statistical profiling [1] to determine if the root cause of the overhead is unnecessary data transfer. To
further refine the analysis, MIcCROPROF performs code-centric attribution [22] [13] to identify the source code
instructions, functions, and function call paths responsible for making inefficient requests for remote objects.
Additionally, using data-centric attribution [38] [39], MicrROPROF identifies unnecessary object fields and guides
developers in optimizing them.

The statistical memory profiling technique used by MicroPror helps reduce the measurement overhead
compared to all memory access tracing. Similar to other distributed profiling tools such as CRISP [68], and
Jaeger [52], MicrROPROF also allows for dynamic adjustment of the sampling rate, providing practitioners with
more control over the runtime overhead. Furthermore, MicRoPROF implements memory profiling using hardware
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debug registers. With the help of hardware debug registers, MICROPROF can intercept remote object usage in a
non-intrusive manner, further reducing the monitoring overhead.

To demonstrate MICROPROF’s effectiveness, we run MICROPROF on four well-known microservice applications
written in Java Spring Boot [56]: TrainTicket [70], Daytrader [45], ThingsBoard [60], and Eclipse-Kapua [14].
Among these applications, ThingsBoard and Eclipse-Kapua are widely-deployed IoT frameworks. On the other
hand, to our knowledge, TrainTicket is the largest open-source microservice application benchmark written in
Java that comprises 41 services. Initially developed by IBM as a monolithic application benchmark, Daytrader
has recently been implemented in microservice architecture [27]. Guided by MicrRoPROF, we identified five
unnecessary data transfers in these applications. Upon optimizing the communication APIs, we observe up
to 87.5% reduction in the number of fields within REST API response. The empirical evaluation reveals the
optimization can achieve a speedup of 4.59x%.

To summarize, this paper makes the following contributions:

e The paper proposes MICROPROF, a novel dynamic program analysis tool to detect unnecessary data
transfer that causes significant performance overhead in Java-based microservice applications. At the
implementation level, MicROPROF leverages techniques such as statistical profiling and hardware debug
registers to monitor remote object usage.

e MiIcrROPROF performs code-centric attribution to identify the source code instructions, functions, and
function call paths responsible for invoking inefficient remote communication APIs. Furthermore, it
performs data-centric attribution to identify unnecessary remote object fields for further optimization.

o The paper evaluates MICROPROF’s effectiveness on two microservice application benchmarks (TrainTicket,
DayTrader) and two widely-deployed IoT frameworks (ThingsBoard and Eclipse-Kapua). Guided by Micro-
ProF, we optimized the inefficient remote API invocations and observed significant speedups.

The rest of the paper is organized as follows. In Section 2, we present a grey literature review on the industry
experience of unnecessary data transfer. Section 3 examines the existing related work and distinguishes Micro-
PRor. Section 4 introduces the relevant background knowledge. Section 5 introduces the proposed mechanism.
Section 6 describes the implementation details of MicrRoPROF. Section 7 discusses the empirical evaluation of
MicroPRroF. Section 7.1 offers a discussion of applying MicROPROF to four microservice applications. Finally,
Section 9 concludes the paper.

Replication: We have shared the replication package! for further study.

2 GREY LITERATURE REVIEW ON UNNECESSARY DATA TRANSFER

Academic research on microservices is still relatively young, and tech companies adopting microservices are
generating a substantial amount of grey literature [55]. There is a gap between academic research and industry
practices, particularly in understanding the challenge of unnecessary data transfer. To bridge this gap, we conduct
a concise yet insightful grey literature review to shed light on this important topic. Our study aims to answer
the research question, "Is unnecessary data transfer a significant challenge in the tech industry?". We begin by
identifying tech companies that adopted GraphQL as part of their microservice architecture. Since many of these
companies publish engineering blogs to share their knowledge with the wider tech community, we rigorously
search these blogs to identify posts related to GraphQL adaptation. Specifically, we select articles discussing
the mitigation of over-fetching issues through GraphQL implementation. Our efforts resulted in identifying
engineering blog posts from 27 different companies. The comprehensive list of these engineering blog posts is
included in the MicROPROF replication package !, labeled from A1 to A27.

Meta’s engineering blog (A17) laments the challenges of dealing with the disparities between the data their
apps require and the corresponding server queries. Meanwhile, PayPal acknowledges (A19) that their REST APIs

IReplication package: https://figshare.com/s/5156839e442f03d97747

ACM Trans. Arch. Code Optim.


https://beautifulcode.1stdibs.com/2016/08/19/backbone-models-to-graphql/
https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
https://medium.com/paypal-tech/graphql-at-paypal-an-adoption-story-b7e01175f2b7
https://figshare.com/s/5156839e442f03d97747

MicroPRroF: Code-level Attribution of Unnecessary Data Transfer in Microservice Applications « 5

were sending clients more data than necessary, resulting in extraneous data transfer. On the other hand, Atlassian
reports (A5) that as they began converting frequently used REST requests to equivalent GraphQL queries in
Trello, they discovered that they were over-fetching vast amounts of data. According to 1stDibs (A1), by precisely
specifying the required fields, they were able to decrease data response from over 1MB to approximately 90KB
for a buyer viewing a full page of orders. These insights from the literature review collectively confirm that
unnecessary data transfer poses a notable challenge for user-facing applications. Optimizing this inefficiency can
result in significant enhancements in QoS and better utilization of cloud resources.

3 RELATED WORK

In this section, we summarize related works in three following directions:

Performance monitoring tools for distributed applications. A large body of work contributes to developing
monitoring and tracing frameworks for distributed system applications. Magpie [4] provides a tracing system
that records fine-grained events generated by the kernel and application components. Magpie further constructs
workload models to predict system performance. Similar to Magpie, Google’s Dapper [54] offers a distributed
tracing platform that enables tracing difficult system issues that are impossible to reproduce. X-Trace [17]
represents a tracing framework that generates a comprehensive view of distributed system traces by enabling
relevant information logging for connected devices. Pivot tracing [42] identifies application bugs and configuration
issues in Java-based distributed systems utilizing dynamic instrumentation with minimal execution overhead.
More recently, CRISP [68] performs critical path analysis on large-scale microservice applications in order
to identify performance issues. Guided by CRISP, the authors performed fine-grained analysis to identify the
root cause of the performance overhead. Similarly, MicROPROF also performs critical path analysis to identify
significant performance overhead in microservices. However, once a critical path is identified, MiIcROPROF goes
further by performing fine-grained analysis to determine whether unnecessary data transfer is the root cause of
the issue. To guide developers in optimizing their code, MiICROPROF attributes inefficiencies to specific source
code instructions and functions.

Unnecessary data retrieval in cloud applications. Previous research [8] [7] has investigated unnecessary
data retrieval from databases. Yang et al. performed an empirical study on database-backed web applications and
highlighted several inefficiency patterns, including unnecessary data retrieval [67]. The authors further proposed
static analysis tools to identify the inefficiency pattern in the application code. Recently, another static analysis
tool is proposed [21] to identify potential data leaks to make microservice applications more secure. However,
static analysis tools have certain limitations which restrict their abilities. In contrast, MiCROPROF uses dynamic
program analysis to identify unnecessary data transfer that causes significant performance inefficiency.

Dynamic analysis for data utilization. Several dynamic program analysis tools have been proposed to
identify data structure-related application inefficiencies. Xu et al. propose a runtime analysis tool to detect
low-utilization data structures in Java applications [65]. However, to implement the tool, the authors modified
the underlying JVM. Chilimbi et al. proposed structure splitting for Java applications to reduce the unnecessary
data on the CPU cache [9]. More recently, JXPerf [57] and its successors OJXPerf [36] and DJXPerf [35] propose
lightweight techniques to identify inefficient computation, memory allocations, and memory accesses in Java
applications. However, none of these dynamic program analysis tools identify inefficient communication across
microservices.

Unnecessary data movement optimization. GraphQL [23] is a query language for APIs and runtime for
executing queries against existing data. The GraphQL clients can request the exact data needed by making a
GraphQL query. As a result, GraphQL APIs enjoy significantly less overhead compared to REST APIs. While
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GraphQL reduces the over-fetching, it does not detect an unnecessary request for data in the microservice
application source code. Often, the runtime behavior is unknown to the developer and may result in unnecessary
data queries. One such example is in Listing 3, where object fields are dependent upon calling context. In contrast
to GraphQL, MicroPRroF detects unnecessary data transfer in the microservice applications.

4 BACKGROUND
In this section, we briefly discuss the technologies used by MicROPROF.

Code-Centric and data-centric attribution. Code-centric attribution is a dynamic program analysis tech-
nique where runtime events/metrics are attributed to application source code instructions, code blocks such as
loops, functions, and calling contexts. Tools such as VTune [28], Oprofile [34], CodeAnalyst [13], and gprof [22]
are examples of code-centric tools that link performance metrics to source code. However, code-centric attri-
bution falls short of attributing events/metrics to data objects. In contrast, data-centric attribution attributes
events/metrics to dynamically allocated objects and variables. Tools such as HPCToolKit [39], ArrayTool [40], and
StructSlim [49] perform both code- and data-centric attribution to identify the root causes of various performance
inefficiencies.

Java Virtual Machine Tool Interface (JVMTI). JVMTI [11] is a native programming interface for developing
tools to monitor Java applications running on Java Virtual Machine (JVM). A tool using the JVMT]I, also known
as a JVMTI agent, can be statically linked or dynamically loaded during JVM initialization. Once attached to
the JVM, the agent can use the JVMTI to monitor JVM states, including but not limited to profiling, debugging,
monitoring, thread analysis, and coverage analysis tools.

Debug registers. On an x86 processor, a debug register [12] is a hardware component that allows developers
to debug applications at the source code level. Debug registers enable trapping a target application’s memory
reference and instruction execution. A debug register is configured to set a watchpoint at the target memory
address to trap a memory reference. When the application refers to the monitored memory address, it causes
an interrupt and sends a signal to a registered signal handler. The signal handler can observe the application
state, such as the instruction pointer responsible for memory reference. Finally, the signal handler collects the
information to process the event further.

5 METHODOLOGY

Real-world microservices are complex, with many remote services interacting with each other in intricate ways.
Fig 1 presents a simplified scenario where two services, payroll-service and admin-service invoke remote
endpoint, getEmployee() of the hr-service. However, only remote invocations from payroll-service cause
significant performance overhead, warranting further investigation. Nevertheless, as shown in Listing 1, only
the caller function getPaidEmployeeNa- meById() demonstrates unnecessary data transfer. Pinpointing such
inefficiency will require measuring the communication overhead across services and monitoring the remote
data usage of the caller services. However, the situation can quickly escalate as the monitoring effort grows
significantly with the increase in the number of API endpoints and their invocations.

To minimize the effort, we adopt a selective and incremental approach for monitoring. Our incremental
monitoring is based on a principled approach: first, we identify critical service-to-service call paths that cause
significant overhead in serving end-user requests by critical path analysis (CPA) [66]. CPA allows us to identify
the specific service chains that create performance challenges in the microservice application, ensuring we target
our monitoring efforts where they are most needed. Once we identify the critical path and the involved services,
we perform fine-grain program analysis on the caller services of these critical paths to monitor remote object
usage.
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: —= Critical path —=Non-critical path—= Optimized path

Inefficient caller ]

Critical Path

] Analysis ]
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Dynamic Program Analysis
(a) (b)

Fig. 1. (a) Critical path analysis narrows the search space to two critical paths. Subsequently, MicRoPROF’s dynamic program
analysis identifies inefficiency in getPaidEmployeeNameByID. (b) New endpoint introduced to avoid unnecessary data
transfer.

5.1 Critical path analysis of microservices

We perform critical path analysis on the service dependency graph of the microservice application. For this
purpose, we utilize distributed tracing [51], a technique that monitors and analyzes the flow of requests across
multiple services involved in processing user requests. In recent years, several distributed tracing tools have been
proposed, including Google’s Dapper [54], Jaeger [29], Zipkin [71], Apache’s HTrace [26], and LightStep [37].
In this paper, we leverage Jaeger to collect microservice call traces. Jaeger exposes the collected data using
OpenTelemetry [46] [33] compliant format.

Each end-to-end OpenTelemetry trace consists of a list of spans. A span is an individual unit of work done in a
distributed service. A span data structure consists of attributes such as operation start time, end time, and a list of
child spans. As services call to other services via RPC, spans forms directed acyclic graphs (DAG). Fig 2-a shows
an example of DAGs constructed from N-traces. From the DAGs of all traces, we further construct an aggregated
calling context tree (CCT) [2], which captures the path and order of these service invocations, forming a tree-like
structure. Fig 2-b depicts an example of CCT. We enhance the CCT nodes by incorporating two additional metrics:
inclusive service time and exclusive service time. The inclusive service time encompasses the time spent on the
service node itself as well as the time spent on the subsequent callee services. Conversely, the exclusive service
time of a service node focuses solely on time spent on that service operation, excluding the service times of its
callees.

A service that exhibits a higher exclusive service time plays a significant role in the overall request latency,
indicating a need for further investigation into potential unnecessary data transfer. On the other hand, when a
service node demonstrates inefficiency with a higher inclusive service time, it suggests that optimization efforts
could potentially eliminate subsequent service calls in the call path, thereby reducing the overall request latency.
To effectively prioritize both metrics, we visualize the service call paths within the CCT in a 2D space, plotting
the exclusive and inclusive service times. Fig 2-c illustrates the plot. Subsequently, we calculate the Euclidean
distance of each service from the center of this 2D space. The services are then ranked in descending order based
on their distance from the center, as depicted in Fig 2-d. By following the prioritized list, we selectively analyze
the services in order to identify unnecessary data transfer.
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Fig. 2. Critical path analysis from distributed tracing.
5.2 Detecting unnecessary data transfer

Depending on the context of remote invocation and reference to the object, a remote object transfer may or
may not result in an unnecessary transfer. For instance, from Listing 1, both getPaidEmployeeNameById(id)
and validatePaidEmployeeInfo(id) receive a remote object of Employee class via invoking remote method
getEmployee(id). However, while getPaidEmployeeNameById(id) doesnot fully utilize the remote Employee
object, validatePaidEmployeeInfo(id) utilizes all its fields for validation purposes. Therefore, to accurately
identify unnecessary data transfer in the source code, it is crucial to (1) capture the call path of remote object
allocation and (2) derive utilization metrics specific to each remote object allocation call path.

One approach to detect unused fields in remote objects is to monitor the field accesses of all the remote
objects exhaustively. Such exhaustive monitoring will require instrumenting all the fields of remote objects and
monitoring their accesses. However, this instrumentation-based mechanism will incur significant overhead in
the microservice applications and become impractical in the production environment. In order to minimize the
exhaustive tracing of remote objects, MicrRoPROF samples a subset of remote objects to monitor memory references
within the microservice process. Furthermore, MicROPROF eliminates the need for exhaustive instrumentation by
implementing address monitoring via hardware debug registers.

Statistical sampling. During the allocation of remote objects, MICROPROF selects a subset of the objects via
well-known Monte Carlo sampling algorithm [43] and records the call path of the allocation. We define this call
path as allocation context. Sampling-based call path profiling is a well-established mechanism, frequently
adopted in performance monitoring tools such as GProf [22], Oprofile [34], HPCToolkit [1], and Intel VTune [28].
Supported by the law of large numbers [25], as the quantity of independent and identically distributed (i.i.d.)
random samples grows, the distribution of the samples gradually approximates the population distribution across
all the allocation contexts. A theoretical analysis of sampling-based call path profiling can be found in [59]
(Appendix A).

Suppose the probability of invoking an allocation context, C, is represented with P[c]. When dealing with a
critical path (identified in Section 5.1) that involves numerous remote data transfer, a highly probable inefficient
allocation context will significantly negatively impact performance. We approximate the probability by statistical
sampling of allocation contexts and identify the hot allocation contexts contributing to many remote invocations.
Suppose we collects N ii.d. random samples: x1, X, ..., X, Where each x; represents the allocation context
observed on the i*" sampled event. Formula 1 calculates the observed probability for allocation context, where N,
represents the number of occurrences of allocation context. With a large sample size, N, the observed probability
is close to the actual probability distribution.

Ple]= =% o)
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However, monitoring references to all the fields of sampled objects simultaneously is difficult due to the
constrained number of hardware debug registers. To overcome the limitation, MicRoPROF employs a strategy
of uniform random sampling to select a subset of fields from the target object. MicroPRoF further collects
many samples across microservice invocations and aggregates them by allocation context. This uniform random
sampling ensures that all fields have an equal chance of being monitored. With a large number of independent
and identically distributed (i.i.d.) random samples collected from microservice requests, the distribution of field
accesses in the samples gradually converges to the overall population distribution. MICROPROF monitors the
references to these sampled fields via hardware debug registers and calculates a metric of the associated class
in the allocation context. MICROPROF uses this utilization metric to evaluate whether hot allocation contexts
involve unnecessary data transfer.

Algorithm 1 Algorithm of unnecessary data transfer detection

Input: Microservice, M requesting the remote objects
Input: The class of the remote objects

Output: Class utilization

Output: Class field utilization

1: repeat
2: Intercept remote object allocation
3: Randomly select a remote object, O;, during allocation
4: Randomly select a field, fo! of the remote object O;
5: Collect the allocation context, C of the remote object O;
6: Record pair < C, fo! >
7: Set a trap to monitor the references to the field, fo°
8: while O; is alive do
9: Intercept references to field fo'
10: if The field foi is accessed in Microservice, M then
11: Increment access count of the field, f° % of the class
12: Remove trap on the field, fo!
13: break
14: end if

15: end while
16: if The field fo' was not accessed in Microservice, M then

17: Increment unused count of the field, f i of the class
18: Remove trap on the field, fo'
19: end if

20: until Not sufficient sample collected
21: return class and field utilization

5.2.1  MicroProFr workflow. Algorithm 1 presents the pseudo-code of MicROPROF’s detection of unnecessary
data transfer. As the microservice receives a remote object over the communication APIs, the object gets allocated
in the heap memory. On line 2, MiCROPROF intercepts these allocations of the remote objects (Section 6.1). At the
allocation interception, MicROPROF randomly selects a subset of the remote objects and a subset of their fields
for further monitoring (Lines 3-4). For data-centric attribution, MicroPRor further records the start memory
address of the object allocation, the size of the allocated object, selected field offsets in the allocation range, and
the allocation context of the selected object (Lines 5-6). On line 7, MICROPROF sets traps to detect references
to the selected fields (Section 6.2). Any reference to the field will cause a trap, and MICROPROF intercepts the
reference. During the access interception, MicROPROF checks if the microservice code accessed the referenced
field (Lines 9-10). If that is the case, MicCROPROF marks the field of the associated class used in the allocation
context and increments the associated field access counter. Then MiCROPROF removes the trap from the field
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(Lines 11-12). At the end of the life of the object, MicrROPROF identifies any remaining un-intercepted fields as
unused fields. MicroPROF increments the associated field’s unused count in the allocation context and removes
the trap on the field (Lines 16-19). MICROPROF repeats the process until it monitors a sufficient number of samples
in the allocation context (Line 20).

During the post-processing of the collected samples (Line 21), MicROPROF calculates two utilization metrics on
each allocation context to detect unnecessary data transfer: (1) Class utilization: What fraction of the class fields
are utilized in the allocation context? (2) Field utilization: What fraction of a given field (say f) of the monitored
remote objects are accessed by the requesting microservice at the allocation context? Equations 2 and 3 show the
class utilization metric, ¢ and field utilization metric, p calculation respectively. In these equations, N; denotes
the number of intercepted references to the class, N; represents the number of traps set in the allocation context,
N; and N/ stands for the number of references and non-references to f;, respectively.

Nir
9= @

— Nr
" N, +N,

pi ®3)

MicroPror sorts the allocation contexts by the allocation count and the class utilization metric, ¢, in descending
order. MicroOPROF finally reports the allocation context, class utilization, ¢, and class field utilization, p. An
allocation context with a large allocation count and low-class utilization is susceptible to unnecessary data
transfer. Furthermore, field level utilization, p, identifies the underutilized fields.

Finally, we calculate the required number of samples for an acceptable confidence interval. We ask - what is the
maximum number of samples per field that should be monitored to determine the field utilization, given a 95%
confidence interval and a margin of error of 5%? Since this is a statistical point estimation problem with unknown
population size, we can calculate the required sample size using the formula for infinite population size presented
in [50] (Chapter 4.1.4), as demonstrated in equation 4. Here, z-score indicates how many standard deviations
a data point is away from the mean of a normal distribution. For a 95% confidence interval, the z-score is 1.96.
Given the unknown proportion p,, we set it to 0.5 to generate a conservative variance estimate. Considering a
margin of error () of 0.05 solving the formula gives a sample size (n) of 385.

z — score

":(T)zxpux(l_Pw) “

6 IMPLEMENTATION

MicroProF is implemented as a user-space tool to detect unnecessary data transfer in Java-based microservice
applications. At the implementation level, it leverages the processor’s hardware debug registers. MicRoOPROF does
not require any modification to the underlying JVM or the hardware. Fig. 3 shows the overview of MICROPROF.
MicroPror implements two agents: 1) a Java agent to intercept remote object allocation and 2) a JVMTI agent
to set traps and intercept access to the fields. During the deployment of the microservice, MicrRoPROF first
attaches itself to the application. The agents are loaded into the same memory along with the target microservice
application. MICROPROF’s Java agent instruments the remote object allocation regions. During a remote object
allocation, MICROPROF’s Java agent intercepts and samples target objects. Based on the availability of debug
registers, MICROPROF samples all the objects of the class. MicRoProF’s JVMTI agent sets traps for the target
fields of the object. During microservice execution, if the application accesses the target field, it causes a trap,
and the JVMTI intercepts and records the access. When a sufficient number of samples are collected, MICROPROF
performs post-processing and reports the utilization metric.
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6.1 Intercepting remote object allocation

Challenge: To enable microservice communications, a number of communication protocols have been proposed.
Among these, RPC [16] [24] and RESTFul are two popular communication protocols. However, there are various
service implementations of these communication protocols, such as Dubbo/gRPC service, Spring Cloud RESTFul
service, or Kubernetes service. One approach to intercepting the incoming remote objects through these various
communication protocol implementations is to write the driver code for each. With such an approach, one
can monitor all the incoming remote objects without porting MiCROPROF’s interceptor at the application level.
However, due to a large number of protocol implementations, writing driver code for all the protocols is a
challenging task. As an alternative approach, MicROPROF exposes APIs for the developers to provide hints for
remote invocations.

6.1.1 Annotation API. Listing 2 shows MICROPROF’s annotation API to guide the tool to monitor the remote
object allocation. First, a developer annotates the functions that perform remote invocation to other services.
The developer further provides the name of the remote object class as a parameter. This information helps the
Java agent to instrument the target class and intercept the remote object allocation in the same context as the
annotated function call.

———————————— ClassName . java -————-—--------%
@MICROPROFAnno( monitorObject="RemoteClass")
public RemoteClass remotelnvocation ()

{

List <RemoteClass> remoteObject= remoteClient. getRemoteObject () ;

Listing 2. MicROPROF remote invocation annotation

6.1.2 The Java Agent. The Java agent instruments the target class at the bytecode level by leveraging the
java.lang .instrument and ASM library [3]. During instrumentation, the Java agent registers a callback function
for the allocation of the target class object. When the microservice receives a remote object, the object gets
allocated in the heap memory. After heap allocation, the Java agent’s callback function is invoked. The Java agent
performs a random sampling to determine whether MicrRoProF will further monitor the allocated object. If the
Java agent decides to monitor the object, it collects two pieces of information. 1) The start address of the object
in the heap memory and 2) the list of fields and their offsets within the allocation region. The Java agent then
passes this information to the JVMTI agent for setting traps on the object fields.

6.1.3 The JVMTI Agent. Once the Java agent hands over the target object to the JVMTI agent, MICROPROF
captures the program execution context of the object allocation. The JVMTI agent collects the program execution
context as a dynamic call graph, C. JVMTI agent then randomly selects an object field, fo', to monitor. MICROPROF
records the attribution of the object field, fo' and the allocation context, C as a pair < C, fo' >. JUMTI agent then
leverages a hardware debug register to set a trap on the chosen field fp'.

6.2 Intercepting field reference

Challenge: The modern processors implement a limited number of hardware debug registers, creating a challenge
in monitoring many remote object fields concurrently. For instance, in our experimental environment, the servers
have only four hardware debug registers per CPU core. Monitoring more than four remote object fields will
require replacing the existing traps set by the debug registers. However, if MICROPROF replaces an existing trap
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Fig. 3. Overview of MIcROPROF architecture and allocation path profiling

to monitor new fields, it will lose the observability of the replaced field. For completeness; it is important to
monitor the object fields throughout the object’s lifetime.

Since microservices are stateless in nature, any remote object allocated during a microservice invocation has a
short lifespan. Therefore, when the service completes the request, the remote object becomes dead and waits for
the garbage collector to collect it. Due to the short lifespan of remote objects, the JVMTI agent sets a trap for the
target fields for a short period of time by setting a time-to-live (T'TL) timer. This TTL approximates the lifetime
of the object. If the microservice application refers to the field within this interval, the debug register will cause a
trap and notify the JVMTI agent with a registered trap handler.

At the trap handler, the JVMTI agent identifies the pair < C, fo' > associated with the trap and increments
the use counter of the field f’ at the allocation context C. At the same time, JVMTI makes the debug register
available to monitor a new object field. If the microservice does not refer to the target field within the TTL period;
the JVMTI agent checks if the object is dead at TTL expiration (Section 6.3). If the object is still alive, the JVMTI
agent replaces the trap to monitor a new field.

6.3 Finding dead objects

Challenge: Java garbage collectors may or may not reclaim the free objects immediately. As a result, MICROPROF
cannot rely on the JVMTI garbage collection event to monitor the liveliness of an object.

JVM manages the reference of an object in a reference graph. Any alive heap object has a reference and thus is
reachable from the top-level objects of the reference graph. MicRoPro¥’s JVMTI agent traverses this reference
graph and performs a reachability analysis to identify if the heap object is reachable. For this purpose, during
the object’s allocation, the JVMTI agent tags the target object with a unique identifier using JVMTI SetTag APL
When TTL expires, the JVMTI agent looks for the tag among all the reachable heap objects during reachability
analysis using JVMTI FollowReferences API. If the agent cannot locate the target object using the unique
identifier, it determines the object is dead. At this point, the JVMTI agent marks the expired field as unused and
increments the unused counter of the field f* at the allocation context C.

6.4 Post-processing

At the post-processing stage, MICROPROF constructs an aggregated calling context tree of the sampled allocation
contexts as shown in Fig. 3-c. Subsequently, it calculates the field and class utilization metrics for each allocation
context. MICROPROF further retrieves the source code line number and file name from the allocation context.
Finally, it sorts the allocation context by the allocation count and utilization metrics and generates a report.
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Table 1. Summary of Microservice applications evaluated in this paper. Latency is reported in milliseconds.

Avg. latency Avg. latency
l.leal wonild Version # c.'f . Faulty . Inefficient endpoint original code | optimized code Sp Fedup
microservices services microservice (times)
(ms) (ms)
. POST
TrainTicket 0.0.3 41 ts-seat-service {/orderOther/tickets} 1860.86 40549 459
. POST
ts-route-plan-service {/routePlan/quickestRoute} 13256.08 10608.05 1.25
Thingsboard 3.4.1 4 rule-engine query to PostgreSQL DB 0.16 0.13 1.20
. POST
DayTrader 4.0.18 5 daytrader-portfolios {/portfolios/userld}/orders} 56.10 55.17 1.02
Eclipse Kapua 1.6.7 7 kapua-datastore query to Elasticsearch 394.71 212.74 1.86

7 EVALUATION
We evaluate both the utility and impact of MicROPROF. The evaluation aims to address the following questions:

o Q1 (Detection): Does the tool effectively identify unnecessary data transfer and pinpoint the responsible
source code, along with its calling context? Additionally, does the tool report unutilized fields to offer
guidance for optimization purposes?

e Q2 (Speedup): How much performance improvement can we anticipate through the utilization of Micro-
Pror-guided optimization?

o Q3 (Overhead): What is the level of overhead incurred by MICROPROF in its default setting?

Experimental setup. We evaluate MICROPROF on clusters provisioned within CloudLab [48]. We choose
CloudLab-Utah’s m510 nodes while deploying the clusters [10]. Each m510 node is an 8-core, 16-thread Intel
Xeon D-1548 (Broadwell) CPU clocked at 2.0GHz running Ubuntu 18.04. The device has a 12MB LLC cache and
64GB ECC Memory.

We study four microservice applications: TrainTicket, Daytrader, ThingsBoard, and Eclipse-Kapua. The ap-
plications are deployed on Kubernetes [31] clusters with 10, 3, 2, and 2 nodes, respectively. We configure the
Kubernetes security context to privileged mode to enable the debug registers inside the Kubernetes pod. In the
ThingsBoard and Eclipse-Kapua deployment, the database runs on a separate node from the backend services.
Since MicroPROF is compatible with JDK 11 and any of its successors, we update the build environments of the
microservice applications to use JDK 11.

Evaluation methodology. Before evaluating MicROPROF, we perform critical path analysis (Section 5.1) to
prioritize queries that are deemed worthy of MicROPROF’s fine-grained analysis. For this purpose, we run the
microservice applications and conduct application-specific operations on the client. These operations include
booking tickets on TrainTicket microservice and trading stocks on DayTrader. Once we shortlist the queries, we
start experiments to evaluate MICROPROF against those queries. Each experiment precedes a 2-minute warm-up.
We use Apache JMeter scripts with 16 user threads to request the TrainTicket and DayTrader microservices.
For the other services, we use single-user settings. In each experiment, we send 10,000 queries to each of the
services. To ensure the reliability of the results, we repeat each experiment five times. While reporting the
results, we average the performance metrics across multiple experimental runs. We consider both the average
and 99th-percentile latency as the performance metrics.

Summary of evaluation. Table 1 summarizes the microservice inefficiencies detected by MicroPror. Guided
by MicroPror, we identify five inefficient data transfers in the microservice applications. To validate the findings,
we further optimize the applications. Our experimental evaluation shows that microservices enjoy up to 4.59x
speedup in average latency.

Fig. 4 further presents the latency distribution of the queries for each inefficient and optimized service,
including the tail (99th percentile). From Fig. 4-a, the ts-seat-service (TrainTicket) latency is reduced from
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Fig. 4. The cumulative distribution function (CDF) of query latency before and after optimization of unnecessary data
transfer.

4762.01 to 999 milliseconds through optimization, achieving a 4.77X improvement. In Fig. 4-b, the latency for
the ts-route-plan-service (TrainTicket) is cut from 32405.05 to 26408.33 milliseconds, resulting in a 1.23X
speedup. Similarly, Figs. 4-c, 4-d, and 4-e indicate that kapua-datastore service (Eclipse Kapua), rule-engine
service (Thingsboard), and daytrader-portfolios service (DayTrader) experience an improvement in tail
latency of 2.01x%, 1.13X, and 1.01X, respectively. This result directly answers evaluation question Q2, showcasing
the effectiveness of MicROPROF in significantly enhancing microservice performance.

Overhead measurement. To answer the evaluation question Q3, we measure the runtime overhead of Micro-
PRroOF on 14 services from the TrainTicket benchmark. These selected services represent the core microservices
frequently invoked by the rest of the services in the benchmark. We carry out this assessment by executing each
experiment five times with 16 user threads and then comparing the runtime ratio with and without MicrRoProF
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Fig. 6. REST communication between TrainTicket microservices. Inefficient microservices are shown in gray.

monitoring enabled. The findings are depicted in Fig. 5. The figure shows that most services experience a maxi-
mum overhead of 10%. To further minimize sampling overhead, developers can configure MicROPROF’s dynamic
sampling rate selection. A similar approach is adopted by Uber’s CRISP [68] and Jaeger.

7.1 Case Studies

To answer the evaluation question Q1, this section discusses the utility of MicROPROF in greater detail. Through
individual case studies, we demonstrate the unnecessary communication patterns in the microservice applica-
tions’ source code. We further demonstrate MicCROPROF’s capability to identify the source code’s inefficiency
accurately. Finally, guided by MicROPROF, we optimize the unnecessary data transfer and verify the optimization
by systematically comparing the original implementation.
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Table 2. Summary of critical path analysis report. Latency is reported in seconds.

Normalized | Normalized
Rank Critical path exclusive inclusive | Distance
latency (s) latency (s)
1 TRAVEL-PLAN[getByQuickest]->TRAVEL-PLAN[POST] 1.00 0.95 1.38
2 TRAVEL-PLAN[POST] 1.00 0.88 1.33
3 TRAVEL-PLAN[getByQuickest] 0.01 1.00 1.00
4 TRAVEL—PLAN[getByQuickest]—>TRAVEL—PLAN[POST]-> 0.01 0.32 0.32
ROUTE-PLAN[getQuickestRoutes]

5 TRAVEL-PLAN[POST]->ROUTE-PLAN[getQuickestRoutes] 0.01 0.32 0.32
6

7.1.1 TrainTicket. TrainTicket is an open-source microservice benchmark application. It implements a train
ticket booking system with a total of 41 services. The services communicate with other services through REST
API. The majority of the services of TrainTicket are written in Java using Spring Boot framework [56]. It offers
versatile deployment facilities consisting of Kubernetes, Helm, and Docker and supports distributed tracing using
Jaeger. We deploy TrainTicket-0.0.3 in a CloudLab Kubernetes cluster of 10 nodes.

Inefficiency in ts-route-plan-service

To identify the significant performance overhead, we first perform critical path analysis (CPA). Table 2 presents
the first few lines reported by the CPA on the TrainTicket microservice. We evaluate each path according to the
priority list using MicrRoPRoF and identify an inefficiency on the path of row 5.

The Scenario. The scenario is depicted in Fig. 6-a. The TrainTicket webpage searches for the quickest Route
with a source and destination station. The request is sent to ts-route-plan-service using REST API POST
"/quickestRoute". The request handler at ts-route-plan-service handles the request by invoking REST APIs
of two remote services, ts-travel-service and ts-travel2-service. These requests return high-speed and
normal-speed train routes. The ts-route- plan-service sends the five quickest routes to display on the webpage.
MicroPror identifies unnecessary data transfer from ts-travel2-service to ts-route-plan-service.

MicroPRroF insight Listing 3 shows MICROPROF’s report on two remote invocations from
ts-route-plan-service. The first half of the listing shows that ts-route-plan-service receives the normal
train routes from ts-travel2-service. The second half of the listing shows that ts-route-plan-service
receives the high-speed  train routes from ts-travel-service. Both ts-travel2-service and
ts-travel-service return these routes as a list of TripResponse instances. However, the utilization
report shows that the remote objects returned from ts-travel2-service suffer low utilization of 23%.
Comparatively, the remote objects from ts-travel-service have higher utilization of 83.7%.

Listing 4 shows the partial code of the handler function searchQuickestResult. Lines 2 and 3 show the two
remote invocations for high-speed train routes and normal-speed train routes. However, the code only returns
the quickest five results. Manual code investigation shows that in most cases, these results are from high-speed

train routes. As a result, returned Tri ﬁResponse objects from the normal train routes become unnecessary.
The optimization. We optimize the ts-route-plan-service by conditionally avoiding the unnecessary

transfer of normal train routes. After optimization, the service observes a 76.1% reduction in the number of fields
requested and enjoys 1.25X speedup in average latency.

Inefficiency in ts-seat-service

The Scenario Fig. 6-b depicts the scenario of service invocations. The ts-travel2-service requests the
ts-seat-service for a list of remaining tickets using an exposed REST API, GET "/seats/left_tickets".
ts-seat-service’s getLeftTicket- Of Interval implements the handler function to serve the request. For
this purpose, ts-seat-service communicates with another external service ts-order-other-service through
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? cocoooooooo Context for normal train

plan.controller.RoutePlanController.getQuickestRoutes(RoutePlanController. java:39)
|_ plan.service.RoutePlanServiceImpl.searchQuickestResult(RoutePlanServiceImpl. java:98)
|_ plan.service.RoutePlanServiceImpl.@getTripFromNormalTrainTravelService@(RoutePlanServiceImpl. java:329)

Field utilization: {'endTime': 100%, 'startingTime': 100%, 'confortClass': @%, 'economyClass': 0%,
< priceForConfortClass': 0%, 'priceForEconomyClass': 0%, 'startingStation': 0%, 'terminalStation': 0%, "'
<— trainTypeld': 0%, 'tripId': 0%},

Class Utilization: {'TripResponse': @23.9%@}

% —mmmmmmmm Context for high speed train

plan.controller.RoutePlanController.getQuickestRoutes(RoutePlanController. java:39)
|_ plan.service.RoutePlanServiceImpl.searchQuickestResult(RoutePlanServiceImpl. java:97)
|_ plan.service.RoutePlanServiceImpl. #getTripFromHighSpeedTravelServive#(RoutePlanServiceImpl.java:313)

Field utilization: {'endTime':99%, 'startingTime':100%, 'confortClass':0%, " 'economyClass':0%, '
< priceForConfortClass': 100%, 'priceForEconomyClass':100%, 'startingStation':100%, 'terminalStation’
< :100%, 'trainTypelId':100%, 'tripId':100%},

Class Utilization: {'TripResponse': #83.7%#}

Listing 3. MICROPROF reports unnecessary data transfer from ts-travel2-service to ts-route-plan-service
in TrainTicket. However, MicroProF did not find inefficiency in communication between ts-travel-service to
ts-route-plan-service

public Response searchQuickestResult(...) {
ArrayList<TripResponse> highSpeed = getTripFromHighSpeedTravelServive (queryInfo, headers);
ArrayList<TripResponse> normalTrain = getTripFromNormalTrainTravelService(queryInfo, headers);

int size = Math.min(finalResult.size(), 5);
for (int i = @; i < size; i++) {

returnResult.add(finalResult.get(minIndex));

Listing 4. TrainTicket’s ts-route-plan-service.

seat.controller.SeatController.getlLeftTicketOfInterval (SeatController.java:52)
|_ seat.service.SeatServiceImpl.getLeftTicketOfInterval (SeatServiceImpl. java:238)
|_ seat.service.SeatServiceImpl.invokeOrderOtherTickets(SeatServiceImpl. java:301)

Field utilization: {'destStation': 100% 'seatNo': 0%, 'startStation': 0%},
Class Utilization: {'Ticket': 33.9%}

Listing 5. MICROPROF reports unnecessary data transfer from ts-order-other-service to ts-seat-service in TrainTicket.

REST APIGET "/orderOther/tickets". Finally, ts-order-other-service retrieves the requested data from
mongoDBService. MicROPROF identifies unnecessary response data transfer from ts-order-other-service to
ts-seat-service.

MicroPror insight. Listing 5 shows the snapshot of MicROPROF’s code analysis result for ts-seat-service
microservice of TrainTicket. Lines 1-5 show the truncated allocation context of the unnecessary remote object.
The allocation context represents the call path, source code file name, and line number. For instance, the context
identifies the inefficient remote object is requested on Line 301 of SeatServiceImpl.java. Line 6 of the listing
delineates the utilization of each field of the class, and Line 7 delineates the utilization of that entity class. From
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the listing, M1cROPROF reports that the class Ticket has a low utilization of 33.9%. The report further states that
only field destStation has full utilization, whereas the fields seatNo and startStaion are never used.

1

public Response getLeftTicketOfInterval(...) {

- re3 = restTemplate.exchange("http://ts-order-other-service:12032/api/v1/
= orderOtherService/orderOther/tickets", ...3});

- leftTicketInfo = re3.getBody().getData();

- Set<Ticket> soldTickets = leftTicketInfo. getSoldTickets();

- for (Ticket soldTicket : soldTickets) {

= String soldTicketDestStation = soldTicket.getDestStation();

+ re3 = restTemplate.exchange("http://ts-order-other-service:12032/api/v1/
i3 orderOtherService/orderOther/tickets/destStation/list", ...3});

+ List<String> dStations = re3.getBody().getData();

+ for (String soldTicketDestStation : dStations) {

Listing 6. TrainTicket ts-seat-service before and after optimization.

Listing 6 shows the inefficient original code snippet as well as the optimized code of the ts-seat-service.
The original code snippet is marked as red, and the optimized code snippet is marked as green. In the original
code, the getLeftTicketOfInterval() function of the ts-seat-service serves the request by providing the
number of remaining tickets. For this purpose, the function invokes a REST API of ts-order-other-service.
ts-order-other-service returns a list of Ticket entity. However, as MICROPROF reports, the function only
utilizes the destStation field of the class by calling the getter function getDestStation().

The optimization. Our implementation focuses on reducing redundant data transfer over the network. We
implement a new optimized endpoint at the ts-order-other-service that retrieves only the destStation
list from the MongoDB service and sends the response back to ts-seat-service. This optimization reduces
the original implementation’s transferred data to ;. We conduct stress tests on inefficient and optimized code
blocks to analyze performance improvement. We send a bulk of requests using Apache JMeter and measure the
average latency of the GET "/seats/left_tickets" request. Guided by MicROPROF, the optimization of the
ts-seat-service reduces the API response size by 66.1% in terms of the number of fields and results in a 4.59x

speedup in average latency.

7.1.2 ThingsBoard. ThingsBoard is an open-source IoT platform that enables developing and managing robust,
scalable, and fault-tolerant IoT projects. The platform provides server-side infrastructure for IoT applications
with transports, core, rules; and a web-based user interface. We deploy Thingsboard v3.4.1 using Docker in a
cluster of 2 nodes.

The Scenario. ThingsBoard provides a rule engine, a framework for building event-based workflow. We
implement a Thermostat rule chain to experiment using ThingBoard’s rule engine. Fig. 7 depicts the rule chain.
According to the rule chain, the related devices will be notified when the thermostat device posts telemetry.
While testing the scenario, MICROPROF identifies unnecessary data transfer from the database to the rule engine.

MicroPror insight. Listing 7 shows MICROPROF’s code analysis result for the rule-engine
service of the ThingsBoard application. From the reported context, the inefficiency happens in
EntitiesRelatedDeviceIdAsynclLoader. java file at findDeviceAsync() function. Line 6 of the listing
further reports that Device class has a low utilization of 12.5%, and only id and type fields have full utilization.
The function does not require access to the remaining 13 fields.
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rule.metadata.TbAbstractGetAttributesNode.onMsg(ThAbstractGetAttributesNode. java:74)
|_ rule.metadata..TbGetDeviceAttrNode.findEntityIdAsync(TbGetDeviceAttrNode.java:50)
|_ rule.util.EntitiesRelatedDeviceIdAsynclLoader.findDeviceAsync(EntitiesRelatedDeviceIdAsynclLoader. java
— :40)

Field utilization: {'id': 100%, 'type': 100%, 'additionalInfo': @%, 'additionalInfoBytes': 0%, 'createdTime
<~ ': 0%, 'customerId': 0%, 'deviceData': 0%, 'deviceDataBytes': 0%, 'deviceProfileId': 0%, '
<— externalld': 0%, 'firmwareId': 0%, 'name': 0%, 'softwareId': 0%, 'tenantId': 0%, 'label': 0%},
Class Utilization: {'Device': 12.5%}

Listing 7. MIicROPROF reports unnecessary data transfer from PostgreSQL DB to Rule-Engine service of ThingsBoard.

.

ttributes
4 Saveath A
X Save Client Atiributes O

Post attributes

=, ¥elated device atiribut...
O 28 Inefficiency Test O

0= message type switch
= Message Type Switch

device profile
Q¥ Device Profile Node O

¢ call reque
.ﬁ all Reque )

Fig. 7. ThingsBoard rule-chain.

public static ListenableFuture<DevicelId> findDeviceAsync(
TbContext ctx, EntityId originator, DeviceRelationsQuery deviceRelationsQuery)({

- ListenableFuture<List<Device>> asyncDevices =

- deviceService.findDevicesByQuery (ctx.getTenantId(), query);

- return Futures.transformAsync(asyncDevices, d ->

- CollectionUtils.isNotEmpty(d) ?

- Futures.immediateFuture(d.get (@) .getId()): Futures.immediateFuture(null),
- MoreExecutors.directExecutor());

+ ListenableFuture<List<Deviceld>> asyncDevices =

+ deviceService.findDevicesIdByQuery(ctx.getTenantId(), query);

+ return Futures.transformAsync(asyncDevices, d ->

+ CollectionUtils.isNotEmpty(d) ? Futures.immediateFuture(d.get(0))

+ : Futures.immediateFuture(null), MoreExecutors.directExecutor());

Listing 8. Thingsboard Rule-Engine service before and after optimization.

Listing 8 shows the original code of interest and the optimization. Lines 5-7 show that the function retrieves
the list of Device instances. However, lines 8-13 show that the id field is returned from the function. As a result,
retrieving the other fields from the backend database is unnecessary.

The optimization. Guided by MicROPROF, we optimize the code by only querying for the device id. The
optimization reduces the response size by 87.5% in terms of the number of fields and improves the runtime by
1.20X on average.
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DayTrader: PortfolioService case study

POST {/portfolios/{userld}:/orders) PortfolioService GET {/quotes/{symbol}} QuoteService SQL Query
Tt T T oo _' T processOrder() getQuote() Orignial endpoint

ApacheDerby .~ ’

Inefficient caller

Fig. 8. REST communication between DayTrader microservices. Inefficient microservices are shown in gray.

daytrader.controller.PortfoliosController.processOrder (PortfoliosController. java:268 )
|_ daytrader.service.PortfoliosService.buy(PortfoliosService.java:578 )

Field utilization: {'price': 100% 'symbol': 100%, 'volume': 15%, 'changel': 16%, 'openl': 9%, 'companyName'
— : 0%, 'low': 0%, 'volume': @%, 'changel': 0%, 'high': 0%, 'openl': 0%
Class Utilization: {'QuoteDataBean': 31.7%}

Listing 9. MICROPROF reports unnecessary data transfer from PortfoliosService to Apache Derby in DayTrader.

public OrderDataBean buy(...) {

- QuoteDataBean quoteData = quotesService.getQuote(symbol);

+ BigDecimal QuotePrice = quotesService.getQuotePrice(symbol);
createOrder (...);

private OrderDataBean createOrder(...){

stmt.setBigDecimal (6, quoteData.getPrice()...
stmt.setString (10, quoteData.getSymbol());

Listing 10. DayTrader Portfolios service before and after optimization.

7.1.3 DayTrader. DayTrader is an open-source benchmark application that simulates online stock trading. It
was originally developed by IBM for WebSphere Trade. In the paper, we evaluate the microservice version of the
application [45], which consists of 5 microservices.

The scenario. Fig. 8 illustrates DayTrader service invocation details in our study. The PortfolioService
receives a buy request from the end user and sends a remote invocation to QuoteService via endpoint GET
"/quotes/symbol". QuoteService then returns a QuoteDataBean object to PortfolioService. MicCROPROF
identifies unnecessary data transfer in the scenario.

MicroPror insight. Listing 9 depicts the inefficiency report of MicroPROF on the PortfolioService. From
the call path, PortfoliosService.buy() function is the source of the unnecessary data transfer. The listing
further shows that the received QuoteDataBean remote objects have low utilization of 31.7%. MicROPROF further
reports that only price and symbol fields have full utilization.

Listing 10 represents the original code snippet as well as optimized code for the buy function. On Line 4, the
function makes a remote invocation to QuoteService to return QuoteDataBean. The function then passes the
quote to createOrder function. However, createOrder only accesses the price and symbol fields using the
getter function. As a result, the other field transfer is unnecessary. We further identify that transferring symbol
is also unnecessary since buy queries the quote using symbol.

Interestingly, MiCROPROF reports some usage of fields volume, changel, and open1. Further investigation
shows that they are accessed during a stack dump due to a service exception.
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1| @Xm1Type (propOrder = {

2 "id", "datastoreId", "timestamp", "deviceId", "clientId", "receivedOn", "sentOn", "capturedOn", "
< position", "channel", "payload"

30 H

4| public <T> ResultList<T> query(...) {

50 ...

6‘— request.setJsonEntity(json);

7\— Response queryResponse = restCallTimeoutHandler (() -> getClient().

8‘— performRequest (request), typeDescriptor.getIndex(), "QUERY");

9\— DatastoreMessage messageToBeDeleted = find(scopeId, id, StorableFetchStyle.FIELDS);

10\— schemaMetadata = mediator.getMetadata(scopeld, messageToBeDeleted.getTimestamp().getTime());

11\+ String includeQuery=String.format("includes\":[\"%s\"]1",6 field);

12\+ String queryToBeReplaced = "includes\":[\"*\"1";

13\+ json = json.replace(queryToBeReplaced,includeQuery);
14\+ request.setJsonEntity(json);
15\+ Response queryResponse = restCallTimeoutHandler (() -> getClient().
16‘+ performRequest (request), typeDescriptor.getIndex(), "QUERY");
17\+ Date timestamp = findModified(scopeId, id, StorableFetchStyle.FIELDS);
18‘+ schemaMetadata = mediator.getMetadata(scopeld, timestamp.getTime());

L

Listing 11. Eclipse Kapua Datastore service before and after optimization.

The optimization. In order to reduce unnecessary data transfer, we implement a new REST API requesting
for Quote Price only. The optimization reduces the response size by 68.3% in terms of the number of fields and
results in a 1.016X speedup in terms of average latency.

7.1.4  Eclipse Kapua. Eclipse Kapua is an open-source platform for integrating IoT devices and smart sensors.
It manages and integrates devices and their data and provides a solid foundation for IoT services for any IoT

application. Eclipse Kapua consists of 7 microservices. In our experiment, we deploy Kapua v1.6.3 in a 2-node
CloudLab cluster.

The Scenario. The Eclipse Kapua performs bulk deletion of DatastoreMessage while performing an applica-
tion integration test. Cucumber scripts initially send the request to MessageStoreServiceImpl. Then it forwards
the request to Elasticsearch over MessageStoreFacade. MicroOPROF detects an inefficiency while Kapua performs
a remote request to Elasticsearch during the test.

MicroPRror insight. Listing 11 represents both the original and the optimized code. Lines 19-23 show that
the original code calls the find() function. The find() function then invokes a remote elastic search service
to retrieve the DatastoreMessage object. However, line 27 shows that it only accesses timestamp field via the
getter function. MicrRoPROF accurately detects this inefficiency.

The optimization. To eliminate the unnecessary data transfer over the network, we implement a customized
Elasticsearch client query that only retrieves the timestamp instead of the whole DatastoreMessage object. We
further optimize the Elasticsearch server to respond only to the timestamp field. This optimization resulted in a
1.88x speedup.

8 THREATS TO VALIDITY

Internal threats to validity. Our experiment demonstrates that a 95% confidence interval is effective in detecting
both used and unused fields in objects, although the tool may miss some cases due to sampling. Additionally,
it’s worth noting that in various contexts and with different inputs, objects may still be accessed after the TTL
expiration. Our evaluation of overhead focuses solely on the 14 microservices of the TrainTicket benchmark.
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External threats to validity. Since open-source Java microservice applications are not widely available, we are
only able to evaluate MICROPROF on a limited number of applications. Proprietary applications, on the other
hand, can be more intricate and employ a variety of frameworks rather than just Spring Boot. Due to the lack of
ground truth data, we only manually evaluated the MicROPROF reported inefficiencies.

Construct threats to validity. The manual annotation process can be both challenging and prone to human error,
especially with a large number of RPC invocations. Missing or inaccurately identifying these invocations may
compromise the tool’s ability to accurately measure the underlying construct of RPC interaction, thus affecting
the construct validity. In our future work, we intend to eliminate the annotation-based approach by implementing
and/or leveraging monitoring capabilities directly within the RPC libraries.

Conclusion threats to validity. The end-to-end latency is often influenced by external factors such as network
conditions, server load, and background garbage collection, creating conclusion threats to validity. To mitigate
the issue, we carefully maintain the same experimental environment across experiments and use appropriate
statistical methods to support the validity of our conclusions. We observe a significant variance reduction after
optimization for all the cases. This reduction may be attributed to alleviating network load and garbage collection
overhead resulting from the optimization of unnecessary data transfer.

9 CONCLUSIONS

In this paper, we propose MICROPROF, a dynamic analysis tool to detect unnecessary data transfer in microservice
applications. The tool pinpoints the inefficiency of the application source code. It further identifies the inefficient
data structure fields. To demonstrate the utility, the paper evaluates MicrRoProF on four microservice applications.
The tool detects five inefficiency patterns in the applications. Guided by MicroPROF, we further optimize the
applications and observe up to a 4.59% speedup. MicROPROF will help the developer community to pinpoint
the inherent inefficiencies in Java microservice communication and guide them toward optimization. Moving
forward, we plan to evaluate our tool on proprietary applications with real-world experimental settings and
explore its applicability to other programming languages.
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