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The microservice architecture style has gained popularity due to its ability to fault isolation, ease of scaling applications,

and developer’s agility. However, writing applications in the microservice design style has its challenges. Due to the loosely

coupled nature, services communicate with others through standard communication APIs. This incurs signiicant overhead

in the application due to communication protocol and data transformation. An ineicient service communication at the

microservice application logic can further overwhelm the application. We perform a grey literature review showing that

unnecessary data transfer is a real challenge in the industry. To the best of our knowledge, no efective tool is currently

available to accurately identify the origins of unnecessary microservice communications that lead to signiicant performance

overhead and provide guidance for optimization.

To bridge the knowledge gap, we proposeMicroProf, a dynamic program analysis tool to detect unnecessary data transfer

in Java-based microservice applications. At the implementation level, MicroProf proposes novel techniques such as remote

object sampling and hardware debug registers to monitor remote object usage. MicroProf reports the unnecessary data

transfer at the application source code level. Furthermore, MicroProf pinpoints the opportunities for communication API

optimization. MicroProf is evaluated on four well-known applications involving two real-world applications and two

benchmarks, identifying ive ineicient remote invocations. Guided by MicroProf, API optimization achieves an 87.5%

reduction in the number of ields within REST API responses. The empirical evaluation further reveals that the optimized

services experience a speedup of up to 4.59×.

CCS Concepts: · Software and its engineering → Software performance; Cloud computing.

Additional Key Words and Phrases: Microservice, Unnecessary communication, Dynamic program analysis

1 INTRODUCTION

Recent years have seen increasing adoption of microservice architecture in cloud application design. Big tech

companies such as Amazon, Twitter, Facebook, Netlix, Uber, and eBay have adopted various microservice-based

design patterns while designing their services [62] [44] [15] [61]. The microservice architectural design leverages

service-oriented architecture (SOA) principles at a iner granularity. Each service in microservice applications

is loosely coupled and communicates with others through standard communication APIs. Such modularity
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%------- Employee.java ----------------%

public class Employee {

public String name;

public String address;

public String email;

}

%------- PayrollController.java ------%

@RestController

public class PayrollController {

@Autowired

private HRService hrService;

@GetMapping("/getEmployee /{id}")

public String getPaidEmployeeNameById(int id) {

Employee e = hrService.getEmployee(id); // unnecessary data transfer

return e.getName ();

}

@GetMapping("/getEmployee/validate /{id}")

public String validatePaidEmployeeInfo(int id) {

Employee e = hrService.getEmployee(id); // not an unnecessary

↩→ transfer

return validate(id , e.getName (), e.getAddress (), e.getEmail ());

}

}

Listing 1. A motivating example: unnecessary data transfer

enables the developer’s agility, fault isolation, and scalability. However, on the downside, due to disaggregation,

microservice applications pose new challenges, such as eicient CPU and memory resource utilization [6] [69],

reducing communication overhead [41] [18] [30] [63], and meeting the quality of service (QoS) [20] [47].

Previous research [19] [32] [58] has indicated that microservice applications possess a higher communication-

to-computation ratio compared to monolithic applications. Microservice applications spend signiicant time

processing network requests across services, contributing signiicantly to the end-to-end tail latency. Existing

studies have addressed the communication overhead by communication-aware microservice scheduling [18],

designing hardware acceleration for network packet processing [32], and coupling the dependent services [41].

However, these techniques fail to address the inherent communication overhead originating from unnecessary

data transfer due to ineicient service API design. Listing 1 demonstrates the problem of unnecessary data

transfer with an example.

In this example, the payroll-servicemicroservice implements a function getPaidEmployeeNa- meById(id)

inside the PayrollController, which returns the requested employee name.Within getPaidEmployeeNameById(id),

another remote microservice HR-service’s getEmployee(id) method is invoked to search its database for the

requested employee. The API returns an object of the Employee class over the communication channel. Since

payroll-service receives the Employee object from a remote service, we call it a remote object. While the

Employee class has three ields, the caller function, getEmployeeNameById(id) only accesses a single ield, name.

As a result, transferring the other two object ields becomes unnecessary.

Recent research [5] has shown that optimizing microservice APIs can signiicantly reduce the number of

object ields and transferred bytes up to 94% and 99%, respectively. To motivate the signiicance of the problem,

ACM Trans. Arch. Code Optim.
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we further conducted a comprehensive grey literature review in Section 2. We identiied 27 tech companies

highlighting the prevalence of this category of code ineiciency in their microservice applications. Through

optimization, developers reported improved resource eiciency.

One source of unnecessary data transfer is the inlexibility of traditional REST API. New query language and

runtime engines such as GraphQL [23] were proposed to address this inlexibility. GraphQL enables clients to

specify exactly what data they need, rather than retrieving a pre-determined set of data, which can help reduce

the amount of unnecessary data transfer and improve performance.

However, the major challenge lies in the inability to determine the data usage in the caller microservices.

Real-world microservices are vast and complex, which makes manual analysis to identify object ield usage

impractical. For example, Uber’s microservice architecture has over 4,000 microservices and 40,000 distinct remote

procedure call (RPC) endpoints [68]. Due to code complexity, scale, and data low, identifying object ield access

manually is challenging for developers. Additionally, developers must prioritize optimizing unnecessary data

transfer that causes signiicant performance constraints [27]. Due to the lack of observability tools, applications

using GraphQL still encounter unnecessary data transfer due to developers making inessential ield requests [53].

Previous research [8] [7] has explored the potential of static program analysis tools as a solution; however, they

have certain limitations. One of the key limitations is the inability to accurately measure program performance

ineiciencies. Performance measurement is crucial to prioritize code optimization based on the signiicance

of performance issues. Additionally, static analysis tools have limited context; they can only examine code in

isolation. However, it cannot monitor the calling context (aka call path), the context in which a function is invoked.

While RPC APIs can be invoked from multiple caller functions, not all of them result in unnecessary data transfer

and cause signiicant performance challenges. Therefore, knowing the calling context of an ineicient RPC API

invocation through dynamic analysis is crucial. Moreover, static analysis tools often fall short of handling complex

code analysis such as alias analysis. Hence, identifying such optimization opportunities without dynamic program

analysis techniques is diicult. To the best of our knowledge, there are currently no dynamic program analysis

tools capable of identifying performance ineiciencies in microservice applications resulting from unnecessary

data communication and guiding developers on optimizing them.

Building such dynamic program analysis tools has its challenge. The tool requires monitoring remote objects

received through RPC and their usage in the service. One way to monitor these remote object usage is to

instrument the microservices and trace every memory access. However, tracing every memory access causes a

signiicant overhead for the applications. For instance, HOTL [64] shows that trace-based memory analysis can

incur 153× runtime overhead. As a result, a tracing-based approach to monitor every memory access becomes

impractical. Especially, microservice applications are latency sensitive and have strict QoS requirements.

In this paper, we proposeMicroProf, a lightweight dynamic program analysis tool, to tackle the aforementioned

challenges. MicroProf uses a principled approach to identify unnecessary data communication that causes

signiicant performance overhead. For this purpose, it evaluates themicroservice applications in two phases. Firstly,

it utilizes Jaeger [29] RPC tracing to pinpoint communication choke points. In the second phase, MicroProf

leverages statistical proiling [1] to determine if the root cause of the overhead is unnecessary data transfer. To

further reine the analysis,MicroProf performs code-centric attribution [22] [13] to identify the source code

instructions, functions, and function call paths responsible for making ineicient requests for remote objects.

Additionally, using data-centric attribution [38] [39], MicroProf identiies unnecessary object ields and guides

developers in optimizing them.

The statistical memory proiling technique used by MicroProf helps reduce the measurement overhead

compared to all memory access tracing. Similar to other distributed proiling tools such as CRISP [68], and

Jaeger [52],MicroProf also allows for dynamic adjustment of the sampling rate, providing practitioners with

more control over the runtime overhead. Furthermore,MicroProf implements memory proiling using hardware

ACM Trans. Arch. Code Optim.
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debug registers. With the help of hardware debug registers,MicroProf can intercept remote object usage in a

non-intrusive manner, further reducing the monitoring overhead.

To demonstrate MicroProf’s efectiveness, we run MicroProf on four well-known microservice applications

written in Java Spring Boot [56]: TrainTicket [70], Daytrader [45], ThingsBoard [60], and Eclipse-Kapua [14].

Among these applications, ThingsBoard and Eclipse-Kapua are widely-deployed IoT frameworks. On the other

hand, to our knowledge, TrainTicket is the largest open-source microservice application benchmark written in

Java that comprises 41 services. Initially developed by IBM as a monolithic application benchmark, Daytrader

has recently been implemented in microservice architecture [27]. Guided by MicroProf, we identiied ive

unnecessary data transfers in these applications. Upon optimizing the communication APIs, we observe up

to 87.5% reduction in the number of ields within REST API response. The empirical evaluation reveals the

optimization can achieve a speedup of 4.59×.

To summarize, this paper makes the following contributions:

• The paper proposes MicroProf, a novel dynamic program analysis tool to detect unnecessary data

transfer that causes signiicant performance overhead in Java-based microservice applications. At the

implementation level,MicroProf leverages techniques such as statistical proiling and hardware debug

registers to monitor remote object usage.

• MicroProf performs code-centric attribution to identify the source code instructions, functions, and

function call paths responsible for invoking ineicient remote communication APIs. Furthermore, it

performs data-centric attribution to identify unnecessary remote object ields for further optimization.

• The paper evaluates MicroProf’s efectiveness on two microservice application benchmarks (TrainTicket,

DayTrader) and two widely-deployed IoT frameworks (ThingsBoard and Eclipse-Kapua). Guided byMicro-

Prof, we optimized the ineicient remote API invocations and observed signiicant speedups.

The rest of the paper is organized as follows. In Section 2, we present a grey literature review on the industry

experience of unnecessary data transfer. Section 3 examines the existing related work and distinguishes Micro-

Prof. Section 4 introduces the relevant background knowledge. Section 5 introduces the proposed mechanism.

Section 6 describes the implementation details of MicroProf. Section 7 discusses the empirical evaluation of

MicroProf. Section 7.1 ofers a discussion of applyingMicroProf to four microservice applications. Finally,

Section 9 concludes the paper.

Replication: We have shared the replication package1 for further study.

2 GREY LITERATURE REVIEW ON UNNECESSARY DATA TRANSFER

Academic research on microservices is still relatively young, and tech companies adopting microservices are

generating a substantial amount of grey literature [55]. There is a gap between academic research and industry

practices, particularly in understanding the challenge of unnecessary data transfer. To bridge this gap, we conduct

a concise yet insightful grey literature review to shed light on this important topic. Our study aims to answer

the research question, "Is unnecessary data transfer a signiicant challenge in the tech industry?". We begin by

identifying tech companies that adopted GraphQL as part of their microservice architecture. Since many of these

companies publish engineering blogs to share their knowledge with the wider tech community, we rigorously

search these blogs to identify posts related to GraphQL adaptation. Speciically, we select articles discussing

the mitigation of over-fetching issues through GraphQL implementation. Our eforts resulted in identifying

engineering blog posts from 27 diferent companies. The comprehensive list of these engineering blog posts is

included in theMicroProf replication package 1, labeled from A1 to A27.

Meta’s engineering blog (A17) laments the challenges of dealing with the disparities between the data their

apps require and the corresponding server queries. Meanwhile, PayPal acknowledges (A19) that their REST APIs

1Replication package: https://igshare.com/s/5156839e442f03d97747

ACM Trans. Arch. Code Optim.

https://beautifulcode.1stdibs.com/2016/08/19/backbone-models-to-graphql/
https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
https://medium.com/paypal-tech/graphql-at-paypal-an-adoption-story-b7e01175f2b7
https://figshare.com/s/5156839e442f03d97747


MicroProf: Code-level Atribution of Unnecessary Data Transfer in Microservice Applications • 5

were sending clients more data than necessary, resulting in extraneous data transfer. On the other hand, Atlassian

reports (A5) that as they began converting frequently used REST requests to equivalent GraphQL queries in

Trello, they discovered that they were over-fetching vast amounts of data. According to 1stDibs (A1), by precisely

specifying the required ields, they were able to decrease data response from over 1MB to approximately 90KB

for a buyer viewing a full page of orders. These insights from the literature review collectively conirm that

unnecessary data transfer poses a notable challenge for user-facing applications. Optimizing this ineiciency can

result in signiicant enhancements in QoS and better utilization of cloud resources.

3 RELATED WORK

In this section, we summarize related works in three following directions:

Performancemonitoring tools for distributed applications. A large body of work contributes to developing

monitoring and tracing frameworks for distributed system applications. Magpie [4] provides a tracing system

that records ine-grained events generated by the kernel and application components. Magpie further constructs

workload models to predict system performance. Similar to Magpie, Google’s Dapper [54] ofers a distributed

tracing platform that enables tracing diicult system issues that are impossible to reproduce. X-Trace [17]

represents a tracing framework that generates a comprehensive view of distributed system traces by enabling

relevant information logging for connected devices. Pivot tracing [42] identiies application bugs and coniguration

issues in Java-based distributed systems utilizing dynamic instrumentation with minimal execution overhead.

More recently, CRISP [68] performs critical path analysis on large-scale microservice applications in order

to identify performance issues. Guided by CRISP, the authors performed ine-grained analysis to identify the

root cause of the performance overhead. Similarly,MicroProf also performs critical path analysis to identify

signiicant performance overhead in microservices. However, once a critical path is identiied,MicroProf goes

further by performing ine-grained analysis to determine whether unnecessary data transfer is the root cause of

the issue. To guide developers in optimizing their code,MicroProf attributes ineiciencies to speciic source

code instructions and functions.

Unnecessary data retrieval in cloud applications. Previous research [8] [7] has investigated unnecessary

data retrieval from databases. Yang et al. performed an empirical study on database-backed web applications and

highlighted several ineiciency patterns, including unnecessary data retrieval [67]. The authors further proposed

static analysis tools to identify the ineiciency pattern in the application code. Recently, another static analysis

tool is proposed [21] to identify potential data leaks to make microservice applications more secure. However,

static analysis tools have certain limitations which restrict their abilities. In contrast,MicroProf uses dynamic

program analysis to identify unnecessary data transfer that causes signiicant performance ineiciency.

Dynamic analysis for data utilization. Several dynamic program analysis tools have been proposed to

identify data structure-related application ineiciencies. Xu et al. propose a runtime analysis tool to detect

low-utilization data structures in Java applications [65]. However, to implement the tool, the authors modiied

the underlying JVM. Chilimbi et al. proposed structure splitting for Java applications to reduce the unnecessary

data on the CPU cache [9]. More recently, JXPerf [57] and its successors OJXPerf [36] and DJXPerf [35] propose

lightweight techniques to identify ineicient computation, memory allocations, and memory accesses in Java

applications. However, none of these dynamic program analysis tools identify ineicient communication across

microservices.

Unnecessary data movement optimization. GraphQL [23] is a query language for APIs and runtime for

executing queries against existing data. The GraphQL clients can request the exact data needed by making a

GraphQL query. As a result, GraphQL APIs enjoy signiicantly less overhead compared to REST APIs. While
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GraphQL reduces the over-fetching, it does not detect an unnecessary request for data in the microservice

application source code. Often, the runtime behavior is unknown to the developer and may result in unnecessary

data queries. One such example is in Listing 3, where object ields are dependent upon calling context. In contrast

to GraphQL,MicroProf detects unnecessary data transfer in the microservice applications.

4 BACKGROUND

In this section, we briely discuss the technologies used byMicroProf.

Code-Centric and data-centric atribution. Code-centric attribution is a dynamic program analysis tech-

nique where runtime events/metrics are attributed to application source code instructions, code blocks such as

loops, functions, and calling contexts. Tools such as VTune [28], Oproile [34], CodeAnalyst [13], and gprof [22]

are examples of code-centric tools that link performance metrics to source code. However, code-centric attri-

bution falls short of attributing events/metrics to data objects. In contrast, data-centric attribution attributes

events/metrics to dynamically allocated objects and variables. Tools such as HPCToolKit [39], ArrayTool [40], and

StructSlim [49] perform both code- and data-centric attribution to identify the root causes of various performance

ineiciencies.

Java Virtual Machine Tool Interface (JVMTI). JVMTI [11] is a native programming interface for developing

tools to monitor Java applications running on Java Virtual Machine (JVM). A tool using the JVMTI, also known

as a JVMTI agent, can be statically linked or dynamically loaded during JVM initialization. Once attached to

the JVM, the agent can use the JVMTI to monitor JVM states, including but not limited to proiling, debugging,

monitoring, thread analysis, and coverage analysis tools.

Debug registers. On an x86 processor, a debug register [12] is a hardware component that allows developers

to debug applications at the source code level. Debug registers enable trapping a target application’s memory

reference and instruction execution. A debug register is conigured to set a watchpoint at the target memory

address to trap a memory reference. When the application refers to the monitored memory address, it causes

an interrupt and sends a signal to a registered signal handler. The signal handler can observe the application

state, such as the instruction pointer responsible for memory reference. Finally, the signal handler collects the

information to process the event further.

5 METHODOLOGY

Real-world microservices are complex, with many remote services interacting with each other in intricate ways.

Fig 1 presents a simpliied scenario where two services, payroll-service and admin-service invoke remote

endpoint, getEmployee() of the hr-service. However, only remote invocations from payroll-service cause

signiicant performance overhead, warranting further investigation. Nevertheless, as shown in Listing 1, only

the caller function getPaidEmployeeNa- meById() demonstrates unnecessary data transfer. Pinpointing such

ineiciency will require measuring the communication overhead across services and monitoring the remote

data usage of the caller services. However, the situation can quickly escalate as the monitoring efort grows

signiicantly with the increase in the number of API endpoints and their invocations.

To minimize the efort, we adopt a selective and incremental approach for monitoring. Our incremental

monitoring is based on a principled approach: irst, we identify critical service-to-service call paths that cause

signiicant overhead in serving end-user requests by critical path analysis (CPA) [66]. CPA allows us to identify

the speciic service chains that create performance challenges in the microservice application, ensuring we target

our monitoring eforts where they are most needed. Once we identify the critical path and the involved services,

we perform ine-grain program analysis on the caller services of these critical paths to monitor remote object

usage.

ACM Trans. Arch. Code Optim.
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(a) (b)

HR Service
Payroll Service getEmployee()

Admin Service

Critical Path

Analysis

Dynamic Program Analysis

Payroll Service
HR Service

getEmployee()

getEmployeeName()

Orignial endpointNew endpointOptimized callerOther callerIneicient callerOptimized pathNon-critical pathCritical path

getPaidEmployeeNameById()

Admin Service

getPaidEmployeeDetails()

validatePaidEmployeeInfo()

getPaidEmployeeNameById()

getPaidEmployeeDetails()

validatePaidEmployeeInfo()

Fig. 1. (a) Critical path analysis narrows the search space to two critical paths. Subsequently,MicroProf’s dynamic program

analysis identifies ineficiency in getPaidEmployeeNameByID. (b) New endpoint introduced to avoid unnecessary data

transfer.

5.1 Critical path analysis of microservices

We perform critical path analysis on the service dependency graph of the microservice application. For this

purpose, we utilize distributed tracing [51], a technique that monitors and analyzes the low of requests across

multiple services involved in processing user requests. In recent years, several distributed tracing tools have been

proposed, including Google’s Dapper [54], Jaeger [29], Zipkin [71], Apache’s HTrace [26], and LightStep [37].

In this paper, we leverage Jaeger to collect microservice call traces. Jaeger exposes the collected data using

OpenTelemetry [46] [33] compliant format.

Each end-to-end OpenTelemetry trace consists of a list of spans. A span is an individual unit of work done in a

distributed service. A span data structure consists of attributes such as operation start time, end time, and a list of

child spans. As services call to other services via RPC, spans forms directed acyclic graphs (DAG). Fig 2-a shows

an example of DAGs constructed from N-traces. From the DAGs of all traces, we further construct an aggregated

calling context tree (CCT) [2], which captures the path and order of these service invocations, forming a tree-like

structure. Fig 2-b depicts an example of CCT. We enhance the CCT nodes by incorporating two additional metrics:

inclusive service time and exclusive service time. The inclusive service time encompasses the time spent on the

service node itself as well as the time spent on the subsequent callee services. Conversely, the exclusive service

time of a service node focuses solely on time spent on that service operation, excluding the service times of its

callees.

A service that exhibits a higher exclusive service time plays a signiicant role in the overall request latency,

indicating a need for further investigation into potential unnecessary data transfer. On the other hand, when a

service node demonstrates ineiciency with a higher inclusive service time, it suggests that optimization eforts

could potentially eliminate subsequent service calls in the call path, thereby reducing the overall request latency.

To efectively prioritize both metrics, we visualize the service call paths within the CCT in a 2D space, plotting

the exclusive and inclusive service times. Fig 2-c illustrates the plot. Subsequently, we calculate the Euclidean

distance of each service from the center of this 2D space. The services are then ranked in descending order based

on their distance from the center, as depicted in Fig 2-d. By following the prioritized list, we selectively analyze

the services in order to identify unnecessary data transfer.

ACM Trans. Arch. Code Optim.
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a) Trace DAG
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Fig. 2. Critical path analysis from distributed tracing.

5.2 Detecting unnecessary data transfer

Depending on the context of remote invocation and reference to the object, a remote object transfer may or

may not result in an unnecessary transfer. For instance, from Listing 1, both getPaidEmployeeNameById(id)

and validatePaidEmployeeInfo(id) receive a remote object of Employee class via invoking remote method

getEmployee(id). However, while getPaidEmployeeNameById(id) does not fully utilize the remote Employee

object, validatePaidEmployeeInfo(id) utilizes all its ields for validation purposes. Therefore, to accurately

identify unnecessary data transfer in the source code, it is crucial to (1) capture the call path of remote object

allocation and (2) derive utilization metrics speciic to each remote object allocation call path.

One approach to detect unused ields in remote objects is to monitor the ield accesses of all the remote

objects exhaustively. Such exhaustive monitoring will require instrumenting all the ields of remote objects and

monitoring their accesses. However, this instrumentation-based mechanism will incur signiicant overhead in

the microservice applications and become impractical in the production environment. In order to minimize the

exhaustive tracing of remote objects,MicroProf samples a subset of remote objects to monitor memory references

within the microservice process. Furthermore,MicroProf eliminates the need for exhaustive instrumentation by

implementing address monitoring via hardware debug registers.

Statistical sampling. During the allocation of remote objects, MicroProf selects a subset of the objects via

well-known Monte Carlo sampling algorithm [43] and records the call path of the allocation. We deine this call

path as allocation context. Sampling-based call path proiling is a well-established mechanism, frequently

adopted in performance monitoring tools such as GProf [22], Oproile [34], HPCToolkit [1], and Intel VTune [28].

Supported by the law of large numbers [25], as the quantity of independent and identically distributed (i.i.d.)

random samples grows, the distribution of the samples gradually approximates the population distribution across

all the allocation contexts. A theoretical analysis of sampling-based call path proiling can be found in [59]

(Appendix A).

Suppose the probability of invoking an allocation context, � , is represented with � [�]. When dealing with a

critical path (identiied in Section 5.1) that involves numerous remote data transfer, a highly probable ineicient

allocation context will signiicantly negatively impact performance. We approximate the probability by statistical

sampling of allocation contexts and identify the hot allocation contexts contributing to many remote invocations.

Suppose we collects � i.i.d. random samples: �1, �2, ..., �� , where each �� represents the allocation context

observed on the ��ℎ sampled event. Formula 1 calculates the observed probability for allocation context, where ��

represents the number of occurrences of allocation context. With a large sample size, � , the observed probability

is close to the actual probability distribution.

� ′ [� ] =
��

�
(1)

ACM Trans. Arch. Code Optim.
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However, monitoring references to all the ields of sampled objects simultaneously is diicult due to the

constrained number of hardware debug registers. To overcome the limitation,MicroProf employs a strategy

of uniform random sampling to select a subset of ields from the target object. MicroProf further collects

many samples across microservice invocations and aggregates them by allocation context. This uniform random

sampling ensures that all ields have an equal chance of being monitored. With a large number of independent

and identically distributed (i.i.d.) random samples collected from microservice requests, the distribution of ield

accesses in the samples gradually converges to the overall population distribution. MicroProf monitors the

references to these sampled ields via hardware debug registers and calculates a metric of the associated class

in the allocation context. MicroProf uses this utilization metric to evaluate whether hot allocation contexts

involve unnecessary data transfer.

Algorithm 1 Algorithm of unnecessary data transfer detection

Input: Microservice, M requesting the remote objects

Input: The class of the remote objects

Output: Class utilization

Output: Class ield utilization

1: repeat

2: Intercept remote object allocation

3: Randomly select a remote object,�� , during allocation

4: Randomly select a ield, ��
� of the remote object��

5: Collect the allocation context,� of the remote object��

6: Record pair < �, ��
�
>

7: Set a trap to monitor the references to the ield, ��
�

8: while�� is alive do

9: Intercept references to ield ��
�

10: if The ield ��
� is accessed in Microservice, M then

11: Increment access count of the ield, � � of the class

12: Remove trap on the ield, ��
�

13: break

14: end if

15: end while

16: if The ield ��
� was not accessed in Microservice, M then

17: Increment unused count of the ield, � � of the class

18: Remove trap on the ield, ��
�

19: end if

20: until Not suicient sample collected

21: return class and ield utilization

5.2.1 MicroProf workflow. Algorithm 1 presents the pseudo-code of MicroProf’s detection of unnecessary

data transfer. As the microservice receives a remote object over the communication APIs, the object gets allocated

in the heap memory. On line 2, MicroProf intercepts these allocations of the remote objects (Section 6.1). At the

allocation interception,MicroProf randomly selects a subset of the remote objects and a subset of their ields

for further monitoring (Lines 3-4). For data-centric attribution, MicroProf further records the start memory

address of the object allocation, the size of the allocated object, selected ield ofsets in the allocation range, and

the allocation context of the selected object (Lines 5-6). On line 7, MicroProf sets traps to detect references

to the selected ields (Section 6.2). Any reference to the ield will cause a trap, and MicroProf intercepts the

reference. During the access interception,MicroProf checks if the microservice code accessed the referenced

ield (Lines 9-10). If that is the case, MicroProf marks the ield of the associated class used in the allocation

context and increments the associated ield access counter. Then MicroProf removes the trap from the ield
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(Lines 11-12). At the end of the life of the object,MicroProf identiies any remaining un-intercepted ields as

unused ields. MicroProf increments the associated ield’s unused count in the allocation context and removes

the trap on the ield (Lines 16-19).MicroProf repeats the process until it monitors a suicient number of samples

in the allocation context (Line 20).

During the post-processing of the collected samples (Line 21),MicroProf calculates two utilization metrics on

each allocation context to detect unnecessary data transfer: (1) Class utilization: What fraction of the class ields

are utilized in the allocation context? (2) Field utilization: What fraction of a given ield (say � ) of the monitored

remote objects are accessed by the requesting microservice at the allocation context? Equations 2 and 3 show the

class utilization metric, � and ield utilization metric, � calculation respectively. In these equations, ��� denotes

the number of intercepted references to the class, �� represents the number of traps set in the allocation context,

�� and � ′
� stands for the number of references and non-references to �� , respectively.

� =

���

��

(2)

�� =
��

�� + � ′
�

(3)

MicroProf sorts the allocation contexts by the allocation count and the class utilization metric,� , in descending

order. MicroProf inally reports the allocation context, class utilization, � , and class ield utilization, � . An

allocation context with a large allocation count and low-class utilization is susceptible to unnecessary data

transfer. Furthermore, ield level utilization, � , identiies the underutilized ields.

Finally, we calculate the required number of samples for an acceptable conidence interval. We ask - what is the

maximum number of samples per ield that should be monitored to determine the ield utilization, given a 95%

conidence interval and a margin of error of 5%? Since this is a statistical point estimation problem with unknown

population size, we can calculate the required sample size using the formula for ininite population size presented

in [50] (Chapter 4.1.4), as demonstrated in equation 4. Here, z-score indicates how many standard deviations

a data point is away from the mean of a normal distribution. For a 95% conidence interval, the z-score is 1.96.

Given the unknown proportion �� , we set it to 0.5 to generate a conservative variance estimate. Considering a

margin of error (�) of 0.05 solving the formula gives a sample size (�) of 385.

� = (
� − �����

�
)2 × �� × (1 − �� .) (4)

6 IMPLEMENTATION

MicroProf is implemented as a user-space tool to detect unnecessary data transfer in Java-based microservice

applications. At the implementation level, it leverages the processor’s hardware debug registers.MicroProf does

not require any modiication to the underlying JVM or the hardware. Fig. 3 shows the overview of MicroProf.

MicroProf implements two agents: 1) a Java agent to intercept remote object allocation and 2) a JVMTI agent

to set traps and intercept access to the ields. During the deployment of the microservice, MicroProf irst

attaches itself to the application. The agents are loaded into the same memory along with the target microservice

application.MicroProf’s Java agent instruments the remote object allocation regions. During a remote object

allocation, MicroProf’s Java agent intercepts and samples target objects. Based on the availability of debug

registers, MicroProf samples all the objects of the class. MicroProf’s JVMTI agent sets traps for the target

ields of the object. During microservice execution, if the application accesses the target ield, it causes a trap,

and the JVMTI intercepts and records the access. When a suicient number of samples are collected, MicroProf

performs post-processing and reports the utilization metric.
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6.1 Intercepting remote object allocation

Challenge: To enable microservice communications, a number of communication protocols have been proposed.

Among these, RPC [16] [24] and RESTFul are two popular communication protocols. However, there are various

service implementations of these communication protocols, such as Dubbo/gRPC service, Spring Cloud RESTFul

service, or Kubernetes service. One approach to intercepting the incoming remote objects through these various

communication protocol implementations is to write the driver code for each. With such an approach, one

can monitor all the incoming remote objects without portingMicroProf’s interceptor at the application level.

However, due to a large number of protocol implementations, writing driver code for all the protocols is a

challenging task. As an alternative approach,MicroProf exposes APIs for the developers to provide hints for

remote invocations.

6.1.1 Annotation API. Listing 2 shows MicroProf’s annotation API to guide the tool to monitor the remote

object allocation. First, a developer annotates the functions that perform remote invocation to other services.

The developer further provides the name of the remote object class as a parameter. This information helps the

Java agent to instrument the target class and intercept the remote object allocation in the same context as the

annotated function call.

−−−−−−−−−−−− ClassName . j a v a −−−−−−−−−−−−%

@MICROPROFAnno ( mon i t o rOb j e c t= " RemoteClass " )

p u b l i c RemoteClass r emo t e I nvo c a t i on ( )

{

. . .

L i s t <RemoteClass > remoteOb j e c t= r emo t eC l i e n t . ge tRemoteOb jec t ( ) ;

. . .

}

Listing 2. MicroProf remote invocation annotation

6.1.2 The Java Agent. The Java agent instruments the target class at the bytecode level by leveraging the

java.lang .instrument and ASM library [3]. During instrumentation, the Java agent registers a callback function

for the allocation of the target class object. When the microservice receives a remote object, the object gets

allocated in the heap memory. After heap allocation, the Java agent’s callback function is invoked. The Java agent

performs a random sampling to determine whether MicroProf will further monitor the allocated object. If the

Java agent decides to monitor the object, it collects two pieces of information. 1) The start address of the object

in the heap memory and 2) the list of ields and their ofsets within the allocation region. The Java agent then

passes this information to the JVMTI agent for setting traps on the object ields.

6.1.3 The JVMTI Agent. Once the Java agent hands over the target object to the JVMTI agent, MicroProf

captures the program execution context of the object allocation. The JVMTI agent collects the program execution

context as a dynamic call graph,� . JVMTI agent then randomly selects an object ield, ��
� , to monitor.MicroProf

records the attribution of the object ield, ��
� and the allocation context,� as a pair < �, ��

�
>. JVMTI agent then

leverages a hardware debug register to set a trap on the chosen ield ��
� .

6.2 Intercepting field reference

Challenge: The modern processors implement a limited number of hardware debug registers, creating a challenge

in monitoring many remote object ields concurrently. For instance, in our experimental environment, the servers

have only four hardware debug registers per CPU core. Monitoring more than four remote object ields will

require replacing the existing traps set by the debug registers. However, if MicroProf replaces an existing trap
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Fig. 3. Overview of MicroProf architecture and allocation path profiling

to monitor new ields, it will lose the observability of the replaced ield. For completeness, it is important to

monitor the object ields throughout the object’s lifetime.

Since microservices are stateless in nature, any remote object allocated during a microservice invocation has a

short lifespan. Therefore, when the service completes the request, the remote object becomes dead and waits for

the garbage collector to collect it. Due to the short lifespan of remote objects, the JVMTI agent sets a trap for the

target ields for a short period of time by setting a time-to-live (TTL) timer. This TTL approximates the lifetime

of the object. If the microservice application refers to the ield within this interval, the debug register will cause a

trap and notify the JVMTI agent with a registered trap handler.

At the trap handler, the JVMTI agent identiies the pair < �, ��
�
> associated with the trap and increments

the use counter of the ield � � at the allocation context � . At the same time, JVMTI makes the debug register

available to monitor a new object ield. If the microservice does not refer to the target ield within the TTL period;

the JVMTI agent checks if the object is dead at TTL expiration (Section 6.3). If the object is still alive, the JVMTI

agent replaces the trap to monitor a new ield.

6.3 Finding dead objects

Challenge: Java garbage collectors may or may not reclaim the free objects immediately. As a result, MicroProf

cannot rely on the JVMTI garbage collection event to monitor the liveliness of an object.

JVM manages the reference of an object in a reference graph. Any alive heap object has a reference and thus is

reachable from the top-level objects of the reference graph.MicroProf’s JVMTI agent traverses this reference

graph and performs a reachability analysis to identify if the heap object is reachable. For this purpose, during

the object’s allocation, the JVMTI agent tags the target object with a unique identiier using JVMTI SetTag API.

When TTL expires, the JVMTI agent looks for the tag among all the reachable heap objects during reachability

analysis using JVMTI FollowReferences API. If the agent cannot locate the target object using the unique

identiier, it determines the object is dead. At this point, the JVMTI agent marks the expired ield as unused and

increments the unused counter of the ield � � at the allocation context � .

6.4 Post-processing

At the post-processing stage, MicroProf constructs an aggregated calling context tree of the sampled allocation

contexts as shown in Fig. 3-c. Subsequently, it calculates the ield and class utilization metrics for each allocation

context. MicroProf further retrieves the source code line number and ile name from the allocation context.

Finally, it sorts the allocation context by the allocation count and utilization metrics and generates a report.
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Table 1. Summary of Microservice applications evaluated in this paper. Latency is reported in milliseconds.

Real-world
microservices

Version
# of

services
Faulty

microservice
Ineicient endpoint

Avg. latency
original code

(ms)

Avg. latency
optimized code

(ms)

Speedup
(times)

TrainTicket 0.0.3 41
ts-seat-service

POST
{/orderOther/tickets}

1860.86 405.49 4.59

ts-route-plan-service
POST

{/routePlan/quickestRoute}
13256.08 10608.05 1.25

Thingsboard 3.4.1 4 rule-engine query to PostgreSQL DB 0.16 0.13 1.20

DayTrader 4.0.18 5 daytrader-portfolios
POST

{/portfolios/{userId}/orders}
56.10 55.17 1.02

Eclipse Kapua 1.6.7 7 kapua-datastore query to Elasticsearch 394.71 212.74 1.86

7 EVALUATION

We evaluate both the utility and impact of MicroProf. The evaluation aims to address the following questions:

• Q1 (Detection): Does the tool efectively identify unnecessary data transfer and pinpoint the responsible

source code, along with its calling context? Additionally, does the tool report unutilized ields to ofer

guidance for optimization purposes?

• Q2 (Speedup): How much performance improvement can we anticipate through the utilization of Micro-

Prof-guided optimization?

• Q3 (Overhead):What is the level of overhead incurred byMicroProf in its default setting?

Experimental setup. We evaluate MicroProf on clusters provisioned within CloudLab [48]. We choose

CloudLab-Utah’s m510 nodes while deploying the clusters [10]. Each m510 node is an 8-core, 16-thread Intel

Xeon D-1548 (Broadwell) CPU clocked at 2.0GHz running Ubuntu 18.04. The device has a 12MB LLC cache and

64GB ECC Memory.

We study four microservice applications: TrainTicket, Daytrader, ThingsBoard, and Eclipse-Kapua. The ap-

plications are deployed on Kubernetes [31] clusters with 10, 3, 2, and 2 nodes, respectively. We conigure the

Kubernetes security context to privileged mode to enable the debug registers inside the Kubernetes pod. In the

ThingsBoard and Eclipse-Kapua deployment, the database runs on a separate node from the backend services.

Since MicroProf is compatible with JDK 11 and any of its successors, we update the build environments of the

microservice applications to use JDK 11.

Evaluation methodology. Before evaluatingMicroProf, we perform critical path analysis (Section 5.1) to

prioritize queries that are deemed worthy of MicroProf’s ine-grained analysis. For this purpose, we run the

microservice applications and conduct application-speciic operations on the client. These operations include

booking tickets on TrainTicket microservice and trading stocks on DayTrader. Once we shortlist the queries, we

start experiments to evaluate MicroProf against those queries. Each experiment precedes a 2-minute warm-up.

We use Apache JMeter scripts with 16 user threads to request the TrainTicket and DayTrader microservices.

For the other services, we use single-user settings. In each experiment, we send 10,000 queries to each of the

services. To ensure the reliability of the results, we repeat each experiment ive times. While reporting the

results, we average the performance metrics across multiple experimental runs. We consider both the average

and 99th-percentile latency as the performance metrics.

Summary of evaluation. Table 1 summarizes the microservice ineiciencies detected byMicroProf. Guided

byMicroProf, we identify ive ineicient data transfers in the microservice applications. To validate the indings,

we further optimize the applications. Our experimental evaluation shows that microservices enjoy up to 4.59×

speedup in average latency.

Fig. 4 further presents the latency distribution of the queries for each ineicient and optimized service,

including the tail (99th percentile). From Fig. 4-a, the ts-seat-service (TrainTicket) latency is reduced from

ACM Trans. Arch. Code Optim.



14 • Syed Salauddin Mohammad Tariq, Lance Menard, Pengfei Su, and Probir Roy

(a) (b)

(c) (d)

(e)

Fig. 4. The cumulative distribution function (CDF) of query latency before and ater optimization of unnecessary data

transfer.

4762.01 to 999 milliseconds through optimization, achieving a 4.77× improvement. In Fig. 4-b, the latency for

the ts-route-plan-service (TrainTicket) is cut from 32405.05 to 26408.33 milliseconds, resulting in a 1.23×

speedup. Similarly, Figs. 4-c, 4-d, and 4-e indicate that kapua-datastore service (Eclipse Kapua), rule-engine

service (Thingsboard), and daytrader-portfolios service (DayTrader) experience an improvement in tail

latency of 2.01×, 1.13×, and 1.01×, respectively. This result directly answers evaluation question Q2, showcasing

the efectiveness of MicroProf in signiicantly enhancing microservice performance.

Overhead measurement. To answer the evaluation question Q3, we measure the runtime overhead of Micro-

Prof on 14 services from the TrainTicket benchmark. These selected services represent the core microservices

frequently invoked by the rest of the services in the benchmark. We carry out this assessment by executing each

experiment ive times with 16 user threads and then comparing the runtime ratio with and withoutMicroProf
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Fig. 5. Runtime overhead.

(b) TrainTicket: ts-seat-service case study
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(a) TrainTicket: ts-route-plan-service case study
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Fig. 6. REST communication between TrainTicket microservices. Ineficient microservices are shown in gray.

monitoring enabled. The indings are depicted in Fig. 5. The igure shows that most services experience a maxi-

mum overhead of 10%. To further minimize sampling overhead, developers can conigure MicroProf’s dynamic

sampling rate selection. A similar approach is adopted by Uber’s CRISP [68] and Jaeger.

7.1 Case Studies

To answer the evaluation question Q1, this section discusses the utility of MicroProf in greater detail. Through

individual case studies, we demonstrate the unnecessary communication patterns in the microservice applica-

tions’ source code. We further demonstrate MicroProf’s capability to identify the source code’s ineiciency

accurately. Finally, guided by MicroProf, we optimize the unnecessary data transfer and verify the optimization

by systematically comparing the original implementation.
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Table 2. Summary of critical path analysis report. Latency is reported in seconds.

Rank Critical path

Normalized

exclusive

latency (s)

Normalized

inclusive

latency (s)

Distance

1 TRAVEL-PLAN[getByQuickest]->TRAVEL-PLAN[POST] 1.00 0.95 1.38

2 TRAVEL-PLAN[POST] 1.00 0.88 1.33

3 TRAVEL-PLAN[getByQuickest] 0.01 1.00 1.00

4
TRAVEL-PLAN[getByQuickest]->TRAVEL-PLAN[POST]->

ROUTE-PLAN[getQuickestRoutes]
0.01 0.32 0.32

5 TRAVEL-PLAN[POST]->ROUTE-PLAN[getQuickestRoutes] 0.01 0.32 0.32

6 ... ... ... ...

7.1.1 TrainTicket. TrainTicket is an open-source microservice benchmark application. It implements a train

ticket booking system with a total of 41 services. The services communicate with other services through REST

API. The majority of the services of TrainTicket are written in Java using Spring Boot framework [56]. It ofers

versatile deployment facilities consisting of Kubernetes, Helm, and Docker and supports distributed tracing using

Jaeger. We deploy TrainTicket-0.0.3 in a CloudLab Kubernetes cluster of 10 nodes.

Ineiciency in ts-route-plan-service

To identify the signiicant performance overhead, we irst perform critical path analysis (CPA). Table 2 presents

the irst few lines reported by the CPA on the TrainTicket microservice. We evaluate each path according to the

priority list usingMicroProf and identify an ineiciency on the path of row 5.

The Scenario. The scenario is depicted in Fig. 6-a. The TrainTicket webpage searches for the quickest Route

with a source and destination station. The request is sent to ts-route-plan-service using REST API POST

"/quickestRoute". The request handler at ts-route-plan-service handles the request by invoking REST APIs

of two remote services, ts-travel-service and ts-travel2-service. These requests return high-speed and

normal-speed train routes. The ts-route- plan-service sends the ive quickest routes to display on the webpage.

MicroProf identiies unnecessary data transfer from ts-travel2-service to ts-route-plan-service.

MicroProf insight Listing 3 shows MicroProf’s report on two remote invocations from

ts-route-plan-service. The irst half of the listing shows that ts-route-plan-service receives the normal

train routes from ts-travel2-service. The second half of the listing shows that ts-route-plan-service

receives the high-speed train routes from ts-travel-service. Both ts-travel2-service and

ts-travel-service return these routes as a list of TripResponse instances. However, the utilization

report shows that the remote objects returned from ts-travel2-service sufer low utilization of 23%.

Comparatively, the remote objects from ts-travel-service have higher utilization of 83.7%.

Listing 4 shows the partial code of the handler function searchQuickestResult. Lines 2 and 3 show the two

remote invocations for high-speed train routes and normal-speed train routes. However, the code only returns

the quickest ive results. Manual code investigation shows that in most cases, these results are from high-speed

train routes. As a result, returned TripResponse objects from the normal train routes become unnecessary.
The optimization. We optimize the ts-route-plan-service by conditionally avoiding the unnecessary

transfer of normal train routes. After optimization, the service observes a 76.1% reduction in the number of ields

requested and enjoys 1.25× speedup in average latency.

Ineiciency in ts-seat-service

The Scenario Fig. 6-b depicts the scenario of service invocations. The ts-travel2-service requests the

ts-seat-service for a list of remaining tickets using an exposed REST API, GET "/seats/left_tickets".

ts-seat-service’s getLeftTicket- OfInterval implements the handler function to serve the request. For

this purpose, ts-seat-service communicates with another external service ts-order-other-service through
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1 % ----------- Context for normal train

2 ...

3 plan.controller.RoutePlanController.getQuickestRoutes(RoutePlanController.java :39)

4 |_ plan.service.RoutePlanServiceImpl.searchQuickestResult(RoutePlanServiceImpl.java :98)

5 |_ plan.service.RoutePlanServiceImpl.@getTripFromNormalTrainTravelService@(RoutePlanServiceImpl.java :329)

6 ...

7 Field utilization: {'endTime ': 100%,'startingTime ': 100%,'confortClass ': 0%,'economyClass ': 0%,'

↩→ priceForConfortClass ': 0%,'priceForEconomyClass ': 0%,'startingStation ': 0%,'terminalStation ': 0%,'

↩→ trainTypeId ': 0%,'tripId ': 0%},

8 Class Utilization: {'TripResponse ': @23.9%@}

9

10 % ----------- Context for high speed train

11 ...

12 plan.controller.RoutePlanController.getQuickestRoutes(RoutePlanController.java :39)

13 |_ plan.service.RoutePlanServiceImpl.searchQuickestResult(RoutePlanServiceImpl.java :97)

14 |_ plan.service.RoutePlanServiceImpl. #getTripFromHighSpeedTravelServive #( RoutePlanServiceImpl.java :313)

15 ...

16

17 Field utilization: {'endTime ':99%,'startingTime ':100%,'confortClass ':0%,'economyClass ':0%,'

↩→ priceForConfortClass ': 100%,'priceForEconomyClass ':100%,'startingStation ':100%,'terminalStation '

↩→ :100%,'trainTypeId ':100%,'tripId ':100%} ,

18 Class Utilization: {'TripResponse ': #83.7%#}

Listing 3. MicroProf reports unnecessary data transfer from ts-travel2-service to ts-route-plan-service

in TrainTicket. However, MicroProf did not find ineficiency in communication between ts-travel-service to

ts-route-plan-service

1 public Response searchQuickestResult (...) {

2 ArrayList <TripResponse > highSpeed = getTripFromHighSpeedTravelServive(queryInfo , headers);

3 ArrayList <TripResponse > normalTrain = getTripFromNormalTrainTravelService(queryInfo , headers);

4 ...

5 int size = Math.min(finalResult.size(), 5);

6 for (int i = 0; i < size; i++) {

7 ...

8 returnResult.add(finalResult.get(minIndex));

9 }

10 ...

Listing 4. TrainTicket’s ts-route-plan-service.

1 ...

2 seat.controller.SeatController.getLeftTicketOfInterval(SeatController.java :52)

3 |_ seat.service.SeatServiceImpl.getLeftTicketOfInterval(SeatServiceImpl.java :238)

4 |_ seat.service.SeatServiceImpl.invokeOrderOtherTickets(SeatServiceImpl.java :301)

5 ...

6 Field utilization: {'destStation ': 100% 'seatNo ': 0%, 'startStation ': 0%},

7 Class Utilization: {'Ticket ': 33.9%}

Listing 5. MicroProf reports unnecessary data transfer from ts-order-other-service to ts-seat-service in TrainTicket.

REST API GET "/orderOther/tickets". Finally, ts-order-other-service retrieves the requested data from

mongoDBService. MicroProf identiies unnecessary response data transfer from ts-order-other-service to

ts-seat-service.

MicroProf insight. Listing 5 shows the snapshot of MicroProf’s code analysis result for ts-seat-service

microservice of TrainTicket. Lines 1-5 show the truncated allocation context of the unnecessary remote object.

The allocation context represents the call path, source code ile name, and line number. For instance, the context

identiies the ineicient remote object is requested on Line 301 of SeatServiceImpl.java. Line 6 of the listing

delineates the utilization of each ield of the class, and Line 7 delineates the utilization of that entity class. From

ACM Trans. Arch. Code Optim.



18 • Syed Salauddin Mohammad Tariq, Lance Menard, Pengfei Su, and Probir Roy

the listing, MicroProf reports that the class Ticket has a low utilization of 33.9%. The report further states that

only ield destStation has full utilization, whereas the ields seatNo and startStaion are never used.

1 public Response getLeftTicketOfInterval (...) {

2 ...

3 - re3 = restTemplate.exchange ("http ://ts -order -other -service :12032/ api/v1/

4 - orderOtherService/orderOther/tickets", ...});

5 - leftTicketInfo = re3.getBody ().getData ();

6 - Set <Ticket > soldTickets = leftTicketInfo. getSoldTickets ();

7 - for (Ticket soldTicket : soldTickets) {

8 - String soldTicketDestStation = soldTicket.getDestStation ();

9 + re3 = restTemplate.exchange ("http ://ts -order -other -service :12032/ api/v1/

10 + orderOtherService/orderOther/tickets/destStation/list", ...});

11 + List <String > dStations = re3.getBody ().getData ();

12 + for (String soldTicketDestStation : dStations) {

13 ...

Listing 6. TrainTicket ts-seat-service before and ater optimization.

Listing 6 shows the ineicient original code snippet as well as the optimized code of the ts-seat-service.

The original code snippet is marked as red, and the optimized code snippet is marked as green. In the original

code, the getLeftTicketOfInterval() function of the ts-seat-service serves the request by providing the

number of remaining tickets. For this purpose, the function invokes a REST API of ts-order-other-service.

ts-order-other-service returns a list of Ticket entity. However, as MicroProf reports, the function only

utilizes the destStation ield of the class by calling the getter function getDestStation().

The optimization. Our implementation focuses on reducing redundant data transfer over the network. We

implement a new optimized endpoint at the ts-order-other-service that retrieves only the destStation

list from the MongoDB service and sends the response back to ts-seat-service. This optimization reduces

the original implementation’s transferred data to 1
3 . We conduct stress tests on ineicient and optimized code

blocks to analyze performance improvement. We send a bulk of requests using Apache JMeter and measure the

average latency of the GET "/seats/left_tickets" request. Guided by MicroProf, the optimization of the

ts-seat-service reduces the API response size by 66.1% in terms of the number of ields and results in a 4.59×

speedup in average latency.

7.1.2 ThingsBoard. ThingsBoard is an open-source IoT platform that enables developing and managing robust,

scalable, and fault-tolerant IoT projects. The platform provides server-side infrastructure for IoT applications

with transports, core, rules, and a web-based user interface. We deploy Thingsboard v3.4.1 using Docker in a

cluster of 2 nodes.

The Scenario. ThingsBoard provides a rule engine, a framework for building event-based worklow. We

implement a Thermostat rule chain to experiment using ThingBoard’s rule engine. Fig. 7 depicts the rule chain.

According to the rule chain, the related devices will be notiied when the thermostat device posts telemetry.

While testing the scenario, MicroProf identiies unnecessary data transfer from the database to the rule engine.

MicroProf insight. Listing 7 shows MicroProf’s code analysis result for the rule-engine

service of the ThingsBoard application. From the reported context, the ineiciency happens in

EntitiesRelatedDeviceIdAsyncLoader.java ile at findDeviceAsync() function. Line 6 of the listing

further reports that Device class has a low utilization of 12.5%, and only id and type ields have full utilization.

The function does not require access to the remaining 13 ields.
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1 rule.metadata.TbAbstractGetAttributesNode.onMsg(TbAbstractGetAttributesNode.java :74)

2 |_ rule.metadata .. TbGetDeviceAttrNode.findEntityIdAsync(TbGetDeviceAttrNode.java :50)

3 |_ rule.util.EntitiesRelatedDeviceIdAsyncLoader.findDeviceAsync(EntitiesRelatedDeviceIdAsyncLoader.java

↩→ :40)

4

5 Field utilization: {'id': 100%, 'type': 100%, 'additionalInfo ': 0%, 'additionalInfoBytes ': 0%, 'createdTime

↩→ ': 0%, 'customerId ': 0%, 'deviceData ': 0%, 'deviceDataBytes ': 0%, 'deviceProfileId ': 0%, '

↩→ externalId ': 0%, 'firmwareId ': 0%, 'name': 0%, 'softwareId ': 0%, 'tenantId ': 0%, 'label ': 0%},

6 Class Utilization: {'Device ': 12.5%}

Listing 7. MicroProf reports unnecessary data transfer from PostgreSQL DB to Rule-Engine service of ThingsBoard.

Fig. 7. ThingsBoard rule-chain.

1 public static ListenableFuture <DeviceId > findDeviceAsync(

2 TbContext ctx , EntityId originator , DeviceRelationsQuery deviceRelationsQuery){

3 ...

4 - ListenableFuture <List <Device >> asyncDevices =

5 - deviceService.findDevicesByQuery(ctx.getTenantId (), query);

6 - return Futures.transformAsync(asyncDevices , d ->

7 - CollectionUtils.isNotEmpty(d) ?

8 - Futures.immediateFuture(d.get (0).getId ()): Futures.immediateFuture(null),

9 - MoreExecutors.directExecutor ());

10 + ListenableFuture <List <DeviceId >> asyncDevices =

11 + deviceService.findDevicesIdByQuery(ctx.getTenantId (), query);

12 + return Futures.transformAsync(asyncDevices , d ->

13 + CollectionUtils.isNotEmpty(d) ? Futures.immediateFuture(d.get (0))

14 + : Futures.immediateFuture(null), MoreExecutors.directExecutor ());

Listing 8. Thingsboard Rule-Engine service before and ater optimization.

Listing 8 shows the original code of interest and the optimization. Lines 5-7 show that the function retrieves

the list of Device instances. However, lines 8-13 show that the id ield is returned from the function. As a result,

retrieving the other ields from the backend database is unnecessary.

The optimization. Guided by MicroProf, we optimize the code by only querying for the device id. The

optimization reduces the response size by 87.5% in terms of the number of ields and improves the runtime by

1.20× on average.
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DayTrader: PortfolioService case study

ApacheDerby

POST {/portfolios/{userId}/orders} GET {/quotes/{symbol}} SQL QueryPortfolioService

processOrder()

QuoteService

getQuote()
Orignial endpoint

Ineicient caller

Fig. 8. REST communication between DayTrader microservices. Ineficient microservices are shown in gray.

1 daytrader.controller.PortfoliosController.processOrder(PortfoliosController.java :268 )

2 |_ daytrader.service.PortfoliosService.buy(PortfoliosService.java :578 )

3

4 Field utilization: {'price ': 100% 'symbol ': 100%, 'volume ': 15%, 'change1 ': 16%, 'open1 ': 9%, 'companyName '

↩→ : 0%, 'low': 0%, 'volume ': 0%, 'change1 ': 0%, 'high': 0%, 'open1 ': 0%

5 Class Utilization: {'QuoteDataBean ': 31.7%}

Listing 9. MicroProf reports unnecessary data transfer from PortfoliosService to Apache Derby in DayTrader.

1 public OrderDataBean buy (...) {

2 ...

3 - QuoteDataBean quoteData = quotesService.getQuote(symbol);

4 - ...

5 + BigDecimal QuotePrice = quotesService.getQuotePrice(symbol);

6 createOrder (...);

7 ...

8 }

9 private OrderDataBean createOrder (...){

10 ...

11 stmt.setBigDecimal (6, quoteData.getPrice ()...

12 stmt.setString (10, quoteData.getSymbol ());

13 ...

14 }

Listing 10. DayTrader Portfolios service before and ater optimization.

7.1.3 DayTrader. DayTrader is an open-source benchmark application that simulates online stock trading. It

was originally developed by IBM for WebSphere Trade. In the paper, we evaluate the microservice version of the

application [45], which consists of 5 microservices.

The scenario. Fig. 8 illustrates DayTrader service invocation details in our study. The PortfolioService

receives a buy request from the end user and sends a remote invocation to QuoteService via endpoint GET

"/quotes/symbol". QuoteService then returns a QuoteDataBean object to PortfolioService. MicroProf

identiies unnecessary data transfer in the scenario.

MicroProf insight. Listing 9 depicts the ineiciency report of MicroProf on the PortfolioService. From

the call path, PortfoliosService.buy() function is the source of the unnecessary data transfer. The listing

further shows that the received QuoteDataBean remote objects have low utilization of 31.7%.MicroProf further

reports that only price and symbol ields have full utilization.

Listing 10 represents the original code snippet as well as optimized code for the buy function. On Line 4, the

function makes a remote invocation to QuoteService to return QuoteDataBean. The function then passes the

quote to createOrder function. However, createOrder only accesses the price and symbol ields using the

getter function. As a result, the other ield transfer is unnecessary. We further identify that transferring symbol

is also unnecessary since buy queries the quote using symbol.

Interestingly, MicroProf reports some usage of ields volume, change1, and open1. Further investigation

shows that they are accessed during a stack dump due to a service exception.
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1 @XmlType(propOrder = {

2 "id", "datastoreId", "timestamp", "deviceId", "clientId", "receivedOn", "sentOn", "capturedOn", "

↩→ position", "channel", "payload"

3 })

4 public <T> ResultList <T> query (...) {

5 ...

6 - request.setJsonEntity(json);

7 - Response queryResponse = restCallTimeoutHandler (() -> getClient ().

8 - performRequest(request), typeDescriptor.getIndex (), "QUERY ");

9 - DatastoreMessage messageToBeDeleted = find(scopeId , id , StorableFetchStyle.FIELDS);

10 - schemaMetadata = mediator.getMetadata(scopeId , messageToBeDeleted.getTimestamp ().getTime ());

11 + String includeQuery=String.format (" includes \":[\"%s\"]", field);

12 + String queryToBeReplaced = "includes \":[\"*\"]";

13 + json = json.replace(queryToBeReplaced ,includeQuery);

14 + request.setJsonEntity(json);

15 + Response queryResponse = restCallTimeoutHandler (() -> getClient ().

16 + performRequest(request), typeDescriptor.getIndex (), "QUERY ");

17 + Date timestamp = findModified(scopeId , id , StorableFetchStyle.FIELDS);

18 + schemaMetadata = mediator.getMetadata(scopeId , timestamp.getTime ());

Listing 11. Eclipse Kapua Datastore service before and ater optimization.

The optimization. In order to reduce unnecessary data transfer, we implement a new REST API requesting

for Quote Price only. The optimization reduces the response size by 68.3% in terms of the number of ields and

results in a 1.016× speedup in terms of average latency.

7.1.4 Eclipse Kapua. Eclipse Kapua is an open-source platform for integrating IoT devices and smart sensors.

It manages and integrates devices and their data and provides a solid foundation for IoT services for any IoT

application. Eclipse Kapua consists of 7 microservices. In our experiment, we deploy Kapua v1.6.3 in a 2-node

CloudLab cluster.

The Scenario. The Eclipse Kapua performs bulk deletion of DatastoreMessage while performing an applica-

tion integration test. Cucumber scripts initially send the request to MessageStoreServiceImpl. Then it forwards

the request to Elasticsearch over MessageStoreFacade.MicroProf detects an ineiciency while Kapua performs

a remote request to Elasticsearch during the test.

MicroProf insight. Listing 11 represents both the original and the optimized code. Lines 19-23 show that

the original code calls the find() function. The find() function then invokes a remote elastic search service

to retrieve the DatastoreMessage object. However, line 27 shows that it only accesses timestamp ield via the

getter function.MicroProf accurately detects this ineiciency.

The optimization. To eliminate the unnecessary data transfer over the network, we implement a customized

Elasticsearch client query that only retrieves the timestamp instead of the whole DatastoreMessage object. We

further optimize the Elasticsearch server to respond only to the timestamp ield. This optimization resulted in a

1.88× speedup.

8 THREATS TO VALIDITY

Internal threats to validity. Our experiment demonstrates that a 95% conidence interval is efective in detecting

both used and unused ields in objects, although the tool may miss some cases due to sampling. Additionally,

it’s worth noting that in various contexts and with diferent inputs, objects may still be accessed after the TTL

expiration. Our evaluation of overhead focuses solely on the 14 microservices of the TrainTicket benchmark.
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External threats to validity. Since open-source Java microservice applications are not widely available, we are

only able to evaluate MicroProf on a limited number of applications. Proprietary applications, on the other

hand, can be more intricate and employ a variety of frameworks rather than just Spring Boot. Due to the lack of

ground truth data, we only manually evaluated theMicroProf reported ineiciencies.

Construct threats to validity. The manual annotation process can be both challenging and prone to human error,

especially with a large number of RPC invocations. Missing or inaccurately identifying these invocations may

compromise the tool’s ability to accurately measure the underlying construct of RPC interaction, thus afecting

the construct validity. In our future work, we intend to eliminate the annotation-based approach by implementing

and/or leveraging monitoring capabilities directly within the RPC libraries.

Conclusion threats to validity. The end-to-end latency is often inluenced by external factors such as network

conditions, server load, and background garbage collection, creating conclusion threats to validity. To mitigate

the issue, we carefully maintain the same experimental environment across experiments and use appropriate

statistical methods to support the validity of our conclusions. We observe a signiicant variance reduction after

optimization for all the cases. This reduction may be attributed to alleviating network load and garbage collection

overhead resulting from the optimization of unnecessary data transfer.

9 CONCLUSIONS

In this paper, we proposeMicroProf, a dynamic analysis tool to detect unnecessary data transfer in microservice

applications. The tool pinpoints the ineiciency of the application source code. It further identiies the ineicient

data structure ields. To demonstrate the utility, the paper evaluatesMicroProf on four microservice applications.

The tool detects ive ineiciency patterns in the applications. Guided byMicroProf, we further optimize the

applications and observe up to a 4.59× speedup. MicroProf will help the developer community to pinpoint

the inherent ineiciencies in Java microservice communication and guide them toward optimization. Moving

forward, we plan to evaluate our tool on proprietary applications with real-world experimental settings and

explore its applicability to other programming languages.
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