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Human communication often combines imagery and text into integrated
presentations, especially online. In this paper, we show how image-text
coherence relations can be used to model the pragmatics of image—text
presentations in Al systems. In contrast to alternative frameworks that characterize
image—text presentations in terms of the priority, relevance, or overlap of
information across modalities, coherence theory postulates that each unit of a
discourse stands in specific pragmatic relations to other parts of the discourse,
with each relation involving its own information goals and inferential connections.
Text accompanying an image may, for example, characterize what's visible in
the image, explain how the image was obtained, offer the author's appraisal
of or reaction to the depicted situation, and so forth. The advantage of
coherence theory is that it provides a simple, robust, and effective abstraction
of communicative goals for practical applications. To argue this, we review case
studies describing coherence in image—text data sets, predicting coherence from
few-shot annotations, and coherence models of image—text tasks such as caption
generation and caption evaluation.
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1. Introduction

The internet has become a multimodal information ecosystem, where units of
content—news articles, web pages, posts to social media—regularly tie together written
words, emoji and other icons, static and dynamic imagery, and links to yet more multimodal
content. Faced with the heterogeneity of online information, Artificial Intelligence (AI)
researchers have increasingly characterized problems of information access from the
perspective of multimodality: for example, producing text captions that make visual
information more accessible (e.g., Lin et al, 2014; Young et al, 2014); or taking both
text and image content into account in information retrieval (e.g., Funaki and Nakayama,
2015; Chowdhury et al., 2019). At the same time, this heterogeneity has empowered AI
researchers to compile vast multimodal datasets (e.g., Sharma et al., 2018) and to build
large scale “foundation” models (e.g., Lu et al., 2019; Radford et al., 2021) trained to capture
cross-modal patterns and make cross-modal predictions.

Applications of such models, like the DALL-E system for synthesizing imagery from text
(Ramesh et al., 2021), have captured the imagination of researchers and the public alike and
serve as high-profile examples of the ability of representation learning to drive surprisingly
rich AT capabilities.

The rapid progress in multimodal AI brings new urgency to the challenge of better
understanding the data, tasks, model architectures, and performance metrics in the field.
In fact, even the basic data points, “image-text pairs” scraped from the web, as in Radford
et al. (2021), involve diverse and surprising juxtapositions. In Figure 1, for example, we see
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I’'m going to be late.
FIGURE 1
People combine text and images creatively to communicate. In these two unrelated image—-text pairs, the images provide explanations for what is
described in the text. Image credits: Malihe Alikhani.

image—-text pairs where the image depicts the reason for the text
contribution—the depicted traffic is why the author will be late;
the possibility of encountering bears in nature is why repellent
is needed. Though such text is “grounded” in imagery only in
a very abstract way, such inferences seem like common-sense to
human readers. How good then are large vision-language models
at capturing the varied implicit generalizations and relationships
that connect text and imagery? How robust to this variation
are machine learning approaches to using natural language as a
supervision signal for multimodal inference? Can we design models
that better understand and reason about these inferential links?
More generally, what concepts and methods are needed for AI
researchers to explore such questions in precise and effective ways?

In this paper, we address these challenges through the lens
of theories of discourse coherence (Phillips, 1977; Hobbs, 1979,
1985; Asher and Lascarides, 2003). Our focus is on image-text
coherence, where we argue that coherence relations that resolve the
interpretation of text segments against juxtaposed imagery offer a
broad and powerful framework to improve Al datasets, models,
and systems so that they can better account for the structural,
logical and purposeful organization of authors’ communicative
contributions to online discourse.

Coherence theory originates in the detailed analysis of the
inferences needed to support text interpretation in knowledge-
based approaches to natural language processing. For example,
this discourse from Hobbs (1985 ex 3) depends on common-sense
knowledge about books are formed and handled:

(1) John took a book from the shelf. He turned to the index.

Coherence here consists of the fact that the first event brings
about the situation in which the second event takes place—a
relationship referred to as Occasion (Hobbs, 1985) or Narration
(Asher and Lascarides, 2003). For coherence theory, establishing
this Occasion relationship guides and prompts key inferences,
including the inference that John’s turning involves opening the
book he must be holding in his hand to a new page and the inference
that the index refers to the section of this book John exhibits. While
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current Al rarely approaches such inferences explicitly, coherence
theory nevertheless remains an influential paradigm that informs a
wide range of AT work on text discourse, as we survey in Section 2.

Interpreting image-text presentations requires analogous
inferences across modalities, including inferences that locate the
viewpoint of imagery (Cumming et al., 2017), identify depicted
objects (Abusch, 2013), and place the ongoing scene in the arc of
the narrative (Cohn, 2013). Some coherence relations link imagery
together (McCloud, 1993). Others guide inferences that enrich the
joint interpretation of communicative actions across modalities
(e.g., Lascarides and Stone, 2009a; Stone and Stojnic, 2015). The
specific case of image—-text coherence is the focus of our work here
and underpins the contribution of our research. Section 2 builds
on our review of broader work on coherence in Al to motivate and
characterize image-text coherence.

Having laid out the principles of coherence, we go on to
demonstrate the significance of image-text coherence for state-
of-the-art multimodal AL Section 3 explores how coherence can
be used to annotate and to analyze image-text datasets. Section 4
illustrates how coherence can be used to make sense of the
representations and learning of different model architectures for
multimodal Al Section 5 reviews how coherence-aware tasks and
metrics enhance researchers’ ability to build more useful tools
and measure performance in more meaningful ways. We close by
suggesting some key directions for building on these successes in
future research.

2. Coherence in image—text
presentations

We begin with an overview of coherence theory. We
have two aims. Our first aim is to present the motivations,
analyses, and principles of coherence theory as an approach to
multimodal discourse. Like text discourse, we argue, multimodal
discourse recruits numerous fine-grained inferences to enrich
the interpretation of communicative contributions in context;
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what unifies these inferences is the need to establish coherence
relations that organize the contributions of parts of the discourse
into an integrated whole. It may seem counterintuitive that such
an approach—a theory devised to address abstract foundational
questions about meaning—should pave the way for concrete
progress in AL Our second aim, then, is to explain why
the constructs of coherence theory have such direct, practical
implications for AT methodology in general, and for multimodal
Al in particular.

2.1. Coherence: The key ideas

Authors have different purposes in presenting information. The
writer of Example (2), for example, uses the second sentence to offer
an explanation of why the first event came about.

(2) Max spilt a bucket of water. He tripped on his shoelace.

Such relationships are central to making sense of the author’s
message. The second sentence of Example (2) works as an
explanation, for example, only because we understand He as
Max, his as Max’s, the shoelace as that of one of the shoes
Max must be wearing, and the event where He tripped as
located temporally immediately prior to the spilling. Coherence
theory counsels that we take a fundamentally relational view
of actions in discourse. Successive actions in discourse don’t
express independent propositions or act unassisted to influence the
audience: discourse contributions build on one another. Coherence
relations specify how they do this. (Our discussion of Examples 2-4
follows Kehler, 2002; Asher and Lascarides, 2003). We counsel Al
researchers also to take a relational approach to discourse actions.
One lesson of our experiments in Section 4 is that Al architectures
should not assume that discourse actions stand on their own.
Instead, Al architectures should learn about discourse actions via
their latent relation to other discourse actions in the context.

After all, relationships vary. Here are variants of Example (2)
where the followup sentences make contributions of very different
kinds.

(3) Max spilt a bucket of water. He spilt it all over the rug.
(4) Max spilt a bucket of water. John dropped a jar of cookies.

In Example (3), we find what Hobbs (1985) calls Expansion. We
learn more about the initial event, its context and consequences.
In Example (4), we find what Kehler (2002) calls Resemblance.
The author presents another event as notable for its similarity
and difference to the first. Coherence theorists have elegant ways
to systematize the diversity of such relational interpretations in
a rational taxonomy. For Kehler (2002), for example, Examples
(2-4) illustrate Cause-Effect, Contiguity, and Resemblance relations
(respectively), each a manifestation of the relationality and fitness
of human thought. At the same time, Al research is increasingly
successful at standardizing guidelines for annotators to classify the
relations found in specific examples.

Strikingly, these different relations are not encoded directly in
the linguistic forms and structures that make up Examples (2-
4). Of course, the forms of referring expressions in 3 are the
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pronouns that you’d expect if this was a straightforward extended
description of a single scene; the structure of Example (4) also
exhibits the syntactic and semantic parallels you'd expect if the
author wanted to facilitate a comparison. In that sense, linguistic
form corroborates coherence. But form does not signal coherence—
there are no words or constructions that give decisive evidence
about what the author has in mind. Ambiguity is pervasive. A
consonant lesson of Section 5 is that AI researchers should be
skeptical that models and metrics learn and respect coherence. If
coherence matters, rather than hoping learning methods capture
it automatically, we recommend designers solve coherence-aware
tasks and assess systems on coherence-aware metrics.

Alternative coherence relations provide broad organizing
frameworks for interpretation, rather than clearly demarcated
elements of form or content. Nevertheless, ambiguities in
coherence often correlate transparently with clear interpretive
differences. Smyth (1994) uses Example (5), to illustrate the
connection between coherence and coreference.

(5) Phil tickled Stanley, and Liz poked him.

Coherence could organize (Example 5) in two ways. The
second sentence could describe Liz’s contingent reaction to the
tickling. This suggests that Liz poked Phil, perhaps expressing
disapproval of his action. Alternatively, the two sentences could
describe similar events. That suggests that Stanley is the object
of both tickling and poking. Asking how him is interpreted
indirectly answers questions about coherence. Similarly, we can
easily appreciate the different coherence relations in Examples
(2-4) by considering when we understand the second event to
have occurred: before the first, simultaneous to it, or at any time
on the same relevant occasion. As we explore in Section 3, such
interpretive effects enable AI researchers to approach coherence
through a surprisingly diverse set of methodologies for data
annotation and analysis.

Imagery, like language, must be understood by inference,
and scholars have long argued that the interpretation of visual
communication also aims to establish coherence. McCloud (1993),
for example, argues that coherence relations between panels
underpin storytelling in comics. Abusch (2013) makes an analogy
between the persistence of individuals across panels in comics and
the phenomenon of coreference in text discourse. Cumming et al.
(2017) show how film viewers rely on coherence relations to infer
the spatial relationships implicitly connecting the viewpoints of
successive shots. In all cases, viewers must draw inferences about
what objects imagery is depicting, where, and when—just as in
they must draw inferences to understand linguistic content. In
all cases, they use coherence to do it. Koby Leff’s video essay
presents a particularly clear visual explanation of the phenomenon;
Alikhani and Stone (2018) analyze a case study of coherent visual
communication in computational terms.

Text communication and visual communication thus share
common principles of coherence, but we see the overarching
role of coherence especially vividly when we consider the
coherent relationships between text and imagery. Authors regularly
juxtapose text and imagery to present their ideas. When we
establish the coherence of such presentations, we can find that
text relates to imagery; the text may describe how the imagery
was obtained, what it shows, what its context is, or what its
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implications are. Conversely, we can use coherent links to text to
establish what imagery depicts: perhaps a representative moment
during the event described by the text, or perhaps a telling
moment as the event got underway, or achieved its results.
Such interpretations attest to the importance of the cross-modal
coherence relations which we illustrated already with Figure 1 in
the introduction. Coherence relations can provide a framework
for ways that we pose questions about commonsense inferences in
image-text presentations.

In fact, cross-modal coherence relations have a long history in
the analysis of face-to-face communication (Engle, 2001; Lascarides
and Stone, 2009a; Stone and Stojnic, 2015; Hunter et al., 2018;
Hunter, 2019), as a formal tool to operationalize cognitive scientists’
view that speakers use diverse modalities, including speech and
coverbal gesture, to present integrated messages (McNeill, 1992;
Bavelas and Chovil, 2000; Kendon, 2004). Image-text coherence
is less well studied (the work of Feiner and McKeown, 1991, who
used a taxonomy of cross-modal coherence relations to inform
the automated synthesis of multimodal documents, is a prescient
exception), but it provides new illustrations of the key principles
of coherence.

Consider the images of Figure 2 for example.

Both images are associated with the summary “looking out the
window” but the text gets two qualitatively different interpretations.
At left we have view of a cat through glass. It’s the cat that’s looking
out the window. This is a characteristic example of a coherence
relation we have called Visible (Alikhani et al., 2020); as we review
in more detail in Section 3, we attribute many unique features of
common image-caption corpora in Al research to the distinctive
inferential character of text that supplies Visible information.

At right of Figure 2, meanwhile, we have a view of a window,
framed to draw attention to the landscaped scene outside. The
image features no gazing subject. It's the camera that’s looking
out the window. This is an example of a different coherence
relation we have called Meta (Alikhani et al., 2020); utterances
often get their coherence through Meta-talk by characterizing
related communicative actions rather than by amplifying the
communicated content of related segments (Hobbs, 1985; Sanders
et al, 1992; Asher and Lascarides, 2003). Meta text doesn’t
summarize the visual information in the image like a typical
caption would, but in some genres authors often supply Meta
text to accompany their imagery. Such ambiguities in image-text
coherence mirror the ambiguities found in text-text coherence.
Text that accompanies imagery can provide qualitatively different
kinds of information about the image it amplifies; there may be little
surface-level information that reveals the contribution that text is
making. Thus, there is a crucial but implicit role for coherence in
interpreting image—text presentations, one that we argue impacts
the data, models, tasks, and metrics of multimodal AI systems.

2.2. The methodology of coherence

Because of the ambiguity of coherence, annotated data is
indispensable for Al experiments, whether in training models of
coherence by supervised learning or in evaluating the predictions
of unsupervised methods. Our work on text-image coherence is
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inspired by the success of analogous approaches to text discourse,
particularly the theoretical work of Asher and Lascarides (2003)
and the empirical work of Prasad et al. (2008).

To start, we need a framework that systematically organizes
coherence relations based on their implications for the structure,
content, and purpose of the discourse. Asher and Lascarides
(2003) introduce such a taxonomy of coherence relations between
discourse segments, as part of their Segmented Discourse
Representation Theory, or SDRT. The simplest relations are based
on reference to shared entities: Examples include Expansion (as
in Example 3) when a second discourse unit amplifies and
expands on what’s described in the first unit, and Narration (as
in one interpretation of Example 5), when a second discourse
segment describes an event that follows the one described in the
first segment.

SDRT also involves relations at proposition level, such as the
Parallel relation that connects two discourse segments that express
propositions that make similar claims about similar entities (as in
one interpretation of Example 5).

Finally, SDRT includes relations that describe the intents
and goals of the utterances—these are particularly important
in interactive relationships such as Correction and Clarification
Request that connect utterances by different speakers.

To annotate these relations, researchers have mapped out
structured, multifaceted, hierarchical annotation guidelines
(Prasad et al., 2008; Rohde et al., 2018; Alikhani et al., 2019). In
general, specifying coherence relations first requires deciding how
discourse elements attach into an ongoing discourse structure;
see especially Webber et al. (2003). For each discourse unit, we
need to describe what other units it’s related to by coherent links.
Connecting a discourse segment to a related segment can create
a sibling (coordination) or a child (subordination), generating a
hierarchical structure. Different discourse frameworks model the
structure of the discourse differently. Some of them only capture
shallow relations, while others, like SDRT, use more complex and
hierarchical graphs.' In extended multimodal presentations, like
blog posts involving multiple images interleaved with extended
textual descriptions (Alikhani and Stone, 2018) or contributions to
spoken conversation including multiple utterances and co-verbal
gestures performed in synchrony (Lascarides and Stone, 2009a),
it’s routine for each contribution to attach both to a synchronous
contribution across modalities and a previous contribution in the
same modality.

Our work on image-text coherence relations highlights
cases whose discourse structure is relatively clear—for example,
images together with their ALT-TEXT, an auxiliary record that is
understood as providing subordinate, supplementary information
to accompany the image. In more complex presentations, the
question of multimodal discourse structure is a challenging issue
ripe for further research.

Given an attachment, researchers first decide which of the
top-level categories describes the relationship between the two
segments (Prasad et al., 2008; Hunter et al., 2018). We have found

1 Researchers in text discourse often focus on tree discourse structures
(Hobbs, 1985; Kehler, 2002) but the analysis of multimodal discourse benefits

from appealing to more flexible structures (Hunter et al., 2018).
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FIGURE 2

Two different ways of interpreting “looking out the window" as a specification of an image. (Left) Visual information describing the pose and activity
of the subject in a photograph of a cat by Cristie Guevara (CC Public Domain 1.0 via publicdomainpictures.net). (Right) Meta-level information
describing the camera viewpoint in a photograph of the Phoenix Art Museum by Chanel Wheeler (CC BY-SA 2.0 via Wikimedia Commons).

it helpful to give annotators the option of specifying multiple
top-level relations. Given a relation, we can then “drill down”
to characterize the relationships in more detail. Webber et al.
(2019) describes the hierarchical decisions that annotators must
make to resolve the coherence relations defined for the Penn
Discourse Treebank.

We can sometimes extend coherence annotation protocols to
multimodal discourse by building on relationships that have been
studied in text. The Narration relation (Hobbs, 1985; Asher and
Lascarides, 2003) is a case in point. In multimodal discourse,
two images are connected by the Narration relation when the
second image shows the subsequent event of whats depicted
in the first image. We can even find Narration from text to
images and vice versa. An image can show what happened right
after the text it elaborates, and text can report what happened
right after the image it modifies. More generally, Narration is
one of a family of coherence relations expressing contingent
temporal connections that link an event to its preparatory process,
its culmination, or its result state. These relationships can be
found between when—-clauses and main clauses in discourse
(Moens and Steedman, 1988), between successive clauses in
discourse (Webber, 1987), or between related text and imagery
(Alikhani and Stone, 2018).

In other cases, we need new relations to describe inferences
between text and images. In postulating such relations, we can
draw valuable insights from research that explores how linguistic
content can be related to other kinds of visual content. Engle
(2001), for example, present a number of semantic relationships
between speech and coverbal gesture, showing not only that
gesture has a characteristic ability to relate to accompanying
speech by Depiction, but that such relations combine with familiar
relations from textual discourse such as Exemplification. Stone and
Stojnic (2015), meanwhile, study how physical demonstrations are
connected to speech and gesture, and appeal to relations such
as Summary—where an utterance is understood to characterize a
visible situation—and Compliance—where an event is understood
to meet an expectation for action established by a previous
utterance. As our empirical results in Section 3 make clear,
presentations with different purposes and genres naturally feature
distinctive relations, so we should expect future research to lead to
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broader perspectives on the range of possible coherence relations in
multimodal communication.

Despite the many open questions about the structure
and relations exhibited by coherent multimodal discourse,
Al researchers can nevertheless make practical progress with
coherence-based approaches. For text-image coherence, we have
used a restricted list of relations to annotate data at scale
(Figure 3), analyse large multimodal datasets, design coherence-
aware models and evaluate our framework. Our taxonomy includes
five relations— Visible, Action, Subjective, Story and Meta—any
subset of which can define the coherent use of text to amplify on
image content.

The Visible relation holds when the text presents information
that is depicted in the image. This is similar to the Restatement
relations in text (Prasad et al., 2008) in text, but here the content of
an image overlaps with the content of its accompanying text. When
the image depicts a moment or a snapshot of an action described
in text, the pairs are connected with Action relation. The Action
relation is analogous to Elaboration relations described in Prasad
et al. (2008) for text.

The text and image are related with the Subjective relation when
the overlapping information described in text sometimes includes
an evaluative statement or a reaction to the content of the image.
This is similar to Evaluation relations in text (Hobbs, 1985).

Similar to the Occasion relation of Hobbs (1985) that holds
when a discourse unit provides the background for another
discourse segment, sometimes the text provides a free-standing
description of the occasion depicted in the image. We call this
a Story coherence relation. Sometimes the text goes beyond just
providing information about what’s depicted in the image or the
occasion. It describes how, when, or where the image was taken
by explaining the presentation and production procedures. In such
cases, we argue the text and the image are connected with a Meta
coherence relation.

2.3. Why coherence?

The communicative functions of images and text in multimodal
communication can be analyzed from several different perspectives.
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FIGURE 3

(Sharma, 2020) that include Creative Commons Licensed image—-text pairs.

Captions from left to right: A man sitting in front of a bunch of fruits. A woman is traveling on a train. The new manager of the team. The view from
the bridge. Text and images are linked together using a constrained set of coherence relations, which can summarize the structural, logical and
purposeful relationships between the contributions of text and the contributions of images. Examples from the Conceptual Captions dataset

For example, Kruk et al. (2019) and Shuster et al. (2019) focus
on the emotions evoked by presentations, Guo et al. (2019) study
genre and style, and Otto et al. (2019) and Vempala and Preotiuc-
Pietro (2019) assess how text and images might be complementary
or redundant.

The main contrast with our approach is that none of these
frameworks try to model information-level inferences between
text and images. An image might be a uniquely effective way to
prompt emotion for example, but it would be surprising if our
cognitive mechanisms could resolve ambiguity in the image (or
in the accompanying text) to foster such affective engagement.
Similarly, regardless of how we resolve their ambiguities, we will
be able to classify related text and imagery as either complementary
or redundant.

In text discourse, information structure is an alternative
to coherence theory that provides yet another perspective to
relate meaning to communicative goals. Information structure
is a dimension of pragmatic meaning in language that helps
explain variation in word order, intonation, and other linguistic
cues that mark the relationship between utterances and their
context (van Kuppevelt, 1995; Roberts, 2012). A key construct
in theories of information structure is the “question under
discussion,” or QUD; utterances relate to the context in part by
addressing the QUD. Information structure describes how an
utterance is partitioned into material that evokes the question
under discussion and the material that supplies the answer.
Although information structure is signaled grammatically, the
point of emphasis of the speaker often has to be inferred
(Bolinger, 1972). This makes information structure and coherence
complementary: in particular, Hunter and Abrusdn (2017) argue
that coherence provides a flexible and perspicuous way of
mapping the inferences involved in disambiguating information
structure and reconstructing the QUD. Coherence is especially
natural when we consdier how approaches should generalize to
multimodal discourse, because there isn’t anything analogous to
information structure in a photograph, map, or diagram. Even
the emphasis you find in gesture is very different structurally
and compositionally from information structure in language
(Kendon, 2004). Neither QUD nor the frameworks that prioritize
ways that images serve complementary roles for text would
give insights into inferences that connect the content of text
and imagery. They do not provide a framework that can
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support data creation and model designs that we describe in the
next section.

3. Coherence as a framework for
analyzing image—text datasets

Our first argument for the utility of the coherence framework
comes in characterizing AI datasets. Coherence relations
can provide information about the inferential and linguistic
characteristics of image-text corpora. In particular, coherence
sheds light on how genres vary and how linguistic form is likely to
change across datasets. In addition to characterizing the challenges
of image-text inference, such results can also inform AI research
by helping to define the domain adaptation that will be necessary to
generalize machine learning results from one image-text collection
to otheres.

In this section, we first describe the Clue dataset, which is
the largest image-text dataset annotated with coherence relations.
Then we discuss empirical studies that support the importance
of coherence relations and their associated linguistic constructs in
supporting commonsense inference. Finally, we discuss results on
the correlations of coherence relations and genre, and the use of
coherence relations to diagnose mismatches between image-text
corpora and machine learning models.

3.1. Clue: A dataset of image—text
coherence relations

Alikhani et al. (2020) presented Clue that provides a protocol
for annotating coherence relations in text and imagery. They used
the protocol to annotate from the 10,000 image-text pairs from
the Conceptual Captions (Sharma et al., 2018) and Open Images
(Kuznetsova et al., 2020) datasets. Half of these pairs include
captions generated by models and half of them are captions that
users have written for the images. Guidelines are described in
details in Alikhani et al. (2020).

Figure 4 shows the statistics over the resulting annotations
presented in Alikhani et al. (2020). We can see that models
struggle to generate subjective or story-like captions. The rate of
captions and images with the Meta relation however is higher
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FIGURE 4
The distribution of coherence relations in our dataset.
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in text generated by models that signals the potential context
hallucination problem.

3.2. Coherence predicts linguistic form

Alikhani and Stone (2019) present an empirical investigation
and argue that we can learn new perspectives on commonsense
inference by correlating coherence relations with linguistic
constructs. In particular, they report that visible descriptions are
very distinctive. They only describe whats depicted in the image
in a restricted way.

They observed that the rate of captions that describe ongoing
events (atelic events) is drastically higher than the rate of captions
that describe events with end points (telic events). This is the
difference between arriving at an event (telic) and standing
somewhere (atelic). stative descriptions are also very common in
captions. Many captions describe quality, condition or the state
of whats depicted in the image. Examples include the kids are
happy or green bananas are on the table. Alikhani and Stone
(2019) argue that these captions are connected to images by
the illustration or visible relation. They study the following
datasets with different types of textual descriptions with images:
(1) Google’s Conceptual Captions (CC) (Sharma et al., 2018) (2)
Flickr30K (Flickr) (Young et al., 2014) (3) Visual Storytelling
(VIST) (Huang et al, 2016) (4) the Recipe dataset (Yagcioglu
et al,, 2018). While Flickr and COCO are captaining corpora, VIST
includes story-like descriptions for connecting five images and CC
pairs web images with relevant text from associated ALT-TEXT
HTML attributes.

They studied 1,000 random image-text pairs from each of the
discussed datasets. Over 94% of the text in caption corpora such as
Flicker and COCO include atelic events. However, the rate drops
to 40% in other image-text corpora, such as the multimodal recipe
dataset. Alikhani and Stone (2019) includes the experiments and
statistics details.
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3.3. Coherence relations indicate Genre

AT models do not, by default, exhibit the behavior of the texts
that they are trained on. As we can see in Figure 4, machine-
generated text includes more captions with the meta relation in
comparison with text written by humans. This is one of the main
sources of the hallucination problem when the model includes
information in generated text that may not necessarily be true.
Information about the background or context of the image that is
not depicted in the image. The coherence framework can help us
identify, characterize and address these issues.

Coherence relations indicate discourse goals. Figure 5 shows
that the labels that our dataset presents correlate with the genre
under which the captions have been produced, which means that
text and images from different types of publications have different
distributions of relations. For example, captions from a news
website such as daily mail are more story-like, whereas Getty
Images posts often include Visible captions.?

4. Using coherence to critique
image—text models

In the previous Section, we discussed how coherence
defines what linguistic forms and inferences go into text-image
interpretation. We also discussed how the framework could identify
weaknesses in machine learning models trained on image-text
corpora. In this Section, we study how different model architectures
and training mechanisms can capture coherence to various degrees.
We first present the details of our computational experiments
then move on to describe the results and discussions. Our
computational investigations reveal that large multimodal models
cannot accurately represent coherence relations. They fail to reason

2 Getty Images: http://www.overleaf.com.

Daily Mail: https://www.dailymail.co.uk/ushome/index.html.
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Different websites have different types of image—caption pairs
(Alikhani et al., 2020).

flexibly about the links that connect text-image pairs in the same
way we described in our data.

4.1. Experiment structure

In this section, we describe our experimental setup, the problem
formulation and then go on to describe the insights we draw from
our results.

We investigate whether the two most recent and successful
versions of these models, VIiIBERT (Lu et al., 2019) and CLIP
(Radford et al., 2021) can implicitly learn coherence relations in
image-text presentations during the pre-training process.

VilBERT is a transfomer based model pre-trained on the
Conceptual Captions dataset. It is inspired from the BERT
architecture and takes as input a sequence of image blocks and
text tokens belonging to the image caption. Image blocks and
text sequence are separated by a special token. It is trained using
two proxy tasks: masked multi-modal modeling and multi-modal
alignment prediction and then the learned weights. It relies on the
self-attention mechanism of transformer architecture to learn the
relations between different parts of an image and the corresponding
textual tokens.

CLIP is trained using contrastive learning to maximize
similarity text and image pairs. Unlike ViIBERT, it has two separate
encoders for the text and visual data. Visual encoder is either
a variation of ResNet architecture or a visual transformer while
the text encoder is based on the transformer architecture. A dot
product between the text and image representations is used to
compute the similarity and then loss is computed using the binary
cross entropy objective.

4.1.1. Problem formulation

The problem is structured in the form of a classification task
where goal of the model is to classify the representation h; as a
coherence relation. We measure the model performance using the
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FI metric as it is a well-known metric for measuring a classification
model performance.

Formally, speaking, we define a function fj, as a pre-trained
model which maps an input pair (x;,v;) to a vector h; in
a d dimensional representation space RY, where 6p represents
the pre-trained weights, x; and v; represent the text sample
and its corresponding image respectively. To check whether the
representation h; has a certain information, we can define a
linear probe f};, which takes h; as input and outputs a probability
distribution P(l;]h;) over a given set of n labels [; € L. By tuning the
weights associated with the linear probe W, we can learn whether
the representation h; to identify different classes /; € L.

P(lilhi) = fiin(fo, (xi> vi))
Jiin(hi) = o (Wh; + b)

1
Li=- > —log(P(|hy))

lieL

(1)

Where L£; is the cross entropy loss signal associated with the
image-text pairs and their corresponding labels, and o represents
the sigmoid function. Since the parameters 6, associated with the
pre-trained model are frozen, the linear probe can only make use of
information encoded in the representation ;.

To discern if the representations h; encode the discourse
relation information, we compare probes for the above mentioned
models with the probes trained using representations from
ResNet and BERT. In addition, we also fine-tune the pre-
trained model weights 0 to observe the improvements when the
representations h; are also fine-tuned. Our hypothesis is that pre-
trained representations containing signals for identifying discourse
relations should outperform the baselines and show competitive
performance when compared to the models obtained using fine-
tuned representations.

4.1.2. Experiment parameters

As described in the Section 4.2, we fine-tune the models in two
ways. When the pre-trained weights are frozen and only the probe
weights are trained, we rely on a batch size of 64 and a learning
rate of 5 % 1072, However, when the we run the experiments to
fine-tune the pre-trained weights we rely on a batch size of 8 and a
learning rate of 10~>. In both cases, the weights are optimized using
the Adam optimizer and a small regularization weight of 107> is
utilized to prevent model from overfitting the data.

4.2. Results

To conduct our experiments we split the 5760 image-text
pairs into train, validation and test ratios of 0.85, 0.075, 0.075
respectively. The idea of our evaluation setup is to investigate
whether the representations learned by the pre-trained models
encode the discourse relations between image-text pairs. We do
so by comparing the performance of fine-tuned models with
their respective linear probes. If the fine-tuned models perform
better than their respective linear probes it shows that pre-trained
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TABLE 1 This table shows the F1 score averages and their breakdowns obtained by the linear probes for different visual-linguistic architectures.

Macro average

Metrics

Micro average

Precision Recall Precision Recall
CLIP 0.466 0.468 0.571 0.762 0.744 0.781
VIlBERTVil 0.582 0.545 0.712 0.780 0.758 0.804
VilBERT Linguistic 0.635 0.601 0.713 0.808 0.796 0.820
Resnet 0.333 0.337 0.345 0.682 0.617 0.763
BERT 0.623 0.590 0.776 0.798 0.791 0.804
BERT + Resnet 0.637 0.614 0.712 0.794 0.798 0.789

Macro average gives equal weights to the model performance in each class and hence represents the effect of imbalance while micro average represents the overall average performance.

The difference in performance highlights that representations learned by some model architecture are better suited for the purpose of identifying discourse relations; VilBERTLinguistic

representations in this case.

0.8
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FIGURE 6
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This figure highlights the change in macro F1 scores when the model weights are fine-tuned during the training process. In all cases, the
performance for the fine-tuned models improves by a significant margin reflecting that pre-trained representations do not encode information

BERT Resnet +

BERT

Resnet

representations lack key information which would have allowed
them to identify coherence relations and vice versa.

As stated earlier we build probes for two pre-trained models—
CLIP and Vilbert. For the pre-trained Vilbert weights, we
build two probes: for the visual-linguistic representations and
linguistic representations outputted by the model. Visual-linguistic
representations are obtained by combining the visual and linguistic
representations, and linguistic representations use co-attention
mechanism with image representations to represent relations
between image and text pairs. For the CLIP model, we concatenate
the visual and text representations to obtain the representation for
image-text pair.

We present the linear probe performance based on the F1
average scores (macro and micro) and their breakdown in the
Table 1. These results highlight the capability of representations
learned by different architectures in encoding information
necessary to identify discourse relations. Our results show that
the probe for linguistic representations learned by the VilBERT
using co-attention with image representations (VilBERTLinguistic)
shows better performance when compared to the probes for other
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architecture including visual-linguistic variation of ViIBERT. This
could be a signal that architectures which try to learn fine-grained
relations between image-text pairs are more suited to learning
discourse relations.

When compared with the baseline probes, specifically BERT
probe, the performance of the best pre-trained visual-linguisitic
probes is similar in terms of the F1 score achieved as shown in
the Table 1. This highlights that pre-trained models are unable to
make use of the visual information in a meaningful manner to
successfully encode the relations between the image-text pairs in
the higher dimensional embedding space.

When the pre-trained model weights are fine-tuned we see a
significant increase in the macro F1 score as shown in the Figure 6.
Even though the best performance after fine-tuning is achieved
by the VilBERTLinguistic model, it only lags behind the BERT
+ Resnet performance by a slight margin of 3%. This provides
evidence that pre-training with large corpora of image-text pairs
does not implicitly allow models like VIIBERT and CLIP to encode
discourse relations in the higher dimensional embedding space
and calls for the exploration of techniques which explicitly utilize
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discourse relations to learn models whose predictions are in-line
with human judgements.

5. Using coherence to define and
evaluate Al systems

In this section, we discuss ways to use the dataset and models we
discussed in the previous sections in designing multimodal systems.
Previous works have shown the utility of using the coherence
framework in design image retrieval models (Alikhani et al,
2022), caption generation models (Alikhani et al., 2020), automatic
evaluation (Inan et al., 2021), and diagram understanding (Hiippala
et al., 2021).

Can a coherence-aware model present information that is
aligned with the goal of the discourse? Can a coherence-aware
model significantly improve caption quality? Can we design
automatic learned generation metrics that can evaluate the output
of coherence-aware generation models?

5.1. Generating coherent captions

Can we design controllable image description generation
models that can generate captions with respect to different
coherence relations? Alikhani et al. (2020) introduced such
controllable model using the Clue dataset. They used Transformer
Networks (Vaswani et al., 2017) and designed a generation model
that can output captions using a sequence-generation approach.
The result is a sequence of sub-tokens that create the desired
caption. The input includes different images features and the target
coherence relation label. The relation label is the start token of the
Transformer decoder.

The proposed model is able to reduce noise by around 30%
from the generated captions overall. It includes substantially
fewer irrelevant captions, and it can respect the discourse goals
by generating captions connected to the image by the desired
coherence relations. The success rates of the model when it was
asked to generate visible, meta, story and subjective captions ware
respectively 79.85%, 46.49%, 58.8% and 45.00%. The details can be
found in Alikhani et al. (2020).

5.2. Coherence-aware learned evaluation
metrics

As we observed in the previous section, image captioning
metrics have struggled to give accurate learned estimates of the
semantic and pragmatic success of output text. Inan et al. (2021)
proposed the first discourse-aware learned metric for evaluating
such properties in image descriptions. The goal of the metric is
to output a score that reflects the quality of the generated caption
given the image, coherence relation and the reference caption. In
what follows we review the proposed model and results.

They worked with 1,000 image text pairs from the Conceptual
Captions (CC) training dataset (Ng et al, 2020) and collected
ratings for them. They use the cc imges as inputs to caption
generation model presented by Alikhani et al. (2020). The
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model generates coherence-aware descriptions for these images in
different coherence classes. Then, they asked the annotators to write
Visible captions for 1,000 images from the Openlmages dataset
(Kuznetsova et al., 2020) and called the dataset COIN (Corpus of
OpenImages with Natural descriptions).

The proposed approach has two versions—a baseline Vanilla
version and a ViLBERT-based model.
RaCCoon training data with normalized human annotated rating

Both are trained on

to obtain the model’s target score. Details of the dataset and ablation
studies are available here (Inan et al., 2021). Table 2 presents the
results of the COIN-based study. The last row shows the Kendall
correlation coefficient between the scores assigned by users and
the metric. The N-gram based metrics cannot adapt to the out-
of-domain ground-truth captions from COIN which results in low
correlation coefficients. The CIDEr scores have negative correlation
coeflicients which indicate negative association with user ratings.
BLEURT and BERTScore do a much better job in comparison with
CIDEr and N-gram based metrics but they are still agnostic to the
coherence relation label. Our proposed model which is coherence-
aware has the highest correlation scores with user judgments.

6. Conclusion

When authors combine text and imagery, they use the
different modalities of communication in concert: common
principles of coherence relate communicative actions together,
guide interpretive inferences, and resolve ambiguities. In this paper,
we have described how the well-known theory of coherence in
text discourse extends to image-text presentations and can guide
AT research on mulitmodal communication. While we have thus
far offered a range of findings to show the potential benefits of
coherence in multimodal AI, we are optimistic for further research
progress in all of these areas.

In particular, we have seen that coherence relations offer
important tools to analyze data sets; coherence relations can allow
us to quantify differences in language use across different corpora
and even to explain the distribution of linguistic phenomena in
corpora as a function of the distinctive character of coherence
in corpora. Work on taxonomies of coherence relations for
multimodal discourse is in its infancy. New genres and tasks
could highlight the importance of additional relations or further
distinctions in how text relates to imagery. Conversely, we have said
little about imagery that gets its coherence from accompanying text.
Alikhani et al. (2019) annotates the inferences that ground imagery
in a specific domain through particular temporal, spatial, and
logical connections, rather than through a traditional taxonomy of
coherence relations. It is an open question whether coherence can
be systematized more generally across images and text. Another
challenge is accounting for the structure of multimodal discourse,
particularly for presentations that involve relations within and
across modalities. Multimodal analyses of situated conversations
have revealed many complexities (Lascarides and Stone, 2009b;
Hunter et al., 2018).

We have also seen that coherence relations also offer a valuable
lens to critique and improve the architecture of machine learning
models. Models that build in an assumption that text and imagery
relate in simple, uniform ways, are less effective in capturing
coherence than models that allow for more flexibility. Research
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in large vision-language models, however, has overwhelmingly
O+ designed around capturing the relationships between image
g = g3 ggnlgl gz 28 content and Visible text. Relaxing this assumption offers exciting
8':;5 S|e|s|S|s|=|s|S|=|e prospects for learning more powerful representations of the
meanings of image—text presentations.
Finally, we have offered an example of coherence-aware tasks
O 4 and evaluation metrics. Since current Al technology struggles with
5 gl e lglelglnl=lalaly coherence, we need to take coherence into account from the start
_— n wn wn o o e} wn o < o
o /o s s 5 s s/ e/ S as we design and test Al systems. Al researchers still face many
o= challenges in extending information and interaction tasks from
their origins in text processing to multimodal communication.
o All of these domains, we believe, offer fruitful settings to pursue
g G 2 R R 58 3% 3 8 ¢ coherence-aware methodologies.
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