An Online Machine Learning-based Content Caching Scheme
in Mobile Edge Computing Networks

Qi Zhao?, Yi Li*, Hang LiuP, Nicholas DeCortec®, Frank Tucker®, and Genshe Chen®

*Intelligent Fusion Technology, Inc., Germantown, MD, USA
PThe Catholic University of America, Washington, DC, USA
‘U.S. Army Combat Capabilities Development, Orlando, FL, USA

ABSTRACT

Mobile Edge Computing (MEC) is an emerging and fast-growing distributed computing paradigm. It brings
the computation and storage resources closer to mobile users while also processing data at the network edge to
improve response time and save bandwidth. In tactical virtual training environments, latency is a key factor
that affects training performance. Additionally, MEC provides both information service environment and cloud
computing capabilities to enable real-time virtual training. Therefore, we designed a machine learning-based
data caching and processing scheme for the virtual training networks. The design consists of three tiers, mobile
devices, edge servers, and cloud servers, respectively. By pre-caching the critical content objects close to the
mobile devices, our MEC network enables data transmission and processing at low latency. Utilizing machine
learning techniques, our caching scheme can predict and select the content objects to be cached with optimal
storage efficiency at network edge servers. Specifically, we decoupled the content caching problem into two
subproblems, namely probability learning and content selection. For probability learning, the edge servers
estimate the probability and frequency that each content object will be requested in the near future. The
estimate is according to the content request pattern learned over time. For the content selection, the edge
servers determine the content objects for caching to minimize the expected content delay with limited storage.
To evaluate the performance of our proposed scheme, we developed a testbed with real mobile devices and servers.
The experimental results validated the feasibility and significant performance gains of the proposed scheme.

Keywords: Content caching, latency reduction, machine learning, mobile edge computing

1. INTRODUCTION

Edge computing refers to enabling technologies that allow computation to be performed at the edge of the
network, on downstream data on behalf of cloud services and upstream data on behalf of Internet of Things
(IoT) services.! The term “edge” refers to any computing or network resources on the path between data sources
and cloud data centers. In most cases, edge devices are closer to data sources. For example, a smartphone can
be the edge device between the user and cloud data centers, and a small gateway server can be the edge device
between User Devices (UEs) and cloud data centers. Therefore, the computation and data storage can happen
at the location where it is needed. This creates the opportunity for the responding time of data requesting to
be reduced, while also allowing network resources, such as bandwidth, to be saved. Previous works?* 3 provide
the evidence that the edge computing paradigm can efficiently reduce the data response time to improve the
performance of the applications running on the UE. The aim of edge computing is to move the computation
away from data centers and towards the edge of the network. Thereby, exploiting smaller units in the network to
perform tasks and provide services on behalf of the cloud data centers. The ultimate goal of edge computing is to
provide content caching, service delivery, data storage and device management resulting in better data response
time and data transfer rate. Globally, edge computing is rapidly progressing, and in recent years it has proven
to dramatically increase its impact.

In 2014, the European Telecommunications Standard Institute (ETSI) proposed a brand new concept of
Mobile Edge Computing (MEC).* It defines a new computing and networking platform that provides IT and
cloud-computing capabilities within the Radio Access Network (RAN) in close proximity to mobile subscribers.*
The original concept of MEC is to offload computation tasks of mobile devices to Base Stations (BSs). The

Sensors and Systems for Space Applications XV, edited by Genshe Chen, Khanh D. Pham, Proc. of SPIE
Vol. 12121, 121210D - © 2022 SPIE - 0277-786X - doi: 10.1117/12.2623040

Proc. of SPIE Vol. 12121 121210D-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

development of MEC and cellular networks provide edge devices a much broader range, including smartphones,
BSs, gateway servers and set-top boxes.” Unlike before, MEC can now provide better computing, networking
performance and Quality of Service (QoS) in terms of higher bandwidth and lower latency.® Another recent
emerged technology concept is called fog computing,” which has overlaps with MEC. In the current 5G, even
6G, development trend, both MEC and fog computing play an important role. Both are able to provide better
computing and networking efficiency to meet the high standards and demands.”

However, MEC brings in new challenges as well. Due to the rapidly increasing speed of the total amount of
mobile contents generated by mobile devices, the network is overwhelmed. The vast amount of transmitting and
processing contents within the network presents a huge burden. Thus, mobile content should be delivered to the
correct place without data lost or quickly processed by the appropriate entity in the network within a certain time
period. On the other hand, the total amount of contents in the network is increasing fast as well. There should
be a vast amount of redundant contents which can be eliminated to save the network bandwidth and improve the
content delivery performance. Therefore, content caching scheme® has emerged as a promising approach to yield
significant improvements for the content transmission and delivery. In general, popular or frequently requested
contents can be cached in the network close to the end devices by utilizing the storage resources at the edge
devices. In this way, multiple benefits can be achieved for a better networking environment in the MEC context.
For instance, the end-user devices can obtain the desired contents much faster. Additionally, the volume of the
total network traffic can be significantly reduced as well as an improvement in the efficiency and utilization of
the resources in the network (such as network bandwidth and network storage).

There are a lot of existing works focusing on how to make the caching solution better as introduced in the
following section. Common problems often studied are which content to cache, where to cache, and how to
cache. In this paper, we mainly focus on which content to cache and where to cache in the MEC environment.
Specifically, we propose a dynamic real-time machine learning-based content caching scheme for distributed cloud
data centers and edge servers to retrieve, cache, distribute and collect training data to optimize the quality of
service to mobile devices. Our content caching scheme will intelligently decide the popularity of the contents
requested by end users via learning from the past, and then select the optimal edge device to cache the content.
Additionally, we developed a real testbed with real servers and Kernal-based Virtual Machines (KVM)? Virtual
Machines (VMs) for validating and evaluating our solution. We also designed different testing scenarios based
on the tactical communication environment to emulate real MEC environment. Through the evaluation tests,
our proposed solution promises to provide optimal content caching strategy while meeting the QoS requirements
(i.e., latency) with minimal effort. Our main contributions in this work are as follows:

1. We proposed a machine learning-based content caching scheme for dynamically caching the most popular
content in the edge devices in MEC environment.

2. We divided the content caching problem into two subproblems (content popularity subproblem and content
storage selection subproblem) and solved them individually.

3. We built a real testbed with real servers and emulated networking environment to validate and evaluate
our proposed content caching scheme.

4. We conducted different testings to validate our proposed scheme and completely evaluate its performance.
Based on the evaluation results, our proposed scheme can provide promising caching strategies and the
benefits that we claimed can be achieved as well.

In addition, there are five other related areas addressed. Discussed in Section 2 is the recent work related
to content caching and MEC. Introduced in Section 3 is the system model and problem formulation of the
machine learning-based content caching and processing scheme. Presented in Section 4 is the design of the
machine learning-based content caching algorithm. Described in Section 5 is the numerical evaluation results of
the simulation experiment conducted on our emulated network testbed, along with the validation and analysis.
Lastly, Section 6 draws the conclusion for our work.

Proc. of SPIE Vol. 12121 121210D-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2. RELATED WORK

In recent years, due to the rapid increase in the total volume of network traffic, the MEC paradigm and content
caching have emerged as promising approaches. Additionally, the QoS requirements of mobile end users, such as
delay and bandwidth, is becoming progressively demanding, particularly since entering into the 5G era. Several
studies and works are attempting to bring more efficient and intelligent networking mechanisms to further explore
the potential of MEC and content caching. The target is to yield significant gains for both end-users and network
operators.

The MEC paradigm has emerged as a key enabling technology for realizing the IoT and 5G visions.* 61011

Resource management is a hot topic in MEC. For example, general guidelines were designed'? '* to determining
the optimal offloading decision for the purpose of minimizing the mobile-energy consumption and computation
latency. Another work'* formulated the problem of transmission-energy minimization under a computation-
deadline constraint with the optimization variable being the input-data transmission time. At which point the
famous Shannon-Hartley formula gives the power-rate function. One year before that, another study'® was
conducted to minimize the energy consumption for executing a task with a soft real-time requirement, targeting,
e.g., multimedia applications. This required the task to be completed within a deadline of a given probability.
In our previous work,'% 7 we also designed a task offloading scheme in the MEC environment to handle the task
distribution, offloading and management by applying deep reinforcement learning. Specifically, we formulated
the task offloading problem as a multi-agent reinforcement learning problem. The decision-making process of
each agent was modeled as a Markov decision process. The deep Q-learning approach was applied to deal with
the large scale of states and actions. Later on, inspired by the parallel computing technique, a new solution
leveraging the partial offloading (also known as program partitioning) was proposed'®2° to further optimize
MEC performance.

In 2018, a new cooperative edge caching architecture?® for 5G networks, where mobile edge computing
resources are utilized for enhancing edge caching capability, was proposed. In the architecture, they focused on
mobility-aware hierarchical caching, where smart vehicles are taken as collaborative caching agents for sharing
content cache tasks with base stations. To further utilize the caching resource of smart vehicles, they also
introduced a new vehicular caching cloud concept, and proposed a vehicle-aided edge caching scheme, where
the caching and computing resources at the wireless network edge are jointly scheduled. Another study?’
proposed a proactive caching mechanism named learning-based cooperative caching strategy. This strategy was
based on MEC architecture to reduce transmission cost while improving user quality of experience for future
mobile networks. In that architecture, they exploited a transfer learning-based approach for estimating content
popularity and then formulate the proactive caching optimization model. In that year, a novel MEC-enabled
wireless blockchain framework®® was presented. This framework proposed that the computation-intensive mining
tasks can be offloaded to nearby edge computing nodes. It also proposed that the cryptographic hashes of blocks
can be cached in the MEC server. Particularly, two offloading modes were considered, i.e., offloaded to the nearby
access point or a group of nearby users. They conducted the performance analysis of each mode with stochastic
geometry methods, and the joint offloading decision and caching strategy was formulated as an optimization
problem. Similarly, a learning-based cooperative content caching policy was proposed?’ for the MEC architecture
which addressed unknown user preference and only observed historical content demands can be proposing. They
modeled the cooperative content caching problem as a multi-agent and multi-armed bandit problem, proposing a
multiagent reinforcement learning-based algorithm to solve the problem. Inclusive, network coding was proposed
to be leveraged for making content caching strategies,?’ and there are still several other works®' 3¢ presented
that to address content caching in MEC and mobile wireless networks.

3. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe our system model and the current content caching problem. A detailed problem
formulation is also provided to support a quantitative analysis. Based on the problem formulation, an efficient
machine learning based content caching algorithm is designed. This will be introduced in Section 4.

Proc. of SPIE Vol. 12121 121210D-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

UEs Edge Server/DC

@‘ 1 Cloud

HEnnERE | . Wireless T amo []J:]
Contents - T : /,J i-:‘-.l:
A e " P
D« : = U
Contents

Figure 1. System Model

3.1 System Model and Scenario

As shown in Fig.1, we consider a content delivery system with J data centers (DCs), indexed by j € {1,---,J}.
This provides content delivery services to the K mobile user equipment (UEs) indexed by k € {1,--- , K}. Each
data center is located at an edge server. Thus, we use the same index for both DC and edge server. We also
assume that each UE is associated to one edge server at each time. The content placement is updated periodically,
and we index these periods by t = 1,--- ;7. Each UE randomly requests any one of the N possible contents,
which are indexed by ¢ € {1,---, N}. Denote 6; j, as the popularity of content ¢ to UE k, which is defined as the
probability that content i is requested by UE k. Hence, we have vazl Zszl 0;x = 1. The content popularity
file over K UEs and N contents can be denoted by the matrix below, which is assumed to be unknown without
a learning process.
thp - Ok
o=|: . | M)
On1 - Onk

Each DC has a limited storage space that stores the files of a certain set of contents. Associated UEs are
allowed to download these contents directly from the DC, without having to download them from the remote
cloud server via the Internet. In each period ¢, the content placement strategy of DC j is indicated by a set of
binary variables, given by

[t] 1, if content 7 is stored at DC j
a. . =
J 0, otherwise
forie{l,--- ,N},je{l,---,J},and t € {1,--- , T}.
Let s; be the size of content ¢ (in bytes) and let Z; be the storage space of DC j (in bytes). Then, for all

DCsj=1,---,J, aEt]J should satisfy

(2)

N
Sallsi<z (3)
=1

forje{l,---,J}andte{1,---,T}.
When the contents at a DC need to be updated, the DC will download the contents to be added from the
cloud server via backhaul and deletes the contents to be removed. Each UE is associated with one DC at an

edge server in our scenario. The association between DCs and UEs is indicated by a set of 0 — 1 variables given
by

(4)

20— {17 if UE k is stored at DC j
kj

0, otherwise

Proc. of SPIE Vol. 12121 121210D-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

for ke {1,--- ,K},je{l,---,J}, and t € {1,---,T}. Suppose UE k is associated with DC j at time ¢ (i.e.,

acg] = 1) and it requests content i, the content will be directly sent by DC j to UE k with low latency. However,
this occurs only if content 7 is stored at DC j. Otherwise, UE k can only download the content from the cloud
server via Internet, which will take a much longer time.

The content placement strategy of each DC over t = 1,--- ,T is called a policy, denoted by 7; (j =1,---,J).
The joint policy of all DCs is denoted by w = {my,--- ,7s}. Obviously, the latency performance is dictated by
.

3.2 Problem Formulation

We assume that the communication between DCs and UEs is supported by a wireless network based on orthogonal
frequency-division multiple access (OFDMA). Denote the average data rate assigned to UE k in the period ¢
when associated with DC j as Ry, ;, which can be evaluated through measurement. Suppose UE k is associated

with DC j and it requests content i at time ¢. If content i is stored at DC j (i.e., ay]] = 1), the latency experienced

by UE k is the downloading time of content ¢ from DC j to UE k, which is given by
El[ct,]j,i = Si/RLt,]y (5)

If content 4 is not stored at DC j (i.e., aEﬂj = 0), UE k must download the content from the cloud server

via the Internet. It should be noted that the f)hysical connection between a UE and the cloud server may span
multi-hop wireless and wired links, each with its own traffic dynamics and medium access mechanisms. Thus,
the end-to-end communication path can be highly dynamic, and we use the time-averaged downloading time of
each content in our analysis. Let F},; be the average downloading time of content ¢ for UE k. Considering both
cases (i.e., content ¢ available or unavailable), the latency of UE k requesting content ¢ when associated with DC
j is given by
t t] [t t
D} = 03Bl + (1=). (®)
We assume that each UE is constantly associated with only one DC in a period, then we can simply denote
the latency of UE k requesting content ¢ as
[t] _ plt]
Dyi =Dy jie (7)
Since the UE k may request any one of the N contents with probabilities {; x},i = 1,--- , N, the expected
latency of UE k at time ¢ is calculated by

2 eikal[ct,]i

pit = =i B2 ke
k Zi ei,k'

(8)

In this work, we aim to find the optimal joint policy of all DCs = (i.e., the sequence of program placement

strategies of all DCs over t = 1,--- ,T') that minimizes the average latency of all UEs, given by Zszl > 0ik) D,[:].
Such a problem is formulated as

K
Pl: min)_ (Z m) Dl (9)
k=1 7

N

st > alhsi<Zy, j=1.-.J (10)
1=1
al €{0,1}, i=1,-- N j=1,,J (11)

In P1, the first constraint is due to the storage space limit of each DC. In the next section, we will provide our
own solution to find the optimal content caching policy.

Proc. of SPIE Vol. 12121 121210D-5

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4. MACHINE LEARNING BASED CONTENT CACHING ALGORITHM

In this section, an efficient solution for the problem P1 is proposed. All the decision variables {a } in P1 are
0 — 1 integers. To derive a low-complexity solution algorithm, we decompose the original problem P1 into two
subproblems to be solved in each period. The first subproblem is content popularity acquisition, which aims to
obtain the probability that each content will be requested by each UE, i.e., {6;;}. The second subproblem is
content placement, in which each DC determines which content should be cached in its local storage.

4.1 Content Popularity Profile Acquisition

The content popularity can be estimated independently at each edge server according to the requests it receives
from the UEs. The edge server can update the estimated popularity matrix 6 periodically via exponential
averaging, given as .

0, =ab._1+ (1 —a)b; (12)

where 7 is the iteration index for content popularity updating, factor « € [0, 1), and g, denotes the popularity
matrix estimated only using the requests received during the 7-th iteration. Note that the popularity of content
1 to UE k during the 7-th iteration is approximated as the number of requests from UE k for content i over the
total number of received requests.

Since each UE is only associated with one edge server, each edge server only receives requests from a subset
of the UEs. Hence, each edge server can only estimate part of the popularity matrix. However, each edge server
only needs to satisfy the associated UEs. It is sufficient for the edge server to perform content placement with
partial popularity knowledge.

For simplicity, the updating content popularity can be performed immediately before updating the content
placement policy, at the beginning of each time period t. We summarize our content popularity profile acquisition
algorithm in Algorithm 1. In this algorithm, the current popularity matrix is denoted as 6, the request counting
matrix is presented as Req. Thus, Req[i, k] represents the number of requests received from the k-th user for the
i-th content in the most recent time frame, and function Zeros(N, K) returns a N x K zero matrix.

Algorithm 1 Content Popularity Profile Acquisition
0 « Zeros(N,K)
Req + Zeros(N, K)
while True do
while The current time frame is not over do
Wait for a request from UEs
Determine the UE index k and requested content index ¢
Reqli, k| < Reqli, k] + 1
end while
ReqAll <~ 3.5, Reqli, k]
6+ Req/ReqAll
if This is the first time frame then
0«0
else
0 ab+(1—a)d
end if
Req < Zeros(N, K)
end while

4.2 Content Placement with Given User Association

With an updated content popularity profile 6 at the beginning of a time frame, we then optimize the content
placement strategy at each edge server. Denote Uj as the set of UEs associated with the j-th edge server, and

Proc. of SPIE Vol. 12121 121210D-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

C; as the set of contents cached at the j-th DC. The average content transmission delay is

K
D™ =3"N"0,,D}). (13)
k=1 1

Thus, when caching content i at edge server j, the average delay reduction for UE k is given by
N2 (F,m» — E,E}j,i) . (14)

Thus, minimizing the average delay at DC j, denoted by D", is equivalent to maximizing >_, ;. > iec; AD,EL
under the storage size constraint at the edge server j. Then, the content placement problem at the edge server

j can be formulated as

P2: max > Y AD/ (15)

[t]
{ai,j keUj i€C;

N

st Y alsi<Z, j=1.,J (16)
=1
dlefo1y, i=1,--- N j=1,--,J (17)

The program placement optimization (i.e., P2) is a Knapsack problem, which is generally NP-hard. Since
this problem has to be solved in each period, it is necessary to develop a low-complexity solution that provides
timely outcomes. The greedy algorithm is a common approach to solving a Knapsack problem and can be applied
to obtain an efficient solution. Specifically, the proposed greedy content placement strategy allocates the storage
space of each DC to the contents with the highest delay reduction per occupied space, which is > keu; AD,[Ct,]i /8.

. . . t
To implement the greedy algorithm, we first sort all contents by the descending order of > keu, AD,[C}Z- /s;. Then,
the contents are put into the storage space of DC j, following such order until no more content can be further
stored in the storage of DC j. The proposed greedy content placement strategy for DC j can be summarized as
the Algorithm 2 below.

Algorithm 2 Content Placement
Set all aEt]J —0Qfori=1,--- N
Set U; = ¢
Compute G; + Zker AD,[Ct’]i/si fori=1,---,N

while 7, ~ 1, oY, 2 min, {of] =0} do

1" + arg max; {Gl\agt]] = }
it 2, — >N al

]
i=1 G jSi = Si* then

G-+ —1
end while

5. NUMERICAL RESULTS

We performed several evaluation experiments on the content placement scheme to validate the feasibility of
our proposed solution and evaluate the performance. Specifically, we conducted three different experiments to
test in our testbed. As shown in Figure 2, our testbed is implemented by using a local network consisting of
three desktops. One desktop serves as the remote cloud server and the rest serve as the edge server. In order to

Proc. of SPIE Vol. 12121 121210D-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

request contents, the user devices can access any one of the two edge servers through http protocol. We randomly
generate 50 contents at the cloud server, and the size of each content is randomly selected from 0.1 MB to 5 MB.
Poisson process is used to generate the content requests from the user device. The request intensity or request
arrival rate is denoted as Agyg. This indicates the average number of requests that will be generated for each
mobile user in 1 second. In the testing results below, we investigate the impacts of each factor. The investigation
includes the storage size at the edge server, the number of contents, and the request intensity on the average
delay for the users to get the requested contents.

o)

= o-\ Edgel
|

\o @ a Cloud

o
Edge2

: | (=] =]
:

Figure 2. Testbed Architecture

In the first experiment, we investigate the impact of the storage size of the edge server. We gradually increase
the storage size of the edge server from 0 MB to 150 MB, and plot the curve for the average delay in Figure 3.
Intuitively, with more storage space, the edge server is able to cache more contents. As a result, a lower average
delay is expected. When the storage size is 0 MB, the edge server can cache nothing locally and every requested
content has to be fetched from the cloud server. This situation is equivalent to the case without content caching,
in which we have the maximum average delay of around 4.75 seconds. As the storage size increases, the average
delay reduces. When the storage size reaches 150 MB, all contents can be cached at the edge server. In this
situation, we can fully avoid the transmission delay from the cloud to the edge. We can achieve a minimum
average delay of around 0.13 seconds. From Figure 3, we also observe that the average delay drops fast at the
beginning when increasing the storage size from 0 MB to 50 MB, and the delay reducing rate gets slower after
that. Since our caching algorithm selects the caching contents according to their average delay reduction achieved
per unit storage space, the content that can provide more delay reduction will be cached first. Therefore, our
caching method can provide outstanding delay improvement even with limited storage space.

In the second experiment, we investigate the impact of the number of contents. In this experiment, we fix
the storage size at the edge server at 50 MB, and change the number of contents in the DC. We randomly select
a subset of contents from the entire 50 contents in the DC. Additionally, we restrict the mobile users to request
only from the selected subset to perform the experiments. In the beginning, we select 10 contents and all mobile
users request from the selected 10 contents. Since the number of content is small, most of the content can be
cached by the edge server, and we can achieve a minimum average delay of around 0.16 seconds. As the number
of contents increases, the ratio of the contents that can be cached keeps reducing. As shown in Figure 4, the
average delay increases as the number of content increases.

In the third experiment, we use all 50 contents, set the storage size at the edge server to 50 MB, and change
the request arrival rate Aqug from 0.5 requests per second to 1.2 requests per second. Intuitively, as the request
intensity increases, the traffic load increases for both the edge network and the backbone network between cloud

Proc. of SPIE Vol. 12121 121210D-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

5000 . .

4000
E
& 3000
%}
Q
]
2000
o
S
< 1000
0 1 1
0 50 100 150
Storage Size (MB)

Figure 3. Content Cache Size vs. Average Content Request Delay

2500 T r :

— 2000
)

-
2]
(=1
(=]

Average Delay (m
3
(=]
o

500

0 i i Il Il Il 1 I
10 15 20 25 30 35 40 45 50

Number of Contents

Figure 4. Number of Contents vs. Average Content Request Delay

and edge servers. As shown in Figure 5, the average delay increases as the request intensity increases. When
the request arrival rate is 0.5 requests per second, we achieve a minimum average delay of around 1.03 seconds.
When the request arrival rate reaches 1.2 requests per second, we reach a maximum average delay of around 6.18
seconds. When the request intensity is below a certain threshold, the network can handle the content delivery
well, and the delay increment is not significant. After the content arrival rate exceeds a threshold, the network
can no longer handle the content delivery and the average delay increases dramatically.

6. CONCLUSION

In this paper, we investigated the content caching problem for the mobile edge computing scenario, and we
designed a solution for obtaining the optimal content caching allocation strategy. Specifically, we formulated
the content caching problem as an average delay minimization problem with the storage constraint. Then, we
proposed a machine learning-based algorithm to solve this content caching problem, which decouples it into
two subproblems, i.e., content popularity acquisition and content placement. For each subproblem, we designed

Proc. of SPIE Vol. 12121 121210D-9

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

7000

6000 - i

5000 1

4000 _

3000 - .

Average Delay (ms)

2000 - d

1000 ' ' : : ' '
05 06 07 08 09 1 14 12

Request Arrival Rate (req/s)

Figure 5. Request Arrival Rate vs. Average Content Request Delay

an efficient and effective algorithm to solve them respectively. In the end, we implemented our solution on our
emulated network testbed. Through numerical evaluation results, we investigated different impacts of the storage
size at the data center, the total content number, and the request rate of UEs.

REFERENCES

[1] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L., “Edge computing: Vision and challenges,” IFEFE Internet
of Things Journal 3(5), 637646 (2016).

[2] Yi, S., Hao, Z., Qin, Z., and Li, Q., “Fog computing: Platform and applications,” in [2015 Third IEEE
Workshop on Hot Topics in Web Systems and Technologies (HotWeb)], 7378 (2015).

[3] Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., and Satyanarayanan, M., “Towards wearable cognitive
assistance,” in [Proceedings of the 12th Annual International Conference on Mobile Systems, Applications,
and Services], MobiSys ’14, 68-81, Association for Computing Machinery, New York, NY, USA (2014).

[4] Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., and Young, V., “Mobile edge computing—a key technology
towards 5g,” ETSI white paper 11(11), 1-16 (2015).

[5] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S., “Fog computing and its role in the internet of things,”
in [Proceedings of the first edition of the MCC workshop on Mobile cloud computing], 1316 (2012).

[6] Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B., “A survey on mobile edge computing: The
communication perspective,” IEEE Communications Surveys Tutorials 19(4), 2322-2358 (2017).

[7] Abbas, N., Zhang, Y., Taherkordi, A., and Skeie, T., “Mobile edge computing: A survey,” IEEE Internet
of Things Journal 5(1), 450-465 (2018).

[8] Safavat, S., Sapavath, N. N., and Rawat, D. B., “Recent advances in mobile edge computing and content
caching,” Digital Communications and Networks 6(2), 189-194 (2020).

[9] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A., “kvm: the linux virtual machine monitor,” in
[Proceedings of the Linux symposium], 1(8), 225-230, Dttawa, Dntorio, Canada (2007).

[10] Shi, W. and Dustdar, S., “The promise of edge computing,” Computer 49(5), 78-81 (2016).

[11] Salman, O., Elhajj, I., Kayssi, A., and Chehab, A., “Edge computing enabling the internet of things,” in
[2015 IEEE 2nd World Forum on Internet of Things (WF-IoT)], 603-608, IEEE (2015).

[12] Kumar, K. and Lu, Y.-H., “Cloud computing for mobile users: Can offloading computation save energy?,”
Computer 43(4), 51-56 (2010).

[13] Kumar, K., Liu, J., Lu, Y.-H., and Bhargava, B., “A survey of computation offloading for mobile systems,”
Mobile networks and Applications 18(1), 129-140 (2013).

Proc. of SPIE Vol. 12121 121210D-10

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[14] Barbarossa, S., Sardellitti, S., and Di Lorenzo, P., “Communicating while computing: Distributed mobile
cloud computing over 5g heterogeneous networks,” IEEE Signal Processing Magazine 31(6), 45-55 (2014).

[15] Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., and Wu, D. O., “Energy-optimal mobile cloud comput-
ing under stochastic wireless channel,” IEEE Transactions on Wireless Communications 12(9), 4569-4581
(2013).

[16] Zhao, Q., Feng, M., Li, L., Li, Y., Liu, H., and Chen, G., “Deep reinforcement learning based task scheduling
scheme in mobile edge computing network,” in [Sensors and Systems for Space Applications XIV], 11755,
117550K, International Society for Optics and Photonics (2021).

[17] Feng, M., Zhao, Q., Sullivan, N., Chen, G., Pham, K., and Blasch, E., “Task assignment in mobile edge com-
puting networks: a deep reinforcement learning approach,” in [Sensors and Systems for Space Applications
XIV], 11755, 1175501, International Society for Optics and Photonics (2021).

[18] Jia, M., Cao, J., and Yang, L., “Heuristic offloading of concurrent tasks for computation-intensive appli-
cations in mobile cloud computing,” in [201/ IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS)], 352-357, IEEE (2014).

[19] Mahmoodi, S. E., Uma, R., and Subbalakshmi, K., “Optimal joint scheduling and cloud offloading for
mobile applications,” IEEE Transactions on Cloud Computing 7(2), 301-313 (2016).

[20] Wang, Y., Sheng, M., Wang, X., Wang, L., and Li, J., “Mobile-edge computing: Partial computation of-
floading using dynamic voltage scaling,” IEEE Transactions on Communications 64(10), 4268-4282 (2016).

[21] Kao, Y.-H., Krishnamachari, B., Ra, M.-R., and Bai, F., “Hermes: Latency optimal task assignment
for resource-constrained mobile computing,” IFEE Transactions on Mobile Computing 16(11), 3056-3069
(2017).

[22] Zhang, W., Wen, Y., and Wu, D. O., “Collaborative task execution in mobile cloud computing under a
stochastic wireless channel,” IEEE Transactions on Wireless Communications 14(1), 81-93 (2014).

[23] Khalili, S. and Simeone, O., “Inter-layer per-mobile optimization of cloud mobile computing: a message-
passing approach,” Transactions on Emerging Telecommunications Technologies 27(6), 814-827 (2016).

[24] Di Lorenzo, P., Barbarossa, S., and Sardellitti, S., “Joint optimization of radio resources and code parti-
tioning in mobile edge computing,” arXiv preprint arXiv:1307.53835 (2013).

[25] Mahmoodi, S. E., Subbalakshmi, K., and Sagar, V., “Cloud offloading for multi-radio enabled mobile
devices,” in [2015 IEEE international conference on communications (ICC)], 5473-5478, IEEE (2015).

[26] Zhang, K., Leng, S., He, Y., Maharjan, S., and Zhang, Y., “Cooperative content caching in 5g networks
with mobile edge computing,” IEEE Wireless Communications 25(3), 80-87 (2018).

[27] Hou, T., Feng, G., Qin, S., and Jiang, W., “Proactive content caching by exploiting transfer learning for
mobile edge computing,” International Journal of Communication Systems 31(11), e3706 (2018).

[28] Liu, M., Yu, F. R., Teng, Y., Leung, V. C., and Song, M., “Computation offloading and content caching
in wireless blockchain networks with mobile edge computing,” IEFE Transactions on Vehicular Technol-
ogy 67(11), 1100811021 (2018).

[29] Jiang, W., Feng, G., Qin, S., and Liang, Y.-C., “Learning-based cooperative content caching policy for
mobile edge computing,” in [ICC 2019-2019 IEEFE International Conference on Communications (ICC)],
1-6, IEEE (2019).

[30] He, W., Su, Y., Xu, X., Luo, Z., Huang, L., and Du, X., “Cooperative content caching for mobile edge
computing with network coding,” IFEE Access 7, 67695-67707 (2019).

[31] Wang, C., Liang, C., Yu, F. R., Chen, Q., and Tang, L., “Joint computation offloading, resource alloca-
tion and content caching in cellular networks with mobile edge computing,” in [2017 IEEE international
conference on communications (ICC)], 1-6, IEEE (2017).

[32] Yuan, P., Cai, Y., Liu, Y., Zhang, J., Wang, Y., and Zhao, X., “Prorec: a unified content caching and
replacement framework for mobile edge computing,” Wireless Networks 26(4), 2929-2941 (2020).

[33] Asheralieva, A., “Optimal computational offloading and content caching in wireless heterogeneous mobile
edge computing systems with hopfield neural networks,” IEEE Transactions on Emerging Topics in Com-
putational Intelligence 5(3), 407-425 (2019).

[34] Wang, N., Shen, G., Bose, S. K., and Shao, W., “Zone-based cooperative content caching and delivery for
radio access network with mobile edge computing,” IEEE Access 7, 4031-4044 (2018).

Proc. of SPIE Vol. 12121 121210D-11

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[35] Yu, Z., Hu, J., Min, G., Lu, H., Zhao, Z., Wang, H., and Georgalas, N., “Federated learning based proactive
content caching in edge computing,” in [2018 IEEE Global Communications Conference (GLOBECOM)],
1-6, IEEE (2018).

[36] Zhang, M., Wang, S., and Gao, Q., “A joint optimization scheme of content caching and resource allocation
for internet of vehicles in mobile edge computing,” Journal of Cloud Computing 9(1), 1-12 (2020).

Proc. of SPIE Vol. 12121 121210D-12

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

