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Abstract 17 

Neurological and psychiatric disorders typically result from dysfunction across multiple neural circuits. Most of 18 

these disorders lack a satisfactory neuromodulation treatment. However, deep brain stimulation (DBS) has been 19 

successful in a limited number of disorders; DBS typically targets one or two brain areas with single contacts on 20 

relatively large electrodes, allowing for only coarse modulation of circuit function. Because of the dysfunction in 21 

distributed neural circuits – each requiring fine, tailored modulation – that characterizes most neuropsychiatric 22 

disorders, this approach holds limited promise. To develop the next generation of neuromodulation therapies, 23 

we will have to achieve fine-grained, closed-loop control over multiple neural circuits. Recent work has 24 

demonstrated spatial and frequency selectivity using microstimulation with many small, closely-spaced contacts, 25 

mimicking endogenous neural dynamics. Using custom electrode design and stimulation parameters, it should 26 

be possible to achieve bidirectional control over behavioral outcomes, such as increasing or decreasing arousal 27 

during central thalamic stimulation. Here, we discuss one possible approach, which we term microscale 28 

multicircuit brain stimulation (MMBS). We discuss how machine learning leverages behavioral and neural data 29 

to find optimal stimulation parameters across multiple contacts, to drive the brain towards desired states 30 

associated with behavioral goals. We expound a mathematical framework for MMBS, where behavioral and 31 

neural responses adjust the model in real-time, allowing us to adjust stimulation in real-time. These technologies 32 

will be critical to the development of the next generation of neurostimulation therapies, which will allow us to treat 33 

problems like disorders of consciousness and cognition.  34 

 35 

Keywords 36 

Deep brain stimulation, machine learning, consciousness, cognitive control, neuromodulation  37 



 

3 
 

1. Introduction 38 

Deep brain stimulation (DBS) is a treatment for Parkinson’s disease, essential tremor, and epilepsy, 39 

consisting of electrical stimulation of a variety of brain targets (Karas et al., 2013). The net effects of DBS are 40 

complex and are related to the volume of tissue activated (VTA); VTA reflects the biophysical properties of the 41 

electrode and the geometry of the electrode contacts (Butson and McIntyre, 2005). For many years the only 42 

approved DBS system (Medtronic) had four ~1.27 mm contacts, spaced either 0.5 or 1.5 mm apart. Newer 43 

systems have directional capabilities (Dembek et al., 2017). However, spatial resolution remains fixed, and only 44 

coarse modulation of brain function is possible with DBS.  45 

 In addition to limited spatial resolution, the effects of DBS are further complicated by a number of tissue-46 

specific factors, including different cell types, different firing properties of local neurons, differing myelin content, 47 

and state/context-dependent activity changes. Target areas also have differing long-range connectivity patterns. 48 

If DBS approaches do not adequately consider these factors, outcomes may be suboptimal (Butson et al., 2007).49 

 Moreover, the effects of DBS on ongoing neural activity are incompletely understood. According to 50 

current models, DBS can excite, inhibit, or regularize activity, leading to impaired information transmission or an 51 

“information lesion” (Chiken and Nambu, 2016; Dorval and Grill, 2014). Taken together, these data support the 52 

view that, in most cases, DBS robustly downregulates pathological excitability of nuclei and/or large-scale 53 

oscillatory patterns, rather than necessarily restoring healthy neural activity. It is important to note that DBS 54 

robustly improves quality of life of patients with Parkinson's disease, essential tremor and dystonia. Nonetheless, 55 

because restoring healthy activity is a better goal than coarse modulation of excitability, we focus on this goal 56 

for the rest of the paper. 57 

 58 

2. What spatial resolution is sufficient? 59 

The structural and functional organization within and across brain areas is heterogeneous. Because of 60 

“cortical chauvinism” (the view that everything interesting happens in the cortex) and the difficulty of obtaining 61 

direct subcortical recordings, the internal organization of subcortical areas is often not fully taken into account. 62 

Nonetheless, applicable to both cortical and subcortical areas, there are neurons with different functional 63 

properties, which are often systematically organized within an individual area. For example, in motor cortex, 64 

https://paperpile.com/c/DNacYa/dOkkZ
https://paperpile.com/c/DNacYa/pINRC
https://paperpile.com/c/DNacYa/0xujd
https://paperpile.com/c/DNacYa/v7KbY
https://paperpile.com/c/DNacYa/h5adZ+elLEr
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there is evidence for motor map organization based on microstimulation experiments (Vitek et al., 1996). A 65 

second applicable model is the “action map,” in which clusters of neurons represent particular behaviors 66 

(Graziano, 2006). Moreover, the basal ganglia and subthalamic nucleus also show evidence of somatotopic 67 

organization (Rodriguez-Oroz et al., 2001). In light of the functional organization within each current DBS target 68 

area, independent manipulation of individual neurons does not seem necessary (nor possible) because of the 69 

similar response properties of nearby neurons, i.e., co-activation of nearby neurons under natural circumstances 70 

could be mimicked by stimulating the localized neuronal group. To specifically manipulate neurons encoding 71 

similar functional attributes, the stimulation influence should ideally match the spatial grain of functional 72 

organization within the individual brain area. That is, rather than a relatively large sphere or pear-shaped 73 

influence over an area(s), as in current VTA models (Butson et al., 2007; Butson and McIntyre, 2005), there 74 

should be focused stimulation onto the relevant functional organizational unit(s), which may need multiple foci in 75 

the case of distributed functional representations. Further, the focused stimulation may need to flexibly move 76 

across the functional topography/map in individual areas according to behavioral needs, and this spatiotemporal 77 

variation in applied current across electrodes (see section 4) may be achieved using microscale multicircuit brain 78 

stimulation (MMBS; see section 6). The precise scale of focused stimulation will depend on the internal functional 79 

organization of the target area, but generally speaking this would likely be equal to or less than 250-500 μm 80 

across, i.e., less than that typically achieved with current DBS protocols using macroelectrodes. 81 

 82 

3. What spatial resolution is possible? 83 

The currently available methods for manipulating neural activity up to high frequencies are electrical 84 

stimulation and optogenetics. While optogenetics offers cell-type specificity, there are drawbacks. First, 85 

optogenetics faces limits in spatiotemporally varying control, i.e., every new group of neurons to be 86 

independently controlled would need a new optical fiber, with its own size limits, and light source. Second, there 87 

is the potential for immunogenicity (Mendoza et al., 2017). Third, advances in rodents have not readily translated 88 

to primates (Servick, 2020). Finally, optogenetics currently uses repetitive, constant-frequency stimulation 89 

patterns, which do not resemble nor induce the dynamic activity patterns in the brain necessary for cognition. In 90 

comparison, electrical stimulation is currently applied as either DBS using one or few large electrode contacts 91 

https://paperpile.com/c/DNacYa/fvLyU
https://paperpile.com/c/DNacYa/h4OqL
https://paperpile.com/c/DNacYa/Lks5O
https://paperpile.com/c/DNacYa/pINRC+v7KbY
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(around 1mm diameter) with one large VTA (>10mm3; Butson et al., 2007; Dembek et al., 2017), orders of 92 

magnitude poorer than the necessary spatial resolution to independently control individual groups of neurons to 93 

enhance cognition; or highly localized microstimulation via one or few microelectrodes, which targets one group 94 

of neurons (Nichols and Newsome, 2002; Mazurek and Schieber, 2021) but not other groups distributed over 95 

large expanses of the brain which contribute to distributed cognitive computations. This latter issue, however, 96 

can be overcome by using a high number of microelectrodes spanning one or more brain areas, i.e., the basis 97 

of the MMBS approach, and our focus hereon. 98 

Microstimulation of cortical and subcortical areas can modify both perception and action. To estimate the 99 

spatial resolution possible in such neuromodulation, we will discuss microstimulation experiments of the cerebral 100 

cortex in non-human primates (NHPs) using a single sharp electrode with an exposed tip (~1-10 μm in size). We 101 

will then discuss thalamic microstimulation experiments, to show findings generalize to subcortical areas, and 102 

later discuss (section 6) the extension of these findings to humans, based on shared brain architecture. 103 

The mammalian cerebral cortex is organized into columns, with diameters of ~0.5 mm (Hubel and Wiesel, 104 

1966). Neurons within a single column typically share response properties; for instance, neurons in a given 105 

column of the motion-sensitive middle temporal area (MT) share a preferred motion direction, and the preferred 106 

direction differs across columns (Shadlen and Newsome, 1996). Stimulation of MT neurons with known motion-107 

direction preferences caused NHPs to report stimuli moving in the corresponding direction (Groh et al., 1997; 108 

Salzman and Newsome, 1994). Thus, microstimulation can drive behavior, in the appropriate context. 109 

Stimulating across multiple columns in MT can have complex effects; it may lead to a “winner-take-all” outcome 110 

when activating two columns with near opposing preferred directions, or vector-averaging when activating two 111 

columns with closer preferred directions (Nichols and Newsome, 2002). Thus, the topographic organization of 112 

brain areas can be exploited to achieve some predictability for cortical stimulation. 113 

The situation is similar in subcortical regions. The lateral geniculate nucleus (LGN) of the thalamus contains a 114 

topographic map of the visual field, in which individual neurons represent a small circular region of visual space 115 

in the map (Hubel, 1960). Microstimulation (e.g., 40 μA) of LGN neurons can generate phosphenes at the 116 

corresponding visual location; and NHPs saccaded to the location of the visual field corresponding to that 117 

represented by stimulated neurons (Pezaris and Reid, 2007). Similar effects can be elicited in the motor 118 

https://paperpile.com/c/DNacYa/v7KbY
https://paperpile.com/c/DNacYa/f01jO
https://paperpile.com/c/DNacYa/RjwW4
https://paperpile.com/c/DNacYa/RjwW4
https://paperpile.com/c/DNacYa/cjjTs
https://paperpile.com/c/DNacYa/u9UsC+JFU9t
https://paperpile.com/c/DNacYa/u9UsC+JFU9t
https://paperpile.com/c/DNacYa/f01jO
https://paperpile.com/c/DNacYa/fRB8J
https://paperpile.com/c/DNacYa/gtSDD
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thalamus, including the ventral anterior/ventral lateral nuclei, where microstimulation can drive contralateral body 119 

movements (Vitek et al., 1994). Finally, the ventral posterior lateral sensory nuclei of the thalamus also exhibit 120 

somatotopic organization, and microstimulation can drive sensations of body regions corresponding to the 121 

receptive fields of stimulated neurons (Swan et al., 2018). Taken together, these data suggest that stimulation 122 

via microelectrodes using low currents can exploit the known functional organization of subcortical areas for 123 

relatively precise control of sensation and behavior. 124 

4. Spatiotemporal-varying stimulation patterns  125 

The standard approach to DBS programming is to increase current sequentially on fully-implanted 126 

electrodes and identify the contact (usually one of four or eight) which decreases symptoms without causing side 127 

effects. However, there are typically dynamic activation patterns within brain areas that vary according to 128 

behavioral demands. Thus, another approach to DBS is to mimic these dynamic activation patterns with 129 

stimulation that varies across electrodes and across time. 130 

A key challenge is how to appropriately vary stimulation patterns, in spatial and temporal terms. Spatial 131 

variation can be guided by a priori knowledge of the internal functional organization of a brain area, which may 132 

assist in reducing the parameter space. For example, if a target area contains a functional topographic map, 133 

e.g., a somatotopic representation, then optimal stimulation parameters may only need to be sought for those 134 

electrodes in the currently relevant functional territory of the map, such as the hand representation for hand 135 

movements. Nevertheless, spatially-varied stimulation need not rely on a detailed understanding of the internal 136 

functional organization of the target area. Machine learning-based approaches may be sufficient to achieve 137 

effective spatiotemporal variation. Suitable spatiotemporal variation may be learned and applied based on both 138 

continuous behavioral and neural variables. Such an approach could incorporate prior knowledge of the 139 

underlying anatomy, or might simply learn the manifold of responses to a library of stimulation. Thus, the aim 140 

would be to identify and then recreate activation patterns for successful cognitive/behavioral performance (see 141 

sections 7-8).It should be noted that the spatial resolution of the stimulation approach (e.g., electrode size) may 142 

influence the desired stimulation frequency and temporal variation. For example, the elegant study by Gradinaru 143 

et al. (2009) showed that high-frequency (120-130Hz) DBS of the mouse subthalamic nucleus (STN), with a 144 

relatively large VTA, reduced Parkinsonian signs; but cell-specific optogenetic stimulation of STN excitatory 145 

https://paperpile.com/c/DNacYa/3tkdq
https://paperpile.com/c/DNacYa/KMt1p
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neurons at the same high, constant frequency did not, suggesting it did not reproduce the same neural dynamics. 146 

Rather, optogenetic activation of cortical inputs to the STN reduced Parkinsonian signs, consistent with the 147 

efficacy of high-frequency DBS being due to stimulation of the inputs in this case. Here, lowpass filtering of inputs 148 

due to synaptic effects (Lavian and Korngreen, 2019; Müller and Robinson, 2018) may contribute to the efficacy 149 

of the constant, high-frequency stimulation, whereas direct fine-grained STN stimulation may require more 150 

naturalistic stimulation frequencies and spatiotemporal variation. Finally, it is worth noting that current techniques 151 

for STN stimulation are not an unqualified success in the treatment of Parkinson’s disease; the surgery depends 152 

on incredibly precise targeting of the dorsal portion of the nucleus containing the motor cortex afferents (Hamani 153 

et al., 2017), and a significant fraction of patients require revision surgery due to lack of benefit (Rolston et al., 154 

2016). Thus, even this flagship example of clinically-successful neuromodulation may benefit from the 155 

development of new technology. 156 

 157 

5. Stimulation effects across brain networks 158 

 Because target areas are nodes in an extended brain network, stimulation induces effects at distal 159 

network nodes which contribute to behavioral changes and treatment efficacy. Thus, target selection and the 160 

spatiotemporal stimulation pattern need tailoring to the (pathological) broader network which we aim to influence, 161 

including the intrinsic circuitry. There are high-dimensional cognitive representations in the cerebral cortex 162 

distributed over large expanses on the brain’s surface, whereas there are more amenable lower-dimensional 163 

representations relatively localized in deep brain areas allowing greater generalization (Shine et al., 2019; 164 

Mukherjee and Halassa, 2022). A large convergence of anatomical connections from the cortex to deep brain 165 

areas leads to the lower dimensionality. These deep brain areas, such as the basal ganglia and thalamus, are 166 

key brain hubs connecting distributed groups of cortical neurons, thereby sustaining or flexibly switching cortical 167 

activity patterns according to cognitive demands (Saalmann et al., 2012; Schmitt et al., 2017). As each of these 168 

brain areas exhibits unique context-dependent neural dynamics, the desired stimulation pattern needs to 169 

accordingly mimic these dynamics. 170 

For cortical stimulation, as in neural prostheses, the desired spatiotemporal pattern will differ from that needed 171 

for subcortical areas which perform different computations, and affect cortical processes by adjusting synaptic 172 
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gain and functional connectivity (Guo et al., 2017; Saalmann et al., 2012; Schmitt et al., 2017). Subcortical 173 

stimulation may enrich oscillations when they are pathologically impaired (as in the case of coma, see Mofakham 174 

et al., 2022; Schmitt et al., 2017), or to counter excessive synchronized/oscillatory activity across a distributed 175 

cortical network (Hemptinne et al., 2015). For example, cross-frequency coupling between the phase of low-176 

frequency oscillations and the amplitude of high-frequency oscillations may coordinate distributed cortical 177 

processes across a broad network (Canolty and Knight, 2010; Hemptinne et al., 2015). DBS of the STN reduced 178 

pathologically elevated beta-band phase-amplitude coupling in the motor cortex (Hemptinne et al., 2015). 179 

6. MMBS approach 180 

Two challenges for targeting DBS are the complex-shaped subcortical nuclei and their internal functional 181 

organization. Simultaneously stimulating through many small (e.g., <100 μm), closely-spaced (e.g., <200 μm) 182 

contacts of multielectrode arrays offers the prospect of tailored manipulation of distinct groups of neurons across 183 

brain areas. It is possible to apply different time-varying stimulation parameters to each contact, to exploit the 184 

functional organization within the target area (think playing a song on the piano rather than depressing all 88 185 

keys simultaneously). The feasibility of simultaneous microstimulation via multiple electrodes of an array has 186 

already been demonstrated in sensory neural prosthesis studies (Mazurek and Schieber, 2021). Here, we first 187 

discuss such cortical prostheses, then follow with subcortical studies and approaches using MMBS. 188 

Utah or similar arrays can be used for cortical stimulation. Utah arrays incorporate multiple 189 

microelectrodes (shaft length up to a few mm) into an electrode grid (most commonly 10 x 10 shafts) with inter-190 

shaft spacing of 400 μm. Utah arrays have been used for neural prostheses in NHPs (Chen et al., 2020) and 191 

humans (Fernández et al., 2021). Stimulation across pairs of electrodes induced phosphenes in humans 192 

(Fernández et al., 2021). Simultaneously stimulating up to 16 microelectrodes (the maximum possible with the 193 

stimulation system used) could generate more complex perceptions, enabling reliable discrimination of a number 194 

of letters of the alphabet. Using multiple Utah arrays (total of 1,024 shafts/channels) in NHPs, simultaneous 195 

stimulation of up to 15 electrodes across primary visual cortex generated shape information and sequential 196 

stimulation generated motion information (Chen et al., 2020). The spatial stimulation pattern exploited the known 197 

topographic representation of visual space: specifically, letter information was generated by simultaneously 198 

microstimulating those neurons whose visual receptive fields together constituted the letter shape. Together, 199 

https://paperpile.com/c/DNacYa/4tfRf+6vH3Z+t2B3W
https://paperpile.com/c/DNacYa/t2B3W+zGQyY
https://paperpile.com/c/DNacYa/t2B3W+zGQyY
https://paperpile.com/c/DNacYa/hfeEW
https://paperpile.com/c/DNacYa/hfeEW+pipvK
https://paperpile.com/c/DNacYa/hfeEW
https://paperpile.com/c/DNacYa/kLq0P
https://paperpile.com/c/DNacYa/k3rGR
https://paperpile.com/c/DNacYa/DzACO
https://paperpile.com/c/DNacYa/DzACO
https://paperpile.com/c/DNacYa/k3rGR
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these data suggest that complex spatially-varying stimulation patterns can mimic natural patterns of neural 200 

activation.  201 

 The goal stimulation patterns for MMBS will depend on the functional roles of the targeted structure. That 202 

is, rather than eliciting a percept, we might attempt to modulate distributed activation patterns across cortical and 203 

subcortical areas. For example, higher-order thalamic areas, such as the pulvinar and mediodorsal nuclei, 204 

receive little input from the sensory periphery, in contrast to first-order sensory thalamic areas (e.g., LGN). Key 205 

functions of the higher-order thalamus appear to be maintenance of cortical activity, such as that supporting 206 

action plans and working memory, and regulation of functional connectivity between ensembles of cortical 207 

neurons (Guo et al., 2017; Saalmann et al., 2012; Schmitt et al., 2017). This influence is spatially specific, such 208 

that subsets of thalamic neurons influence particular ensembles of cortical neurons (Barbas and Pandya, 1989; 209 

Schmitt et al., 2017). Thus, MMBS in higher-order thalamus should be able to modulate cortical dynamics on a 210 

finer scale than is currently achievable with DBS.  211 

 We achieved this level of fine-grained control using MMBS of intralaminar thalamus in NHPs to 212 

manipulate consciousness. Major theories of consciousness have proposed that the frontal cortex, parietal cortex 213 

and/or thalamus are neural correlates of consciousness (Brown et al., 2019; Llinás et al., 1998; Mashour et al., 214 

2020; Suzuki and Larkum, 2020; Tononi et al., 2016). The intralaminar thalamus has been implicated in the 215 

regulation of consciousness, based on lesion (Schiff, 2008) and electrophysiology data (Glenn and Steriade, 216 

1982), and stimulation of intralaminar thalamus using clinical DBS macroelectrodes suggests effects on the level 217 

of consciousness (arousal) and/or the level of awareness (richness of experience) (Schiff et al., 2007; Bastos et 218 

al., 2021; Tasserie et al., 2022). We targeted the central lateral nucleus (CL) of the intralaminar thalamus, in 219 

particular, because it is reciprocally connected with frontal and parietal cortex, and thus CL is well-positioned to 220 

influence distributed cortical and subcortical networks. We configured a linear electrode array tailored to the 221 

elongated shape of the CL. This allowed us to simultaneously stimulate across 16 contacts (12.5 μm in diameter), 222 

with 200 μm between contacts, which spanned the dorsal-ventral extent of CL (3-4 mm in NHPs). In the awake 223 

state, a subset of CL neurons fires action potentials at around 50 Hz (Glenn and Steriade, 1982; Redinbaugh et 224 

al., 2020), whereas in reduced conscious states, such as general anesthesia and non-REM sleep, the activity of 225 

the same cells is reduced. In NHPs anesthetized with propofol or isoflurane, microstimulation across the 16 226 

https://paperpile.com/c/DNacYa/4tfRf+6vH3Z+t2B3W
https://paperpile.com/c/DNacYa/Oy4ik+t2B3W
https://paperpile.com/c/DNacYa/Oy4ik+t2B3W
https://paperpile.com/c/DNacYa/ol85K
https://paperpile.com/c/DNacYa/LwFgX+ygznU
https://paperpile.com/c/DNacYa/LwFgX+ygznU
https://paperpile.com/c/DNacYa/LwFgX+33Kjn
https://paperpile.com/c/DNacYa/LwFgX+33Kjn
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contacts simultaneously at 50 Hz reinstated wake-like cortical dynamics, including spatially-specific increases in 227 

spiking activity in cortical layers and functional connectivity within cortical columns and across parietal and frontal 228 

cortex (Afrasiabi et al., 2021; Redinbaugh et al., 2020). These dynamics corresponded to the rousing of NHPs 229 

from anesthesia. The effect was specific to CL stimulation, as moving the stimulating array 1.5 mm from CL did 230 

not have the same effect. Neither did stimulation at 2, 10, or 200 Hz. This suggests that mimicking the wake-like 231 

activity of CL neurons with 50 Hz MMBS overrode the neural and behavioral effects of anesthesia.   232 

We can also reduce the level of consciousness with this approach. We performed the same experiments 233 

in awake NHPs (Redinbaugh et al., 2022). Microstimulating via the 16 CL contacts at 10 or 200 Hz reduced 234 

consciousness, inducing absence-like events with vacant staring, behavioral arrest, and reduced 235 

responsiveness. Stimulation at 50 Hz did not have the same effect. This frequency selectivity may reflect the fact 236 

that a subset of CL neurons naturally decrease their firing rate from about 50 Hz in the wake state nearer to 10 237 

Hz in reduced conscious states (Redinbaugh et al., 2020), consistent with predictions from the mesocircuit model 238 

of Nicholas Schiff (Schiff, 2010). In comparison, 200 Hz stimulation might perturb CL activity in wakefulness, by 239 

inducing bursting-like activity followed by inhibition (Birdno et al., 2014; Patra, 2001), perhaps similar to that seen 240 

in sleep/anesthesia. These findings suggest that mimicking the activity of CL neurons in reduced conscious 241 

states with 10 Hz or 200 Hz MMBS overrode wakeful cortical dynamics and behavior. This bidirectional control 242 

of the level of consciousness in NHPs by mimicking CL activity in different conscious states is consistent with 243 

optogenetic effects in mice, seen when stimulating CL neurons at similar frequencies (10, 40, and 100 Hz) (Liu 244 

et al., 2015).  245 

 To achieve this kind of spatial specificity, there are a number of existing DBS electrodes with large 246 

numbers of small-diameter contacts, such as the μDBS electrode (Anderson et al., 2019). Most are not FDA-247 

approved, however. The ideal MMBS electrode should allow independent control over all or a subset of contacts, 248 

and be capable of simultaneous stimulation (and recording). Proposed electrodes vary in contact size and 249 

geometry (Rossi et al., 2016). Linear microelectrode arrays have been used in animal studies to manipulate 250 

thalamic targets; the linear arrays used in the above CL studies are configurable with up to 32-contact shafts, 251 

12.5 to 50 μm contact diameters and inter-contact spacing of 75 to 250 μm (from MicroProbes for Life Science™: 252 

https://paperpile.com/c/DNacYa/33Kjn+xw4HP
https://paperpile.com/c/DNacYa/s8kkg
https://paperpile.com/c/DNacYa/33Kjn
https://paperpile.com/c/DNacYa/vvIVw
https://paperpile.com/c/DNacYa/EZxO1+9tR7C
https://paperpile.com/c/DNacYa/rRivx
https://paperpile.com/c/DNacYa/rRivx
https://paperpile.com/c/DNacYa/XTKAP
https://paperpile.com/c/DNacYa/2tYzx
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Gaithersburg, MD). These electrodes are suitable for anisotropic, elongated structures like CL. Multiple shafts 253 

or microwires may be better suited for isotropic brain structures.  254 

 Microwires have been used in humans for both recording and stimulation (Fried et al., 1997; Swan et al., 255 

2018). In a study of human somatosensory thalamus, microstimulation via individual wires of a 16-channel 256 

microwire array (Ad-Tech™: Oak Creek, WI) elicited localized sensations (1-3 cm2) on the body, whereas 257 

stimulation via macroelectrodes (Medtronic™: Dublin, Ireland) elicited considerably more extensive sensations 258 

(e.g., entire forearm; compare Fig. 2 and 3 to Fig. 5 in (Swan et al., 2018)). Research subjects described the 259 

microwire-elicited sensations as more “natural” than stimulation via macroelectrodes. However, one has to 260 

account for variability in the dispersion of microwires and the possible addition of more microwire arrays to cover 261 

the entire target area.  262 

 Silicon-based designs (HajjHassan et al., 2008) offer higher contact counts, which could meet this need. 263 

One electrode design uses silicon chips fitted together to form an extruded plus-shaped electrode (Willsie and 264 

Dorval, 2015) with 1,760 contacts (four contacts on each plus-shaped cross-section). Each individual contact is 265 

100 x 100 μm, with adjacent contacts spaced 115 μm. The contact size was suggested to correspond to the 266 

scale of small fiber tracts. A variant of this electrode design (Anderson et al., 2019) incorporates 864 contacts, 267 

with 150 x 150 μm individual contacts and adjacent contacts spaced 15 μm. In both cases, individual contacts 268 

are independently controllable, and current can be applied via multiple contacts simultaneously. The overall 269 

diameter of the electrodes is about 1.27 mm, similar to FDA-approved DBS electrodes. Simulations of stimulation 270 

effects on small and large axons suggest that the small contact size and inter-contact spacing more readily 271 

enable activation of small axons (relative to macroelectrodes) (Anderson et al., 2019; Steinmetz et al., 2018). 272 

However, as the number of electrodes increases, the parameter space increases exponentially, leading to a 273 

need for a computational technique to optimize programming. 274 

 275 

7. Leveraging machine learning 276 

Machine learning is an attractive strategy to guide DBS programming, because of the ability to efficiently 277 

explore spaces of unknowns. Moreover, tuning stimulation to the brain’s state is straightforward to conceptualize 278 

as an optimization problem. Machine learning has been successfully applied to decoding cortical activity from 279 

https://paperpile.com/c/DNacYa/E29xp+KMt1p
https://paperpile.com/c/DNacYa/E29xp+KMt1p
https://paperpile.com/c/DNacYa/KMt1p
https://paperpile.com/c/DNacYa/Y8P9t
https://paperpile.com/c/DNacYa/1tCNL
https://paperpile.com/c/DNacYa/1tCNL
https://paperpile.com/c/DNacYa/W3smN
https://paperpile.com/c/DNacYa/KJ9aH+XTKAP
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electrode arrays for neural prostheses (Anumanchipalli et al., 2019; Willett et al., 2021). Machine learning has 280 

also started to be applied for optimizing stimulation parameters using clinical DBS electrodes, i.e., via one or two 281 

relatively large contacts (Boutet et al., 2021; Gao et al., 2020; He et al., 2021; Houston et al., 2019; Krylov et al., 282 

2020; Yang et al., 2021). However, simultaneous multi-microelectrode stimulation is relatively new, and thus 283 

machine learning has not yet been applied to optimizing stimulation patterns across multi-electrode arrays, let 284 

alone in a closed-loop system to improve behavioral outcomes. To advance in this direction, we first discuss 285 

existing closed-loop approaches to stimulation. We then describe the computational framework for closed-loop 286 

stimulation across multi-microelectrode arrays. 287 

 288 

 289 

Figure 1. Schematic of closed-loop stimulation for recovery of consciousness. A) high-dimensional 290 

observations Y(t) includes deep neural recordings from distributed contacts and vital signs (heart rate, pupil 291 

size). B) Non-parametric state-space modeling enables us to estimate the underlying latent state of these 292 

observations at baseline and with different sets of stimulation parameters. C) Reinforcement learning will 293 

determine which set of stimulation parameters will minimize our cost function, that is the distance of the predicted 294 

X(t, u(t)) from the healthy, desired X′(t).   295 

 296 

 297 

https://paperpile.com/c/DNacYa/JnYmR+ZKnDz
https://paperpile.com/c/DNacYa/qWyAa+gNh3z+7f39G+k1rfU+GuUDO+xctqi
https://paperpile.com/c/DNacYa/qWyAa+gNh3z+7f39G+k1rfU+GuUDO+xctqi
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A number of closed-loop approaches to DBS have been reported, although only the Neuropace 298 

Responsive Neurostimulation (RNS) system is available commercially (the PERCEPT/SenSight DBS system is 299 

currently available as open-loop in the US). The RNS stimulates cortical targets in response to detected seizures. 300 

The exact algorithms for seizure detection are proprietary but are believed to include relatively simple 301 

approaches based on spike detection, band-limited power, and line length (Sun et al., 2008). Using closed-loop 302 

stimulation, RNS decreases seizures by ~50% in most patients (Bergey et al., 2015). RNS has also been used 303 

off-label for depression (Scangos et al., 2021) and is planned for use in binge eating (Wu et al., 2022, 2018). 304 

However, despite progress in closed-loop stimulation for Parkinson’s disease (Rosin et al., 2011) and 305 

essential tremor (Opri et al., 2020), no other closed-loop brain stimulator is available commercially. Moreover, 306 

the diseases treated thus far have relatively straightforward electrophysiological biomarkers and respond to 307 

relatively coarse stimulation, using large contact electrodes in well-described targets. In no case was there a 308 

treatment involving a neuroanatomical location that responded only to closed-loop stimulation; open-loop 309 

stimulation has been reported for all of the above diseases. The next generation of DBS for complex problems 310 

(such as cognitive impairment, or unconsciousness) will depend on high-resolution stimulation of specific 311 

populations of neurons as well as careful tuning to observed activity, which is possible only with closed-loop 312 

stimulation.  313 

There are two possible approaches to closed-loop stimulation: deciding whether to stimulate based on a 314 

single feature such as amplitude (like RNS, as described above), or stimulating based on a more sophisticated 315 

analysis of the brain’s latent state. The estimation of the cognitive state is often carried out within the state-space 316 

modeling framework, under the assumption that the cognitive state is a low-dimensional dynamic latent process 317 

that can be estimated (Abbaspourazad et al., 2021; Cueva et al., 2020; Sani et al., 2018). 318 

The task of estimating cognitive states is quite challenging because they cannot be observed directly. 319 

There are two steps needed to estimate cognitive states: finding the underlying manifold of the cognitive state 320 

and decoding how brain signals relate to this manifold. Yousefi and colleagues used state-space modeling to 321 

form low-dimensional manifolds of internal cognitive states from behavioral features (Yousefi et al., 2019). The 322 

next step is building an “encoder/decoder,” i.e., mapping the multiple features of the neural and behavioral 323 

signals to a cognitive state/mapping the behavioral state to features of neural and behavioral signals. The most 324 

https://paperpile.com/c/DNacYa/wSqqm
https://paperpile.com/c/DNacYa/sII67
https://paperpile.com/c/DNacYa/Mke2n
https://paperpile.com/c/DNacYa/DG95q+z4hWA
https://paperpile.com/c/DNacYa/XTamy
https://paperpile.com/c/DNacYa/j3zWt
https://paperpile.com/c/DNacYa/W0UNM+u1S5s+oKK6D
https://paperpile.com/c/DNacYa/Wg0zv
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critical feature of the encoder/decoder is specification of a model (mapping) for the cognitive state. This model 325 

is often parametric and involves a number of parameters and various explanatory variables. Often, it is necessary 326 

to build several candidate models. The building of the encoder/decoder then involves finding the optimal 327 

parameters of the model followed by selecting the best model (Yousefi et al., 2019, 2018). Finding the optimal 328 

parameters requires an optimization procedure of the encoder/decoder, and model selection amounts to 329 

identifying the best model from the explored models using a predefined criterion. The used criterion should 330 

encourage the selection of a parsimonious model. The problem of estimating the cognitive state process can be 331 

cast within the Bayesian framework, which then becomes one of estimating the posterior distribution of the 332 

cognitive state, given the observed neural and behavioral features, and using the adopted form of the 333 

encoder/decoder. It is important to note that the cognitive state is a time-varying process, which implies that the 334 

posterior distribution of the hidden state has to be estimated sequentially in real-time. This approach is 335 

schematized in Figure 1.   336 

 A simple description of evolution of cognitive states with respect to electrical stimulation using state 337 

space models requires two equations: 338 

 339 

            X(t+1) = f(X(t)) + U(t) + noise  (Eq. 1) 340 

Y(t) = g(X(t)) + noise              (Eq. 2) 341 

 342 

These two equations describe the time evolution of the internal brain states (Eq. 1) and the observed signals 343 

(Eq. 2). Where the observations (Y(t) in Eq. 2) are high dimensional signals that could be neural recordings 344 

(LFP, ECoG, IEEG) or behavioral features (task-specific features, vital signs, etc.) or the combination of the two 345 

(Fig. 1A). From these observations Y(t) one can estimate the latent brain state X(t) (Eq. 2, Fig. 1B). Here, 346 

external stimulation can be considered an arbitrary perturbation U(t). Here, X(t) represents a low-dimensional 347 

latent state of the global brain activity (Fig. 1B), “f” is a general nonlinear function that describes how this latent 348 

state evolves over time. The symbol “g” quantifies the relationship between the latent state and the observations.  349 

https://paperpile.com/c/DNacYa/bZopH+Wg0zv
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The ultimate goal of closed-loop stimulation is to apply intelligent stimulation U(t) to drive the internal 350 

brain state X(t) toward the desired healthy space X′(t) on the extracted low-dimensional manifold. To do that we 351 

need to learn “f” and “g” from the observed data. One way of estimating these functions is by treating them as 352 

random objects whose priors are Gaussian processes (Wang et al., 2008). One can show that the underlying 353 

dynamics of the cognitive state and the mappings of the state to the observed signals can be learned by several 354 

suitable Bayesian, non-parametric approaches including Gaussian processes (GPs) and deep Gaussian 355 

processes (DGPs) combined with particle filtering (Liu et al., 2022). These non-parametric approaches have a 356 

clear advantage over previously developed parametric attempts that have assumed conditional linear models in 357 

Eq. 1 and Eq. 2. Yang and colleagues reported a similar approach to predicting stimulation responses using 358 

linear models, where the neural state Y(t) was conceptualized as a combination of ongoing activity, stimulation-359 

evoked activity, and noise (Yang et al., 2021). However, the reliance on linear models is a drawback of this 360 

approach.  361 

GPs are a fully Bayesian technique for learning an underlying function governing a given process (i.e., 362 

LFP over time) with the assumption that the indexed random variables have an underlying joint Gaussian or 363 

normal distribution (Kuss and Rasmussen, 2003; Younes and Panov, 2019). Deep Gaussian processes (DGPs) 364 

are a deep-learning analog of GPs, where multiple GPs are layered and sequentially learn different features to 365 

optimize the learning of the function (Ghavamzadeh et al., 2015). The non-parametric nature of the GPs makes 366 

them very powerful in determining the unknown functions “f” and “g”. Further, we can even allow these functions 367 

to change as a function of time, to reflect brain dynamics. Lastly, to increase the capacity of the modeling, one 368 

can utilize a large ensemble of deep GPs, where each deep GP works with its idiosyncratic kernels and 369 

processes the recorded electrophysiological signals independently. Then the results of each deep GP are fused 370 

to obtain the final result (Liu et al., 2022).  371 

Particle filtering is a methodology that can complement the approaches based on GPs and DGPs. 372 

Namely, a particle filter generates many versions of the latent process (by sampling from a proposal distribution) 373 

and to each version, it assigns a weight that reflects the likelihood of the version being correct. The ensemble of 374 

deep GPs will operate in a similar way. In other words, there will be many GPs exploring candidate functions “f” 375 

and “g”, and they will all be scored based on how they represent the observed LFP signals as in particle filtering. 376 

https://paperpile.com/c/DNacYa/4OBwf
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 377 

8. Machine learning-guided MBBS for cognitive enhancement 378 

In this section, we discuss machine learning-guided MMBS applications to disorders of consciousness 379 

and disorders of cognitive control. In particular, stimulating CL to enhance consciousness and stimulating 380 

mediodorsal thalamus (MD) to improve cognitive control may require somewhat different approaches. In 381 

particular, effective regulation of cognitive control may require spatiotemporal variation of MD microstimulation 382 

on the scale of seconds or faster. More coarse stimulation of CL may be sufficient to increase the level of 383 

consciousness, given diurnal fluctuation and the physiological properties and organization of neurons in CL. 384 

For disorders of consciousness, such as coma or minimally conscious state, treatment will require 385 

different goal conditions in the thalamus and cortex. In the thalamus, restoration of elevated, wake-like (e.g., 50 386 

Hz) CL firing is likely sufficient; in the cortex, it will be necessary to restore long-range cortico-cortical 387 

communication as well as communication between superficial and deep cortical layers (Redinbaugh et al., 2020). 388 

It was sufficient in our previous study to use the same stimulation parameters across all contacts. More 389 

physiological stimulation patterns are possible, such as Poisson-distributed stimulation to better reflect natural 390 

spiking dynamics. Other, customized approaches are possible too; as described in section 7, non-parametric 391 

approaches such as GPs can be used to predict cortical responses to CL stimulation. Based on these predictions, 392 

reinforcement learning (RL) can help select the stimulation pattern that results in a cortical response which 393 

minimizes the cost function (Fig. 1C). For an RL approach, electrophysiological and behavioral biomarkers can 394 

be used to create the cost function. A more complex approach is needed to restore cognitive control.  395 

Cognitive control is the ability to flexibly adapt behavior according to goals and context. Numerous 396 

conditions including TBI, autism, and schizophrenia have deficits in cognitive control. The prefrontal cortex (PFC) 397 

is vital for cognitive control, and neuroimaging evidence suggests that pathological processes affecting the PFC 398 

in TBI predominantly contribute to the cognitive control deficits. Altered PFC activations following TBI (Olsen et 399 

al., 2015; Scheibel, 2017) may reflect compensatory mechanisms toward effective cognitive control. The PFC is 400 

strongly interconnected with subcortical areas, e.g., MD, which also play vital roles in cognitive control. MD helps 401 

maintain ongoing activity in (mouse) PFC and contributes to flexible activations of PFC neuronal ensembles, 402 

https://paperpile.com/c/DNacYa/33Kjn
https://paperpile.com/c/DNacYa/SfOj5+VaIpL
https://paperpile.com/c/DNacYa/SfOj5+VaIpL
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important for attentional processing and task-switching. Recent evidence suggests that the MD influences the 403 

recovery of TBI patients (Mofakham et al., 2022, 2021).  404 

MD stimulation is thus a reasonable MMBS target for restoration of cognitive control. MD has specific 405 

topographical connectivity with PFC (Phillips et al., 2019). This topographic connectivity can be exploited by 406 

implanting recording electrodes across PFC and recording/microstimulating electrodes across MD. These 407 

recordings would allow identification of atypical PFC sites and their connected MD sites. Current could then be 408 

applied through the corresponding subset of MD microelectrodes, to normalize activity within PFC sites. A 409 

number of electrophysiological biomarkers might be used to guide MMBS of MD to induce PFC dynamics 410 

supporting improved cognitive control. Increased spiking of PFC neurons and bursts of gamma (30-80Hz) activity 411 

support working memory (Miller et al., 2018), a core component of cognitive control (Gonzalez-Burgos et al., 412 

2015). Work in mice suggests that after initial activation of PFC neurons during a cognitive task, sustained activity 413 

of ensembles of PFC neurons across a delay relies on MD (Schmitt et al., 2017). Further, synchrony in the beta 414 

frequency range (13-30Hz) between MD and PFC increases during working memory (Parnaudeau et al., 2013). 415 

Thus, suitable biomarkers might include gamma activity and beta coherence as well as sustained firing in PFC, 416 

which could be estimated from spiking or high gamma responses.  417 

Because lesions are rarely circumscribed to a particular brain area, it may be beneficial to manipulate 418 

multiple areas to restore affected functions. For example, in cases presenting with impaired consciousness and 419 

cognitive control, MMBS of both CL and MD may have complementary effects. Intelligent stimulation, guided by 420 

the Bayesian non-parametric approaches in section 7, provides a means to optimize MMBS across areas to 421 

achieve desired brain states. 422 

 423 

9. Conclusion 424 

We have espoused the view that the next generation of MMBS technology will use a closed-loop, machine 425 

learning-based approach. These technologies will both improve on treatments for diseases currently treated by 426 

neuromodulation, and enable the treatment of diseases that are not currently amenable to neuromodulation. 427 

Current devices are purpose-built and able to stimulate one or a few contacts; future devices with many smaller 428 

contacts will stimulate multiple areas simultaneously to drive pathological brain states to healthy states. Of 429 

https://paperpile.com/c/DNacYa/6Ayne+zGQyY
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course, the spatial and temporal space for neuromodulation is large, almost intractable; we propose that machine 430 

learning approaches will be critical to these future developments. To fully operationalize the technology, a 431 

number of advances in technology (both hardware and software), and in understanding the brain’s response to 432 

stimulation will be critical. To develop the proposed technology, the next steps are NHP studies, which will be 433 

critical for both hardware and software development. Early translation into human studies should then be 434 

pursued, given the overwhelming need for new treatments for neurological and psychiatric diseases. 435 
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