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Abstract—The Resource Constrained Shortest Path Problem
(RCSPP) seeks to determine a minimum-cost path between a
start and a goal location while ensuring that one or multiple
types of resource consumed along the path do not exceed
their limits. This problem is often solved on a graph where
a path is incrementally built from the start towards the goal
during the search. RCSPP is computationally challenging as
comparing these partial solution paths is based on multiple
criteria (i.e., the accumulated cost and resource along the path),
and in general, there does not exist a single path that optimizes
all criteria simultaneously. Consequently, the search needs to
maintain and explore a large number of partial paths in order to
find an optimal solution. While a variety of algorithms have been
developed to solve RCSPP, they either have little consideration
about efficiently comparing and maintaining the partial paths,
which reduces their overall runtime efficiency, or are restricted
to handle only one resource constraint as opposed to multiple
resource constraints. This paper develops Enhanced Resource
Constrained A* (ERCA*), a fast A*-based algorithm that can find
an optimal solution while satisfying multiple resource constraints.
ERCA* leverages both the recent advances in multi-objective
path planning to efficiently compare and maintain partial paths,
and techniques from the existing RCSPP literature. Furthermore,
ERCA* has a functional parameter to broker a trade-off between
solution quality and runtime efficiency. The results show ERCA*
often runs several orders of magnitude faster than an existing
leading algorithm for RCSPP.

Index Terms—Path Planning, Heuristic Search, Shortest Path

I. INTRODUCTION

THE Resource Constrained Shortest Path Problem (RC-
SPP) seeks to find a minimum cost path between a

start and goal location without depleting a set of resources.
This problem arises in many applications such as air cargo
transportation [7], railway management [11] and airline crew
scheduling [30]. RCSPP is often formulated as a graph search
problem (Fig. 1), where each edge in the graph is associ-
ated with both a scalar cost value and a resource vector,
which indicate the cost incurred and the resources consumed
respectively if the edge is included into the solution path.
RCSPP is an NP-Hard problem to solve to optimality (i.e.,
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Fig. 1. A toy example of RCSPP. Given a graph where each edge is associated
with three non-negative values: distance, traversal time and toll, the problem
seeks to find a minimum distance path from the start to the goal while
satisfying two resource constraints, i.e, the arrival time must be less than
three and the accumulated toll must be less than six. The blue dotted lines
show an optimal solution path to the problem.

finding a minimum cost path from the start to goal while
satisfying all resource constraints), even when considering
only a single resource constraint [12]. To solve RCSPP, most
of the recent approaches [1], [5], [16], [33] search the graph
to incrementally build a solution path, and a fundamental
challenge is to efficiently maintain a large number of partial
solution paths during the search. Specifically, solving RCSPP
to optimality requires comparing partial paths with respect to
both the accumulated cost and the consumed resource vector
along the partial paths during the search. As a result, the
notion of dominance from multi-objective optimization [9]
arises and is used to check if one partial path is better than
another. There are often a large number of incomparable (i.e.,
non-dominated) partial solution paths from the start vertex to
any other vertex in the graph. To find an optimal solution
for RCSPP, an algorithm needs to maintain and explore these
non-dominated partial paths, and conduct a lot of dominance
checks, which makes RCSPP computationally burdensome.

RCSPP has been studied for decades [12], [16], [33] and
remains an active research topic [1], [5]. On the one hand,
many existing methods focus on developing either pruning
techniques to eliminate infeasible partial paths as early as
possible during the search, or techniques that can quickly
lower the primal bound (i.e., the cost of the best feasible
solution found thus far during the computation). However,
they have little consideration about efficiently comparing and
maintaining the non-dominated partial solution paths, which
reduces their runtime efficiency. On the other hand, some re-
cent approaches [1] leverage fast dominance check techniques
and are able to expedite the computation for several orders of
magnitude. However, these methods are restricted to handling
a single resource constraint. This paper develops Enhanced Re-
source Constrained A* (ERCA*), a fast planner that can solve
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RCSPP to optimality subject to multiple resource constraints.
The development of ERCA* leverages both the recent

advances in multi-objective A* [14], [23], [27] and the ex-
isting techniques in the RCSPP literature [5], [16]. Specifi-
cally, ERCA* leverages the recent advances in multi-objective
A* [14], [23], [27] to efficiently maintain the non-dominated
partial paths to achieve fast dominance check of partial paths.
The ability to do fast dominance check in the presence of
multiple resource constraints distinguishes ERCA* from the
existing methods for RCSPP. Additionally, ERCA* inherits
some popular pre-processing and partial path pruning tech-
niques developed in the RCSPP literature [5], [16] to remove
the partial paths, which are predicted to exceed the resource
limits before reaching the goal vertex, from the search as
early as possible. Furthermore, we also develop a variant
of ERCA* that can trade-off solution quality for runtime
efficiency, by quickly finding a bounded sub-optimal solution
without violating any resource constraints.

We compare ERCA* against BiPulse [5], an existing
leading algorithm for RCSPP, with two and three resource
constraints in city-like road networks from a online data set.
Our experimental results show that ERCA* often runs several
orders of magnitude faster than BiPulse, and the bounded sub-
optimal variant of ERCA* can quickly find a 10% sub-optimal
solution in graphs with more than a million vertices subject
to three resource constraints. We open source our software to
facilitate the practitioners and researchers in the community.1

We summarize the contributions of this article as follows.
• This article develops a new algorithm called ERCA* that

solves RCSPP to optimality. ERCA* is able to expe-
dite the computation by bringing together the existing
RCSPP techniques and the recent multi-objective search
techniques within the same framework.

• We also develop a variant of ERCA* that can trade-off
solution quality for runtime efficiency, by quickly finding
a bounded sub-optimal solution without violating any
resource constraints.

• We test ERCA* on city-like maps from a public dataset.
ERCA* runs faster than the existing BiPulse for up to
several orders of magnitude. The variant of ERCA* can
find a bounded sub-optimal path in graphs with more than
a million vertices subject to three resource constraints.

The rest of this paper is organized as follows. Sec. II reviews
the related work and Sec. III describes the problem. We then
present ERCA* in Sec. IV and discuss its relationship to the
existing algorithms in Sec. V. The experimental results are
shown in Sec. VI, and the conclusion is presented in Sec. VII.

II. RELATED WORK

A. Resource Constrained Shortest Path Problem

Methods for RCSPP include both exact approaches [5],
[16], [22], [33] (i.e., approaches that can solve RCSPP to
optimality) and approximation algorithms [13], [18], [34], and
this article focuses on the exact approaches. Conventional
exact algorithms for RCSPP include dynamic programming

1https://github.com/wonderren/public erca

based algorithms [8], Lagrangian relaxation [3], [28], path
ranking approaches [29], etc., and a survey of these early effort
can be found in [22]. Subsequently, an algorithm called Pulse
[16] was developed, which takes a depth-first search (DFS)
strategy to enumerate the paths from the start to any other
vertices in the graph while employing several rules to prune
partial paths during the search. With DFS, Pulse attempts to
quickly find a feasible solution whose cost provides a primal
bound (i.e., upper bound) of the optimum, and then keeps
refining the bound during the search until the optimum is
found. After the development of Pulse, an algorithm called
Resource Constrained Bi-Directional A* (RCBDA*) [33] was
developed, which outperforms Pulse. RCBDA* simultane-
ously runs a forward (from the start to goal) and a backward
(from the goal to start) search while ensuring both searches
do not exceed 50% of a user-selected resource limit so that
both searches “meet in the middle”. Upon the success of
RCBDA*, the idea of bi-directional search is then combined
with Pulse and the resulting Bidirectional Pulse (BiPulse) [5]
shows faster computational speed than RCBDA* in many
instances. For RCSPP with an arbitrary number of resource
limits, BiPulse remains a leading algorithm and is selected
as a baseline in this work for comparison. Different from
these existing methods for RCSPP, the prominent feature of
ERCA* is its ability to employ several fast dominance check
techniques from the recent advances in multi-objective A*,
which can expedite the search. Additionally, ERCA* does not
leverage the idea of bi-directional search, and how to combine
bi-directional search with ERCA* remains an open question
and is left as our future work.

Weight Constrained Shortest Path Problem (WCSPP), as a
special case of RCSPP, considers a single resource constraint,
which is often referred to as the weight (of a path) [22]. Any
algorithm that can solve RCSPP is also applicable to WCSPP.
Recently, several new algorithms [1] were developed to solve
WCSPP by leveraging the bi-criteria nature of WCSPP (i.e.,
dealing with the cost and weight of the paths). These algo-
rithms leverage the techniques from both WCSPP literature
and bi-objective A* search [14] (such as the fast dominance
check technique but limited to bi-criteria), and is thus able
to achieve several orders of magnitude shorter runtime in
comparison with its predecessors such as BiPulse [5] and
RCBDA* [33]. However, these algorithms are limited to
handle a single resource constraint.

While this article limits its focus to graphs with non-
negative edge cost and resources, some recent variants of RC-
SPP consider negative edge cost and resources. These variants
arise when planning paths for vehicles with the possibility to
recharge or refuel the vehicle along the paths [6], [19], [21],
[32], which is part of our future work.

B. Multi-Objective Path Finding

Of close relevance to RCSPP, Multi-Objective Path Finding
(MO-PF) considers a graph, where each edge is associated
with a cost vector (as opposed to a scalar cost value), and
each component of the vector corresponds to an objective
to be optimized. MO-PF seeks to find paths that minimize

https://github.com/wonderren/public_erca
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the accumulated cost vectors along the paths. With multiple
objectives, there is in general no single solution path that
can simultaneously optimize all the objectives [9], [31], and
MO-PF thus seeks to find a set of so-called Pareto-optimal
solutions. Recently, several efficient algorithms [14], [27] have
been developed for MO-PF as well as its variants [24], [26].

A common computational challenge in MO-PF and RCSPP
is to address a large number of non-dominated partial solution
paths during the search, which has been shown to be a key
computational bottleneck in MO-PF [14], [23], [27]. To ad-
dress this challenge, several techniques have been developed in
the literature, which are briefly summarized here and revisited
in detail in Sec. IV-C. The so-called dimensionality reduction
technique [23] is able to ignore the first component of the
cost vectors during the dominance check which alleviates the
computational burden. With a focus on bi-objective problems,
Bi-Objective A* [14] inherits the dimensionality reduction
technique and further develop the idea of lazy check, which
re-organizes the workflow of the search algorithm and can
further speed up all dominance checks during the search.
Subsequently, our prior work Enhanced Multi-Objective A*
(EMOA*) [27] is able to generalize the fast dominance check
techniques in Bi-Objective A* to an arbitrary number of
objectives by employing balanced binary search tree data
structure to expedite the dominance check.

Recently, Bi-Objective A* [14] has been combined with
the idea of bi-directional search and results in the algo-
rithm Bi-Objective Bi-directional A* [2], which then lead
to WCBA* [1], a leading algorithm for WCSPP that runs
several orders of magnitude faster than the previous methods
for WCSPP. However, WCBA* is limited to handle a single
resource constraint.

III. PROBLEM DEFINITION

Let G = (V,E) denote a finite undirected graph with
the vertex set V representing the possible locations, and the
edge set E ⊆ V × V denoting the transition between any
two locations. Each edge in the graph is associated with a
scalar non-negative cost value c(e) ∈ R+, and a non-negative
resource vector r⃗(e) ∈ (R+)M with M being a positive
integer denoting the number of different resources. Let vo and
vd denote the initial vertex (i.e., origin) and the destination
vertex respectively. Let π(v1, vℓ) := {v1, v2, · · · , vℓ} denote
a path that consists of a list of vertices with each pair of
adjacent vertices vk, vk+1, k ∈ {1, 2, · · · , ℓ − 1} connected
by an edge (vk, vk+1) ∈ E. We refer to π(v1, vℓ) simply
as π when there is no confusion. For a path π(v1, vℓ), let
c(π) :=

∑k=ℓ−1
k=0 c(vk, vk+1) represent the path cost, which is

the accumulative cost of the edges that are present in the path
π. Similarly, let r⃗(π) :=

∑k=ℓ−1
k=0 r⃗(vk, vk+1) denote the path

resource vector, which describes the total amount of resource
consumed when moving from v1 to vℓ along π. Finally, let
r⃗limit ∈ (R+)M denote the resource limits, a non-negative
M -dimensional vector.

The goal of the Resource Constrained Shortest Path Problem
(RCSPP) is to find a path π from vo to vd such that (i) r⃗(π) ≤
r⃗limit, which means every component in r⃗(π) is no larger than

Notation Meaning
π(u, v) A path between u and v with u, v ∈ V .
c(·) A non-negative scalar cost value.
r⃗(·) A M -d non-negative resource.
g⃗(·) A (M + 1)-d augmented cost vector.
h⃗(·) A (M + 1)-d heuristic vector.
l A label.
f⃗(l) A (M + 1)-d vector that is equal to g⃗(l) + h⃗(l).
Trunc(·) The truncation function.
⪯ Dominance.
<lex Lexicographically smaller than.
F(u) The frontier set at vertex u ∈ V .
ND(u) The non-dominated subset of Trunc(F(u)).
TND(u) The balance binary search tree of ND(u).

TABLE I
FREQUENTLY USED NOTATIONS.

Fig. 2. Visualization of related concepts. (a) shows a RCSPP example with
two resources (M = 2) and the augmented cost vector g⃗(e) for each edge e.
Two non-dominated paths from vo to vb are shown in red and green dashed
lines. (b) shows the detail about the two non-dominated paths from vo to vb.
The labels representing these two paths are l1 and l2, and they are both in
the frontier set at vb. (c) shows the space of augmented cost vectors and the
two augmented cost vectors mentioned in (b) using the red and green dots.
The green cubic volume illustrates the set of vectors that are dominated by
vector (10, 1, 2).

the corresponding component in r⃗limit; and (ii) c(π) reaches
the minimum.

Remark 1. Weight Constrained Shortest Path Problem (WC-
SPP) is a special case of RCSPP with M = 1. In WCSPP,
r⃗limit is a vector of length one, and there is only one resource
limit, which is called the weight limit.

IV. METHOD

A. Concepts and Notations

Table I summarizes the frequently used notations and Fig. 2
visualizes some of the concepts. We refer to a path π from
vo to any other vertex v ∈ V that satisfies the resource
constraints as a feasible path. A feasible path connecting vo
and vd is called a solution path. Let Trunc : RK → RK−1

(with K being an integer that is no less than two) denote the
truncation function that removes the first component from the
input vector. Let g⃗(π) := (c(π), r⃗(π)) ∈ (R+)

M+1 denote an
augmented cost vector, whose first component is the path cost
and Trunc(g⃗(π)) is the path resource vector r⃗(π). Without
confusion, let g⃗(e) := (c(e), r⃗(e)) ∈ (R+)

M+1 denote the
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augmented cost vector of an edge e in the graph G. In this
paper, we use subscript to denote a specific component of
a vector (e.g. gk(e), k = 1, 2, · · · ,M + 1 denotes the k-th
component of g⃗(e)).

In RCSPP, there can be multiple “incomparable” feasible
paths from vo to any other vertex v ∈ V . To differentiate
between these incomparable paths, the notion of label is
introduced. Let l = (v, g⃗) denote a label2, which is a tuple
of a vertex v ∈ V and an augmented cost vector g⃗. Intuitively,
a label represents a path from vo to v with the augmented cost
vector g⃗ (Fig. 2(a) and 2(b)). To simplify notations, given a
label l, let v(l) and g⃗(l) denote the vertex and the augmented
cost vector related to label l, respectively. To compare two
labels, we compare the augmented cost vectors related to the
labels using the notion of dominance and lexicographic order.

Definition 1 (Dominance). Given two vectors a⃗ and b⃗ of length
K (K ≥ 2), a⃗ dominates b⃗ (denoted as a⃗ ⪯ b⃗)3 if and only
if ∀m ∈ {1, 2, . . . ,M}, am ≤ bm, and ∃m ∈ {1, 2, . . . ,M},
am < bm.

Fig. 2(c) visualizes the notion of dominance. If a⃗ does not
dominate b⃗, this non-dominance is denoted as a⃗ ⪯̸ b⃗. Any two
paths π1(v1, vℓ), π2(v1, vℓ), for two vertices v1, vℓ ∈ V , are
non-dominated (with respect to each other) if the correspond-
ing augmented cost vectors g⃗(π1) and g⃗(π2) do not dominate
each other.

Definition 2 (Lexicographic Order). Given two vectors a⃗ and
b⃗ of length K (K ≥ 2), a⃗ is lexicographically smaller (or
larger) than b⃗, which is denoted as a⃗ <lex b⃗ (or a⃗ >lex b⃗) if
there exists a k ∈ {1, 2, · · · ,K}, ak < bk (or ak > bk), and
∀m ∈ {1, 2, . . . , k − 1}, am = bm.

As its name suggests, the lexicographic (hereafter abbrevi-
ated as lex.) order begins by comparing the first component of
the vectors a⃗ and b⃗ to determine if a⃗ is lex. smaller or larger
than b⃗, and it only needs to compare the next component if
the current component of a⃗ and b⃗ are the same.

Correspondingly, a label l is said to be dominated by (or is
equal to) another label l′ if v(l) = v(l′) and g⃗(l) ⪯ g⃗(l′) (or
g⃗(l) = g⃗(l′)). A label l is lex. smaller (or larger) than another
label l′ if v(l) = v(l′) and g⃗(l) <lex g⃗(l′) (or g⃗(l) >lex g⃗(l′)).

Let h⃗(v) ∈ (R+)M+1, v ∈ V denote a heuristic vector
of vertex v that estimates the “cost-to-go” and “resource-
to-go” from v to vd. Specifically, the first component in
h⃗(v) is an estimate of the path cost from v to vd while
Trunc(⃗h(v)) is an estimate of the path resource vector from
v to vd. If h⃗(v), v ∈ V is component-wise no larger than
the augmented cost vector of any possible paths from v to
vd, h⃗ is then an admissible heuristic. If a heuristic satisfies
h⃗(v) ≤ h⃗(u) + c⃗(u, v), ∀u, v ∈ V , then h⃗ is a consistent
heuristic. A consistent heuristic is always admissible. The

2To identify a path, different names such as nodes [14], states [25] and
labels [5], have been used in the multi-objective path-planning literature. This
work uses “labels” to identify paths, and reserves “nodes” for the tree nodes
in the balanced binary search tree in the ensuing section.

3In the literature, another symbol ⪰ is also widely used to denote the
dominance relation between two vectors. We choose to use ⪯ in this work
since (i) the goal here is to minimize costs, and (ii) ⪯ is visually similar to
≤ (no larger than) and is more intuitive to read.

Algorithm 1 ERCA*

1: Backwards Dijkstra search to compute h⃗(v), ∀v ∈ V .
2: lo ← (vo, 0⃗), f⃗(lo)← 0⃗ + h⃗(vo)
3: Add lo to OPEN
4: F(v)← ∅, ∀v ∈ V
5: while OPEN ̸= ∅ do
6: l← OPEN.pop() ▷ Label extracted
7: if IsPrunByFront(l) or IsPrunByResour(l) then
8: continue ▷ Current iteration ends
9: FilterAndAddFront(l)

10: if v(l) = vd then
11: break ▷ The while loop ends
12: for all v′ ∈ GetNgh (v(l)) do ▷ Label expanded
13: l′ ← (v′, g⃗(l) + c⃗(v, v′))
14: parent(l′)← l
15: f⃗(l′)← g⃗(l′) + h⃗(v(l′))
16: if IsPrunByFront(l′) or IsPrunByResour(l′) then
17: continue ▷ Move to the next neighbor.
18: OPEN.insert(l′)
19: return Reconstruct(vd)

algorithm developed in this paper requires that the heuristic
is consistent, which will be revisited later.

Additionally, let f⃗(l) := g⃗(l) + h⃗(v(l)) denote the f -vector
of a label l. Intuitively, f⃗(l) provides a lower bound of the
path cost and resources to reach vd from vo by extending the
path represented by l. Let OPEN denote a priority queue of
labels, where labels are prioritized by their corresponding f⃗ -
vectors in the lex. order from the minimum to the maximum.
Finally, let F(u), u ∈ V denote the frontier set at vertex u,
which stores all non-dominated labels l at vertex u (i.e., v(l) =
u). Intuitively, each label l ∈ F(u), u ∈ V identifies a non-
dominated path from vo to u (Fig. 2(b)).

B. ERCA* Algorithm Overview

Our algorithm ERCA* is shown in Alg. 1. It begins with a
pre-processing step which runs exhaustive backwards Dijkstra
search from vd to all other vertices in the graph to compute the
heuristic. Specifically, a new graph G′

k, k = 1, 2, · · · ,M + 1
with the same set of vertices and edges as G is created. For
each edge e′ (or vertex v′) in G′

k, let e (or v) denote the cor-
responding edge (or vertex) in G. Then, e′ is associated with
a scalar cost value c′(e′) := gk(e), i.e., the k-th component
of the augmented cost vector of that edge. A Dijkstra search
is conducted from v′d to all other vertices v′ in G′

k so that an
optimal path π′ from v′ to v′d is computed. The cost value of
π′ in G′ provides the heuristic value hk(v), which is the k-th
component of the heuristic vector h⃗(v). After these Dijkstra
searches, the heuristic vector of all vertices in G are known.

After computing the heuristic, ERCA* creates an initial
label lo = (vo, 0⃗) at vertex vo with f⃗(lo) = h⃗(v(lo)), and
inserts lo into OPEN. Additionally, the frontier set F(v) at
any vertex v ∈ V is initialized as an empty set. In each
iteration of the search (Lines 6-18), a label with the lex.
minimum f -vector is extracted from OPEN for processing.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

The extracted label l is first checked for dominance against the
existing labels in the frontier set (Line 7) using the procedure
IsPrunByFront , where g⃗(l) is checked for dominance against
the g-vector of the existing labels in F(v(l)). The realization
of IsPrunByFront is elaborated in Sec. IV-C3, which is an
important procedure that affects the computational efficiency
of the search. If the label l is not pruned by dominance in
IsPrunByFront , l is then checked against the resource limits
in IsPrunByResour in Line 7. Specifically, IsPrunByResour
compares the Trunc(f⃗(l)) against the resource limits r⃗limit

(both vectors are of length M ). Since Trunc(f⃗(l)) is a lower
bound of the required resources to reach vd by extending the
path represented by label l, if any component of Trunc(f⃗(l))
is greater than the corresponding component of r⃗limit, label l
cannot lead to a feasible path to reach vd and is thus pruned.

If the extracted label l from OPEN is not pruned in
IsPrunByFront and IsPrunByResour , l is then added to the
frontier set F(v(l)) in FilterAndAddFront in Line 9. Specifi-
cally, FilterAndAddFront first removes any existing labels in
F(v(l)) that are dominated by l, and then adds l to F(v(l)).
The actual realization of FilterAndAddFront is detailed in
Sec. IV-C3. After FilterAndAddFront , ERCA* verifies if v(l)
reaches vd. If v(l) = vd, label l is guaranteed to represent a
minimum cost solution path and the entire search terminates
(Line 11). Otherwise (i.e., v(l) ̸= vd), label l is expanded by
generating new labels at all neighboring vertices of v(l) in G.
Specifically, for each adjacent vertex v′ of v (Line 12), a new
label l′ ← (v′, g⃗(l)+ c⃗(v, v′)) is created and then checked for
pruning using IsPrunByFront and IsPrunByResour . If l′ is not
pruned, l′ is added to OPEN for future expansion.

At the end of the search, the procedure Reconstruct either
returns a solution path by iteratively tracking the parent
pointers of labels from vd to vo, or returns failure if vd is
never reached by any label during the search. When failure
is returned, it indicates that the given RCSPP instance is
infeasible (i.e., unsolvable).

C. Fast Dominance Check

The frontier set F(v) at any vertex v ∈ V may contain
a large number of non-dominated labels, especially when
there are multiple resource limits (i.e., M is large). Therefore,
the realization of IsPrunByFront and FilterAndAddFront can
affect the overall runtime of Alg. 1 since both procedures are
repetitively invoked during the search. To expedite the search,
ERCA* employs several techniques from the multi-objective
path planning literature.

1) Lazy Dominance Check: The first technique employed
in ERCA* is referred to as lazy dominance check [14]. When
a new label l′ is generated and added to OPEN (Line 18 in
Alg. 1), the algorithm can either conduct “eager” dominance
check by immediately running dominance comparison to find
and remove any existing label l′′ in OPEN that is at the same
vertex as v(l′) (i.e., v(l′′) = v(l′)) and is dominated by l′, or
conduct “lazy” dominance check by deferring the check and
the removal of l′′ until l′′ is extracted from OPEN (Line 7 in
Alg. 1). It has been shown that running lazy check is more
runtime efficient for the overall search than running eager

Fig. 3. Visualization of F(u), Trunc(F(u)) and ND(u) for some vertex
u ∈ V . (a) shows the frontier set at u containing three labels l1, l2 and l3,
and the corresponding Trunc(F(u)) and ND(u). (b) shows the AVL-tree
corresponding to ND(u).

check [14]. ERCA* thus chooses to run lazy check: at Line 7
in Alg. 1, a label is checked for dominance and discarded after
it is extracted from OPEN and before being expanded.

2) Dimensionality Reduction: The second technique em-
ployed in ERCA* for fast dominance check is the so-called
“dimensionality reduction” [23]. With (i) a consistent heuristic
and (ii) an OPEN list where labels are prioritized using the
lex. order, the first component of the g-vectors corresponding
to labels that are extracted from OPEN are guaranteed to
be monotonically non-decreasing. The first component of
the g-vectors can thus be ignored in the dominance check,
and only the corresponding truncated vectors are needed
for comparison, which saves computational effort. Formally
speaking, let L = l1, l2, · · · , lK denote the sequence of labels
that are extracted from OPEN during the search. Given the
aforementioned condition (i) and (ii), it is guaranteed that
the first component of g⃗(lk), k = 1, 2, · · · ,K in L are
monotonically non-decreasing. During the search process of
Alg. 1, for any two labels lj , lk at the same vertex (i.e.,
v(lk) = v(lj)) with lk being extracted from OPEN after lj
(i.e., k > j), g⃗(lk) is dominated (or non-dominated) by g⃗(lj)
if and only if Trunc(g⃗(lk)) is dominated (or non-dominated)
by Trunc(g⃗(lj)). ERCA* leverages this idea in the procedures
IsPrunByFront and FilterAndAddFront , which is elaborated in
the next sub-section.

3) BBST-based IsPrunByFront and FilterAndAddFront:
The third technique employed by ERCA* to achieve fast dom-
inance check is using a balanced binary search tree (BBST)
to organize the truncated vectors corresponding to labels in
F(u) for each vertex u ∈ V , so that there is no need to iterate
every truncated vector for dominance check [27] and only a
subset of these truncated vectors need to be considered. This
section shows this BBST-based technique and the realization
of IsPrunByFront and FilterAndAddFront in ERCA*.

Given a label l, the goal of IsPrunByFront is to determine
whether g⃗(l) is dominated by g⃗(l′) for any existing label l′ ∈
F(v(l)). With the aforementioned dimensionality reduction
technique, IsPrunByFront only needs to compare Trunc(g⃗(l))
against Trunc(g⃗(l′)) for every existing label l′ ∈ F(v(l)).
Let Trunc(F(u)) := {Trunc(g⃗(l′)), l′ ∈ F(u)} denote the
set of truncated vectors of the g-vectors corresponding to
labels in F(u), u ∈ V , and let ND(u), u ∈ V denote
the non-dominated subset of Trunc(F(u)), where any two
vectors in ND(u) are non-dominated with respect to each
other. Fig. 3 provides an illustration of F(u), Trunc(F(u))
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Algorithm 2 IsPrunByFront(n, l)
INPUT: n is a node in an AVL-tree and l is a label

1: a← Trunc(g⃗(l))
2: if n = NULL then
3: return false
4: if n ⪰ a or n = a then
5: return true
6: if a <lex n then
7: return IsPrunByFront(n.left, l)
8: else ▷ i.e., a >lex n
9: if IsPrunByFront(n.left, l) then▷ Removed if M = 2

10: return true ▷ Removed if M = 2
11: return IsPrunByFront(n.right, l)

and ND(u). With an input label l, a simple realization of
IsPrunByFront runs a for-loop to iterate all b⃗ ∈ ND(u) and
checks if the given Trunc(g⃗(l)) is dominated by or equal to b⃗,
which has O(M |ND(v(l))|) worst-case runtime complexity.
We hereafter refer to this realization simply as the “for-loop”
realization, which is a baseline in our tests (Sec. VI).

To expedite the computation, ERCA* uses a BBST (and
more specifically an AVL-tree in this paper) TND(u) to
represent ND(u) for each vertex u ∈ V , where (i) each
node in TND(u) is a vector in ND(u), (ii) for any node n in
TND(u), its left child node n.left is lex. smaller than n while
its right child node n.right is lex. larger than n. As shown in
Alg. 2, IsPrunByFront is invoked with two input arguments,
where n is the root node of TND(v(l)) and l is the label to be
checked for dominance. Alg. 2 then recursively traverses the
TND(u) for dominance check as follows. The truncated vector
Trunc(g⃗(l)) of the input label l (denoted as a in Alg. 2) is first
compared with the current node n, and there are two cases:

• If n is empty (i.e., a NULL pointer), it means that a
leaf node of the tree is reached and a is non-dominated
(Line 2).

• If n is not empty, n is compared with a and the procedure
returns true if a is dominated by or is equal to n.

When none of these two cases hold, then IsPrunByFront starts
to look at the children based on whether a is lex. smaller or
larger than n, which leads to the following two cases.

• If a is lex. smaller than n, then only the left child (i.e.,
the left sub-tree) of n needs to be further traversed for
dominance checks (Line 7), because no node in the right
sub-tree can dominate a [27]. This is the case where
the computational effort is saved in comparison with the
aforementioned for-loop realization, since a subset of the
vectors are skipped during the tree traversal.

• If a is lex. larger than n, then both the left and the right
sub-tree of n needs to be traversed for dominance checks
(Line 9 and 11).

This BBST-based realization has O(M |ND(v(l))|) runtime
complexity, which is the same as the for-loop realization. How-
ever, in practice, the BBST-based realization can significantly
expedite the dominance check [27].

There are two special cases. When M = 1, the key of each
node in the BBST becomes a vector of length one (i.e., a scalar

Algorithm 3 Filter(n, l)
INPUT: n is a node in an AVL-tree and l is a label

1: a← Trunc(g⃗(l))
2: if n = NULL then
3: return
4: if a >lex n then
5: n.right←Filter(n.right, a)
6: else
7: n.left←Filter(n.left, a)
8: n.right←Filter(n.right, a)
9: if a ⪰ n then

10: Delete n from the tree
11: return

Note: the tree needs to be re-balanced after the entire
filtering process.

value) and the BBST always has a single node (which is the
root node). In this case, the dominance check becomes the
comparison of two scalars, which can be done in constant time.
This case has been extensively studied in the Bi-Objective A*
algorithm [14]. Another special case is when M = 2, the
theoretic runtime complexity of this BBST-based realization
can be further reduced from linear to log time, by removing
Line 9 and 10 from Alg. 2. Specifically, it is guaranteed that
when a is lex. larger than n, no node in the left sub-tree can
dominate a due to both the fact that M = 2 and the way in
which tree is constructed [27]. Consequently, at each node in
the tree, Alg. 2 goes to either the left or the right child, which
leads to a runtime complexity that is linear with respect to
the height of the tree. Since the tree is balanced, the height
of tree is O(log |ND(v(l))|). Therefore, the overall runtime
complexity of Alg. 2 when M = 2 is O(log |ND(v(l))|).

We now present the BBST-based FilterAndAddFront . Given
a label l, FilterAndAddFront first uses l to filter any existing
nodes in the tree TND(v(l)) and then adds Trunc(g⃗(l)) into
the tree. Adding a node into a BBST is a standard operation,
where the tree is rotated if needed in order to maintain the
balance of the tree. We now focus on the filtering step which
is presented in Alg. 3.

To filter the tree with a non-dominated label l, Alg. 3 is
invoked with two input arguments, where n is the root node
of TND(v(l)) and l is the label to be used to filter the tree. Note
that since Alg. 3 is always invoked after Alg. 2 in ERCA*,
the truncated vector Trunc(g⃗(l)) (denoted as a in Alg. 3) is
thus guaranteed to be non-dominated by any existing vectors
in the tree. If the input node is NULL (Line 2), the algorithm
terminates and returns. When the input node n is not NULL,
the algorithm verifies whether a >lex n.

• If a >lex n, there is no need to consider the left sub-
tree of n for filtering, since any node in the left sub-tree
of n must be non-dominated by a. The algorithm thus
recursively invokes itself to traverse only the right sub-
tree for filtering. Skipping the left sub-tree is the reason
that computational effort is saved in comparison with the
aforementioned for-loop realization.

• Otherwise (i.e., a <lex n), both the left and the right
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sub-trees need to be filtered (Line 7 and 8).
At the end (Line 10), n is checked for dominance against a,
and n is removed from the tree if n is dominated by a. After
invoking Alg. 3, if nodes are deleted, the tree can become
“highly unbalanced”, i.e., the height difference between the
left sub-tree and right sub-tree of a node n can be greater
than two. In this case, a single rotation operation related to n
cannot re-balance the tree, and one possible implementation to
re-balance the tree is to first mark the node to be deleted during
the filtering process, and then conduct an in-order traversal of
the tree while skipping the marked nodes. During this in-order
traversal, a new BBST is built. This implementation to re-
balance the tree takes O(M |ND(v(l))|) time. For the filtering
part (Alg. 3), in the worst case, the entire tree is traversed and
all nodes in the tree are to be deleted (from the leaves to
the root), which also takes O(M |ND(v(l))|) time. Although
this BBST-based FilterAndAddFront has the same worst-case
runtime complexity as the for-loop realization, as we will see
in the test results, BBST-based method can obviously expedite
the search in practice.

D. Bounded Sub-optimal ERCA*
ERCA* can leverage the heuristic inflation technique [20]

to trade off solution quality for runtime efficiency. Specifically,
in Lines 2 and 15 in Alg. 1, the f -vector of a label l can be
computed as f⃗(l) := g⃗(l) + w⃗ ∗ h⃗(l) (as opposed to f⃗(l) :=
g⃗(l)+ h⃗(l)), where w⃗ = (1+ ϵ, 1, · · · , 1) is a vector of length
M+1 with ϵ ≥ 0, and ∗ stands for the component-wise product
of two vectors of the same length. The inflation parameter
ϵ only takes effect on the first component of the augmented
cost vector. By doing so, ERCA* tends to greedily extract and
expand labels that are closer to vd, especially when ϵ is large.
As a result, this heuristic inflation technique often expedites
the A*-like search in practice while guaranteeing that the cost
c(π) of the computed solution path π is at most (1 + ϵ)c(π∗)
where π∗ denotes a true optimal solution path. Finally, for any
label l, its truncated f -vector Trunc(f⃗(l)) remains unchanged,
when inflating the heuristic, to make sure Trunc(f⃗(l)) is still
a lower bound of the resources needed to reach vd, which
guarantees that the computed solution path does not violate
the resource limits.

E. Properties of ERCA*
Theorem 1 (Completeness). Both ERCA* and the heuristic
inflated ERCA* either return a feasible solution or terminate
in finite time and returns failure if the given problem instance
is infeasible.

Proof. First, given a label l, to expand l, all possible neighbor-
ing vertices of v(l) are considered when generating new labels.
Second, at any time during the search, a label l is discarded
if one of the following two cases happens.

• (i) Label l is dominated by some existing label l′ with
v(l′) = v(l) (i.e., pruned by IsPrunByFront). In this case,
l can be discarded since any future path from l can be cut-
and-paste to l′ without increasing the cost or the resources
of the path.

• (ii) There is no feasible path to reach vd by using l
(i.e., pruned by IsPrunByResour). In this case, l can be
discarded since l cannot lead any feasible solution path
to reach vd.

Therefore, the search enumerates all paths from vo to any other
vertices and discards the infeasible and dominated paths. The
search terminates if a solution is found. Since G is finite, there
is a finite number of paths from vo to any other vertices. If
the search terminates without returning any solution path, it
means the given problem instance is infeasible.

Theorem 2 (Optimality). For a feasible problem instance, the
solution returned by ERCA* is a minimum cost solution path.

Proof. In ERCA*, OPEN prioritizes labels in the lex. order.
Therefore, every label l that is extracted from OPEN must
have the minimum f1 value among the remaining candidate
labels l′ ∈ OPEN. Since the heuristic is consistent,4 f1(l′), l′ ∈
OPEN is no larger than the true path cost to reach vd from l′.
As a result, the first label l that is extracted from OPEN and
reaches vd (i.e., v(l) = vd) is guaranteed to have the minimum
f1 value among all feasible paths from vo to vd.

Furthermore, if the heuristic is inflated as described in
Sec. IV-D, ERCA* is guaranteed to return a bounded sub-
optimal solution path.

Theorem 3 (Bounded Sub-optimality). For any label l, if
f⃗(l) := g⃗(l) + w⃗ ∗ h⃗(l) with w⃗ = (1+ ϵ, 1, · · · , 1) and ϵ ≥ 0,
then for a feasible problem instance, the heuristic inflated
ERCA* returns a bounded sub-optimal solution path π, whose
cost satisfies c(π) ≤ (1+ϵ)c(π∗), where π∗ is a minimum cost
solution path for that problem instance.

Proof. Let π∗ denote an optimal solution of the given instance,
and let l∗ denote the corresponding label that identifies this
optimal solution during the search. Since OPEN prioritizes
labels in lex. order based on their f -vectors and f⃗(l) := g⃗(l)+
w⃗ ∗ h⃗(l), for an extracted label l, it is guaranteed that f1(l) ≤
(1 + ϵ)f1(l∗) = (1 + ϵ)c(π∗) (note that f⃗(l∗) = g⃗(l∗) and
h⃗(l∗) = 0). Therefore, for any label l that reaches vd (i.e.,
v(l) = vd), we have f1(l) = g1(l) ≤ (1 + ϵ)c(π∗).

V. DISCUSSION

A. Relationship to EMOA*

As aforementioned, EMOA* is an algorithm that can com-
pute the entire Pareto-optimal front for a Multi-Objective Path
Finding problem. EMOA* conducts A*-like search in the
graph to iteratively construct paths from the start vertex to-
wards the goal vertex, while maintaining only non-dominated
paths from the start to any other vertex in the graph. Although
the problems solved by EMOA* and ERCA* are different,
these two algorithms are closely related and their relationship
is summarized as follows.

4Note that the consistency of the heuristic is required by the dimensionality
reduction technique for fast dominance check. In Alg. 1, if no dimensionality
reduction is used in IsPrunByFront , the heuristic only needs to be admissible.
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1) Common features: Both ERCA* and EMOA* [27] em-
ploy the three aforementioned fast dominance check tech-
niques to efficiently maintain a frontier set at each vertex v in
the graph to memorize non-dominated paths from vo to v.

2) Without pruning by solutions: ERCA* seeks to find a
single optimal solution while EMOA* aims to find a set of
non-dominated paths from vo to vd. Correspondingly, EMOA*
has the notion of the solution set S , which contains the set
of non-dominated solution paths that have been found thus
far during the search, and an additional pruning procedure,
which compares the f -vector of a label l against the f -vector
of each solution in S and discard l if l cannot lead to a non-
dominated solution path to reach vd. In contrast, ERCA* has
neither the notion of a solution set S nor the pruning using
existing solutions in S .

3) With pruning by resource limits: ERCA* has IsPrun-
ByResour , a pruning rule based on the resource limits, while
EMOA* does not. Pruning by resource limits is common
in algorithms for RCSPP. During the search of ERCA*,
the truncated f -vector of a label Trunc(f⃗(l)) provides an
underestimate of the resource needed to reach vd by extending
the path represented by that label, and ERCA* can compare
Trunc(f⃗(l)) against the resource limit to prune a candidate
label as early as possible during the search.

4) Termination condition: ERCA* terminates when the first
label l with vl = vd is extracted from OPEN (Line 11),
which guarantees that an optimal solution is found. In contrast,
EMOA* terminates when OPEN depletes, i,e., all labels in
OPEN are extracted and pruned since they are dominated by
some existing solution in the solution set of EMOA*.

B. Relationship to BiPulse
1) Best-first search: ERCA* searches G in a best-first

manner by iteratively expanding a label with the lex. minimum
f -vector in OPEN. In contrast, BiPulse [5] employs a depth-
first search (DFS) strategy to quickly find a feasible solution,
whose cost provides a primal bound (i.e., upper bound), and
then keeps tightening the primal bound. Note that BiPulse
also leverages the idea of combining best-first search strategy
with DFS [4] by introducing a depth limit on each DFS search
branch and by using a priority queue to store the DFS branches
that reach this depth limit. By doing so, BiPulse is able to
avoid diving too deep into unpromising DFS branches.

2) Without bi-directional search: BiPulse (and many other
algorithms for RCSPP and WCSPP) leverage the idea of bi-
directional search, while ERCA* does not. It remains an open
question how to combine bi-directional search with ERCA*
in the presence of multiple resource limits, which is listed as
our future work (Sec. VII).5

3) With fast dominance check: Although the idea of using
the dominance rule to prune paths during the search has
been widely used in the existing algorithms for RCSPP [5],

5Some recent fast algorithms for WCSPP leverages the fact that there are
only two criteria (cost and one resource called weight) and let the forward and
backward search use different orders of criteria to expedite the computation:
e.g. the forward search considers (cost, weight) as the g, h, f -vectors of paths
while backward search considers (weight, cost). It is worthwhile to investigate
how to generalize this technique to more than one resource.

[16], [33], these algorithms have little consideration about
addressing the computational burden of the dominance check.
In contrast, a key focus of ERCA* is to bypass the computa-
tional burden of the dominance check, which is a prominent
feature of ERCA*. Note that the technique of BBST-based fast
dominance check is also applicable to the existing algorithms
for RCSPP (e.g. BiPulse) by representing the frontier set at
each vertex as a BBST. Other techniques such as lazy check
and dimensionality reduction may not be directly applied to
these existing RCSPP algorithms as their search process is
different from ERCA*.

VI. NUMERICAL RESULTS

A. Test Settings and Implementation

We introduce two baselines for comparison. The first base-
line is BiPulse [5], an existing leading algorithm for RCSPP
that can address any number of resource limits. The second
baseline is ERCA* with the aforementioned for-loop realiza-
tion of dominance checks (as described in Sec. IV-C3) instead
of using BBSTs, and this baseline is hereafter referred to as
ERCA*-Naive. We implement both baselines and our ERCA*
in C++, and test them on a Ubuntu 20.04 laptop with an Intel
Core i7-11800H 2.40GHz CPU and 16GB RAM with compiler
optimization flag -o3. The BiPulse implementation has two
threads, one thread for the forward search and another thread
for the backward search, while the implementation of ERCA*
and ERCA*-Naive are both single-threaded. BiPulse has a
parameter δ that controls the depth limit of each depth-first
search branch. According to [5], BiPulse performs the best
when δ = 2 and we thus set δ = 2 in our tests.

We test the algorithms using three city road networks from
a online data set.6 We visualize the three networks used in this
article in Fig. 4. This data set is widely used in the RCSPP and
WCSPP literature, but limited to one cost and one resource.
For each road network, this data set provides distance (c1)
and travel time (c2) for each edge, and c1 is often used as
the cost to be minimized and c2 is used as the resource in
the literature [5]. As this article focuses on more than one
resource constraints, we introduce two more properties of
edges as follows, which are deterministic and reproducible.
Let deg(v) denote the degree (number of adjacent vertices) of
v ∈ V , and let deg(e) := deg(u)+deg(v)

2 , e = (u, v) ∈ E. If
deg(e) ≥ 4, c3(e) = 2, otherwise c3(e) = 1. The design of c3
is motivated by hazardous material transportation [10], where
the transportation in busy areas in a city can lead to higher risk
if leakage happens, and deg(e) is an indicator about how busy
an edge is. The fourth property of edges c4 is simply one for
all edges. In other words, given a path π, c4(π) is the number
of edges present in π. The intuition behind the design of c4
is that, the number of edges in a path indicates the number
of traffic intersections or stop signs where the vehicle often
needs to slow down or stop, which can reduce the comfort of
the driver and the passengers [15].

For all the tests, we use c1 as the cost to be minimized
and use the other properties as the resource. We test with both

6http://www.diag.uniroma1.it//∼challenge9/download.shtml

http://www.diag.uniroma1.it//~challenge9/download.shtml
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Fig. 4. Visualization of the graphs G = (V,E) used in the tests. The graphs are from a online data set and represent city road networks. The number of
vertices and edges in the graph are shown in each sub-figures. More details about these graphs are provided in Sec. VI-A.

two types of resources (c2, c3) and three types of resources
(c2, c3, c4). To set the resource limits r⃗limit, we follow the
convention in the RCSPP literature [28], which can be sum-
marized as follows. For each edge property ck, k ∈ {1, 2, 3, 4},
an optimal path πk is computed to minimize the accumu-
lated ck along the path. Let ci(πj), i, j ∈ {1, 2, 3, 4} denote
the accumulated ci along path πj . Then, the resource limit
rlimit,k−1, k = 2, 3, 4 corresponding to ck is defined as
(ck(π1) − ck(πk))p + ck(πk) where p ∈ [0, 1] is a parameter
that controls the tightness of the limits. In our tests, we always
use the same p for all resources ck, k = 2, 3, 4.

For each city road network, there are 50 start-goal pairs
provided in [17], and we use these start-goal pairs in our
tests. Each start-goal pair is referred to as an instance, and we
set a five minutes (i.e., 300 seconds) runtime limit for each
instance. Both BiPulse and ERCA* require the backwards
Dijkstra search at the beginning of the algorithm, and the time
needed for the backwards Dijkstra search are excluded from
the runtime of the algorithm reported next.

B. Two Resource Limits with Different Tightness

We begin by testing the algorithms in the NY road network
with two resource limits and vary the tightness parameter
p ∈ {0.2, 0.5, 0.8}. The results are shown in Fig. 5. For
visualization purposes, we order the instances based on the
runtime taken by ERCA* to solve them. Note that when there
are more than one resource limit and p < 1, an instance can
be infeasible, since there may not exist any solution path that
simultaneously satisfies all resource constraints. We eliminate
from the figure the data points corresponding to both the
infeasible instances and the instances where all algorithms
time out.

As shown in Fig. 5, first, both ERCA* and ERCA*-Naive
often run several orders of magnitude faster than BiPulse,
which shows the advantage of the proposed A*-based search
in ERCA* and ERCA*-Naive over the depth-first search in
BiPulse. Second, we add a green dotted curve in the figure to
show the runtime ratio of ERCA* over ERCA*-Naive. It can
be observed that, for the instances with small indices in Fig. 5,

both ERCA* and ERCA*-Naive can solve them quickly (i.e,
in less than 0.1 seconds). For those instances, the runtime ratio
is around or above one, which means, the advantage of using
BBST in ERCA* is not obvious.

However, for instances that take longer time to solve,
ERCA* runs up to an order of magnitude faster than ERCA*-
Naive, which verifies the advantage of using BBST in ERCA*
for fast dominance checks. Additionally, note that, the green
dotted curve goes up at the rightmost side of the figure, and
the reason is that ERCA*-Naive times out for these instances
(and the counted runtime is 300 seconds), while ERCA* can
still solve them with an increased runtime, which makes the
ratio higher. Finally, when p decreases, the resource limits
become tighter and leads to fewer feasible instances as shown
in Fig. 5(c). For the rest of the tests, we fix p = 0.8 to ensure
that most of the instances are feasible.

C. Internal Running Status of ERCA*

We then test ERCA* and the two baseline methods with
two resource constraints in BAY, a different and larger graph,
and similar results can be observed in Fig. 6(a). To better
understand the running status of ERCA*, we visualize some
hardware independent indicators about the internal running
status of the algorithm. In all three sub-figures in Fig. 6, the
instances are organized with the same indices.

Every time when Alg. 1 reaches Line 12 to get neighbors
for a label, we say a label is expanded and the number of
expansion increases by one. Similar notion of expansion can
also be found in BiPulse, and Fig. 6(b) shows the number of
expansion (#Exp.) for both ERCA* and BiPulse. Note that the
computational burden of each iteration in BiPulse and ERCA*
are different since both algorithms are different. Therefore the
number of expansion of both BiPulse and ERCA* cannot
be directly compared, and the reported data in Fig. 6(b) can
only serve as a reference about the computational burden. Fig.
6(c) counts the size of the frontier sets at all vertices and
reports the average of {|F(v)|, ∀v ∈ V } and max∀v∈V |F(v)|.
Fig. 6(c) also shows the length of the solution path. We can
observe that, for instances whose solution path length is less
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Fig. 5. Numerical results of BiPulse (baseline) ERCA*-Naive (another
baseline) and ERCA* (ours) with two resource limits in NY road network.
The horizontal axis shows the indices of the test instances. The star, cross
and circle markers are against the left vertical axis to show the runtime of
each instance. The green dotted curve is against the right vertical axis to show
the runtime ratio of ERCA* over ERCA*-Naive. Both ERCA* and ERCA*-
Naive are often several orders of magnitude faster than BiPulse, and ERCA*
is up to an order of magnitude faster than ERCA*-Naive.

than 200, the advantage of ERCA* is not obvious and the
existing BiPulse can also solve these instances quickly. As
the path length increases, ERCA* runs faster than BiPulse.
Finally, it can be observed from the figure that, instances that
take longer runtime to solve often require a larger number of
expansions, and have more non-dominated paths from vo to
other vertices in the graph on average.

D. Three Resource Limits with Different Heuristic Inflation

Finally, we test ERCA* and its bounded sub-optimal variant
with three resource limits in FLA, a larger graph with more
than a million vertices. We test ϵ = 0 (i.e., the original
ERCA*), ϵ = 0.1, 0.2 and report the success rates, runtime,
and cost ratio statistics in Table II. The cost ratio is the solution
cost computed by the heuristic inflated ERCA* divided by the
solution cost computed by ERCA*. We observe that, having
a small ϵ (e.g. 0.1) can increase the success rates and reduce

Fig. 6. Results of BiPulse, ERCA*-Naive and ERCA* with two resource
limits in BAY road network. The horizontal axis shows the indices of the
test instances and all three plots share the same horizontal axis. Different
from Fig. 5, where all three sub-plots share the same legends, this figure
shows different data and uses different legends in the three sub-plots. In
(a), the runtime of the algorithms is shown. In (b), #Exp. stands for the
number of expansions. In (c), the green bar shows the size of the largest
frontier set at any vertex in the graph when the ERCA* search terminates
(i.e., max∀v∈V |F(v)|), while the yellow bar shows the average size of the
frontier set at any vertex. The black curve shows the solution path length (i.e.,
the number of vertices in the path) against the right vertical axis. ERCA* is
advantageous than ERCA*-Naive for instances larger frontier sets, i.e., more
non-dominated paths from vo to other vertices in the graph.

the runtime in comparison with ERCA* without any heuristic
inflation (ϵ = 0). Additionally, the cost ratios offered by the
heuristic inflated ERCA* in practice is often much smaller
than the theoretic bound (1 + ϵ).

However, no further improvement is observed by keeping
increasing ϵ (i.e., from 0.1 to 0.2). Additionally, we observe
from our tests that, there are four instances where ERCA* (ϵ =
0) succeeds while ERCA* (ϵ = 0.1) fails. The possible reason
is that, with an inflated heuristic, ERCA* tends to greedily
search towards vd, which may lead to infeasible paths due to
the resource limits, and the search effort is thus wasted. We
leave the further investigation of sub-optimal algorithms for
RCSPP as our future work.
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ϵ Succ. / Total Inst. Avg. R.T. Max. R.T. Avg. C.R. Max. C.R.
0 28/50 28.34 205.16 - -
0.1 34/50 3.02 23.56 1.012 1.055
0.2 34/50 2.97 24.27 1.022 1.115

TABLE II
NUMERICAL RESULTS OF ERCA* WITH DIFFERENT HEURISTIC INFLATION
RATES ϵ IN THE FLA MAP WITH THREE RESOURCE LIMITS. THE SECOND

COLUMN “SUCC. / TOTAL INST.” SHOWS THE NUMBER OF INSTANCES
THAT ARE SUCCESSFULLY SOLVED BY THE ALGORITHM WITHIN THE

RUNTIME LIMIT AND THE TOTAL NUMBER OF INSTANCES. FOR THE LAST
THREE COLUMNS: “R.T.” STANDS FOR RUNTIME; “C.R.” STANDS FOR

SOLUTION COST RATIO; “AVG.” AND “MAX.” STANDS FOR THE AVERAGE
AND MAXIMUM RESPECTIVELY. THESE NUMBERS ARE CALCULATED

BASED ON THE INSTANCES THAT ARE SOLVED BY ALL THREE
ALGORITHMS WITHIN THE RUNTIME LIMIT.

Finally, we discuss the computational effort of ERCA*
as the number of resource constraints varies. From our test
results, we do not observe clear trends and there are two
possible factors that affect the search efficiency. First, when
the number of resource constraints increases, the r⃗, g⃗, f⃗ vec-
tors have longer length and the dominance checks become
computationally more expensive, which can slow down the
ERCA* search. Second, as the number of resource constraints
increases, a path is pruned in the IsPrunByResour procedure
if that path violates any one of the resource constraints. As a
result, it may reduce the number of paths to be maintained in
the frontier set at a vertex, and therefore expedite the search.
For the future work, one can further investigate the efficiency
of ERCA* as the number of resources vary in a specific
application domain.

VII. CONCLUSION AND FUTURE WORK

This article developed ERCA*, a fast A*-based algorithm
that can handle multiple resource constraints for RCSPP.
ERCA* is able to expedite the computation by bringing
together the existing RCSPP techniques and the recent multi-
objective search techniques within the same framework. We
also developed a variant of ERCA* that can trade-off so-
lution quality for runtime efficiency, by quickly finding a
bounded sub-optimal solution without violating any resource
constraints. We tested ERCA* on city-like maps from a public
dataset. The results verified the importance of fast dominance
check when solving RCSPP, and showed that ERCA* runs
several orders of magnitude faster than BiPulse, an existing
leading algorithm for RCSPP.

For future work, one can further investigate how to leverage
the idea of bi-directional search [1], [33] to expedite ERCA* in
the presence of multiple resource limits. Additionally, ERCA*
as well as its predecessors mainly consider graphs with non-
negative costs and resources defined over the edges. It remains
an open question about how to extend these fast A*-based
algorithms to handle RCSPP with negative cost and resources
defined over the vertices or edges in the graph, which arise
in path planning problems for vehicles with recharging or
refueling along the paths [6], [19], [21], [32]. One possibility
to extend ERCA* to handle negative costs is to introduce
a mechanism that can detect negative cycles/loops in the
graph and modify the expansion step in the search when

negative cycles are detected. Finally, one can compare and
combine the heuristic inflated ERCA* with the approximation
algorithms [13], [18], [34] for RCSPP to quickly find bounded
sub-optimal solutions for challenging instances.
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