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Graphs drawn in the plane are ubiquitous, arising from data sets through a variety
of methods ranging from GIS analysis to image classification to shape analysis.
A fundamental problem in this type of data is comparison: given a set of such
graphs, can we rank how similar they are in such a way that we capture their
geometric “shape” in the plane?

We explore a method to compare two such embedded graphs, via a simplified
combinatorial representation called a tail-less merge tree which encodes the
structure based on a fixed direction. First, we examine the properties of a distance
designed to compare merge trees called the branching distance, and show that the
distance as defined in previous work fails to satisfy some of the requirements of a
metric. We incorporate this into a new distance function called average branching
distance to compare graphs by looking at the branching distance for merge trees
defined over many directions. Despite the theoretical issues, we show that the
definition is still quite useful in practice by using our open-source code to cluster
data sets of embedded graphs.

1. Introduction

Embedded graphs appear in a wide variety of applications, including map reconstruc-
tions, GIS data, shape analysis, and medical imaging. Such graphs are more than
simple abstract representations, since they have geometric information attached,
usually in the form of coordinates and edge lengths. When faced with data of
this type, an immediate question to ask is then how to compare them, so that we
can apply techniques like clustering, image recognition, or machine learning. In
essence, we seek a distance measure, which given two input graphs returns a number
representing how similar they are. Ideally, this value should be zero if they are the
same, and take increasing values for increasingly different embedded graphs.
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While solving this problem perfectly is of course difficult in practice, many
examples of graph distances do exist in the literature. One well-known example is
the graph-edit distance [Gao et al. 2010], which gives a cost to inserting or removing
vertices and edges; the distance is then the minimum possible sequence of edge and
vertex operations when transforming one graph into the other. Unfortunately, this
particular measure does not take any embedding information into account, so two
graphs with identical vertices and weights which are embedded in a very different
configuration will still have zero distance.

In this paper, we develop and implement a technique to compare 2-dimensional
embedded graphs, such as those generated from GIS data or skeletonization of
images. We note that there are available options which are close to our work, where
distances are specifically built to take the embedding into account [Ahmed et al.
2014; Cheong et al. 2009; Biagioni and Eriksson 2012; Alt et al. 2003; Karagiorgou
and Pfoser 2012; Buchin et al. 2017]. However, we seek to develop a faster pipeline
which incorporates graph simplification while still retaining at least part of the
geometric embedding information. More specifically, we compare embedded graphs
by replacing them with a simpler graph which still encodes some aspect of the
structure.

Our algorithm fixes a direction in the plane and computes the merge tree of the
graph, which is a tree with a real-valued function representing how the connected
components of sublevel sets of the graph change in that direction; see, e.g., Figure 1.
To be able to compare merge trees in a meaningful way, we need a distance function
that is computable, accurate, comprehensive, and versatile. There are many possible
options for metrics to compare merge trees specifically, including the edit distance
[Sridharamurthy et al. 2020] and interleaving distance [Morozov et al. 2013; Munch
and Stefanou 2019; Gasparovic et al. 2019; Yan et al. 2020]. In this paper, we
use the branching distance for merge trees [Beketayev et al. 2014]. Then, to avoid
bias caused by fixing a single a direction, we rotate the graphs, calculating the
merge trees at each rotation, and compare all of the resulting merge trees. We
take the median of these distances, naming this distance as average branching
distance.

The branching distance for merge trees [Beketayev et al. 2014] builds on the
idea of a branch decomposition for a broader class of trees, introduced in [Pascucci
et al. 2005]. However, in the course of our work, we have discovered an issue with
the definition presented in [Beketayev et al. 2014], caused by ignoring the infinite
tail present in merge trees. The result is that the distance as defined does not satisfy
the properties of a metric, and we provide counterexamples to that effect. We then
prove that this issue propagates into the average branching distance, so it also is not
a metric, semimetric, or pseudometric. We also explore its theoretical properties on
simple classes of graphs such as convex polygons.
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Despite this, we show that the average branch decomposition is still a useful tool
for distinguishing embedded graphs in practice. To test its utility on practical exam-
ples, we tested it with visualizations such as dendrograms and lower-dimensional
embeddings, using a range of available data sets. Our code is posted publicly
[Batakci et al. 2020]. We found that despite the theoretical issues, the distance still
is potentially useful for understanding real data.

2. Background

In this section, we give the relevant background terminology and results in graph
theory and merge trees, culminating in the definition of the branching distance for
merge trees (Definition 2.4).

2A. Graph theory. Here, we provide a brief discussion of relevant terms from
traditional graph theory, following [Bondy and Murty 2008].

A graph G = (V, E) consists of a set of vertices V = V (G) and a set of unordered
pairs of vertices called edges E = E(G). An edge e = uv is incident to both of
its endpoints u and v. An edge deletion operation removes an edge from E(G).
A vertex deletion operation removes a vertex v from V (G) and removes all edges
incident to v from E(G)

A loop is an edge such that both endpoints are the same vertex. Two edges are
called parallel if their endpoints share the same vertices. A simple graph has no
loops or parallel edges. The degree of a vertex v is the number of edges incident
to v, with loops counting as two edges.

A subgraph H of a graph G, denoted by H ⊆ G, is a graph with V (H) ⊆ V (G)

and E(H) ⊆ E(H). Note that a subgraph of G can be obtained by performing a
combination of vertex deletions and/or edge deletions on G. An induced subgraph
of G is a subgraph obtained solely by vertex deletions in G. In this case, we say
that H is a subgraph induced by A if V (H) = A ⊆ V (G). Two graphs G and H
are isomorphic when there exists a bijective mapping between the vertices of G
and H that preserves adjacency.

A path in a graph is a sequence of ordered vertices v1, . . . , vn with edges vivi+1

for i = 1, . . . , n −1. A graph is connected if every pair of vertices can be connected
by a path. A connected component of a graph G is a connected subgraph H ⊆ G
which is not contained in a larger connected subgraph. A cycle is a path whose
starting and ending vertices are the same vertex. A graph is acyclic if it has no
subgraph which is a cycle graph. A tree is a connected acyclic graph, and a forest
is a graph solely consisting of trees.

We assume we have a topological graph, where each edge can be considered as
a copy of the unit interval. Let G be a topological graph and let f be a function
on G, f : G → R, providing every vertex and point on each edge of the graph with
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Figure 1. The sublevel sets of a graph below and at two values,
j, k ∈ R; and the tail-less merge tree of the graph.

a placement on the real number line. See an example in Figure 1. For a fixed a ∈ R,
the sublevel set at a is an induced subgraph H of G such that any vertex with a
function value in (a, ∞) is deleted; that is, it is the subgraph induced by the set of
vertices with function value f (v) ≤ a. In this case, we write H = f −1((−∞, a]).
The sublevel set below a is the subgraph induced by the set of vertices with function
value f (v) < a. A component is a set of connected vertices in the sublevel set A.

2B. Merge trees. A merge tree is a representation of the connected components of
sublevel sets of a graph with an R-valued function. The vertices of a merge tree
represent changes in connectedness of the input graph and its edges encode the
relationships between these changes. In this way, the merge tree serves as a less
complex representation of the graph. What follows is a formal definition of a merge
tree closely related to the dendrogram definition of [Carlsson and Mémoli 2010].

A merge tree M is a structure defined on a graph G with a function f : G → R

which encodes the changing connected components of f −1(−∞, a] for a shifting
value a. For simplicity, we assume the function is entirely determined by values on
the vertices f : V (G) → R given by v 7→ f (vi ) and extended linearly to the edges.
We use the following notation to define merge trees. Fix a connected set A ⊆ R. Let
f −1(A) denote the induced subgraph of G containing just the vertices v ∈ G such
that f (v) ∈ A. Fix a connected subgraph C ⊆ G. Define the minima µ(C) of C
to be the set of vertices in C having no neighbors of lesser function value, that is,

µ(C) = {v ∈ V (C) | f (v) ≤ f (w) for all (vw) ∈ E(C)}.

Let the identified components on A be defined as

0(A) = {µ(C) | C is a connected component of f −1(A)}.

Note that 0(A) is a set of sets and that its elements are in one-to-one correspondence
with the connected components. Let the change in connectedness 1(a) at a be
defined as 0((−∞, a])\0((−∞, a)). Note that there is a change in connectedness
in the sublevel sets of G at a if and only if 1(a) ̸= ∅.
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We note that we are defining merge trees as used in [Beketayev et al. 2014], which
means that we inherited a bug in the definition from what they work with implicitly.
Normally, a merge tree would have an infinite upwards tail representing the fact
that a connected component is always visible in f −1(∞, a] for a greater than the
maximum value. However, [Beketayev et al. 2014] does not utilize this tail, cutting
off the merge tree at the last merge. For this reason, we call this construction the
tail-less merge tree to distinguish it from more standard mathematical constructions.
For the remainder of the paper, we call this construction simply the “merge tree”
unless there is potential for confusion.

Definition 2.1 (tail-less merge tree). The (tail-less) merge tree M of a graph G
with function f : G → R is a graph given by

V (M) = {L | L ∈ 1(a), a ∈ R},

E(M) = {L1L2 | L1 ∈ 1(a) for a ∈ R, L2 ∈ 0((−∞, a)) and L2 ⊂ L1},

with function defined by

fM : V (M) → R, L 7→ a | L ∈ 1(a).

To understand these definitions, consider the example of Figure 1. First, consider
function value j = f (c) for vertex c. The highlighted portion of the leftmost graph
represents f −1((−∞, j)), which has only vertices a and b. The two connected
components are identified as C1 and C2. Furthermore, µ(C1)={a} and µ(C2)={b}.
Thus, 0((−∞, j))={{a}, {b}}. The second graph represents f −1((−∞, j]), where
the only connected component is identified as C3. Here, µ(C3) = {a, b} and
0((−∞, j]) = {{a, b}}. It follows that 1( j) = {{a, b}}.

Now we will compute 1(k), where k = f (e) for vertex e by considering the third
and fourth graphs in Figure 1. We see that µ(C3) = {a, b} and µ(C4) = {d}. Thus,
0((−∞, k)) = {{a, b}, {d}} Furthermore, µ(C5) = {a, b, d} and 0((−∞, k]) =

{{a, b, d}}. It follows that 1(k) = {{a, b, d}}.
In the far right of Figure 1, we show the merge tree for the input graph and

function. Each vertex v of the merge tree with f (v) = a is labeled with its
corresponding element L ∈ 1(a). Edges are included between vertices L1 and L2

when L1 ⊂ L2.

2C. Merge tree for a fixed direction. In this paper, we will consider graphs with a
map to R2. In the case that this map is injective, the result is an embedded graph.1

We can then pick a direction in the plane by fixing an angle ω for the orientation
and calculating function values for a vertex as the magnitude of the projection of the
original position vectors onto ω. So, from the input f : G → R2, we get a function

1While we will often be interested in embedded graphs in practice, much of the work in this paper
does not require the assumptions of injectivity.
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Figure 2. Two (nearly identical) embedded graphs at two different
rotations with the associated merge trees.

fω : G → R for each angle ω ∈ [0, 2π). We normalize this function by shifting the
function values to have median vertex value equal to 0. We get the same function if
we think of rotating the graph in the plane and computing the height function in the
vertical direction; i.e., fω(v) is given by the y-coordinate of f (v). Then, we can
compute the merge tree of the graph for each direction. See the example of Figure 2.

2D. Branching distance. In order to compare two merge trees, we use the following
distance as defined in [Beketayev et al. 2014], which we call the branching distance.
Note that this definition utilizes the tail-less merge tree construction as defined above.

In what follows, we assume the tail-less merge tree is a nonempty, connected
graph. The root of the merge tree is the vertex with highest function value. A merge
tree is trivial if it consists of a single vertex. For a nontrivial merge tree M , a saddle
is any vertex with degree ≥ 2, and a minimum is any nonroot vertex with degree 1.
For a trivial merge tree, the only available vertex is considered to be both the root
and a minimum. A root branch is a pairing of some minimum mr with the highest
function value vertex sr of the merge tree.

Definition 2.2 (branch decomposition). A branch decomposition B of a tail-less
merge tree M is collection of pairs B = {(mi , si )}i consisting of a minima mi and
either a saddle or the root si . Every vertex appears in at least one pair. Further, for
each pair there is a descending path from the saddle si to the minimum mi , no two
such paths share an edge, and every edge appears in at least one such path.

We note that in the case of a trivial merge tree with a single vertex v, the only
possible branch decomposition consists of the single degenerate branch {(v, v)}. For
a nontrivial merge tree in general position (i.e., the number of edges adjacent and
below any vertex is at most two), all saddles and minima (with the possible exception
of the root) appear in exactly one pair of the branch decomposition. If a saddle
vertex has k edges below it, then it will occur in k − 1 pairs. We can then represent
these branches and the relationships between them in a graph of their own as follows.

Definition 2.3 (rooted tree representation). A rooted tree representation R of a
branch decomposition B is a graph with vertex set given by V (R) = B. An edge
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between (m, s) and (m′, s ′) is included in E(R) if and only if one of the saddles,
s or s ′, is on the path between the other pair. That is, either s is on the path from
m′ to s ′, or s ′ is on the path from m to s. We denote the set of all rooted tree
representations of a merge tree M by SM .

See Figure 3 for an example of a merge tree with its possible branch decomposi-
tions and the associated rooted tree representations.

Some graphs may have only a single connected component across all nonempty
sublevel sets, so we extend the definition of rooted tree representations to include
trivial merge trees. A trivial merge tree is a single vertex with the function value of
the lowest vertex of the original graph. The trivial merge tree’s only rooted tree
representation is a single vertex with both elements having the function value of
the single vertex of the merge tree.

Branching distance utilizes comparisons between rooted tree representations in
order to compare merge trees. To compare rooted tree representations RX and RY

of merge trees X and Y, we form a matching from one vertex set to the other.
We say that an isomorphism of two rooted trees preserves order when it maps
children of a vertex in one tree to the children of its image in the other tree. Then
a matching is an order-preserving isomorphism γ : M X

→ MY for subsets of
the vertices M X

⊆ V (RX ) and MY
⊆ V (RY ). The vertices in M X and MY are

called matched. The remaining vertices are said to be removed and are denoted
by E X

= V (RX ) \ M X and EY
= V (RY ) \ MY. A matching is valid when the

subgraphs of RX and RY induced by M X and MY respectively are trees and at least
one root branch for each has not been removed.

Having fixed a matching γ : M X
→ MY, we now define the cost of the matching

by incurring a cost for each vertex. The cost of matching two vertices γ (u) = v,
where u = (mu, su) ∈ RX and v = (mv, sv) ∈ RY, is the maximum of the absolute
function value difference of their corresponding elements,

mc(u, v) = max (|mu − mv|, |su − sv|).

The cost of removing a vertex u ∈ RX
∪ RY is half the absolute function value

difference of the elements of the vertex,

rc(u) =
1
2 |mu − su|.

We say that two rooted tree representations RX and RY are ε-similar when we
can find a valid matching γ : M X

→ MY where the maximum cost does not exceed ε.
That is,

max
u∈M X

mc(u, γ (u)) ≤ ε and max
u∈E X ∪EY

rc(u) ≤ ε.

Specifically, the smallest ε for which the above two inequalities hold is denoted by

εmin(RX , RY ) = min
γ :M X →MY

max
{

max
u∈M X

mc(u, γ (u)), max
u∈E X ∪EY

rc(u)
}
.
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Figure 3. A merge tree M is shown at left. All of M’s branch de-
compositions are shown in top right row, with each root highlighted
red. The corresponding rooted tree representations are shown in
the bottom right row.

Definition 2.4 (branching distance). The branching distance between two merge
trees X and Y is the smallest εmin out of every possible pair of rooted tree represen-
tations, namely

dB(X, Y ) = min
RX ∈SX ,RY ∈SY

(εmin(RX , RY )). (1)

A naive approach to computing this distance would result in an exponential
time complexity. Thus, we use the optimized algorithm described in [Beketayev
et al. 2014]. The function ISEPSSIMILAR determines whether two merge trees can
be matched within a given tolerance ε and is the core of the branching distance
algorithm. The runtime complexity of ISEPSSIMILAR is O(N 2 M2(N + M)), where
N and M are the number of leaves of the input trees. A binary search with a
specified error tolerance is performed to determine εmin, the branching distance.

3. Properties of the branching distance

In this section, we consider and prove properties of the branching distance, showing
that it is a semimetric but not a metric when defined on tail-less merge trees. We
then define a new distance measure between two geometric graphs that is based on
the branching distance, which we call the average branching distance. We prove
that the average branching is a distance function but is not a metric, as two graphs
can have average branching distance equal to 0 without being equivalent graphs.

Here, we define distance in the following way, as in [Conci and Kubrusly 2017].

Definition 3.1. Consider a function d : X ×X → R≥0 on a collection of objects X .
Some commonly used properties that such a function might satisfy are:
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(i) (symmetry) For all x, y ∈ X , d(x, y) = d(y, x).

(ii) (nonnegativeness) For all x, y ∈ X , d(x, y) ≥ 0 and d(x, x) = 0.

(iii) (positiveness) For all x, y ∈ X , d(x, y) = 0 implies x = y.

(iv) (triangle inequality) For all x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(z, y).

A function d : X ×X → R≥0 is called a distance if it satisfies (i) and (ii). It is a
semimetric if it satisfies (i)–(iii), but not necessarily (iv). It is a pseudometric if it
satisfies (i), (ii), and (iv), but not necessarily (iii). It is a metric if it satisfies (i)–(iv).

3A. Metric properties of branching distance. In this section, we will show that
the branching distance on tail-less merge trees satisfies properties (i)–(iii) above,
making it a semimetric. However, we will also provide a counterexample to the
triangle inequality, proving that the branching distance is not a metric. Throughout
this section, let X , Y, and Z be merge trees. We will abuse notation by writing m
and s for both the vertices in the merge tree that they represent, and for the function
value of those vertices. We first show symmetry. To show that dB(X, Y )=dB(Y, X),
we will show that we obtain the same minimum εmin when comparing X to Y as
we obtain when comparing Y to X .

Lemma 3.2. εmin(RX , RY ) = εmin(RY , RX ).

Proof. Let u = (mu, su) ∈ RX and v = (mv, sv) ∈ RY be vertices. Because of the
symmetry of the absolute value expressions, we have

mc(u, v) = max(|mu − mv|, |su − sv|)

= max(|mv − mu|, |sv − su|) = mc(v, u).

This means that maxu∈M X mc(u, γ (u)) = maxv∈MY mc(v, γ (v)), so we obtain
the same εmin for the matching costs. By definition of union, maxu∈E X ∪EY rc(u) =

maxu∈EY ∪E X rc(u), so we obtain the same minimum ε for the removal costs. The
εmin are the same regardless of order, so the minimum ε that satisfies both will be
the same regardless of the order in which we compare the rooted branchings. □

Corollary 3.3. dB(X, Y ) = dB(Y, X).

Proof. Because our function considers all possible edits, and by Lemma 3.2, the
minimum satisfying ε is the same regardless of the order of the rooted branchings,
the cheapest edit from X to Y will be the cheapest edit from Y to X , and the
minimum εmin will be the same. □

We next show nonnegativeness of the branching distance.

Lemma 3.4. dB(X, Y ) ≥ 0.

Proof. The distance between any two graphs is nonnegative as all costs are nonneg-
ative due to the absolute value expressions. □



374 BATAKCI, BRANSON, CASTILLO, TODD, CHAMBERS AND MUNCH

Lemma 3.5. dB(X, X) = 0.

Proof. To show that dB(X, X) = 0, we will show that if X = Y then dB(X, Y ) = 0.
Suppose X = Y. Then there is an isomorphism γ : V (X) → V (Y ) which preserves
function values. We select branches (u, v) ∈ X and (γ (u), γ (v)) ∈ Y for our branch
decompositions such that all relations are preserved and corresponding vertices
have equivalent function values. This means max mc(u, γ (u)) = 0 and we do not
need to make any vertex deletions, so max rc(u) ≤ 0. Hence, dB(X, Y ) = 0. □

Lemma 3.6. If dB(X, Y ) = 0 then X = Y.

Proof. Suppose dB(X, Y ) = 0. Then there exists a pair of rooted branchings
RX

∈ BX and RY
∈ BY such that

max
u∈M X

mc(u, γ (u)) ≤ 0 and max
u∈E X ∪EY

rc(u) ≤ 0.

If maxu∈M X mc(u, γ (u)) = 0 then, for every pair of matching vertices u and v,

max (|mu − mv|, |su − sv|) = 0.

This means that all corresponding vertices in the merge trees must have equivalent
function values.

The requirement that max rc(u) = 0 is only satisfied when either all removals
cost 0, or when we do not need to remove any vertices. A removal cost of 0
would mean that a minimum has the same function value as its saddle for some
nonroot branch, which would not be included in a merge tree; hence the rooted tree
representations must contain the same number of vertices.

We therefore have a bijective mapping between the vertices of X and Y that
preserves function values and the relations between nodes. We consider isomorphic
graphs with identical function values to be equivalent; hence X = Y. □

We next give a counterexample to the triangle inequality.

Theorem 3.7. The branching distance does not satisfy the triangle inequality, and
therefore is not a metric.

Proof. To prove this, we provide a counterexample to the triangle inequality, that is,
a collection of three merge trees for which dB(X, Y ) ≥ dB(X, Z) + dB(Z , Y ).

Consider the merge trees in Figure 4. When comparing X and Y we observe
that the removal cost of any of the nodes will be less than the matching cost, so to
determine the optimal edit from X to Y we need to select the root branches with
the lowest comparison cost. We see that leaves b and f are the closest in function
value, so our optimal edit will select (b, a) as our root branch for X , ( f, d) as our
root branch for Y, and delete (c, a) and (e, d). Our most expensive edit results from
comparing the root branches and gives a minimum ε of 5; hence dB(X, Y ) = 5.
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Figure 4. Merge trees for the counterexample to the triangle inequality.

When comparing Y and Z , we observe that the removal cost of the nodes will
also be less than any matching cost, so to determine the optimal edit from Y into Z
we need to select the root branches with the lowest comparison cost. We see that
leaves f and h are closest in function value, so our optimal edit will select ( f, d)

as our root branch for Y, (h, g) as our root branch for Z , and delete (e, d), ( j, g),
and (k, g). Our most expensive edit results from comparing the root branches and
gives a minimum ε of 3; hence dB(Y, Z) = 3.

When comparing X and Z , we observe that removing (g, h) will always be
cheaper than comparing it, so we have to select a different root branch for Z . We
also observe that the removal cost of any remaining vertex will be more expensive
than comparing it, so we can form an optimal edit by removing (h, g) and comparing
the remaining vertices with the closest function values. We select either root branch
for X and compare (b, a) to ( j, g) and (c, a) to (k, g) to obtain an optimal edit
with a minimum ε of 1; hence dB(X, Z) = 1.

Putting this together, we have that dB(X, Y ) = 5, dB(Y, Z) = 3, dB(X, Z) = 1,
and hence

dB(X, Y ) = 5 ≥ 3 + 1 = dB(X, Z) + dB(Z , Y ),

contradicting the triangle inequality. As a consequence of this, the branching
distance is not a metric. □

3B. Average branching distance. Branching distance (Definition 2.4) is defined
for comparing a pair of tail-less merge trees, but our goal is to compare graphs with
a function to R2. We could take the merge tree of the graph for a single direction
and use the branching distance, but this would result in a large amount of spatial
information being be neglected, and there is no obvious “best” direction. Our
solution is to compute the branching distance at some satisfactorily large amount
of equally spaced angles and report the median of these measurements.
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Since our rotation is about the origin, the range of function values is distorted in
a way that disrupts branching distance’s ability to compare merge trees. However,
by shifting the function values when we calculate the merge tree, we are able to
ensure that they stay centered about zero. In order to use branching distance, we
first construct a merge tree corresponding to a subset of directions ω ∈ [0, π) as
described in Section 2C. Note that as described in that section, we shift the merge
tree function values to have an median value of 0 in order to compare the trees
based on overall structure even when the functions are vastly different.

In our implementation, we begin with starting orientation ω =
π
2 and compute the

merge tree as given by Definition 2.1. Then, to compare two graphs, we rotate both
graphs simultaneously, and compute the merge tree for each in the given direction.
The result is the average branching distance as follows.

Definition 3.8 (average branching distance (ABD)). Fix directions

� = {ω1, . . . , ωn} ⊆ [0, 2π)

and let avg(X) be fixed as either the mean or median of the set X ⊂ R. Let MG,ωi

be the merge tree of G rotated by angle ωi . The average branching distance between
two graphs G and H, dA(G, H), is defined to be

dA(G, H) = avg({dB(MG,ωi , MH,ωi | i = 1, . . . , n}).

That is, dA(G, H) is either the median or the mean of the set of branching distances
of their merge trees computed over a specified set of angles.

3C. Metric properties of average branching distance. In this section, we discuss
properties of the average branching distance. In particular, we show that it is
symmetric, and nonnegative as given in Definition 3.1. We provide a counterexample
to positiveness, as well as to the triangle inequality, which shows that it is not a
metric, semimetric, or pseudometric. For the rest of the section, let G, H, and J be
arbitrary embedded graphs.

Lemma 3.9. dA(G, H) = dA(H, G).

Proof. We use the same set of angles to measure the distance and at each angle we
are comparing the same pair of merge trees. This means we are always comparing
the same pairs of merge trees for dA(G, H) and dA(H, G). By Corollary 3.3 we
know dB(MG, MH ) = dB(MH , MG) for any merge trees MG and MH . This means
the ordered set of distances for dA(G, H) is equivalent to the ordered set of distances
for dA(H, G), so it follows that the medians of the sets will be equivalent. □

Lemma 3.10. dA(G, H) ≥ 0.
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a b

c d
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fg
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Figure 5. Graphs for the counterexample to dA(X,Y ) = 0 implies X = Y.

Proof. By Lemma 3.4 we know that dB(MG, MH ) ≥ 0 for any merge trees MG

and MH . This means every element of the ordered set of distances for two graphs
is nonnegative; hence the median of the set must be nonnegative. □

Lemma 3.11. dA(G, G) = 0.

Proof. We are comparing the same orientations of identical graphs at each angle, so
the merge trees being compared will be identical for any orientation. By Lemma 3.5,
dB(MG, MG) = 0 for any merge tree MG ; hence every element of any ordered set
of distances for dA(G, G) is 0 and the median of the set will be 0. □

We will now provide a counterexample to positiveness from Definition 3.1.

Theorem 3.12. There is a pair of nonisomorphic graphs G and H for which
dA(G, H) = 0.

Proof. Consider the nonisomorphic graphs G and H in Figure 5. We see that at any
angle of comparison we are comparing two trivial merge trees which will always be
shifted to function value 0 after their construction. The branching distance between
any such pair of merge trees will be 0; hence every element of the ordered set of
distances for dA(G, H) will be zero and the median of all these distances is 0. How-
ever, G is not equivalent to H as the graphs are nonisomorphic. As a consequence
of this, average branching distance is neither a metric nor a semimetric. □

We will now provide a counterexample to the triangle inequality, dA(G, H) ≤

dA(G, J ) + dA(J, H).

Theorem 3.13. There is a collection of graphs G, H, and J for which dA(G, H) >

dA(G, J ) + dA(J, H).

Proof. Let the set of angles be
{

π
2

}
, and let G, H, and J be the graphs in Figure 6.

The graphs’ shifted merge trees MG, MH and MJ are identical to the original graphs
at the standard orientation and we are only comparing at one angle; hence each
pairwise ABD over

{
π
2

}
will be the same as the respective branching distance.

When comparing MG and MH we observe that MG is a trivial merge tree; hence
the only rooted tree representation for MG is a single root branch (a, a). Matching
branch (c, b) is more expensive than removing it, so we remove (c, b) and match
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Figure 6. Graphs for the counterexample to the triangle inequality
for ABD.

the single root branch of MG to (d, b). The maximum cost for this optimal edit
is 6.5 from removing (c, b); hence dA(G, H) = dB(MG, MH ) = 6.5.

When comparing MG to MJ , we observe that matching any branch containing g
or h would be more expensive than removing it; hence we must choose either ( f, e)
or ( j, e) as our root branch and remove all other branches. For either selection of
root branch, the most expensive cost is 2.5 from removing (g, j) and (h, j); hence
dA(G, J ) = dB(MG, MJ ) = 2.5.

When comparing MH to MJ , we observe that matching (c, b) to a branch
containing g or h will be cheaper than removing it. We also see that we need
to select (h, e) or (g, e) as our root branch in order to match (c, b) to a branch
containing g or h. Removing (g, j) or (h, j) will always be cheaper than matching
it to (b, d), so we remove the one we didn’t select as our root branch. Matching or
removing ( f, e) and (d, b) does not effect our maximum cost; hence any optimal
edit will have a maximum cost of 3 from matching the root branches. Therefore,
dA(H, J ) = dM(MH , MJ ) = 3.

We see that dA(G, H) = 6.5, dA(G, J ) = 2.5, dA(H, J ) = 3, and 6.5 > 2.5+3,
contradicting dA(G, H) ≤ dA(G, J ) + dA(H, J ). □

Combining Theorems 3.12 and 3.13 gives us that ABD is neither a semimetric
nor pseudometric, thus it is only a distance.

3D. Average branching distance of convex polygons. In the process of simplifying
our data through merge tree construction, we lose information such as interior
complexity and some shape data. We will show that average branching distance



COMPARING EMBEDDED GRAPHS USING AVERAGE BRANCHING DISTANCE 379

Figure 7. Graphs from the IAM database [Riesen and Bunke 2008]
which have convex polygon borders.

will consider any convex polygons to be similar, and give an example of data not
represented well by our function.

Lemma 3.14. The merge tree from any direction of a convex polygon graph is
trivial.

Proof. For any orientation of a graph G, there will be some minimum function
value k. Any two vertices with function value k must be connected by a horizontal
path; otherwise we would need some higher function value reflex vertex connecting
the two vertices, contradicting the fact that G is a convex polygon. Every other vertex
must be degree 2 with a descending path to some bottom vertex with function value k;
hence the entire graph is one connected component regardless of sublevel set. □

Corollary 3.15. dA(G, H) = 0 when G and H are graphs of convex polygons.

Proof. By Lemma 3.14 we know that at any angle the entire merge tree for either
graph is a trivial merge tree; hence we will always be comparing two trivial merge
trees which will always be shifted to function value 0 after their construction. The
branching distance between any such pair of merge trees will be 0; hence every
element of the ordered set of distances for dA(G, H) is 0, and the median of this
set is 0. □

This can be extended to graphs with convex polygon borders with no merges
inside the polygon. For example, consider the graphs in Figure 7 from the IAM
database [Riesen and Bunke 2008]: from a centered merge tree perspective, these
graphs are identical from any angle, but we can clearly see that there are significant
differences between them due to their shape and interior data.

4. Implementation, experimentation, and results

To explore the capabilities of our proposed distance function, we developed Python
code (version 3.7.6) to compute the average branching distance. We implemented
the algorithm presented in [Beketayev et al. 2014] to compute the branching distance.
In order to use merge tree distances as a method for graph comparison, we also
implemented an original method for merge tree construction, which we describe in
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Section 4A. For tasks that required interactions with graphs, we used the NetworkX
Python package [Hagberg et al. 2008]; we also utilized several other scientific
computing packages [Hunter 2007; Pedregosa et al. 2011; Oliphant 2006; Virtanen
et al. 2020]. Our code can be found in version 1.0 of our GitHub repository [Batakci
et al. 2020].

4A. Merge tree algorithm. The design of our merge tree construction algorithm
was motivated by the union-find data structure, which is commonly used to track
elements of a set which are divided into disjoint subsets. Specifically, our algorithm
keeps track of child and parent pointers to identify connected components at the
graph’s sublevel sets. Nodes in the original graph will be assigned child pointers,
whereas nodes in the merge tree will be assigned parent pointers. We note that we
use the term pointer here in the computer science sense, where, for each vertex, we
are essentially associating a unique other vertex in the graph based on some desired
property.

Fix a subgraph H ⊆ G, and note that this graph potentially has more than
one connected component. We define the representative vr of a vertex v to be
the lowest function value vertex connected to v in the subgraph H. Assuming a
generic function, i.e., all vertices have distinct function values, all nodes in the
same component share the same, unique representative.2 For this reason, we also
call vr the representative of the component containing v.

To find this representative, for each vertex v ∈ V (H), we associate a child pointer
which is in the same connected component as v but not necessarily adjacent. The
representative is the only node in a component which is its own child pointer. The
child pointers are set so that the representative of a vertex can be found by following
child pointers until a node which is its own child pointer is found.

The root vp of a vertex v is the node with the largest function value to which it is
connected. Like the component representative, the root is the same for all vertices
in a connected component. The lower neighbors of v are all vertices u adjacent
to v such that f (v) > f (u); upper neighbors are defined symmetrically. The parent
pointer of a vertex in a merge tree is itself if it is the root, and its only upper neighbor
otherwise. Similar to the representative, the root can be found by following the
parent pointers of v until a vertex with is its own parent pointer is found.

We will use a sweep line algorithm, where we process the graph vertices in order
of function value a ∈ R. Setting Ha = f −1(−∞, a] to be the sublevel set of the
graph, we maintain the merge tree of Ha at each step as we increase a. As the
merge tree is constructed, the child pointers of relevant nodes in Ha will be updated,
and parent pointers will be maintained in the merge tree being constructed. The

2Note that our code does not require genericity, but the assumption simplifies the discussion of the
algorithm.
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Input: A graph G = (V, E) with function f : V → R such that f (u) ̸= f (v) for all uv ∈ E .
1: Initialize an empty graph M = (V (M), E(M)) with V (M) = ∅ and a function fM : V (M) → R.

(Note that each vertex in V (M) will be associated to a unique vertex in V (G) which caused its
addition.)

2: Initialize all vertices in G with an empty child pointer, and an empty parent pointer.
3: Sort V ascending by function value:
4: for Vertex v ∈ V with f (v) = a do
5: Let R ⊂ V be the representatives of the components of v’s lower neighbors in

Ha = f −1(−∞, a] ⊆ G, found by recursively following children pointers until a vertex
is found which is its own child.

6: Let RM ⊂ V (M) be the vertices in M corresponding to the elements of R.
7: if |R| = 0 then
8: Add a new vertex vM to V (M).
9: Set fM (vM ) = f (v).
10: Set vM as its own parent.
11: Set v as its own child.
12: end if
13: if |R| = 1 then
14: Set the one element in R as v’s child.
15: end if
16: if |R| ≥ 2 then
17: Choose the vertex c ∈ R with minimum function value, i.e., f (c) ≤ f (u) ∀u ∈ R.
18: Make a copy vM of v in the merge tree M .
19: Set fM (vM ) = f (v).
20: For all x ∈ RM , find the root of the connected component in M , x p .
21: Add the edge x pvM to E(M) for each x p and set the parent of x p to be vM .
22: Collapse all on-level neighbors of vM .
23: Set vM as its own parent.
24: Set c as the child of v and all x ∈ R.
25: end if
26: end for
27: return M and fM .

Algorithm 1. Create merge tree.

latter constitute the edge set of the newly constructed merge tree. This will be done
to ensure that all parent-paths and child-paths in a connected component lead to the
correct root and representative, respectively.

We assume that our input graph has been preprocessed as described in Algo-
rithm 1. During this step, all adjacent nodes with the same function value will be
collapsed into a single node; thus we can assume that our graph input has unique
function value for adjacent vertices. This will not alter the merge tree and ensures
that all edges have a specified upper and lower vertex.

Notice that by the definition of a merge tree, 1(a) will only be nonempty when
a minimum is encountered or components merge. Lines 7–12 of Algorithm 1
guarantee that all minima are detected and included in the merge tree. Furthermore,
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lines 16–25 guarantee that all component merges are detected and included in the
merge tree. Vertices in a merge tree are only connected when components merge.
Line 21 accounts for all the connections between vertices. Trivially, fM is correctly
defined. Therefore, the proposed algorithm correctly constructs a merge tree based
on Definition 2.1.

4B. Experiments. In this section, we describe our experiments to determine if
ABD is a good measure of dissimilarity between graphs. We are looking to see
whether graphs that appear similar are considered “close” to each other. To do this,
we compute the ABD between several test data sets and use cluster analysis and
dimensionality reduction to visualize whether our distance function upholds this
idea. The plots shown in this section can be reproduced by running Plots.py from
version 1.0 of our GitHub repository [Batakci et al. 2020].

We specify the orientations at which the branching distance between two graphs
is calculated for ABD with the term frames. The n frames used to compute ABD
are determined by the n evenly spaced orientations covering the interval [0, 2π),
where n is a positive integer parameter of the ABD function. For the following
examples we use a small number of frames due to the simplicity of the input graphs.
We do so because we do not anticipate significant changes between merge trees of
the same graph if these graphs are rotated only slightly. For more intricate input
graphs, such as maps, we would suggest a higher number of frames.

We consider graphs of different letters from the IAM graph database [Kersting
et al. 2016; Riesen and Bunke 2008]. The graphs in this data set represent distorted
letter drawings, so it was necessary for us to exclude graphs that we considered
distorted beyond the point of recognition. Specifics of the process for identifying
these outliers are documented in data/DataCleaning.py in version 1.0 of our
repository. We use ABD on two sets of these graphs to compute pairwise distances.
Because the letter graphs are so simple, we only compute the branching distance at
10 frames. We pass these values through a single linkage hierarchical clustering
algorithm and construct a dendrogram to examine the results, as shown in Figure 8.
This provides a visual representation of which graphs are most similar, which is more
clear than looking at a matrix of values. As seen in the right of Figure 8, distinct
graphs of the same letter have closer links between them than graphs of different
letters. There are clear groupings of letters visible in the dendrogram, signified by
color. Graphs that appear similar to human eyes to have smaller distances between
them, which provides support for the validity of average branching distance as a
measure of dissimilarity. We can see these result in another format if we pass the
same distance matrix through a multidimensional scaling algorithm [Cox and Cox
1994], the results of which are shown in the bottom left of Figure 8. We see that
letters whose appearances we can verify as similar are closer to each other on the
scatter plot.
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Figure 8. Clockwise from top left: A sample of letters from the
IAM database; results of single-linkage hierarchical clustering on
38 letter graphs; MDS plot of the same graphs.

Next we consider graphs of skeletonized binary images from the ShapeMatcher5
model dataset [Macrini 2003]. ShapeMatcher is a program that can convert binary
images to skeletons which can then be exported as graphs. The graphs given by this
program had a noisy structure that resulted merge trees with many small branches,
which increased our runtime greatly. In order for our program to finish running
in a reasonable amount of time we smoothed out the structures, resulting in the
graphs shown in Figure 9b. We use ABD on 20 skeletons of four different images
to compute pairwise distances at different numbers of frames.

In Figure 10 we can see the results of MDS on four distance matrices with
the same set of graphs but different matrix entries due to the number of frames
used to compute each ABD. The only part of the distance matrix construction

(a) binary images (b) graphs of skeletonized images

Figure 9. Clockwise from top left; alien, child, camel, kangaroo,
eagle, horse (not to scale) [Macrini 2003].
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(a) 5 frames (b) 20 frames

(c) 50 frames (d) 100 frames

Figure 10. MDS using ABD on 20 skeletons for each of four
categories of images shown in Figure 9.

that is dependent on frames is the ABD calculation, so the runtime for the matrix
construction increases linearly as the number of frames increases.

In all four plots we see similar graphs clustering together. When we compute ABD
at 20, 50, and 100 frames, our clusters seem to be more clearly defined than when
we only use 5 frames. We can also see that there is not much difference between
scatterplots 10(b), 10(c), and 10(d). This suggests that using 20 frames yields a
good estimate for the exact average branching distance between these skeletons.

5. Discussion

We investigated the properties of the branching distance [Beketayev et al. 2014],
showing that without inclusion of the infinite tail in the merge tree, the result is
not a metric. The first interesting direction to go in with this work is to see if the
definition of the branching distance can be modified to take the tail into account.
Will fixing the distance in this way propagate into a distance measure as defined on
the rotated, embedded graphs? For the average branching distance, we would also
be interested to see if, rather than working with finitely many directions, defining
the distance to be some sort of integral over the branching distance in all directions
would give stronger metric properties.
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The next direction for future work is to improve the computational techniques
used in our code. Our implementation makes some trade-offs between runtime and
accuracy. First, for a fixed direction, we implement a binary search for branching
distance between the resulting merge trees which leaves behind a small error. While
in theory this could be iterated enough to find an exact distance (since only one
possible value would remain), that approach was not practical. In order to prevent
an extremely large number of iterations, we choose a threshold for this error as
a stopping criterion, which worked well enough in practice to give meaningful
differentiation.

The second tradeoff between runtime and accuracy is caused by our choice to
compute a specified set of angles rather than attempting to achieve an accurate
representation of the entire range of angles [0, 2π). We cannot test the entire interval
as there would be an unbounded number of frames, and a mathematically accurate
representation would require a determination of the cheapest rooted branching pairs
and how they change due to rotations for the entire interval. It is possible that there is
mathematical justification that can be undertaken for limiting the necessary number
of directions, and indeed there is prior work on finding a rotation which would
catch certain kinds of features in the data [Micka 2020] under various topological
signatures (like the merge tree), although it mainly attempts to find a single direction
to catch certain features. However, we leave this for future work as it is well beyond
the scope of this project.

Another issue is that of normalization. We currently shift so that average vertex
value is 0, which results in several instability issues. First off, this procedure is
not immune to the addition of regular vertices and as such is not uniform when
viewing the merge trees as a topological space. Second, we normalize each pair of
merge trees at every direction choice, thus potentially leading to wildly different
normalization shifts from one rotation to the next. In future work, we would seek
to remedy these issues potentially by mean-shifting the original shapes.

Additionally, for this paper we have chosen to simultaneously rotate the graphs
rather than attempt to compare each orientation of one to each orientation of the
other. Note that rotating the graphs simultaneously assumes some sort of ideal
starting alignment between the two graphs. For example, it would not make sense
to simultaneously rotate two different orientations of the same graph. We also
considered rotating only one graph, but concluded that this method would be
inaccurate as it could consider irrelevant alignments. For example, two identical
objects will seem very different if only one is being rotated. A consideration of all
pairwise orientation matchings would increase the number of branching distance
computations from n to n2, where n is the number of specified frames. While this
method may highlight different aspects of the compared graphs and, in particular,
make the metric orientation invariant, it is too computationally expensive for our
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current implementation to handle. However, it is possible that this modification
would be of interest in applications such as shape comparison.

Finally, the data sets we considered involved only connected graphs, but in
situations where we run into disconnected graphs, our implementation restricts to
just the largest connected component. This of course will reduce the accuracy in
practice, since parts of the data are ignored. Implementing an algorithm that alters
ISEPSSIMILAR to account for disconnected components could improve our distance
function. To do this, we would also have to define a new cost that basically accounts
for deleting or adding an edge between two vertices such that the two vertices that
were connected in one graph match two vertices that were not connected in the
other graph, similar to edit distance calculations between graphs. This approach
seems computationally prohibitive, but would likely lead to better comparisons if
an approach can be made efficient.
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