
Search Algorithms for Multi-Agent Teamwise Cooperative Path Finding

Zhongqiang Ren1, Chaoran Zhang1, Sivakumar Rathinam2 and Howie Choset1

Abstract— Multi-Agent Path Finding (MA-PF) computes a
set of collision-free paths for multiple agents from their respec-
tive starting locations to destinations. This paper considers a
generalization of MA-PF called Multi-Agent Teamwise Coop-
erative Path Finding (MA-TC-PF), where agents are grouped
as multiple teams and each team has its own objective to be
minimized. For example, an objective can be the sum or max
of individual arrival times of the agents. In general, there is
more than one team, and MA-TC-PF is thus a multi-objective
planning problem with the goal of finding the entire Pareto-
optimal front that represents all possible trade-offs among the
objectives of the teams. To solve MA-TC-PF, we propose two
algorithms TC-CBS and TC-M*, which leverage the existing
CBS and M* for conventional MA-PF. We discuss the condi-
tions under which the proposed algorithms are complete and
are guaranteed to find the Pareto-optimal front. We present
numerical results for several types of MA-TC-PF problems.

I. INTRODUCTION

Multi-Agent Path Finding (MA-PF) seeks to find collision-
free paths for multiple agents from their respective start
to goal locations, which has been widely studied over the
last decade [16]. This problem often requires optimizing a
single objective, such as min-sum, i.e., minimizing the sum
of individual path costs [14] or min-max, i.e., minimizing
the maximum of individual costs of the agents [17]. The
objective is typically defined over all the agents and hence
the name cooperative path finding [15]. In this paper, we are
interested in a variant of MA-PF where agents are grouped
into multiple teams, where each team seeks to optimize its
own objective (Fig. 1).

We formulate a new problem called Multi-Agent Team-
wise Cooperative Path Finding (MA-TC-PF). In MA-TC-
PF, each agent has its own start and goal locations, while
belonging to at least one team, and teams are not required
to be mutually disjoint to each other. Each team has its
own objective to be minimized such as min-sum or min-
max, and MA-TC-PF seeks to minimize an objective vector,
where each component of the vector corresponds to the
objective of a team. In the presence of multiple objectives,
in general, there does not exist a single solution that can
simultaneously minimize all the objectives; therefore, we aim
to find a set of Pareto-optimal solutions for the MA-TC-PF.
A solution is Pareto-optimal if one cannot improve over one
objective without deteriorating another objective. MA-TC-PF
differs from the existing Multi-Agent Multi-Objective Path

1 Zhongqiang Ren, Chaoran Zhang and Howie Choset are at Carnegie
Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA. Emails:
{zhongqir, chaoranz, choset}@andrew.cmu.edu

2Sivakumar Rathinam is with the Department of Mechanical Engineering,
Texas A&M University, College Station, TX 77843-3123. Email: srathi-
nam@tamu.edu

Fig. 1: An illustration of MA-TC-PF with two teams, where
team 1 includes the yellow (Y) and blue (B) agents while
team 2 includes the blue (B) and red (R) agents. Team 1 aims
to minimize the maximum arrival times of both agents (so
that they can collaboratively start a task for example), while
team 2 aims to minimize the sum of arrival times (since the
agents are equipped with some fuel-consuming devices and
the total fuel usage is to be minimized for example).

Finding (MA-MO-PF) [11], [19], self-interested MA-PF [2]
and adversarial MA-PF [7], and we elaborate in Sec. II.

To solve MA-TC-PF, we adapt CBS [14] and M* [18],
and propose TC-CBS and TC-M*. On the one hand, TC-CBS
and TC-M* leverage the conflict resolution technique in CBS
and M* by coupling agents together for planning only when
the agents are in conflict. On the other hand, TC-CBS and
TC-M* leverage the dominance principles [3] to identify and
compare candidate solutions, and are guaranteed to find the
entire Pareto-optimal front. We discuss the applicability of
each algorithm to different problem variants of MA-TC-PF,
and our approaches are tested with up to 20 agents in various
maps. Finally, we showcase a possible usage of MA-TC-PF
to provide an “explanation” of MA-PF solutions, a notion
that arises in explainable and trustworthy AI [1], [9].

II. RELATED WORK

MA-PF [16] often requires optimizing a single-objective,
such as min-sum (also called min-flowtime) or min-max (also
called min-makespan). It can be regarded as a special case
of MA-TC-PF where there is only one team that includes
all agents. To solve MA-PF problems to optimality, various
methods have been developed, which focus on either min-
sum [14], [18] or min-max [17], [20] criteria. The proposed
TC-CBS and TC-M* can be used to simultaneously handle
the min-sum and min-max bi-objective problems by finding
a set of Pareto-optimal solutions.
MA-MO-PF [10], [11], [19] differs from MA-PF by as-
sociating a vector-cost (rather than a scalar-cost) to the
action of an agent, where each component of the cost vector
represents an objective to be minimized, such as arrival time



and path risk. MA-MO-PF requires minimizing the sum of
accumulated cost vectors over all agents along their paths.
The MA-TC-PF differs from MA-MO-PF, since the action
cost of each agent is a scalar, and there are multiple teams
where each team has its own objective.
Other variants of MA-PF related to this paper include
self-interested MA-PF [2], where each agent aims to find
its individually min-cost path and the goal is to design
a taxation scheme so that all agents become cooperative
after adding an additional tax-cost to the agents’ paths. In
MA-TC-PF, a similar notion of the self-interested agent
arises, when each agent itself forms a team. However, the
goal of MA-TC-PF is to compute the entire Pareto-optimal
front, which identifies possible trade-offs between teams’
objectives. Finally, adversarial MA-PF [7] divides agents
into mutually disjoint teams, and aims to find a policy for
a selected team so that the agents in the selected team can
navigate to their goals subject to any actions other teams can
take. In contrast, MA-TC-PF does not consider an adversary.

III. PROBLEM STATEMENT

Let index set I = {1, 2, . . . , N} denote a set of N agents.
All agents move in a workspace represented as a finite graph
G = (V,E), where the vertex set V represents all possible
locations of agents and the edge set E ⊆ V ×V denotes the
set of all the possible actions that can move an agent between
a pair of vertices in V . An edge between u, v ∈ V is denoted
as (u, v) ∈ E and the cost of e ∈ E is a finite positive real
number cost(e) ∈ R+. Let vio, v

i
d ∈ V respectively denote

the start and goal location of agent i.
Let a superscript i ∈ I over a variable represent the

specific agent that the variable belongs to (e.g. vi ∈ V means
a vertex with respect to agent i). Let πi(vi1, v

i
ℓ) be a path

that connects vertices vi1 and viℓ via a sequence of vertices
(vi1, v

i
2, . . . , v

i
ℓ) in the graph G. Let gi(πi(vi1, v

i
ℓ)) denote

the cost value of the path, which is the sum of the cost
of all the edges present in the path, i.e., gi(πi(vi1, v

i
ℓ)) =

Σj=1,2,...,ℓ−1cost(v
i
j , v

i
j+1). For presentation purposes, we

denote πi(vi1, v
i
ℓ) simply as πi when there is no confusion.

All agents share a global clock and they start the paths at
time t = 0. Each action of an agent, either wait or move,
requires one unit of time. Any two agents are said to be
in conflict if one of the following two cases happens. The
first case is a vertex conflict where two agents occupy the
same location at the same time. The second case is an edge
conflict where two agents move through the same edge from
opposite directions between times t and t+ 1 for some t.

Let {Tj , j = 1, 2, . . . ,M} denote a set of M teams,
where each team Tj ⊆ I . Each agent belongs to at least
one team and teams are not required to be mutually disjoint
to each other. Let πTj denote a joint path, which is a set of
individual paths {πi, ∀i ∈ Tj}. Let gTj denote the objective
value of team Tj that is to be minimized, which is either
the sum or the maximum of the individual path cost of
all the agents in the team Tj (i.e., gTj :=

∑
i∈Tj

g(πi)

or gTj := maxi∈Tj
g(πi)). Let π (without any superscript)

denote a joint path of all the agents, which is also referred to

as a solution. Let g⃗(π) := {g(πTj ), j = 1, 2, . . . ,M} denote
an objective vector of length M , where each component
corresponds to the objective of a team.

To compare two solutions, we compare the objective
vectors corresponding to them. Given two vectors a and
b, a is said to dominate b if every component in a is no
larger than the corresponding component in b and there exists
at least one component in a that is strictly less than the
corresponding component in b. Formally, it is defined as:

Definition 1 (Dominance [3]): Given two vectors a and b
of length M , a dominates b, notationally a ⪰ b, if and only
if a(m) ≤ b(m), ∀m ∈ {1, 2, . . . ,M} and a(m) < b(m),
∃m ∈ {1, 2, . . . ,M}.
Any two solutions are non-dominated with respect to each
other if the corresponding objective vectors do not dominate
each other. A solution π is non-dominated with respect to
a set of solutions Π, if π is not dominated by any π′ ∈ Π.
Among all conflict-free (i.e., feasible) solutions, the set of
all non-dominated solutions is called the Pareto-optimal set,
and the corresponding set of objective vectors is called the
Pareto-optimal front. In this paper, we aim to find all cost-
unique Pareto-optimal solutions, i.e., any maximal subset of
the Pareto-optimal set, where any two solutions in this subset
do not have the same objective vector.

Remark 1: A MA-TC-PF problem is called fully coopera-
tive if each team Tj , j = 1, 2 . . . ,M contains all agents (i.e.,
Tj = I). Otherwise (i.e., there exists a team that does not
include all agents), the MA-TC-PF is not fully cooperative.

IV. TC-CBS

We first review Conflict-Based Search (CBS) [14] and then
describe our method Teamwise Cooperative Conflict-Based
Search (TC-CBS). We then discuss the relationship of TC-
CBS to Multi-Objective CBS (MO-CBS) [11] and discuss
the cases where TC-CBS is incomplete.

A. Review of Conflict-Based Search

Conflict-Based Search (CBS) [14] is a two-level search
algorithm that computes a conflict-free solution to a MA-PF
problem. On the high-level, every search node P is defined
as a tuple of (π, g,Ω), where:

• π = (π1, π2, . . . , πN ) is a joint path that connects starts
and goals of agents respectively.

• g is the scalar cost value of π (i.e., g = g(π) =
Σi∈Ig

i(πi)).
• Ω is a set of constraints. Each constraint is of form

(i, v, t) (or i, e, t), which indicates agent i is forbidden
to enter node v (or edge e) at time t.

CBS constructs a search tree with the root node Proot =
(πo, g(πo), ∅), where the joint path πo is constructed by
running the low-level (single-agent) planner, such as A*, for
every agent respectively with an empty set of constraints
while ignoring any other agents. Proot is added to OPEN, a
queue that prioritizes nodes based on their g-values.

In each search iteration, a node P = (π, g,Ω) with the
minimum g-value is popped from OPEN for expansion. To
expand P , every pair of individual paths in π is checked for



vertex conflict (i, j, v, t) (and edge conflict (i, j, e, t)). If no
conflict is detected, π is conflict-free and is returned as an
optimal solution. Otherwise, the detected conflict (i, j, v, t)
is split into two constraints (i, v, t) and (j, v, t) respectively
and two new constraint sets Ω

⋃
{i, v, t} and Ω

⋃
{j, v, t} are

generated. (Edge conflict is handled in a similar manner and
is thus omitted.) Then, for the agent i in each split constraint
(i, v, t) and the corresponding newly generated constraint set
Ω′ = Ω

⋃
{i, v, t}, the low-level planner is invoked to plan

an individual minimum cost path π′i of agent i subject to all
constraints related to agent i in Ω′. The low-level planner
typically runs A*-like search in a time-augmented graph
with constraints marked as obstacles. A new joint path π′ is
then formed by first copying π and then updating agent i’s
individual path πi with π′i. Finally, for each of the two split
constraints, a corresponding high-level node is generated and
added to OPEN for future expansion. CBS terminates when
the first conflict-free joint path is found which is guaranteed
to be the min-cost solution.

B. TC-CBS Algorithm

As shown in Alg. 1, the proposed TC-CBS algorithm
follows a similar workflow as CBS. The main differences
are the following. First, given a high-level node Pk and its
corresponding joint path πk, TC-CBS computes an objective
vector g⃗(πk) based on the teams, instead of computing a
scalar cost value g as in CBS. This arises in lines 1 and 14,
when generating the root node and a new high-level node
respectively. Consequently, high-level nodes are organized
in lexicographic (abbreviated as lex.) order in OPEN, and in
each iteration, a lex. min node is popped from OPEN for
processing (line 4). Second, since there are multiple Pareto-
optimal solutions in general, TC-CBS stores all Pareto-
optimal solutions found during the search in a set C (line 7).
For presentation purposes, we denote C as a set of objective
vectors. Each vector in C identifies a unique high-level
node and thus a unique conflict-free solution. Third, to find
all cost-unique Pareto-optimal solutions, TC-CBS terminates
when OPEN depletes, while CBS terminates when the first
conflict-free solution is found. Additionally, whenever a node
Pk is popped from OPEN (line 4) or newly generated (line
15), Pk is tested for filtering, i.e., Pk is discarded if the
objective vector in Pk is dominated by or equal to any
existing objective vectors in C.

C. Discussion and Properties of TC-CBS

The high-level search in TC-CBS is the same as MO-
CBS [11], while the low-level search is different. In MO-
CBS, each low-level search requires solving a multi-objective
shortest path problem subject to constraints [6], [12], [13],
while the low-level search in TC-CBS is single-objective.

A problem instance is feasible if there exists a feasible
solution. Given a feasible instance, TC-CBS is said to be
complete if it terminates in finite time. For fully cooperative
MA-TC-PF, TC-CBS is guaranteed to be complete, and is
guaranteed to find all cost-unique Pareto-optimal solutions.
The analysis in MO-CBS [11] can be applied to TC-CBS for

Algorithm 1 Pseudocode for TC-CBS

1: Compute Proot and insert into OPEN.
2: C ← ∅
3: while OPEN not empty do
4: Pk = (πk, g⃗k,Ωk)← OPEN.pop()
5: if Filter(Pk) then continue ▷ End of iteration
6: if no conflict detected in πk then
7: add g⃗k to C
8: continue ▷ End of iteration
9: Ω← split detected conflict

10: for all ωi ∈ Ω do
11: Ωl = Ωk ∪ {ωi}
12: πi

∗ ← LowLevelSearch(i, Ωl)
13: πl ← πk, replace πi

l (in πl) with πi
∗

14: g⃗l ← g⃗(πl) ▷ Computed based on teams.
15: Pl = (πl, g⃗l,Ωl)
16: if not Filter(Pl) then
17: add Pl to OPEN
18: return C

Fig. 2: An illustrative case where TC-CBS is incomplete.
The grey area show the set of objective vectors dominated
by the green solution. Details can be found in the text.

fully cooperative MA-TC-PF problems, since TC-CBS has
the same high-level search as MO-CBS.

However, for MA-TC-PF that is not fully cooperative, TC-
CBS may not be complete (i.e., incomplete): TC-CBS fails
to terminate in finite time even if the problem instance is
feasible. Same as discussed in [11], the condition for TC-
CBS being complete is: there is a finite number of joint paths
whose objective vectors are non-dominated by the Pareto-
optimal front. This condition may not hold for MA-TC-PF
that is not fully cooperative. We illustrate with an example
as shown in Fig. 2: there are two agents I = {i, j} and
two teams T1 = {i}, T2 = {j}; the objective vector is
(gT1 , gT2) = (gi, gj). Consider the case where a conflict
(i = 1, j = 2, v, t) is detected, and is split into constraints
(i, v, t) and (j, v, t) during the search, which results in two
new high-level nodes (red and green). For either of the two
nodes, one agent’s path cost may increase (as a constraint is
added), while the other agent’s path cost remains the same.
Consider the case where the green node leads to the only
conflict-free Pareto-optimal solution, and the red node still
contains conflicts and leads to further conflict resolution.



Algorithm 2 Pseudocode for TC-M*

1: initialize OPEN with lo = (vo, h⃗(vo))
2: L ← ∅, IC(lo)← ∅, α(vo)← {lo}
3: while OPEN not empty do
4: l← OPEN.pop()
5: if SolutionFilter(l) then continue
6: if v(l) = vd then
7: add l to L and then continue
8: Ngh(l)← GetLimitedNgh(l)
9: for all l′ ∈ Ngh(l) do

10: IC(l
′)← IC(l

′)
⋃
Ψ(v(l), v(l′))

11: BackProp(l, IC(l′))
12: if Ψ(v(l), v(l′)) ̸= ∅ then continue
13: if DomCheck(l′) then
14: DomBackProp(l, l′)
15: continue
16: f⃗(l′)← g⃗(l′) + h⃗(v(l′))
17: add l′ to OPEN, add l′ to α(v(l′))
18: add l to back set(l′), parent(l′) ← l

19: return L

Algorithm 3 Pseudocode for BackProp

1: INPUT: l, IC(l′)
2: if IC(l′) ⊈ IC(l) then
3: IC(l)← IC(l

′)
⋃
IC(l)

4: if l /∈ OPEN then
5: add l to OPEN
6: for all l′′ ∈ back set(l) do
7: BackProp(l′′, IC(l))

As a result, there can be an infinite number of joint paths1

whose objective vectors are non-dominated by the Pareto-
optimal front, and TC-CBS never terminates since OPEN
never depletes.

V. TC-M*

In contrast to TC-CBS, the proposed TC-M* in this section
is complete for all variants of MA-TC-PF. We begin with a
full description of TC-M*, and then discuss its properties and
the relationship to the existing M* [18] and MOM* [10].

A. Preliminaries

Let G = (V, E) = G×G×· · ·×G denote the joint graph
which is the Cartesian product of N copies of G, where each
vertex v ∈ V represents a joint vertex, and e ∈ E represents
a joint edge that connects a pair of joint vertices. The joint
vertices corresponding to the start and goal vertices of all the
agents are vo = (v1o , v

2
o , · · · , vNo ) and vd = (v1d, v

2
d, · · · , vNd )

respectively.

1An example is that agent i has reached its destination which blocks the
only path for agent j to reach its destination vjd. In this case, an infinite
number of high-level nodes will be generated. It remains an open question
whether we can design a mechanism to detect all the corner cases and make
TC-CBS complete for all variants of MA-TC-PF.

Algorithm 4 Pseudocode for DomBackProp

1: INPUT: l, l′ ▷ l′ is a successor of l
2: for all l′′ ∈ α(v(l′)) do
3: if g⃗(l′′) ⪰ g⃗(l′) or g⃗(l′′) = g⃗(l′) then
4: BackProp(l, IC(l′′))
5: add l to back set(l′′)

There can be multiple non-dominated joint paths from vo
to any other joint vertex v in G. To distinguish these paths,
let l := (v, g⃗) denote a label, which is a tuple of a joint
vertex v and an objective vector g⃗. Each label identifies a
unique joint path π(vo, v) from vo to v with objective vector
g⃗ = g⃗(π(vo, v)). To simplify notations, let v(l), g⃗(l) denote
the joint vertex and the objective vector related to label l,
and let vi(l) denote the vertex of agent i contained in v(l).
To keep track of multiple joint paths at each joint vertex v,
let α(v) denote a set of labels l with v(l) = v.

Similarly to A* [5], let heuristic vector h⃗(v) denote an
underestimate of the cost-to-go from joint vertex v, which
is an M -dimensional vector, and define f -vector as f⃗(l) :=
g⃗(l)+ h⃗(v(l)). Let OPEN denote a list of candidate labels to
be expanded during the search, where labels are prioritized
in the lex. order based on their f -vectors.

Additionally, let ϕi : V → V denote an individual optimal
policy, which maps the current vertex of an agent to the next
vertex along some individual optimal path towards its goal.
ϕi can be constructed via a pre-processing step, where the
shortest paths from any vertex in G to vid for each agent i ∈ I
are found via an exhaustive backwards A* search from vid
to any other vertices in G. Finally, let Ψ : V × V → 2I

(2I stands for the power set of I) denote a conflict checking
function, which takes two adjacent joint vertices u, v ∈ G and
returns a subset of agents that are in conflict when transiting
from u to v. Let IC(l) ⊆ I denote a collision set of label
l. Intuitively, it stores the subset of agents that can run into
conflicts during the search process.

B. TC-M* Algorithm

Intuitively, TC-M* begins by searching a sub-graph em-
bedded in G by letting agents follow their individual policies,
and dynamically growing the sub-graph based on agent-agent
conflicts (i.e., collision sets IC) until all cost-unique conflict-
free Pareto-optimal joint paths from vo to vd are found.

Specifically, as shown in Alg. 2, TC-M* first adds the
initial label lo := (vo, h⃗(vo)) into OPEN and initializes L
to be an empty set, which will be used to store labels that
identify cost-unique Pareto-optimal solutions found during
the search. Additionally, at any time during the search, the
collision set of a label that is newly generated is initialized
to be an empty set.

In each iteration (lines 4-18), a label l with the lex.
min f -vector in OPEN is popped and processed as follows.
First, procedure SolutionFilter discards l (line 5), if f⃗(l)
is dominated by or equal to the f -vector of any existing
solutions in L (i.e., there exists l∗ ∈ L such that f⃗(l∗) ⪰
f⃗(l) or f⃗(l∗) = f⃗(l), and note that f⃗(l∗) = g⃗(l∗) since



Fig. 3: Numerical results of our algorithms TC-CBS and TC-M* for fully cooperative MA-TC-PF problems with min-sum
and min-max as the two objectives (type-1 problem). The horizontal axis shows the number of agents (N ), the left vertical
axis shows the success rates (Succ. Rates) while the right axis shows the number of conflicts resolved (#Conflicts). Three
maps are of size 16x16 empty, 32x32 random and 32x32 room from the left to the right. TC-CBS outperforms TC-M* and
can address up to 20 agents.

h(v(l∗)) = h(vd) = 0). If l is not filtered, the algorithm
checks if v(l) = vd. If yes, a new cost-unique Pareto-optimal
solution is found, the label l is thus added to L and the
current iteration ends. If v(l) ̸= vd, l is then expanded by
generating its “limited neighbor” set [18] as follows.

The limited neighbors Ngh(l) is a set of successor labels
of l (line 8). For each agent i, if i /∈ IC(l), agent i is only
allowed to follow its individual policy ϕi(vi(l)). If i ∈ IC(l),
agent i is allowed to visit any adjacent vertices of vi(l) in
G. Formally,

vi(l′)←

{
ϕi(vi(l)) if i /∈ IC(l)

vi(l′) | (vi(l), vi(l′)) ∈ E if i ∈ IC(l)
(1)

Limited neighbors of a label l varies once IC(l) changes,
which dynamically modifies the sub-graph embedded in G
that can be reached from l.

After generating Ngh(l), TC-M* loops over each of the
labels l′ ∈ Ngh(l) (lines 10-18). Collision checking is
conducted for the transition from v(l) to v(l′), which returns
a set of agents that are in conflict (line 10), and is unioned
with the current collision set IC(l

′). If l′ has never been
generated before, IC(l

′) is first initialized to be an empty
set before the union operation.

Then (line 11), the collision set of label l′ is back-
propagated via the Backprop procedure as shown in Alg. 3.
To support the collision set back-propagation, a data structure
“back set” is defined for every label. Intuitively, the back set
of label l contains all parent labels from which l is ever
reached during the search. IC(l

′) is used to update the
collision set of all parent labels recursively (lines 2-7 in
Alg. 3), and labels, whose collision sets are enlarged, are
re-inserted into OPEN for re-expansion (line 5 in Alg. 3).

After back-propagating the collision set, if there is no
conflict during the transition from v(l) to v(l′), label l′

is checked for dominance in procedure DomCheck (line
13). Specifically, DomCheck returns true if there exists an
objective vector g⃗(l′′) of an existing label l′′ ∈ α(v(l′))
that dominates or is equal to g⃗(l′). If DomCheck returns
true, label l′ can not lead to a cost-unique Pareto-optimal
solution is thus pruned (line 15). Before being pruned (line
14), another procedure DomBackProp is invoked over label l′

and its parent l so that the collision sets of ancestor labels of
l′ can still be updated after l′ is pruned. If DomCheck returns
false, label l′ is added to α(v(l′)) and OPEN for future
expansion (lines 16-18). When the algorithm terminates, the
set of solution labels L is returned.

C. Discussion and Properties of TC-M*

Similarly to M* [18], TC-M* leverages the notion of in-
dividual policies, collision sets and back-propagation. Addi-
tionally, TC-M* borrows the technique of handling multiple
non-dominated joint paths from vo to any other joint vertex as
in MOM* [10], which includes the dominance comparison,
SolutionFilter and DomBackProp.

In contrast to TC-CBS, TC-M* is complete for all variants
of MA-TC-PF and is guaranteed to find all cost-unique
Pareto-optimal solutions. Intuitively, TC-M* searches the
joint graph G (which has a finite size) by first exploring
a low-dimensional sub-graph and iteratively enlarging the
sub-graph being searched. In the worst case, TC-M* runs
A*-like (or Multi-Objective A*-like) search over the entire
G and will terminate when G is exhaustively searched. We
refer the reader to [10], [18] for more details.

VI. NUMERICAL RESULTS

A. Test Settings

We implemented our TC-CBS and TC-M* in Python and
tested on a laptop with Core i7-11800H 2.40GHz CPU
and 16 GB RAM. A possible baseline approach that can
solve MA-TC-PF with solution quality guarantees is to
run MOA* search [6], [13] directly in the joint graph G.
However, the size of G grows exponentially with respect to
the number of agents, which limits the scalability of this
baseline approach [10], [11], [18]. We thus omit this baseline.

We leverage an online dataset for MA-PF [16], which
contains grid-like maps and test instances (i.e., pairs of
vo and vd). We set a runtime limit of five minutes for
each instance. We test the following four types of problem
instances with the number of agents N ranging from 4 to 20.
In each map, there are 25 instances for each N . The type-
1 problem has two teams and each team includes all the
agents. One team has the min-sum objective while the other



Fig. 4: Numerical results of our algorithm TC-M* for differ-
ent types of MA-TC-PF problems. The horizontal axis shows
the number of agents (N ), the left vertical axis shows the
success rates (Succ. Rates) while the right axis shows the
number of expansions (#Exp.). TC-M* can handle up to ten
agents in general.

team has the min-max objective. Type-2 divides all agents
into two disjoint teams of equal size, and both teams have the
min-sum objective. Type-3 divides agents into disjoint teams,
where each team contains two agents and has the min-max
objective. Type-4 treats each agent as a team.

B. MA-PF with Both Min-sum and Min-max Objectives

We begin with the type-1 problem, which can be solved
by both TC-M* and TC-CBS. As shown in Fig. 3, TC-
CBS achieves higher success rates than TC-M*, and is tested
with up to 20 agents. Although TC-CBS is incomplete for
general MA-TC-PF problems, it is computationally more
efficient than TC-M* in general. We report the corresponding
statistics of the number of Pareto-optimal solutions over
succeeded instances here: for all three maps and all Ns that
are tested, the minimum and median number of solutions is
one, and the maximum number of solutions is up to three. It
indicates that, in these instances, the min-sum and min-max
objectives can often be optimized at the same time.

C. Other Variants of MA-TC-PF

We then investigate problems of type-2,3,4, which can be
handled by TC-M* with completeness guarantees. As shown
in Fig. 4, TC-M* can in general handle up to 10 agents for
these problems. For type-4 problem where each agent is a
team, we further provide an example as shown in Fig. 5 with
four agents. In this example, there are eight Pareto-optimal
solutions, which identifies all possible trade-offs between all
agents. It can be easily proved (by contradiction) that this
set of solutions contains both the min-sum solution and the
min-max solution of all the agents.

Fig. 5: An example for type 4 problem, where each agent
(circle) needs to move to its destination (star), and the goal is
to find all trade-offs between agents. In this example, Solu-
tion 7 (highlighted in the table in blue) has the minimum sum
of individual arrival times. This table allows us to answer
explanatory questions about the solutions. More discussion
can be found in the text.

D. Example: Explanation for MA-PF Solutions

Finally, MA-TC-PF has the potential to answer explana-
tory questions about MA-PF solutions. For example, regard-
ing the instance shown in Fig. 5, consider a possible question
raised by the user of MA-PF planners: among all conflict-
free solutions, can agent 1’s arrival time be reduced without
worsening the min-sum objective of all agents? The table
computed by our approach can provide the answer to the
question (which is NO in this case). Answering explanatory
questions may increase trust of users and transparency of
intelligent systems [1], [9].

VII. CONCLUSION AND FUTURE WORK

This paper proposes a new problem formulation MA-TC-
PF, which generalizes the conventional MA-PF from one
team to multiple teams, and is able to describe the min-
sum and min-max bi-objective MA-PF problem. To solve
MA-TC-PF, while relying heavily on existing algorithms,
we develop two algorithms TC-CBS and TC-M*, and discuss
their properties. We present and discuss the numerical results
of the proposed algorithms for several different types of MA-
TC-PF problems in various maps. Finally, we showcase a
possible usage of MA-TC-PF.

There are several directions for future work. One can
investigate if the existing improving techniques (e.g. [4], [8],
[21]) can be leveraged to improve the scalability of TC-CBS
and TC-M*. One can also investigate variants of MA-TC-PF
and design algorithms for trustworthy and explainable AI.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2120219 and
2120529. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.



REFERENCES

[1] Shaull Almagor and Morteza Lahijanian. Explainable multi agent
path finding. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, pages 34–42, 2020.

[2] Zahy Bnaya, Roni Stern, Ariel Felner, Roie Zivan, and Steven
Okamoto. Multi-agent path finding for self interested agents. In
International Symposium on Combinatorial Search, volume 4, 2013.

[3] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer
Science & Business Media, 2005.

[4] Cornelia Ferner, Glenn Wagner, and Howie Choset. Odrm* optimal
multirobot path planning in low dimensional search spaces. In 2013
IEEE International Conference on Robotics and Automation, pages
3854–3859. IEEE, 2013.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[6] Carlos Hernández, William Yeoh, Jorge A. Baier, Han Zhang, Luis
Suazo, Sven Koenig, and Oren Salzman. Simple and efficient bi-
objective search algorithms via fast dominance checks. Artif. Intell.,
314:103807, 2023.

[7] Marika Ivanová and Pavel Surynek. Adversarial multi-agent path
finding is intractable. In 2021 IEEE 33rd International Conference
on Tools with Artificial Intelligence (ICTAI), pages 481–486. IEEE,
2021.

[8] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, Graeme
Gange, and Sven Koenig. Pairwise symmetry reasoning for multi-
agent path finding search. Artificial Intelligence, 301:103574, 2021.

[9] Tim Miller. Explanation in artificial intelligence: Insights from the
social sciences. Artificial intelligence, 267:1–38, 2019.

[10] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Subdimen-
sional expansion for multi-objective multi-agent path finding. IEEE
Robotics and Automation Letters, 6(4):7153–7160, 2021.

[11] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. A conflict-
based search framework for multiobjective multiagent path finding.
IEEE Transactions on Automation Science and Engineering, pages 1–
13, 2022.

[12] Zhongqiang Ren, Sivakumar Rathinam, Maxim Likhachev, and Howie
Choset. Multi-objective safe-interval path planning with dynamic
obstacles. IEEE Robotics and Automation Letters, 7(3):8154–8161,
2022.

[13] Zhongqiang Ren, Richard Zhan, Sivakumar Rathinam, Maxim
Likhachev, and Howie Choset. Enhanced multi-objective A* using
balanced binary search trees. In Proceedings of the International
Symposium on Combinatorial Search, volume 15, pages 162–170,
2022.

[14] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant.
Conflict-based search for optimal multi-agent pathfinding. Artificial
Intelligence, 219:40–66, 2015.

[15] David Silver. Cooperative pathfinding. In Proceedings of the aaai con-
ference on artificial intelligence and interactive digital entertainment,
volume 1, pages 117–122, 2005.

[16] Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne T Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Satish
Kumar, et al. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Twelfth Annual Symposium on Combinatorial Search,
2019.

[17] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Modifying
optimal sat-based approach to multi-agent path-finding problem to
suboptimal variants. 07 2017.

[18] Glenn Wagner and Howie Choset. Subdimensional expansion for
multirobot path planning. Artificial Intelligence, 219:1–24, 2015.

[19] J. Weise, S. Mai, H. Zille, and S. Mostaghim. On the scalable multi-
objective multi-agent pathfinding problem. In 2020 IEEE Congress
on Evolutionary Computation (CEC), pages 1–8, 2020.

[20] Jingjin Yu and Steven M LaValle. Optimal multirobot path planning
on graphs: Complete algorithms and effective heuristics. IEEE
Transactions on Robotics, 32(5):1163–1177, 2016.

[21] Han Zhang, Jiaoyang Li, Pavel Surynek, T. K. Satish Kumar, and Sven
Koenig. Multi-agent path finding with mutex propagation. Artificial
Intelligence, 311:103766, 2022.


