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Abstract
Language models have shown great promise
in common-sense related tasks. However, it
remains unseen how they would perform in
the context of physically situated human-robot
interactions, particularly in disaster-relief sce-
narios. In this paper, we develop a language
model evaluation dataset with more than 800
cloze sentences, written to probe for the func-
tion of over 200 objects. The sentences are
divided into two tasks: an “easy” task where
the language model has to choose between vo-
cabulary with different functions (Task 1), and
a “challenge” where it has to choose between
vocabulary with the same function, yet only
one vocabulary item is appropriate given real
world constraints on functionality (Task 2). Dis-
tilBERT performs with about 80% accuracy
for both tasks. To investigate how annotator
variability affected those results, we developed
a follow-on experiment where we compared
our original results with wrong answers chosen
based on embedding vector distances. Those
results showed increased precision across docu-
ments but a 15% decrease in accuracy. We con-
clude that language models do have a strong
knowledge basis for object reasoning, but will
require creative fine-tuning strategies in order
to be successfully deployed.

1 Introduction

When it comes to using robots in disaster-relief
scenarios such as search-and-rescue, it is essential
that a robot can interpret and execute an instruction
based on its current understanding of the objects
detected in its environment. For example, in or-
der to Enter the building, the robot should know
to search for entrance points, such as doors and
windows. Similarly, to Scan the second floor, the
robot must be able to find appropriate ways to get
to the second floor, such as stairs. Finally, to Use

the outlet to check for power, the robot must know
how outlets are used. Essentially, the robots need to

know an object’s function(s) in order to complete
envisioned interactions.

Envisioned interactions are a multi-modal ap-
proach to responding to natural language instruc-
tions. For this paper, we assume that various sen-
sors and computational systems, such as LIDAR,
motion, or camera sensors, have taken care of iden-
tifying the objects in a scene. This information is
passed to a language based world model, which
deduces which, if any, of the objects perceived are
relevant to the instruction based on the objects ca-
pabilities. This information would then be passed
on to a lower-level policy-planning tool. An en-
visioned interaction that this research supports is
depicted in Figure 1.

To understand the possibilities for executing a
natural language instruction within the current envi-
ronment, the robot requires apriori, commonsense
knowledge of the objects in the environment. In
particular, knowledge of object function is criti-
cal for interpreting natural language instructions
in physically situated disaster-relief tasks. Given
that such tasks are dynamic and dangerous, a robot
should be able to accept unconstrained natural lan-
guage (as opposed to placing a cognitive burden
on the rescue worker to use a robot’s controlled
language). We hypothesize that a large language
model (LM) would be uniquely equipped to handle
this challenging task of supporting commonsense
reasoning about an object’s function for situated
natural language understanding (NLU), due to the
LM’s latent world knowledge (Petroni et al., 2019).

The contributions of this paper include:

1. The development of a dataset of objects, found
to be relevant to disaster-relief scenarios, with
their functions established in terms of Prop-
Bank rolesets (Section 2);

2. The creation of an LM evaluation set of sen-
tences that probe the model for its knowledge



Figure 1: Envisioned interaction in which understanding and executing the instruction are supported by reasoning
about objects in the environment detected via visual sensors (left) and LIDAR sensors (right). Given an instruction
to look for a container of materials, the functions of detected objects with labels “table,” “box,” and “stool,” can be
compared against the containment function, represented by the PropBank role and roleset, “Arg0-of contain.01.”
Here, only “box” has the appropriate function, prompting further exploration of contents of the box.

of those object functions in both an “easy”
task (Task 1) and a “challenge” (Task 2) (Sec-
tion 3.1), and the augmentation of Task 1 for
a follow-on evaluation (Section 3.2);

3. DistilBERT (Section 4) evaluation results
(Section 5) with suggestions for future im-
provements informed by related work (Sec-
tions 6, 7).

We will make our object function dataset and cloze-
sentence evaluation set available upon request.

2 Object Function Background and
Dataset

PropBank (Palmer et al., 2005) is a semantic role
labeling framework that provides a lexicon of event
“rolesets,” where each corresponds to a particular
sense of a verb, eventive noun, or relational adjec-
tive. Each sense is described in terms of its set of
participant roles, captured as argument numbers
“ARG” 0-5, or as “ARG-M” modifier or adjunct
arguments. In addition to the lexicon, PropBank
provides a large corpus of annotated data where
each relation is marked up with its sense in the
lexicon and the arguments are marked for their se-
mantic role with respect to that sense roleset. This
lexicon is also used in the annotated corpus of Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013). The standard roles are ARG0, which
corresponds to Dowty’s prototypical Agent, and
ARG1, which corresponds to the prototypical Pa-
tient (Dowty, 1991). The corresponding semantic

roles of the other, higher-numbered ARGs 2-5 are
verb specific. ARG-Ms, which can theoretically
modify or accompany any verb, include roles such
as INSTRUMENT and PATH.

By leveraging the PropBank lexicon and corpus
to establish that ladders and stairs fulfill the same
role semantically (as the ARG1 for climb.01), we
are able to derive a set of objects that have the
same functionality (ways to climb between floors
of a building).1Essentially, using Propbank is a
pre-existing method of establishing commonalities
between objects’ functions. For example, Prop-
bank allows us to group barrels, boxes, crates, and
cabinets together because they all are ARG0 of the
Propbank sense contain.01

While alternative resources that encode object
functionality do exist, such as the Suggested Up-
per Merged Ontology (SUMO) (Niles and Pease,
2003), which includes axioms and object defini-
tions indicating function, we found that PropBank
provided a data-driven approach for us to develop a
ground truth of each object’s functionality as well
as an elegant way of encoding and representing
that function, for example as ARG1 of climb-01.
This semantic representation of function thus fits
with broader NLU that leverages the PropBank
and Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) for a distillation of uncon-
strained natural language instructions into action
primitives and their parameters, executable by a

1See climb.01 roleset: https://propbank.github.
io/v3.4.0/frames/climb.html#climb.01



robot. Object function is therefore encoded in the
same way as the natural language instructions that
might reference the object or desired functional-
ity. For example in Figure 1, the instruction would
be parsed into AMR, abstracting the target object
which would be a thing that is an ARG0-of con-
tain.01. Then, the objects currently detected, lo-
calized, and labeled in the environment using the
robot’s sensors would be evaluated for which object
had the matching function of ARG0-of contain.01.
We created a vocabulary of about 280 objects men-
tioned in a human-robot dialogue corpus (Marge
et al., 2017). These dialogues were previously col-
lected via wizard-of-oz experimental interactions
between people and remotely located robots in a
search and exploration task, which is similar to
our target domain of robotic exploration for dis-
aster relief. Informed by existing PropBank and
AMR corpora, an annotator then decided the best
role for each vocabulary item given an appropri-
ate PropBank sense. For instance, the word crate

was assigned the PropBank ARG0 role of the con-

tain.01 sense—indicating it is the container holding
some kind of contents. After one annotator made
initial judgements, two other annotators familiar
with PropBank and AMR reviewed the annotation
to validate or offer alternative labels for vocabulary
whose PropBank annotations were more difficult
to surmise.

3 LM Evaluation Dataset

With the objects labelled with the appropriate Prop-
bank sense-role pairing to signify their functionali-
ties, we needed to develop a method of zero-shot
testing a language model. For this methodology, it
was important that we develop an understanding
both of the language model’s capabilities and how
a small group of expert human annotators could be
skewing the results beyond their particular writing
styles. This led to two rounds of evaluation data
generation: one with a manually developed answer
set, and one with an answer set based on distances
within LM vector space.

3.1 Manually Developed Sentence and
Answer Set

We wanted to analyse both the LM’s ability to dif-
ferentiate between objects with different functions
(Task 1) and between objects with the same func-
tion (Task 2), so we designed two different tasks.
For both, we generated cloze sentences that express

the need for a particular functionality or affordance,
where the correct answer is one of our object vocab-
ulary items that offers that functionality (according
to the function annotations described in Section 2).
The LM’s task was to pick the correct word from
a short list of possible answers. Providing a short
list of answers was both inspired by the Winograd
Schema Challenge (Levesque et al., 2012) and be-
cause a robot would be faced with a set of rec-
ognized and labeled objects in its environment to
choose from in a given disaster-relief scenario.

For Task 1, annotators wrote sentences such that
all words with the same function can reasonably
fill in the blank. For instance, in the sentence
Go check if there’s anything suspicious inside

that BLANK, the blank can be filled by any word
denoting an object whose function is a container,
be it a barrel or a cabinet. In Task 1, two wrong
options were also presented; these did not share the
function of the right answer and were arbitrarily
chosen by the annotator from the rest of the
vocabulary list. One sentence was written for each
function. If more than one vocabulary term had the
same function, the same sentence would be used
multiple times, but the correct answer would be
changed so that each word with the same function
was represented in the evaluation set. This was
done to see if a LM was consistent in correctly
choosing objects with the same function. The
sentences were written fairly explicitly so that only
the word’s intended function could be reasonably
inferred by a human reader, as we had words that
could serve multiple functions, like stairs, which
could fall under ascend.01 PATH or descend.01

PATH.2 A sample of Task 1 sentences from one
author/annotator is given below. The LM must
choose which of the answer choices is the most
likely filler of the masked position.3

(1) I need to see from higher up, so I’m going up
the [MASK].

Choices ladder, cushion, tomato
Correct ladder

(2) I need to see from higher up, so I’m going up
2While a qualitative analysis of the results did not show

any evidence of polysemous words causing errors, we are
uncertain how many vocabulary items are polysemous and
what that effect may have on our results.

3From an implementation perspective, we used the fol-
lowing format: SENTENCE with [MASK] ||| ANSWER
CHOICES ||| CORRECT ANSWER.



the [MASK].

Choices stairway, cushion, tomato
Correct stairway

(3) The [MASK] will keep the horse from running
out of the pen.

Choices mop, barrier, bucket
Correct barrier

(4) The roof collapsed when the flimsy [MASK]
failed to support its weight.

Choices curtain, lamp, column
Correct column

Note that the answer vocabulary is based upon
objects mentioned in the human-robot collabora-
tive exploration corpus, and therefore relevant to
robotic exploration tasks, even if the sentences are
not instructions per se. By not limiting the anno-
tators to writing instructions only, we allowed for
more use-cases given the object’s function. For ex-
ample, here are three sentences given the function
of contain.01 ARG0.

1. I was getting ready to move, so I put all of my
belongings into a [MASK].

2. Go check if there’s anything suspicious inside
that [MASK].

3. I need to hold my collection of cups for safe-
keeping, so I’m going to use a [MASK].

Each sentence works for any objects that can con-
tain, but they each highlight a unique aspect of
containing that would be important for a robot to
recognize.

For Task 2, we narrowed our focus in order to
study how LMs can leverage commonsense knowl-
edge to differentiate between items with the same
function. For our initial evaluation, we chose two
functions from our dataset that contained the most
unique objects within them: facilitating transport
(objects listed with this function include car, boat,

bike) and containment (objects listed include jug,

luggage, cup). Within each function, we wrote sen-
tences that would be true for one object with the
same functionality but not another. As an example,
the LM could choose between ladder and stairs to
fill in the blank for I need to get to the second floor,

so I’m going to move the BLANK to that window.
Both serve the function of climbing, but they are

not interchangeable because ladders are portable
and stairs are not. We generated all possible pair-
ings of objects within our chosen functions and
randomly selected the pairings for sentence genera-
tion. More details about the sentence data can be
found in Table 1 and a sample from one annotator
for the transportation function is given here:

(4) I’m trying to get my legs in shape, so I take
my [MASK] to school each day.

Choices bicycle, boat
Correct bicycle

(5) My husband’s going green so he takes his
[MASK] everywhere he needs to go.

Choices bicycle, car
Correct bicylce

(6) Today you really need air conditioning, so you
decide to take the [MASK] to get to the office.

Choices bicycle, car
Correct car

(7) She couldn’t afford any gas, so she had to ride
her [MASK] to the next village over.

Choices bicycle, motorcycle
Correct bicycle

Note that the real-world knowledge required to
determine the correct answer for Task 2 we hypoth-
esized to be fairly nuanced—a connection between
biking and getting legs in shape, or going green, or
NOT being able to afford gas, for example.

3.2 Answer Sets from Embedded Vectors
After an initial analysis of the results of Task 1,
we noted that the performance across “documents,”
where each document is the set of evaluation sen-
tences written by a single annotator, varied sub-
stantially (as we will describe in greater detail in
Section 5). This prompted us to consider where
this variation was coming from. Each document
was intended to evaluate the LM’s knowledge of
the functionality of the same set of objects, so this
was variance outside of what could be concluded
to be related to commonsense knowledge of ob-
ject functionality. We only had three annotators,
which has been shown to introduce bias (Geva et al.,
2019). As each annotator both authored sentences
and selected the sentence’s wrong answers, we hy-
pothesized that both factors likely add bias to our



results. As a first step to reduce inadvertent vari-
ance stemming from wrong answer choices, we
elected to experiment with different methods of
choosing wrong answers for Task 1 to see how the
wrong answers affected the results of our exper-
iments. Specifically, we decided to compare the
results with the manually chosen wrong answers
for Task 1 with a more technical procedure in which
we selected the wrong answers based on the cosine
distance between vectors taken from the LM’s re-
sult of encoding each individual vocabulary term.
While the embedded vectors of individual words
differ from the embedded vector the word takes
within an encoded BERT sentence, we decided this
was a reasonable approximation that also took into
account the limited onboard computing power a
robot would have for our task.

Figure 2: Two examples of the effect different answer
choices for task 1 vs task 1e. The answers chosen for
closeness by vector distance are often have similar func-
tions (carry vs. contain) or potentially related within
a conceptual domain (gas pump vs. hydrant), making
Task 1e more challenging.

We ran several experiments at closer and further
cosine distances to test the hypothesis that the LM
would choose more wrong answers if they had a
closer cosine distance to the correct answer. We
named this “Task 1e,” or Task 1-encoded vectors.
For each right answer, we compiled a subset of
valid distractors from our original vocabulary list,
then chose the wrong answers by their ranking
in our query. Examples comparing sentences and
answers for Task 1 and 1e are shown in Figure 2.
This approach does not account for any changes
in density within the vector space. However, for
all experiments the standard deviation of distances
remained fairly uniform. This led us to believe that
the ranked distances were all similar enough that
the comparison between functions is still fair.

4 Experimental Setup
We used Huggingface’s pipeline class with the fill-
mask task and the DistilBERT uncased model. We
chose DistilBERT because it is lightweight while
having very similar accuracy to the full base BERT
model (Sanh et al., 2019). This allows the model,

Task 1 Task 2
Sentences 608 236
Objects 183 21

Functions 65 2
LM Accuracy 81.5% 79.7%

Acc. Range 22.8% 15.0%

Table 1: Size and shape of the data, as well as Distil-
BERT’s average accuracy for Task 1 and Task 2 and the
range in its accuracy across documents.

theoretically, to be loaded directly onto the robot
platform, keeping its space to a minimum with-
out sacrificing too much accuracy. To calculate
the vector embedding’s cosine distances, we fol-
lowed in BERT-as-a-service’s footsteps: we took
the second to last layer of DistilBERT to repre-
sent each vocabulary term (McCormick and Ryan,
2019). We used Sci-kit Learn’s implementation of
a KD-Tree to store the resulting vectors (Pedregosa
et al., 2011). All experiments were run with Py-
torch and all scores were put into log space (Paszke
et al., 2019).

Multi-token Vocabulary Terms One challenge
we faced was how to fairly compare the scores
of single-token vocabulary terms as opposed to
multi-token vocabulary terms, since the WordPiece
tokenizer used by DistilBERT can potentially break
words into subwords. To solve this problem, we
adapt the sentence level scoring scheme of pseudo-
log likelihood from Salazar et al. (2020) when vo-
cabulary items have multiple tokens. Specifically,
for tokens t1 . . . tn that make up word W with Tj

tokens before the mask and Tk tokens afterwards,
where j and k are both natural numbers, we calcu-
late the probability as shown:

log(p(t1|Tj , Tk)) + log(p(t2|Tj , t1, Tk)) . . .+

log(p(tn|Tj , t1, t2, . . . tn�1, Tk))

We found that normalizing the scores by the num-
ber of tokens improved accuracy results. We hy-
pothesize that this normalization reduced the LM’s
bias towards single token answers, but more ex-
perimentation is required to fully understand the
effects of normalizing scores by token length.

5 Results and Discussion

5.1 Task 1 and Task 2
The accuracies for Task 1 and Task 2 were nearly
identical, as shown in Table 1. This was somewhat
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Figure 3: A breakdown of accuracy across PropBank
roles for Task 1 by number of instances. Notably, ac-
curacy decreases as the number of samples increases
regardless of the role the vocabulary term plays in the
sentence.

surprising, as we thought that DistilBERT would be
more accurate when differentiating between words
with different functions than within the same func-
tion, where we hypothesized more nuanced com-
monsense knowledge was required to recognize
the correct answer. This could be from word co-
occurrence probabilities. DistilBERT knows that
legs is more likely to co-occur with bicycle than
boat, so it doesn’t necessarily need to do any rea-
soning. It’s also possible that reporting bias played
a role: annotators may have spent more time care-
fully differentiating between objects with similar
functions than they do differentiating objects with
significantly different functions because it is more
self-explanatory to the reader what the latter differ-
ences are. Thus, the sentences for Task 2 may have
inadvertently been more informative.

We also obtained DistilBERT’s accuracy across
each function. Some trends are immediately vis-
ible. First, regardless of the role the vocabulary
term played in the sentence, the more sentences
written for a specific function, the worse accuracy
got. This can be seen in 3. Since so much expert
knowledge was used when assigning the PropBank
sense and role while deciding function, we do not
believe this is because of labelling error. Rather,
functions with fewer sentences tended to be more
common, specific, and explicit than functions with
many sentences. For instance, some functions that
had only one or two sentences that scored well were

Ranked Distance Accuracy Accuracy Range
1st, 2nd 62.2% 15.4%
1st, 3rd 60.1% 15.2%
2nd, 3rd 66.5% 13.3%
2nd, 5th 67.2% 10.0%
6th, 11th 76.0% 9.1%
12th, 21st 77.1% 18.7%
26th, 36th 81.5% 7.3%

Table 2: Results for Task 1e. Ranked distances refer
to the cosine distance from the wrong answers to the
correct answer and are ranked by closeness to the correct
answer, from 1st closest to 36th closest.

dig.01 ARG2 (which corresponded with shovel),
rotate.01 ARG1 (which corresponded with wheel),
and buttress.01 ARG0 (which corresponded with
column). All of these items are strongly corre-
lated with the functions. Larger categories that
struggled more included contain.01 ARG0, whose
vocabulary items ranged from cabinet to can, and
occupy.01, whose terms ranged from car to barn.
Since the annotators were writing sentences that
worked with all vocabulary of the same function,
the sentences with “larger” functions had to be
more general and likely had fewer semantic clues
for DistilBERT to utilize. This suggests that LMs
have room to improve on more general cases for
objects for our use case, including handling a wider
variation in object function use.

Even though the results for Task 1 were strong,
within the task there was a wide range in accuracy
over each document, with 2 documents in the same
task differing in accuracy by as much as 22%. We
attributed this wide range to annotator bias (as men-
tioned in Section 3.2). While annotator bias is a
given in a dataset with few sentence creators, we
wanted to minimize as much bias as possible to en-
sure the LM was a sufficient basis for our ultimate
use case of collaborative, disaster-relief commu-
nication. One clear place to eliminate bias was
in the selection of wrong answers, motivating the
development of Task 1e.

5.2 Task 1e, Embedding Distances
For Task 1e, we achieved our initial goal of reduc-
ing the range in accuracy over all documents for
all experiments, as shown in Table 2. This demon-
strates that the wrong answers chosen by sentence
authors did have an impact on accuracy, as we had
hypothesized. The overall accuracy ranges also
show that the impact of manually selected wrong
answers is overall positive. In other words, the



Figure 4: Example sentences that DistilBERT correctly
(shown in green with check marks) and incorrectly
(shown with a red X) answered from Tasks 1 & 2.

manually selected wrong answers in Task 1 were
generally easier for the LM to eliminate than the
wrong answers selected for all but the most distant
wrong answer choices in Task 1e. The accuracy
range also decreases as vocabulary terms get fur-
ther away from the correct answer in vector space,
demonstrating that the sentence alone does not give
DistilBERT enough information to differentiate be-
tween the answers, and that it needs the answers
choices to provide extra information for it to make
a correct decision. We also examined the scores
for each function as we did with Task 1, and we
found that scores decreased rather evenly across
the board, regardless of how many sentences were
testing the function.

As we had hypothesized, the overall scores and
the scores by function generally improved linearly
as the wrong answers moved further away from
the correct answer. However, when looking at
individual documents and functions with wrong
answers close to the correct answer, that linearity
breaks down, and performance seems very depen-
dent on the language choices of individual anno-
tators. When examining the data qualitatively, it’s
often not clear from a linguistic perspective why
DistilBERT assigned the probability it did. For in-
stance, DistilBERT thought it was more likely that
one would use a motorcycle to catch their balance

than a rail, or even a television. It’s also not im-
mediately clear how the annotators writing styles
are “easier” or “harder” for DistilBERT to work
with. Other unclear examples can be seen in Figure

4 for both Task 1 and 2. We suspect that larger
language models which utilyze larger vocabularies
than DistilBERT would be more linguistically in-
formed due to the increased data and training time,
but we leave that to future work.

While the scores decreased significantly when
going from annotator-selected wrong answers to
ranked distance wrong answers, DistilBERT still
scores far better than random and shows it does
have a strong amount of knowledge on object func-
tions. Overall, our expectations for DistilBERT’s
zero-shot knowledge were exceeded in both tasks.
Nonetheless, given the high stakes of our applica-
tion domain, we plan paths for improvements in
future work (Section 7).

6 Related Work

We were inspired in our own research by Chen et al.
(2022), who also test an LM’s zero-shot knowledge
with respect to physically situated settings. The
authors’ goal is to use LMs to help robots determine
the type of room it is in for a given 3D scene. To
test if LMs could be effective at this task, they
automatically generate sentences from the template
“The r often contains o”, where r is a type of room
and o is an object often found in that room. The
authors ran their sentences through the masked LM
BERT with the room masked to see how well BERT
could predict the room based on the objects. The
authors found that rooms with very specific items
(bathrooms, bedrooms, kitchens) were easier to
identify than rooms which had furniture that can be
in many rooms (dining rooms, living rooms). This
showed us the effects reporting bias can have on
physical commonsense LMs and prompted us to
research this for our own use case.

The ultimate goal of our research is to use LMs
for robot policy planning with a strong understand-
ing of the LM’s decision-making process and em-
beddings, since high stakes situations demand ac-
countability. Dipta et al. (2022) approach this task
by creating linguistically informed embeddings
within a custom encoder-compressor-decoder net-
work. The network was trained to recognize the
hierarchical nature of events by using frames from
FrameNet (Baker et al., 1998) only partially de-
scribing said event. By injecting linguistically in-
formed knowledge, while not requiring specific
vocabulary to indicate that an event is occurring,
Dipta et al. (2022) had strong performance with
a reasonable explanation of what each part of the



neural network is doing.
In terms of planning with LMs, there are mul-

tiple interesting approaches. Driess et al. (2023)
trained an LM, called PaLM-E to also accept im-
age and continuous sensor data, as well as text. By
encoding the non-text data into vectors that are the
same size as a text vector, the model can complete
a variety of tasks straight out of the box while also
allowing for downstream fine-tuning. Notably, it
can output plain text that can be interpreted as a
robotic policy, though PaLM-E has to interpret on
its own what a particular robot’s capabilities are.
More testing needs to be done to see if the robot
can behave consistently, and the authors caution
that it is not meant for long-term tasks. Another
model made by Song et al. (2022) utilizes an upper
level LM, in their case GPT, with some few-shot
training for high-level policy planning. They sepa-
rately designed a lower level model that handles the
execution of movement and other low-level tasks.
Importantly, if the lower level model can’t execute
a task, it can query the higher level model with
the information it perceived about the environment
for an updated policy. This enables it to handle
long term, complex tasks. However, both of these
models lack the explainable nature of Dipta et al.
(2022) with its basis in linguistic theory.

7 Future Work and Conclusion

Given the overall success of these experiments, we
have several avenues of future work. First, we
want to test how different LMs perform on our
dataset. While DistilBERT satisfied our theoretical
computational constraints, there’s a strong chance
that newer and larger masked LMs will perform
even better on our dataset. Testing on other LMs
will also further solidify our dataset as a useful
analysis tool for object-related common sense. We
also want to do a more in-depth statistical analysis
of how DistilBERT performed by function, perhaps
grouping functions to get coarser granularity to
understand which functions need the most fine-
tuning for a LM to succeed.

With the recent advent of multi-modal LMs like
PaLM-E and GPT-4 (OpenAI, 2023), our research
interests are quickly shifting towards utilizing these
models for grounded common-sense understanding.
It is possible these may be more aware of physical
limitations due to images (and in PaLM-E’s case,
robotic policy) in the training data. While these
models do have some ability to explain their de-

cision making process, there is much to discover
in terms of the models’ full capabilities. We are
also interested in examining few-shot fine-tuning
with syntactic and semantic information to improve
both common-sense performance and the model’s
ability to explain itself. Our hope is that combin-
ing new multi-modal models with linguistic insight
will make a more trust-worthy model that can be
successfully deployed in disaster-relief missions.

We set out to discover if LMs can provide
the type of apriori, commonsense knowledge of
the functions of various objects, especially those
deemed important to robot-based, disaster relief
missions. This is important because this technol-
ogy could lead to replacing humans with robots in
dangerous scenarios that have little room for error.
We systematically identified the function each ob-
ject plays in our domain, then created two tasks to
test the granularity of a LM’s ability to differentiate
between these functions. DistilBERT performed
quite strongly on our tasks, validating our proof of
concept. Even when removing the bias of human-
generated wrong answers, we still obtained strong
results indicating that DistilBERT has significant
knowledge about our domain. We are finding new
avenues to expand our research into using more
advanced LMs in tandem with resources encod-
ing linguistic knowledge to improve collaborative,
physically situated human-robot dialogue.
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