Machine Learning for Testing Machine-Learning
Hardware: A Virtuous Cycle”

(Invited Paper)

Arjun Chaudhuri, Jonti Talukdar, and Krishnendu Chakrabarty

Department of Electrical and Computer Engineering, Duke University, Durham, NC

Abstract—The ubiquitous application of deep neural networks
(DNN) has led to a rise in demand for AI accelerators. DNN-
specific functional criticality analysis identifies faults that cause
measurable and significant deviations from acceptable require-
ments such as the inferencing accuracy. This paper examines the
problem of classifying structural faults in the processing elements
(PEs) of systolic-array accelerators. We first present a two-tier
machine-learning (ML) based method to assess the functional
criticality of faults. While supervised learning techniques can
be used to accurately estimate fault criticality, it requires a
considerable amount of ground truth for model training. We
therefore describe a neural-twin framework for analyzing fault
criticality with a negligible amount of ground-truth data. We
further describe a topological and probabilistic framework to
estimate the expected number of PE’s primary outputs (POs)
flipping in the presence of defects and use the PO-flip count
as a surrogate for determining fault criticality. We demonstrate
that the combination of PO-flip count and neural twin-enabled
sensitivity analysis of internal nets can be used as additional
features in existing ML-based criticality classifiers.

I. INTRODUCTION

Deep neural net (DNN)-driven inferencing applications such
as image classification are inherently fault-tolerant with re-
spect to structural faults; it has been shown that many faults are
not functionally critical, i.e., they do not lead to any significant
error in inferencing [1]-[4]. Low-cost structural and functional
test methods for accelerators have been proposed in [4]-[7].
Incorporation of the knowledge of fault criticality in testing
enables the application of dedicated test effort for functionally
critical faults. Targeted online testing of critical faults reduces
the test data volume and test time required by built-in self-
test solutions for complex systems. Recent work utilized su-
pervised learning-driven DNNs, graph convolutional networks
(GCNs), and neural twins to evaluate the functional criticality
of stuck-at faults in the gate-level netlist of an inferencing
accelerator, thereby bypassing the need for computationally
expensive brute-force fault simulations [8]-[10].

The generation of labeled data for supervised learning
introduces prohibitive computation costs if the labeling process
involves time-consuming simulations. For criticality analysis,
a large number of fault simulations are needed to collect
sufficient information about critical and benign faults. In [9],
nearly 20% of the fault sites in a PE were sampled for ground-
truth collection via fault simulations (limited to 45 parallel

*This work was supported in part by the Semiconductor Research Cor-
poration under GRC 'lPask 2879.081 and Task 3106.001, and by NSF under
the National AI Institute for Edge Computing Leveraging Next Generation
Wireless Networks, Grant #2112562.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

ICCAD 22, October 30-November 3, 2022, San Diego, CA, USA
© 2022 Copyright is held by the owner/author (s).
ACM ISBN 978-1-4503-9217-4/22/10.

simulation runs using licensed commercial software), and this
process took ~750 hours on an Intel Xeon E5 2.4 GHz
CPU. Such a high runtime for collecting sufficient labeled
data becomes the bottleneck in supervised learning-driven
fault-criticality analysis. The amount of required labeled data
for accurate classifier training is mitigated by the criticality
assessment framework proposed in [10]. In [11], a proba-
bilistic fault-grading framework was proposed for identifying
potentially critical fault candidates in order to accelerate the
ground-truth collection time for training criticality classifiers
through targeted fault simulations. In this paper, we highlight
the contributions of the criticality classifiers described in [8]
and [10] in assessing the functional criticality of single stuck-
at faults in a systolic array based Al accelerator. Additionally,
we present the contributions of [11] to the efficient assessment
of fault criticality — with and without using deep learning-
enabled methods.

The remainder of the paper is organized as follows. Sec-
tion II reviews systolic arrays and motivates fault-criticality
analysis with limited ground-truth data. Section III presents a
two-tier DNN-based framework for criticality classification.
Section IV presents criticality evaluation results using the
neural twin. Section IV presents the probabilistic fault-grading
framework for ranking fault sites based on their functional
criticality. Finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION
A. Systolic Array-based Inferencing Accelerators

Systolic array-based Al accelerators allow efficient com-
putation of multiply and accumulate (MAC) operations for
inferencing workloads using state-of-the art DNNs [12]-[14].
A systolic array consists of a two-dimensional array of PEs
[15]. Each PE consists of a floating-point adder and multiplier
unit, and is responsible for performing a single MAC operation
on the incoming stream of data. In each pass of the workload
through a 4x4 systolic array, each column oi the array
performs the MAC operation: S; = Z?zl X; - W4, where
S; is the output of the 4t column of the array, X; is the
input activation applied to the i'" row of the array, W;; is
the weight rolled into the ;" column at the i*" cycle. As
the weight (or activation) values are rolled into the array
columns, it allows overlapping the computation of multiple
layers and filters concurrently in the same array, speeding up
the computation significantly.

https://doi.orgAl A dhEG MERSERS UK limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

B. Importance of Fault-Criticality Assessment

DNNs are inherently fault-tolerant, in part due to the use
of non-linear activations, regularization features, and training
across large datasets [2]. In addition, their application across a
wide variety of use-cases provides the end-user with flexibility
in defining acceptable inferencing accuracy thresholds required
for functional correctness [15]. The functional criticality of a
structural fault is determined by its impact (degradation) on
the inferencing accuracy for a given target application and a
given test set 7. A fault is deemed to be functionally critical
if the inferencing accuracy in its presence degrades below a
pre-determined accuracy threshold, A,,;,, which is evaluated
based on the safety criticality of the target application [15].
Similarly, a fault is considered to be functionally benign if it
does not reduce the inferencing accuracy beyond A, ;.

Analyzing the functional criticality of structural faults can
be useful for guiding test-effort, reducing yield loss due to
functionally benign manufacturing defects, and performing the
quality assessment of Al accelerators throughout their entire
life-cycle [7]. As the functional criticality of structural faults
depends on the type of application/dataset, the architecture
of the hardware accelerator, mapping of the application DNN
to the target hardware, and the pre-determined criticality
threshold, the same fault-criticality assessment methodology
can be utilized to evaluate and catalog fault-criticality across
different domain-specific use-cases.

C. Need for Selective Fault Simulation

Data reuse in systolic array-based Al accelerators implies
that a single fault in the PE can affect multiple neurons in the
mapped DNN model. Thus, identifying the functional criti-
cality of structural faults requires numerous fault simulations,
sometimes across several inputs (for e.g., several images in
the test dataset) for a given target application. Prior work
has focused on utilizing supervised learning methods such
as DNNs [8], GCNs (graph-convolutional networks) [9], and
neural twins [10] for functional fault criticality classifica-
tion. These models perform better when supplied with large
amounts of labeled data for training. However, given that a
single 32-bit PE can contain thousands of stuck-at faults, the
total number of structural faults in an industry scale systolic
array (128 x 128 or 256 x 256) can be in the range of millions
[8]. As shown in [9], it can take up to 750 hours to simulate
only 20% of the faults in a single PE with parallelization factor

of 45:1 (often dictated by commercial licensing constraints).
In addition, the percentage of critical faults in a systolic array
is much less than the percentage of benign faults. Over 85%
of structural faults in the MAC units of a 32-bit PE (both
adder and multiplier units) are potentially benign, while close
to 80% of structural faults in the MAC units of the 16-bit PE
are potentially benign [8]. The lack of informed methods that
are designed to select candidate fault sites for fault simulation
exacerbates the problem of identifying a sufficient number
of critical fault sites while minimizing the number of fault
simulations.

III. CRITICALITY ASSESSMENT USING DEEP LEARNING
A. Two-Tier DNN Framework for Reducing Misclassifications

In [8], a two-tier DNN-based framework is used to classify
fault criticality with a low test escape; see Fig. 1. Ground-truth
data comprising the criticality information of nodes in a gate-
level PE is collected for training and validation of ML1. Single
fault simulation is carried out to determine the functional
criticality of a node based on a pre-determined threshold. We
set a conservative threshold of 95% classification accuracy
for collecting more critical-labeled nodes; training the ML
models on a large number of critical nodes will lead to
low test escape during criticality evaluation. The above set
of nodes is randomly partitioned into training and validation
datasets in the ratio 3:1. For each such partitioning scenario,
MLI is first trained to classify nodes as critical or benign.
The trained model is then evaluated on the validation set.
The critical nodes in the validation set that are misclassified
as benign by MLI1 are added to the set of misclassified
nodes Stp. The set Spp is used for training a generative
adversarial network (GAN) to generate samples with features
matching the feature distribution of the test-escape nodes.
The convergence of GAN can be achieved by: (i) increasing
the number of training epochs, (ii) tuning the architecture
and hyperparameters of GAN, and (iii) increasing Ny yq.
After the GAN converges, the trained generator model in
the GAN is ready for generating test escape-like samples to
further augment St g. The augmented Stg, along with nodes
correctly classified as benign by MLI, is used to train ML2,
to distinguish between real and misclassified benign nodes.

B. Criticality Evaluation

During the evaluation phase of aggregated GAN-based crit-
icality assessment flow, fault simulation of nodes, not present

Misclassified | |
Nodes (Szg) D N

DAY+

Discriminator DNN \ N
ML2 m
-

Topology & W

- ML2 DNN

5 Backward Pass,

Generated
Samples

Detected critical nodes
misclassified by ML1

! Forward
Data Features I
: Actually Pass
— Critical
Functional -
Fault Pre(.il.cted Predlfted Actually
Simulation Critical P Benign

Generator DNN

Fig. 1: Methodology used for training aggregated GAN-based criticality assessment flow.

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

in the training and validation sets, is carried out to form the
evaluation dataset 7'. The pre-trained ML1 model is used to
predict the criticality of nodes in 7. The nodes predicted
as benign by ML1 are fed to the pre-trained ML2 model
for post-processing—ML?2 evaluates if any of those nodes is
misclassified. Finally, the nodes classified as real benign by
ML2 are categorized as the truly-benign nodes. We achieve an
average test-escape of less than 3% and 1% for the criticality
assessment of the 16-bit and 32-bit PEs, respectively.

IV. CRITICALITY ANALYSIS USING A NEURAL TWIN

In [10], the standard cell instances in the PE netlist are
substitued with their corresponding Cell-Nets while translating
PE into PE-Net. A multi-layer perceptron (MLP) architecture
is used to build a Cell-Net. The Cell-Net is then trained based
on the truth table of the corresponding logic gate. During
training, the Cell-Net model parameters are regressed in order
to estimate the Boolean output of the logic gate for a given
set of Boolean (or binary) inputs.

A. Modeling of Cell-Net using MLP

A Cell-Net is mathematically represented by a non-
linear function, ¢y, and is composed of an MLP con-
figuration with three fully connected layers: ¢cey(zin) =
Usig(A3asig(A20's1lg(A1zin + bl) + b2) + b3) Here, Zin
denotes the binary input vector of size r,; A;, Ao, and As
are affine transformations of size 4 x r,, 4 x 4, and 1 x 4
respectively; by, bs, and bg are bias vectors of the MLP
network. The Sigmoid activation function present at the output
of every neuron in the Cell-Net is denoted by o;,(-). The
input vector z;, is composed of the binary inputs to the
standard cell. When z; and z, are binary inputs to a standard
cell, z;,, = [z1, 22]. The size of the input vector, r., is equal to
the number of input ports of the standard cell being modeled.
For example, when the cell being modeled is an AND2 gate,
7, is 2. The final layer of the Cell-Net contains a single neuron
that outputs the binary state of the gate being modeled. The
Sigmoid activation function constrains the Cell-Net’s output
to be between 0 and 1 as the objective of Cell-Net modeling
is to estimate the binary output of a logic gate. The Cell-Net
modeling is illustrated in Fig. 2(A).

B. Construction of a Neural Twin

We convert the PE netlist into a directed acyclic netlist-
graph G to build the PE-Net, i.e., the neural twin of the
PE. The conversion maps each cell instance in the netlist to
its corresponding Cell-Net, which is represented by a vertex
in G. For instance, a 2-input AND gate (AND2) is mapped
to the AND-Net with two inputs and one output. A wire
connecting two cell instances in the netlist is mapped to a
neural connection between the corresponding Cell-Nets, i.e.,
an edge between the corresponding vertices in GG. The neural-
twin modeling is illustrated in Fig. 2(B).

The objective of PE-Net is to produce the partial-sum
output, yP°, of PE(r,c), i.e., the PE in the r-th row and c-

r,c’

th column (0-indexed) of the systolic array. In other words,

the PE-Net is a neural network-based representation of a PE
in the systolic array. The PE-Net is represented in functionality
by: yP% = w -z +yP”, _, where z and w are n-bit floating-
point (FP) scalars that /interchangeably propagate activation
and weight signals to a PE across different inferencing cycles;
n is 16 or 32 depending on the PE architecture. The n-bit FP
Yy~ . carries the partial-sum output of PE(r — 1, ¢), becoming
the partial-sum input to PE(7, ¢). The PE-Net architecture is
based on the topology of G such that there exists a one-to-one
physical correspondence between each wire (or fault site) in
the PE netlist and a neural connection in the PE-Net. Every
logic gate in the PE netlist is substituted by the corresponding
Cell-Net in the PE-Net.

Let the neural connection e;; connect Cell-Nets v; and v, in
the PE-Net. We associate a bias term bias;; with every e;;. The
bias term represents a perturbation in the signal being prop-
agated along e;;. Therefore, the output e;; of v; is added to
bias;; and the resultant sum s;; is passed to the input of v;. To
constrain s;; to lie between 0 and 1, we pass s;; through an ac-
tivation function, ¢lp(-): clp(z) = max{min{0, z}, 1}, where
z € R. Let the n partial-sum output bits of PE-Net be denoted
by {Zout,Oa Zout,1s +++s Zout,nfl}s with Zout,0 and Zout,n—1 being
the least (LSB) and most significant (MSB) bits, respectively.
Here n can be 16 or 32 depending on the PE architecture.
The n output bits are converted into a single FP scalar
value, ¢r7, using the following differentiable expression:
985 = (1= 2201) (2T @ sontnmerin) =2 40))

(1 + Yo (2t zout,n,nc,i,l)). Here, n. and n,, denote
the number of exponent and mantissa bits in the n-bit binary
representation of a FP value whose MSB represents sign bit.

To enable backpropagation in the PE-Net, we ensure that
the network is end-to-end differentiable by including pseudo-
differentiable activation functions.

C. Criticality Classification using MDT and Decision Tree

The misclassification-driven training (MDT) algorithm [16]
used to identify critical faults (CFs) in PE-Net. Based on the
bias sensitivity computed by MDT, we introduce a selective
bias (+1 or -1) to maximize the error of the neural-twin
MLP model with respect to the fault-free PE. Then, we
train a decision tree (DT) model using a limited amount
of ground truth to classify the neural-twin’s output error as
functionally critical or benign. Fig. 2(C-D) illustrate the MDT-
based methodology for criticality analysis.

MDT iterates through fault locations and introduces a bias
at the location [to simulate a stuck-at fault (F') effect. We
update the bias at [according to the sign (direction) of the
gradient; the change in direction of the bias is the same as
the gradient at I, or V[I]. This can be viewed as a gradient
ascent step to maximize the error function. We next obtain the
error for F' by inferencing using the updated neural twin. We
use the pre-trained DT model to predict fault criticality based
on the obtained error value. Almost all faults identified using
MDT lead to extremely large MSE and many of these faults
are predicted as being critical by the DT.

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

| Modeling of Cell-Nets || Modeling of PE-Net (neural twin of PE) |

‘ Training decision tree to classify fault criticality

Misclassification-Driven Training of PE-Net for

evaluating fault criticality

| PE netlist I—'l Netllst-graph |

Functional fault simulation
of workload WL

Fault site
under

Fault-free
dataflow

PE-Net
(fault-free)

for WL

Cell library
(size-invariant)

Cell-Net modeling
[AND2 — AND2-Net]

Perturb bias
in PE-Net to

Benign
loss

Compute bias

evaluation
maximize

sensitivity

Learn Boolean function

Benign Critical
faults faults

Get corresponding
(bias in PE-Net
Lys > L;s

Critical
loss

|

Lps)
dbias

/ PE-Net \
N_____—

I
Cell — pre-| llamed Cell-Net Ground-truth collection
Wire — neural connection (labeled criticality data)
with additive bias

Fault injection in PE-Net

Perturb bias

oEBY

Approximation loss (£)
Cell-Net

(A)

(B)

|
< Critical fault
.. Benign fault

Pre-trained decision tree
D)

- 00
Train decision tree-based
loss-criticality classifier

©

Fig. 2: Functional criticality analysis of structural faults using the neural twin of a PE.

TABLE I: Criticality evaluation using neural twin.

T T6-bit PE 32°bit PE
(%) | Ac (%) TM: (%) | Ac (%) M. (%)
2 1974 (53) [5.1 2.1) [943 (1.O7) [133 (1.3)
5171000 | 00 | 9890.3) | 3.5 0.7
8 | 100(0) | 0(0) | 1000 0 (0)
10 | 100 (0) | 0(0) | 100 (0) 0 (0)

D. Evaluation Results

Table I presents the evaluation results for the 16-bit and 32-
bit PE(20,0) for different values of f and by using different
criticality analysis frameworks; f is the percentage of ground-
truth data used to train DT. The percentage classification
accuracy is denoted by A. and the percentage of critical fault
locations misclassified as benign is denoted by M. The neural
twin-based framework achieves A, = 100% and M. = 0%
misclassification of critical faults by using the DT trained on
only 8% of the labeled data for the 32-bit PE and 5% of the
labeled data for the 16-bit PE.

V. PROBABILISTIC FAULT GRADING FOR SELECTIVE
FAULT SIMULATION

A. Fault-Criticality Grading
1) Computing Probability of Transition Fault

As shown in [11], consider the probability distribution
function (PDF) of the additive bias b, that affects the signal
being propagated by the output net (n,) of a defective cell
instance in the PE netlist. This additive bias is capable of
modeling a cell-internal resistive (or delay) defect, temporal
fluctuations in the power supply due to IR drop or voltage
droop, and thermal noise-induced perturbations in the gate’s
output voltage level. The sign and magnitude of b, determine
the extent to which the signal carried by the faulty net is
affected. In case of cell-internal delay defects, the defect size is
modeled by the bias magnitude and the defect location (PUN
or PDN) can be mapped to the bias sign. Moreover, the noise
margin of the digital circuit is modeled using a non-negative
tolerance parameter, 7. If the voltage level of VDD (ground)
is mapped to ‘1’ (‘0’) and the rule-of-thumb noise margin is
20% of VDD, then 7, = 0.2. The additive bias is likely to
cause a faulty signal transition (i.e., bit flip) if its magnitude
exceeds 7,. By considering the PDF, p(b,), of b, on a faulty
net and the circuit’s intrinsic tolerance to faults (i.e., noise
margin), we account for the fact that not all defects or non-

idealities are critical to circuit functionality; the impact on
functionality depends on the location, size, and likelihood of
defect occurrence. We next compute the probability of a failed
signal transition (0—1 or 1—0) on the faulty net (n,) using
the bias distribution function. While we consider a single fault
in the PE netlist for criticality analysis, the proposed fault-
grading framework can be extended to multiple-fault scenarios.

Without loss of generality, we assume a PDF for the bias
that is symmetric around the y-axis, i.e., p(b,) = p(—b,). This
implies that the likelihood of occurrence of a certain bias size
is the same irrespective of the bias sign. In the context of
delay defects, the defect-size distribution is assumed to stay
the same for defects in PUN and PDN. Let the probability
of signal ‘1’ being propagated by fault-free n, be p;. Let
the probability of signal ‘0’ being propagated by fault-free n,
is pg. Let Eyf o denote the event that n, carries ‘0’ in the
fault-free scenario. Let Eyy; o denote the event that n, does
not undergo a 0—1 transition in the presence of the fault,
i.e., by. Therefore, P[E;so N Eyy0] denotes the probability
that the fault-free signal is ‘0’ and remains ’0’ under faulty
conditions. Using Bayes’ theorem, Py = P[Es 0N Efy0] =
PlEfi.0|Efy0] - P[Efy.0]- Note that P[Ey o] = po.

The logic value implied by the faulty signal equals that of
the fault-free signal (’0’) under two conditions: (i) b, < 0: the
bias-added signal becomes negative and is correctly perceived
as logic ‘0’ by the downstream logic gates; (i) 0 < b, < 73!
the signal value on n, becomes b, which is within the circuit
noise margin and does not cause a logical 0— 1 transition, i.e.,
no 1—0 transition fault. The probability that one or both of the
above conditions hold equals P[E;; o|Eys0]. The probability
of b, <0 is computed as area under the PDF curve between
b, = —oo and b, = 0: fb p(b;)db,. The probability of
0 < by < 7p is computed as the area under the PDF between
by = 0 and b, = T, which is f _Op) db,. Therefore,
Po=po- [, __ . p(bz)dbs.

Similarly, the logic value implied by the faulty signal equals
that of the fault-free ‘1’ (i.e., VDD or power supply) under
two conditions: (i) b, > 0: the bias-added signal exceeds 1
and is correctly perceived as logic ‘1’ by the downstream
logic gates; (i) —7, < b, < 0: the signal value on n,
becomes 1 — b, which is within the circuit noise margin
and does not cause a logical 1—0 transition, i.e., no 0—1

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

transition fault. The probability that the faulty signal carried
by n, implies logic ‘1’, given that the fault-free signal is also
‘1’, is given by: szozﬂ p(b;) db,.. Therefore, the probability
that the fault-affected n, propagates logic ‘1’ is given by:
P = p; - fb‘j’:_m p(by) db,.. Consequently, the probability
(Pf1ip) that n, undergoes a logical transition in the presence
of a fault is: Ppj;p =1 — Py — Pi.

The defect-tolerance probability, P;,;, is defined as the area
under the PDF between b, = —7, and b, = 7. In this region,
the additive bias does not affect the logic switching of the
faulty net. A popular choice for the defect-size distribution
function, h(x), is h(x) = a - e "I7l, where z is the defect
size, and {a,b} are fitting parameters. We adopt the same
function for p(b,). As a - e I’ is symmetric around y-
axis and ffooo p(by)db, = 1, fooo a - e tlb=ldp, = 0.5.
This implies b = 2a. Therefore, P,y = f_ﬂ;bp(bz) db, =
by e b= db, = 1—e"". Given 7, and b, we can compute
P,o;. Moreover, we can express Py—g 1 as P, = py, - (%Pwl)

2) Propagation of Transition-Fault Probabilities

We convert the pipelined PE netlist into a directed acyclic
graph G where a vertex or node represents a cell instance
and an edge represents a wire connection between two cell
instances. The primary input (PI) and primary output (PO) pins
are mapped to graph nodes as well. We traverse G in a topo-
logically sorted order. The Py is computed for every node’s
output stem during the traversal. The probability tuples for the
PE’s primary inputs (PIs) are extracted from the distribution
of 1’s and 0’s appearing at the PIs across all inferencing cycles
of the applied workload. By considering the bit distribution of
the input workload, the notion of workload-dependent circuit
functionality is incorporated into the computed transition-fault
probabilities. In this work, we consider a workload of 100
MNIST images being classified by the LeNet-5 model mapped
to the systolic array. Each image requires 1298 cycles (or
iterations of PE reuse) to produce the final inferencing result.
Therefore, each PE receives bitstream corresponding to a total
of 1298 x 100 cycles. For each PI node in G, the fault-free pg
(p1) is calculated as the fraction of Os (Is) appearing in the
129800-cycle fault-free bitstream.

During topological traversal of GG, the Py tuple computed
for a parent node (driver gate) is used to calculate fault-free
pr(k € {0,1}) for the child node (load gate) based on the
controlling/non-controlling Boolean values of the child. From
the computed py, Pj of the child is calculated as Py = py -
(%), if the child node contains a fault with P, < 1; if
child is fault-free, P,; = 1 implying P, = p.

The Py computation procedure exits once Py tuples have
been computed for all PO nodes in G. Separate Py tuples are
calculated for the different output ports of a multi-output logic
gate, e.g., SUM and CARRY-OUT ports of a full-adder (FA).
The nodes corresponding to complex gates such as FAs, OAls,
and AOIs are decomposed into primitive gates (e.g., 2-input
AND, OR, XOR, INV, BUF, etc.) prior to Py, computation.

501

404

30

Fw

20 4

" " " " " " " : " "
0 300 600 900 1200 1500 1800 2100 2400 2700
Fault site ID

Fig. 3: Variation of Fy with variation in Pj,;.

3) Ranking Fault Sites using Transition-Fault Probabilities

After the Py tuples are calculated for the PO nodes in the
PE netlist in the presence of a fault f, the expected number
of POs flipping (Fg) under faulty conditions is calculated by
summing the Pyy;;, probabilities of all PO nodes corresponding
to the partial-sum output ports of the PE. For m POs, the
expected bit-flip count F is given by Fr = Y " | Pfiip, PO,
where Py po, is the Py, value in the Py computed for
the i-th PO, PO;. A higher value of Ff indicates a higher
likelihood of f being functionally critical.

While F'g allots equal weight to all POs of the PE, in reality,
faulty transitions in some POs may have greater functional
impact on the final inferencing accuracy compared to other
PEs. For the floating-point PE’s partial-sum output bus, a flip
in the most-significant bit (MSB) is likely to be more critical
than a flip in the least-significant bit (LSB). We compute a
weighted bit-flip count, Fyy, by assigning larger weights to
the more significant bits of the output bus: Fyyy = > i -
Priip po,. Here, PO, (POy) is the MSB (LSB). Fig. 3 shows
the increase in Fyy with decrease in P;,; in 16-bit PE(20,0).

We also compute a functionality-aware weighting of the
PO bit-flips. The combination of binary partial-sum outputs
of the floating-point PE is interpreted as a floating-point
operand when the DNN model’s parameters are mapped to
the systolic array. The impact of a fault on the inferencing
accuracy will depend on the functional nature of the flipping
POs, i.e, the POs where the fault effect propagates. Therefore,
we assign weights to the different POs depending on whether
they represent the sign, exponent, or mantissa bits of the
partial-sum bus. The weight assigned to a PO indicates the
maximum magnitude of relative error in the partial-sum value
in decimal representation when the PO flips. Consider a fault-
free partial-sum value of M x 2¥, where M (FE) denotes the
decimal representation of the mantissa (exponent bits); here
1 < M < 2. Let there be n. (n,,) exponent (mantissa) bits. If
the sign bit flips, the partial-sum value changes to —M x 27,
the resulting relative error is 2]\1\44;22; = 2. If the ¢-th exponent
bit flips (¢ = n, — 1 is the MSB of the exponent bits, 7 = 0
being the LSB), the partial-sum value changes to M x 22+2°,

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

E 520 i
The resulting relative error is % =22 1. If

the j-th mantissa bit flips (j = n,, is the LSB of the

mantissa bits, j = 1 being the MSB), the partial-sum value

changes to (M + 277) x 2F. The resulting relative error is
- E T .

% = % < 277, Thus, the functionality-aware weighted

PO-flip count, Fpw, is given by: Frw = 2 Pfiip POy, +

21 —j
ZiEexponent (2 - 1) 'Pfli,p,POi +2j€mantissa 2 'PfliPaPOj'
B. Sensitivity Analysis using Neural Twin

Let z;, wi, y.”, ., 1, and y;7, ; denote n-bit activation
input, n-bit weight input, n-bit partial-sum input, and floating-
point partial-sum output of a PE in the ¢-th inferencing cycle
for an input image, respectively. Let the number of MNIST
images in the application workload be m. We use our in-house
Python-based framework to carry out fault-free inferencing for
the m images and collect the fault-free cycle-wise dataflow
{4, Wi, Yps.in, Yps; 1 < @ < m} through the PE. If the j-
th image (/;) in the workload requires ¢ inferencing cycles
through the systolic array to produce the final classification,
our dataflow matrix D; consists of £ rows and 3n+1 columns.
The first 3n columns in D; contain the binary inputs to the
PE and the final column contains the partial-sum output of the
PE, y,,5, which acts as the label for training PE-Net.

During training of the PE-Net, the input feature vectors
corresponding to the t inferencing cycles of an image are
passed to the PE-Net. Next, we compute the mean-squared-
error (MSE) loss, L,,, between y,, and g, for the ¢ input
vectors. During the training of PE-Net, only the bias pa-
rameters of the PE-Net are updated. We report the mean-
absolute-error (MAE) loss for the PE-Net output while using
the MSE loss for backpropagation. The batch size, denoted
by bs, indicates the number of images across which the L,
is accumulated. The accumulated L, is then averaged and
used for backpropagation to compute the loss gradients with
respect to the PE-Net’s biases using PyTorch autograd. The
gradient of L, with respect to a bias bias; is given by aabf;; ;
it measures the sensitivity of the PE output to a small chanée
in bias;. The computed gradients are used to update the biases
using gradient-descent policy for minimizing L. One training
epoch ends when the PE-Net has encountered all m images
in the input dataset. The average \£f5§| across all training
epochs is a direct estimate of the significance of the signal
carried by the net n;, corresponding to bias;, in determining
the PE output. Thus, larger | OLps implies higher likelihood

dbias;
of a fault in n; being critical [11].

C. Towards Criticality Classifiers with Augmented Features

We train the PE-Net on workload-derived bitstream samples
of the PE to obtain the gradients of the internal biases [11].
The gradient of PE-Net’s output error (L,) with respect to a
bias (bias,) is given by VL pias, = 2. After obtaining
Frw and |VL,,| (averaged across training epochs) for a fault
site and its corresponding bias in a source PE, we use them
as features to train a Random-Forest model, having a pareto-
optimal tree depth of 30, for predicting inferencing accuracy
in the presence of the fault. The model trained on the ground-

TABLE II: Transfer of Random-Forest model using
|VL,s| and Fpy as features for criticality analysis.

SourceTarget | (20,0) (25,16) | (458) | (21,70) | RZ
20,0) - 25 (41) | 27 (40) | 8 (23) | 0.86
(25,16) 219 (307) - 31 (40) | 21 (23) | 0.88
(45.8) 292 (307) | 32 (41) - 20 (23) | 0.91
(21,70) 247 (307) | 25 (41) | 30 (40) - 0.82

truth accuracies and features of the source PE is transferred
to predict fault-induced inferencing accuracies for identifying
critical faults in a target PE. Table II presents the results of
the model transfer between two 16-bit PEs; A;, = 90%. The
rightmost column presents the R? scores of the models trained
on the respective source PEs. High scores of 0.82 and above
indicate that the model is able to derive a meaningful non-
linear relationship between the inferencing accuracy and the
feature combination of Fpy and VL, This implies that
Fpw and VL, are reliable machine-learnable features that
can be used to augment the feature set of existing criticality
classifiers and improve their classification accuracy.

VI. CONCLUSION

The two-tier DNN-based framework classifies critical faults
with a negligible number of misclassifications. In the neural
twin-based framework, the MDT selectively injects a fault
in the neural twin of the PE based on bias sensitivity and
leverages a DT to classify the PE’s output error as benign or
critical. Neural twin-enabled bias gradient and the weighted
bit-flip metric have been shown to be useful features for
training criticality classifiers.

REFERENCES

[1] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in DAC, 2018.

[2] G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in ACM SC, 2017.

[3] J. J. Zhang et al., “Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator,” in VLSI Test
Symposium, 2018.

[4] S. Kundu et al., “Toward functional safety of systolic array-based deep
learning hardware accelerators,” TVLSI, 2021.

[5] A. Chaudhuri et al., “C-testing of Al accelerators,” in ATS, 2020.

[6] A. Gebregiorgis et al., “Testing of neuromorphic circuits: Structural vs
functional,” in ITC, 2019.

[7]1 M. Sadi et al.,, “Test and yield loss reduction of AI and deep
learning accelerators,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2021.

[8] A. Chaudhuri et al., “Functional criticality analysis of structural faults
in ai accelerators,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1-1, 2022.

[9]1 A. Chaudhuri et al., “Fault-criticality assessment for Al accelerators

using graph convolutional networks,” in DATE, 2021.

A. Chaudhuri et al, “Efficient fault-criticality analysis for Al

accelerators using a neural twin,” in 2021 IEEE International Test

Conference (ITC), 2021.

A. Chaudhuri et al., “Probabilistic fault grading for Al accelerators using

neural twins,” in ISVLSI, 2022.

N. P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit,” in ISCA, 2017, pp. 1-12.

“System Architecture of Google TPU v2/v3”. https://bit.ly/2Jnurx9.

“Google Edge TPU: Coral AI”. https://coral.ai.

A. Chaudhuri et al., “Functional criticality classification of structural

faults in AI accelerators,” in ITC, 2020.

C. Chen et al., “Efficient identification of critical faults in memristor

crossbars for deep neural networks,” in DATE, 2021.

[10]

(1]
[12]
[13]
[14]
[15]

[16]

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

