
Machine Learning for Testing Machine-Learning
Hardware: A Virtuous Cycle∗

(Invited Paper)

Arjun Chaudhuri, Jonti Talukdar, and Krishnendu Chakrabarty
Department of Electrical and Computer Engineering, Duke University, Durham, NC

Abstract—The ubiquitous application of deep neural networks
(DNN) has led to a rise in demand for AI accelerators. DNN-
specific functional criticality analysis identifies faults that cause
measurable and significant deviations from acceptable require-
ments such as the inferencing accuracy. This paper examines the
problem of classifying structural faults in the processing elements
(PEs) of systolic-array accelerators. We first present a two-tier
machine-learning (ML) based method to assess the functional
criticality of faults. While supervised learning techniques can
be used to accurately estimate fault criticality, it requires a
considerable amount of ground truth for model training. We
therefore describe a neural-twin framework for analyzing fault
criticality with a negligible amount of ground-truth data. We
further describe a topological and probabilistic framework to
estimate the expected number of PE’s primary outputs (POs)
flipping in the presence of defects and use the PO-flip count
as a surrogate for determining fault criticality. We demonstrate
that the combination of PO-flip count and neural twin-enabled
sensitivity analysis of internal nets can be used as additional
features in existing ML-based criticality classifiers.

I. INTRODUCTION

Deep neural net (DNN)-driven inferencing applications such

as image classification are inherently fault-tolerant with re-

spect to structural faults; it has been shown that many faults are

not functionally critical, i.e., they do not lead to any significant

error in inferencing [1]–[4]. Low-cost structural and functional

test methods for accelerators have been proposed in [4]–[7].

Incorporation of the knowledge of fault criticality in testing

enables the application of dedicated test effort for functionally

critical faults. Targeted online testing of critical faults reduces

the test data volume and test time required by built-in self-

test solutions for complex systems. Recent work utilized su-

pervised learning-driven DNNs, graph convolutional networks

(GCNs), and neural twins to evaluate the functional criticality

of stuck-at faults in the gate-level netlist of an inferencing

accelerator, thereby bypassing the need for computationally

expensive brute-force fault simulations [8]–[10].

The generation of labeled data for supervised learning

introduces prohibitive computation costs if the labeling process

involves time-consuming simulations. For criticality analysis,

a large number of fault simulations are needed to collect

sufficient information about critical and benign faults. In [9],

nearly 20% of the fault sites in a PE were sampled for ground-

truth collection via fault simulations (limited to 45 parallel

∗This work was supported in part by the Semiconductor Research Cor-
poration under GRC Task 2879.001 and Task 3106.001, and by NSF under

the National AI Institute for Edge Computing Leveraging Next Generation

Wireless Networks, Grant #2112562.

simulation runs using licensed commercial software), and this

process took ∼750 hours on an Intel Xeon E5 2.4 GHz

CPU. Such a high runtime for collecting sufficient labeled

data becomes the bottleneck in supervised learning-driven

fault-criticality analysis. The amount of required labeled data

for accurate classifier training is mitigated by the criticality

assessment framework proposed in [10]. In [11], a proba-

bilistic fault-grading framework was proposed for identifying

potentially critical fault candidates in order to accelerate the

ground-truth collection time for training criticality classifiers

through targeted fault simulations. In this paper, we highlight

the contributions of the criticality classifiers described in [8]

and [10] in assessing the functional criticality of single stuck-

at faults in a systolic array based AI accelerator. Additionally,

we present the contributions of [11] to the efficient assessment

of fault criticality — with and without using deep learning-

enabled methods.

The remainder of the paper is organized as follows. Sec-

tion II reviews systolic arrays and motivates fault-criticality

analysis with limited ground-truth data. Section III presents a

two-tier DNN-based framework for criticality classification.

Section IV presents criticality evaluation results using the

neural twin. Section IV presents the probabilistic fault-grading

framework for ranking fault sites based on their functional

criticality. Finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Systolic Array-based Inferencing Accelerators

Systolic array-based AI accelerators allow efficient com-

putation of multiply and accumulate (MAC) operations for

inferencing workloads using state-of-the art DNNs [12]–[14].

A systolic array consists of a two-dimensional array of PEs

[15]. Each PE consists of a floating-point adder and multiplier

unit, and is responsible for performing a single MAC operation

on the incoming stream of data. In each pass of the workload

through a 4x4 systolic array, each column of the array

performs the MAC operation: Sj =
∑4

i=1 Xi · −→W j,i, where

Sj is the output of the jth column of the array, Xi is the

input activation applied to the ith row of the array, Wj,i is

the weight rolled into the jth column at the ith cycle. As

the weight (or activation) values are rolled into the array

columns, it allows overlapping the computation of multiple

layers and filters concurrently in the same array, speeding up

the computation significantly.

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore.  Restrictions apply. 



B. Importance of Fault-Criticality Assessment

DNNs are inherently fault-tolerant, in part due to the use

of non-linear activations, regularization features, and training

across large datasets [2]. In addition, their application across a

wide variety of use-cases provides the end-user with flexibility

in defining acceptable inferencing accuracy thresholds required

for functional correctness [15]. The functional criticality of a

structural fault is determined by its impact (degradation) on

the inferencing accuracy for a given target application and a

given test set T . A fault is deemed to be functionally critical
if the inferencing accuracy in its presence degrades below a

pre-determined accuracy threshold, Amin, which is evaluated

based on the safety criticality of the target application [15].

Similarly, a fault is considered to be functionally benign if it

does not reduce the inferencing accuracy beyond Amin.

Analyzing the functional criticality of structural faults can

be useful for guiding test-effort, reducing yield loss due to

functionally benign manufacturing defects, and performing the

quality assessment of AI accelerators throughout their entire

life-cycle [7]. As the functional criticality of structural faults

depends on the type of application/dataset, the architecture

of the hardware accelerator, mapping of the application DNN

to the target hardware, and the pre-determined criticality

threshold, the same fault-criticality assessment methodology

can be utilized to evaluate and catalog fault-criticality across

different domain-specific use-cases.

C. Need for Selective Fault Simulation

Data reuse in systolic array-based AI accelerators implies

that a single fault in the PE can affect multiple neurons in the

mapped DNN model. Thus, identifying the functional criti-

cality of structural faults requires numerous fault simulations,

sometimes across several inputs (for e.g., several images in

the test dataset) for a given target application. Prior work

has focused on utilizing supervised learning methods such

as DNNs [8], GCNs (graph-convolutional networks) [9], and

neural twins [10] for functional fault criticality classifica-

tion. These models perform better when supplied with large

amounts of labeled data for training. However, given that a

single 32-bit PE can contain thousands of stuck-at faults, the

total number of structural faults in an industry scale systolic

array (128×128 or 256×256) can be in the range of millions

[8]. As shown in [9], it can take up to 750 hours to simulate

only 20% of the faults in a single PE with parallelization factor

of 45:1 (often dictated by commercial licensing constraints).

In addition, the percentage of critical faults in a systolic array

is much less than the percentage of benign faults. Over 85%
of structural faults in the MAC units of a 32-bit PE (both

adder and multiplier units) are potentially benign, while close

to 80% of structural faults in the MAC units of the 16-bit PE

are potentially benign [8]. The lack of informed methods that

are designed to select candidate fault sites for fault simulation

exacerbates the problem of identifying a sufficient number

of critical fault sites while minimizing the number of fault

simulations.

III. CRITICALITY ASSESSMENT USING DEEP LEARNING

A. Two-Tier DNN Framework for Reducing Misclassifications

In [8], a two-tier DNN-based framework is used to classify

fault criticality with a low test escape; see Fig. 1. Ground-truth

data comprising the criticality information of nodes in a gate-

level PE is collected for training and validation of ML1. Single

fault simulation is carried out to determine the functional

criticality of a node based on a pre-determined threshold. We

set a conservative threshold of 95% classification accuracy

for collecting more critical-labeled nodes; training the ML

models on a large number of critical nodes will lead to

low test escape during criticality evaluation. The above set

of nodes is randomly partitioned into training and validation

datasets in the ratio 3:1. For each such partitioning scenario,

ML1 is first trained to classify nodes as critical or benign.

The trained model is then evaluated on the validation set.

The critical nodes in the validation set that are misclassified

as benign by ML1 are added to the set of misclassified

nodes STE . The set STE is used for training a generative

adversarial network (GAN) to generate samples with features

matching the feature distribution of the test-escape nodes.

The convergence of GAN can be achieved by: (i) increasing

the number of training epochs, (ii) tuning the architecture

and hyperparameters of GAN, and (iii) increasing Ntr,val.

After the GAN converges, the trained generator model in

the GAN is ready for generating test escape-like samples to

further augment STE . The augmented STE , along with nodes

correctly classified as benign by ML1, is used to train ML2,

to distinguish between real and misclassified benign nodes.

B. Criticality Evaluation

During the evaluation phase of aggregated GAN-based crit-

icality assessment flow, fault simulation of nodes, not present

Topology & 
Data Features

Functional 
Fault 

Simulation
Predicted 
Critical

Predicted 
Benign

ML1

Actually 
Benign

Actually 
Critical

GAN
Discriminator DNN

Generator DNN

Forward 
Pass

Pred.

ML2

Generated 
Samples

ML2 
Dataset

ML1 DNN ML2 DNNBackward Pass

Misclassified 
Nodes ( )

Detected critical nodes 
misclassified by ML1

Fig. 1: Methodology used for training aggregated GAN-based criticality assessment flow.

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore.  Restrictions apply. 



in the training and validation sets, is carried out to form the

evaluation dataset T . The pre-trained ML1 model is used to

predict the criticality of nodes in T . The nodes predicted

as benign by ML1 are fed to the pre-trained ML2 model

for post-processing—ML2 evaluates if any of those nodes is

misclassified. Finally, the nodes classified as real benign by

ML2 are categorized as the truly-benign nodes. We achieve an

average test-escape of less than 3% and 1% for the criticality

assessment of the 16-bit and 32-bit PEs, respectively.

IV. CRITICALITY ANALYSIS USING A NEURAL TWIN

In [10], the standard cell instances in the PE netlist are

substitued with their corresponding Cell-Nets while translating

PE into PE-Net. A multi-layer perceptron (MLP) architecture

is used to build a Cell-Net. The Cell-Net is then trained based

on the truth table of the corresponding logic gate. During

training, the Cell-Net model parameters are regressed in order

to estimate the Boolean output of the logic gate for a given

set of Boolean (or binary) inputs.

A. Modeling of Cell-Net using MLP

A Cell-Net is mathematically represented by a non-

linear function, φcell, and is composed of an MLP con-

figuration with three fully connected layers: φcell(zin) =
σsig(A3σsig(A2σsig(A1zin + b1) + b2) + b3). Here, zin
denotes the binary input vector of size rz; A1, A2, and A3

are affine transformations of size 4 × rz , 4 × 4, and 1 × 4
respectively; b1, b2, and b3 are bias vectors of the MLP

network. The Sigmoid activation function present at the output

of every neuron in the Cell-Net is denoted by σsig(·). The

input vector zin is composed of the binary inputs to the

standard cell. When z1 and z2 are binary inputs to a standard

cell, zin = [z1, z2]. The size of the input vector, rz , is equal to

the number of input ports of the standard cell being modeled.

For example, when the cell being modeled is an AND2 gate,

rz is 2. The final layer of the Cell-Net contains a single neuron

that outputs the binary state of the gate being modeled. The

Sigmoid activation function constrains the Cell-Net’s output

to be between 0 and 1 as the objective of Cell-Net modeling

is to estimate the binary output of a logic gate. The Cell-Net

modeling is illustrated in Fig. 2(A).

B. Construction of a Neural Twin

We convert the PE netlist into a directed acyclic netlist-

graph G to build the PE-Net, i.e., the neural twin of the

PE. The conversion maps each cell instance in the netlist to

its corresponding Cell-Net, which is represented by a vertex

in G. For instance, a 2-input AND gate (AND2) is mapped

to the AND-Net with two inputs and one output. A wire

connecting two cell instances in the netlist is mapped to a

neural connection between the corresponding Cell-Nets, i.e.,

an edge between the corresponding vertices in G. The neural-

twin modeling is illustrated in Fig. 2(B).

The objective of PE-Net is to produce the partial-sum

output, ypsr,c, of PE(r, c), i.e., the PE in the r-th row and c-
th column (0-indexed) of the systolic array. In other words,

the PE-Net is a neural network-based representation of a PE

in the systolic array. The PE-Net is represented in functionality

by: ypsr,c = w · x + ypsr−1,c, where x and w are n-bit floating-

point (FP) scalars that interchangeably propagate activation

and weight signals to a PE across different inferencing cycles;

n is 16 or 32 depending on the PE architecture. The n-bit FP

ypsr−1,c carries the partial-sum output of PE(r−1, c), becoming

the partial-sum input to PE(r, c). The PE-Net architecture is

based on the topology of G such that there exists a one-to-one

physical correspondence between each wire (or fault site) in

the PE netlist and a neural connection in the PE-Net. Every

logic gate in the PE netlist is substituted by the corresponding

Cell-Net in the PE-Net.

Let the neural connection eij connect Cell-Nets vi and vj in

the PE-Net. We associate a bias term biasij with every eij . The

bias term represents a perturbation in the signal being prop-

agated along eij . Therefore, the output eij of vi is added to

biasij and the resultant sum sij is passed to the input of vj . To

constrain sij to lie between 0 and 1, we pass sij through an ac-

tivation function, clp(·): clp(z) = max{min{0, z}, 1}, where

z ∈ R. Let the n partial-sum output bits of PE-Net be denoted

by {zout,0, zout,1, ..., zout,n−1}, with zout,0 and zout,n−1 being

the least (LSB) and most significant (MSB) bits, respectively.

Here n can be 16 or 32 depending on the PE architecture.

The n output bits are converted into a single FP scalar

value, ŷpsr,c, using the following differentiable expression:

ŷpsr,c = (1−2zout,n−1)·
(
2(

∑ne−1
i=0 (2i·zout,n−ne+i−1)−2ne−1+1)

)
·(

1 +
∑nm

i=1(2
−i · zout,n−ne−i−1)

)
. Here, ne and nm denote

the number of exponent and mantissa bits in the n-bit binary

representation of a FP value whose MSB represents sign bit.

To enable backpropagation in the PE-Net, we ensure that

the network is end-to-end differentiable by including pseudo-

differentiable activation functions.

C. Criticality Classification using MDT and Decision Tree

The misclassification-driven training (MDT) algorithm [16]

used to identify critical faults (CFs) in PE-Net. Based on the

bias sensitivity computed by MDT, we introduce a selective

bias (+1 or -1) to maximize the error of the neural-twin

MLP model with respect to the fault-free PE. Then, we

train a decision tree (DT) model using a limited amount

of ground truth to classify the neural-twin’s output error as

functionally critical or benign. Fig. 2(C-D) illustrate the MDT-

based methodology for criticality analysis.

MDT iterates through fault locations and introduces a bias

at the location l to simulate a stuck-at fault (F ) effect. We

update the bias at l according to the sign (direction) of the

gradient; the change in direction of the bias is the same as

the gradient at l, or ∇[l]. This can be viewed as a gradient

ascent step to maximize the error function. We next obtain the

error for F by inferencing using the updated neural twin. We

use the pre-trained DT model to predict fault criticality based

on the obtained error value. Almost all faults identified using

MDT lead to extremely large MSE and many of these faults

are predicted as being critical by the DT.

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Functional criticality analysis of structural faults using the neural twin of a PE.

TABLE I: Criticality evaluation using neural twin.
f 16-bit PE 32-bit PE

(%) Ac (%) Mc (%) Ac (%) Mc (%)
2 97.4 (5.3) 5.1 (2.1) 94.3 (1.07) 13.3 (1.3)
5 100 (0) 0 (0) 98.9 (0.3) 3.5 (0.7)
8 100 (0) 0 (0) 100 (0) 0 (0)

10 100 (0) 0 (0) 100 (0) 0 (0)

D. Evaluation Results

Table I presents the evaluation results for the 16-bit and 32-

bit PE(20,0) for different values of f and by using different

criticality analysis frameworks; f is the percentage of ground-

truth data used to train DT. The percentage classification

accuracy is denoted by Ac and the percentage of critical fault

locations misclassified as benign is denoted by Mc. The neural

twin-based framework achieves Ac = 100% and Mc = 0%
misclassification of critical faults by using the DT trained on

only 8% of the labeled data for the 32-bit PE and 5% of the

labeled data for the 16-bit PE.

V. PROBABILISTIC FAULT GRADING FOR SELECTIVE

FAULT SIMULATION

A. Fault-Criticality Grading

1) Computing Probability of Transition Fault

As shown in [11], consider the probability distribution

function (PDF) of the additive bias bx that affects the signal

being propagated by the output net (nx) of a defective cell

instance in the PE netlist. This additive bias is capable of

modeling a cell-internal resistive (or delay) defect, temporal

fluctuations in the power supply due to IR drop or voltage

droop, and thermal noise-induced perturbations in the gate’s

output voltage level. The sign and magnitude of bx determine

the extent to which the signal carried by the faulty net is

affected. In case of cell-internal delay defects, the defect size is

modeled by the bias magnitude and the defect location (PUN

or PDN) can be mapped to the bias sign. Moreover, the noise

margin of the digital circuit is modeled using a non-negative

tolerance parameter, τb. If the voltage level of VDD (ground)

is mapped to ‘1’ (‘0’) and the rule-of-thumb noise margin is

20% of VDD, then τb = 0.2. The additive bias is likely to

cause a faulty signal transition (i.e., bit flip) if its magnitude

exceeds τb. By considering the PDF, p(bx), of bx on a faulty

net and the circuit’s intrinsic tolerance to faults (i.e., noise

margin), we account for the fact that not all defects or non-

idealities are critical to circuit functionality; the impact on

functionality depends on the location, size, and likelihood of

defect occurrence. We next compute the probability of a failed

signal transition (0→1 or 1→0) on the faulty net (nx) using

the bias distribution function. While we consider a single fault

in the PE netlist for criticality analysis, the proposed fault-

grading framework can be extended to multiple-fault scenarios.

Without loss of generality, we assume a PDF for the bias

that is symmetric around the y-axis, i.e., p(bx) = p(−bx). This

implies that the likelihood of occurrence of a certain bias size

is the same irrespective of the bias sign. In the context of

delay defects, the defect-size distribution is assumed to stay

the same for defects in PUN and PDN. Let the probability

of signal ‘1’ being propagated by fault-free nx be p1. Let

the probability of signal ‘0’ being propagated by fault-free nx

is p0. Let Eff,0 denote the event that nx carries ‘0’ in the

fault-free scenario. Let Eflt,0 denote the event that nx does

not undergo a 0→1 transition in the presence of the fault,

i.e., bx. Therefore, P [Eff,0 ∩ Eflt,0] denotes the probability

that the fault-free signal is ‘0’ and remains ’0’ under faulty

conditions. Using Bayes’ theorem, P0 = P [Eff,0 ∩Eflt,0] =
P [Eflt,0|Eff,0] · P [Eff,0]. Note that P [Eff,0] = p0.

The logic value implied by the faulty signal equals that of

the fault-free signal (’0’) under two conditions: (i) bx ≤ 0: the

bias-added signal becomes negative and is correctly perceived

as logic ‘0’ by the downstream logic gates; (ii) 0 < bx < τb:

the signal value on nx becomes bx which is within the circuit

noise margin and does not cause a logical 0→1 transition, i.e.,

no 1→0 transition fault. The probability that one or both of the

above conditions hold equals P [Eflt,0|Eff,0]. The probability

of bx ≤ 0 is computed as area under the PDF curve between

bx = −∞ and bx = 0:
∫ 0

bx=−∞ p(bx)dbx. The probability of

0 < bx < τb is computed as the area under the PDF between

bx = 0 and bx = τb, which is
∫ τb
bx=0

p(bx) dbx. Therefore,

P0 = p0 ·
∫ τb
bx=−∞ p(bx) dbx.

Similarly, the logic value implied by the faulty signal equals

that of the fault-free ‘1’ (i.e., VDD or power supply) under

two conditions: (i) bx ≥ 0: the bias-added signal exceeds 1

and is correctly perceived as logic ‘1’ by the downstream

logic gates; (ii) −τb < bx < 0: the signal value on nx

becomes 1 − bx which is within the circuit noise margin

and does not cause a logical 1→0 transition, i.e., no 0→1

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore.  Restrictions apply. 



transition fault. The probability that the faulty signal carried

by nx implies logic ‘1’, given that the fault-free signal is also

‘1’, is given by:
∫∞
bx=−τb

p(bx) dbx. Therefore, the probability

that the fault-affected nx propagates logic ‘1’ is given by:

P1 = p1 · ∫∞
bx=−τb

p(bx) dbx. Consequently, the probability

(Pflip) that nx undergoes a logical transition in the presence

of a fault is: Pflip = 1− P0 − P1.

The defect-tolerance probability, Ptol, is defined as the area

under the PDF between bx = −τb and bx = τb. In this region,

the additive bias does not affect the logic switching of the

faulty net. A popular choice for the defect-size distribution

function, h(x), is h(x) = a · e−b·|x|, where x is the defect

size, and {a, b} are fitting parameters. We adopt the same

function for p(bx). As a · e−b·|bx| is symmetric around y-

axis and
∫∞
−∞ p(bx) dbx = 1,

∫∞
0

a · e−b·|bx| dbx = 0.5.

This implies b = 2a. Therefore, Ptol =
∫ τb
−τb

p(bx) dbx =

b
∫ τb
0

e−b·bx dbx = 1−e−b·τb . Given τb and b, we can compute

Ptol. Moreover, we can express Pk=0,1 as Pk = pk · ( 1+Ptol

2 ).

2) Propagation of Transition-Fault Probabilities

We convert the pipelined PE netlist into a directed acyclic

graph G where a vertex or node represents a cell instance

and an edge represents a wire connection between two cell

instances. The primary input (PI) and primary output (PO) pins

are mapped to graph nodes as well. We traverse G in a topo-

logically sorted order. The PV is computed for every node’s

output stem during the traversal. The probability tuples for the

PE’s primary inputs (PIs) are extracted from the distribution

of 1’s and 0’s appearing at the PIs across all inferencing cycles

of the applied workload. By considering the bit distribution of

the input workload, the notion of workload-dependent circuit

functionality is incorporated into the computed transition-fault

probabilities. In this work, we consider a workload of 100

MNIST images being classified by the LeNet-5 model mapped

to the systolic array. Each image requires 1298 cycles (or

iterations of PE reuse) to produce the final inferencing result.

Therefore, each PE receives bitstream corresponding to a total

of 1298×100 cycles. For each PI node in G, the fault-free p0
(p1) is calculated as the fraction of 0s (1s) appearing in the

129800-cycle fault-free bitstream.

During topological traversal of G, the PV tuple computed

for a parent node (driver gate) is used to calculate fault-free

pk(k ∈ {0, 1}) for the child node (load gate) based on the

controlling/non-controlling Boolean values of the child. From

the computed pk, Pk of the child is calculated as Pk = pk ·
( 1+Ptol

2 ), if the child node contains a fault with Ptol < 1; if

child is fault-free, Ptol = 1 implying Pk = pk.

The PV computation procedure exits once PV tuples have

been computed for all PO nodes in G. Separate PV tuples are

calculated for the different output ports of a multi-output logic

gate, e.g., SUM and CARRY-OUT ports of a full-adder (FA).

The nodes corresponding to complex gates such as FAs, OAIs,

and AOIs are decomposed into primitive gates (e.g., 2-input

AND, OR, XOR, INV, BUF, etc.) prior to PV computation.

Fig. 3: Variation of FW with variation in Ptol.

3) Ranking Fault Sites using Transition-Fault Probabilities

After the PV tuples are calculated for the PO nodes in the

PE netlist in the presence of a fault f , the expected number

of POs flipping (FE) under faulty conditions is calculated by

summing the Pflip probabilities of all PO nodes corresponding

to the partial-sum output ports of the PE. For m POs, the

expected bit-flip count FE is given by FE =
∑m

i=1 Pflip,POi
,

where Pflip,POi
is the Pflip value in the PV computed for

the i-th PO, POi. A higher value of FE indicates a higher

likelihood of f being functionally critical.

While FE allots equal weight to all POs of the PE, in reality,

faulty transitions in some POs may have greater functional

impact on the final inferencing accuracy compared to other

PEs. For the floating-point PE’s partial-sum output bus, a flip

in the most-significant bit (MSB) is likely to be more critical

than a flip in the least-significant bit (LSB). We compute a

weighted bit-flip count, FW , by assigning larger weights to

the more significant bits of the output bus: FW =
∑m

i=1 i ·
Pflip,POi

. Here, POm (PO1) is the MSB (LSB). Fig. 3 shows

the increase in FW with decrease in Ptol in 16-bit PE(20,0).

We also compute a functionality-aware weighting of the

PO bit-flips. The combination of binary partial-sum outputs

of the floating-point PE is interpreted as a floating-point

operand when the DNN model’s parameters are mapped to

the systolic array. The impact of a fault on the inferencing

accuracy will depend on the functional nature of the flipping

POs, i.e, the POs where the fault effect propagates. Therefore,

we assign weights to the different POs depending on whether

they represent the sign, exponent, or mantissa bits of the

partial-sum bus. The weight assigned to a PO indicates the

maximum magnitude of relative error in the partial-sum value

in decimal representation when the PO flips. Consider a fault-

free partial-sum value of M × 2E , where M (E) denotes the

decimal representation of the mantissa (exponent bits); here

1 ≤ M < 2. Let there be ne (nm) exponent (mantissa) bits. If

the sign bit flips, the partial-sum value changes to −M × 2E ;

the resulting relative error is 2M×2E

M×2E
= 2. If the i-th exponent

bit flips (i = ne − 1 is the MSB of the exponent bits, i = 0
being the LSB), the partial-sum value changes to M × 2E+2i .

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore.  Restrictions apply. 



The resulting relative error is
M×2E ·(22i−1)

M×2E
= 22

i − 1. If

the j-th mantissa bit flips (j = nm is the LSB of the

mantissa bits, j = 1 being the MSB), the partial-sum value

changes to (M + 2−j) × 2E . The resulting relative error is
2−j×2E

M×2E
= 2−j

M ≤ 2−j . Thus, the functionality-aware weighted

PO-flip count, FFW , is given by: FFW = 2 · Pflip,POsign
+∑

i∈exponent(2
2i−1)·Pflip,POi

+
∑

j∈mantissa 2
−j ·Pflip,POj

.

B. Sensitivity Analysis using Neural Twin

Let xi, wi, ypsr−1,c,i−1, and ypsr,c,i denote n-bit activation

input, n-bit weight input, n-bit partial-sum input, and floating-

point partial-sum output of a PE in the i-th inferencing cycle

for an input image, respectively. Let the number of MNIST

images in the application workload be m. We use our in-house

Python-based framework to carry out fault-free inferencing for

the m images and collect the fault-free cycle-wise dataflow

{xi, wi, yps,in, yps; 1 ≤ i ≤ m} through the PE. If the j-

th image (Ij) in the workload requires t inferencing cycles

through the systolic array to produce the final classification,

our dataflow matrix Dj consists of t rows and 3n+1 columns.

The first 3n columns in Dj contain the binary inputs to the

PE and the final column contains the partial-sum output of the

PE, yps, which acts as the label for training PE-Net.

During training of the PE-Net, the input feature vectors

corresponding to the t inferencing cycles of an image are

passed to the PE-Net. Next, we compute the mean-squared-

error (MSE) loss, Lps, between yps and ŷps for the t input

vectors. During the training of PE-Net, only the bias pa-

rameters of the PE-Net are updated. We report the mean-

absolute-error (MAE) loss for the PE-Net output while using

the MSE loss for backpropagation. The batch size, denoted

by bs, indicates the number of images across which the Lps

is accumulated. The accumulated Lps is then averaged and

used for backpropagation to compute the loss gradients with

respect to the PE-Net’s biases using PyTorch autograd. The

gradient of Lps with respect to a bias biasi is given by
∂Lps

∂biasi
;

it measures the sensitivity of the PE output to a small change

in biasi. The computed gradients are used to update the biases

using gradient-descent policy for minimizing Lps. One training

epoch ends when the PE-Net has encountered all m images

in the input dataset. The average | ∂Lps

∂biasi
| across all training

epochs is a direct estimate of the significance of the signal

carried by the net ni, corresponding to biasi, in determining

the PE output. Thus, larger | ∂Lps

∂biasi
| implies higher likelihood

of a fault in ni being critical [11].

C. Towards Criticality Classifiers with Augmented Features

We train the PE-Net on workload-derived bitstream samples

of the PE to obtain the gradients of the internal biases [11].

The gradient of PE-Net’s output error (Lps) with respect to a

bias (biasi) is given by ∇Lps,biasi =
∂Lps

∂biasi
. After obtaining

FFW and |∇Lps| (averaged across training epochs) for a fault

site and its corresponding bias in a source PE, we use them

as features to train a Random-Forest model, having a pareto-

optimal tree depth of 30, for predicting inferencing accuracy

in the presence of the fault. The model trained on the ground-

TABLE II: Transfer of Random-Forest model using

|∇Lps| and FFW as features for criticality analysis.
SourceTarget (20,0) (25,16) (45,8) (21,70) R2

(20,0) - 25 (41) 27 (40) 8 (23) 0.86
(25,16) 219 (307) - 31 (40) 21 (23) 0.88
(45,8) 292 (307) 32 (41) - 20 (23) 0.91

(21,70) 247 (307) 25 (41) 30 (40) - 0.82

truth accuracies and features of the source PE is transferred

to predict fault-induced inferencing accuracies for identifying

critical faults in a target PE. Table II presents the results of

the model transfer between two 16-bit PEs; Ath = 90%. The

rightmost column presents the R2 scores of the models trained

on the respective source PEs. High scores of 0.82 and above

indicate that the model is able to derive a meaningful non-

linear relationship between the inferencing accuracy and the

feature combination of FFW and ∇Lps. This implies that

FFW and ∇Lps are reliable machine-learnable features that

can be used to augment the feature set of existing criticality

classifiers and improve their classification accuracy.

VI. CONCLUSION

The two-tier DNN-based framework classifies critical faults

with a negligible number of misclassifications. In the neural

twin-based framework, the MDT selectively injects a fault

in the neural twin of the PE based on bias sensitivity and

leverages a DT to classify the PE’s output error as benign or

critical. Neural twin-enabled bias gradient and the weighted

bit-flip metric have been shown to be useful features for

training criticality classifiers.

REFERENCES

[1] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in DAC, 2018.

[2] G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in ACM SC, 2017.

[3] J. J. Zhang et al., “Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator,” in VLSI Test
Symposium, 2018.

[4] S. Kundu et al., “Toward functional safety of systolic array-based deep
learning hardware accelerators,” TVLSI, 2021.

[5] A. Chaudhuri et al., “C-testing of AI accelerators,” in ATS, 2020.
[6] A. Gebregiorgis et al., “Testing of neuromorphic circuits: Structural vs

functional,” in ITC, 2019.
[7] M. Sadi et al., “Test and yield loss reduction of AI and deep

learning accelerators,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2021.

[8] A. Chaudhuri et al., “Functional criticality analysis of structural faults
in ai accelerators,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2022.

[9] A. Chaudhuri et al., “Fault-criticality assessment for AI accelerators
using graph convolutional networks,” in DATE, 2021.

[10] A. Chaudhuri et al., “Efficient fault-criticality analysis for AI
accelerators using a neural twin,” in 2021 IEEE International Test
Conference (ITC), 2021.

[11] A. Chaudhuri et al., “Probabilistic fault grading for AI accelerators using
neural twins,” in ISVLSI, 2022.

[12] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA, 2017, pp. 1–12.

[13] “System Architecture of Google TPU v2/v3”. https://bit.ly/2Jnurx9.
[14] “Google Edge TPU: Coral AI”. https://coral.ai.
[15] A. Chaudhuri et al., “Functional criticality classification of structural

faults in AI accelerators,” in ITC, 2020.
[16] C. Chen et al., “Efficient identification of critical faults in memristor

crossbars for deep neural networks,” in DATE, 2021.

Authorized licensed use limited to: Duke University. Downloaded on October 25,2023 at 03:20:25 UTC from IEEE Xplore.  Restrictions apply. 


